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ABSTRACT
In the last decade, significant theoretical advances have been made in the area of frequentist model aver-
aging (FMA); however, the majority of this work has emphasized parametric model setups. This article con-
siders FMA for the semiparametric varying-coefficient partially linear model (VCPLM), which has gained
prominence to become an extensively usedmodeling tool in recent years.Within this context, we develop a
Mallows-type criterion for assigningmodel weights and prove its asymptotic optimality. A simulation study
and a real data analysis demonstrate that the FMA estimator that arises from this criterion is vastly preferred
to information criterion score-basedmodel selection and averaging estimators. Our analysis is complicated
by the fact that the VCPLM is subject to uncertainty arising not only from the choice of covariates, but also
whether the covariate should enter the parametric or nonparametric parts of the model. Supplementary
materials for this article are available online.

1. Introduction

The partially linear model (PLM) introduced by Engle et al.
(1986) and Speckman (1988) is among the most popular semi-
parametric models in statistics. The PLM postulates that the
response variable depends on some covariates in a parametric
linear fashion and on other covariates nonparametrically. There
have been widespread applications of the PLM in biomedicine,
economics, and finance. See Härdle, Liang, and Gao (2000)
for a review. Li et al. (2002) introduced the varying coefficient
partially linear model (VCPLM) that replaces the general multi-
dimensional nonparametric function in the PLM by a “varying
coefficient function” (Cleveland, Grosse, and Shyu 1991; Hastie
and Tibshirani 1993), which approximates the unknown
nonparametric function by a conditional linear model, with
the coefficients being low-dimensional smooth functions of
certain covariates called the effect modifiers. Because only
low-dimensional nonparametric functions are estimated, the
VCPLM is less prone to the curse of dimensionality compared
to the PLM. It is also more flexible in allowing interactions
between a covariate and an unknown function through the
effect modifiers.

An extensive body of literature focusing on the theory of
the VCPLM has been developed. Li et al. (2002) proposed
a local least-square method for estimating the smooth coef-
ficient functions. They showed that the resultant estimators
are consistent and asymptotically normal. Zhang, Lee, and
Song (2002) developed a local polynomial regression-based
estimation procedure, and Xia, Zhang, and Tong (2004) pro-
posed an alternative semilocal estimation method that has the
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advantage of reducing bias. Xia, Zhang, and Tong (2004) also
developed a covariate selection procedure for the VCPLM.
Ahmad, Leelahanon, and Li (2005) and Fan and Huang (2005)
suggested two estimation approaches based on nonparametric
series and profile least-square estimation, respectively. Both
approaches yield semiparametric efficient estimators for the
parametric components under the assumption of conditional
homoscedasticity. Fan and Huang (2005) also considered infer-
ence, and showed that theWilks phenomenon (Fan, Zhang, and
Zhang 2001; Fan and Jiang 2007) holds for the profile likelihood
ratio statistic, implying that its distribution is independent of
unknown parameters. Wang, Zhu, and Zhou (2009) considered
the VCPLM in the context of quantile regression. Zhao and Xue
(2010) focused on covariate selection for the VCPLM when the
covariates are measured with errors. They further proposed a
bias-corrected covariate selection procedure by combining the
basis function approximation with shrinkage estimation.

Qualifying the utility of covariates is an essential aspect in
the application of statistical models, and the VCPLM is no
exception. The traditional approach is to first estimate multiple
competing models, each containing a different combination
of covariates, then examine the fit of the models, and finally
drawing inference from the best-fitting model, ignoring the
alternative estimates and the uncertainty arising from themodel
selection process. Several studies, including Xia, Zhang, and
Tong (2004) and Zhao and Xue (2010) mentioned above, have
considered covariate selection for the VCPLM. Past research
has shown that model selection underestimates the true vari-
ability of the model, and thereby results in overconfident
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decision-making (Hjort and Claeskens 2003). In this article, we
consider model averaging as an alternative to model selection
within theVCPLM.Model averaging assignsweights to different
models. These weights are then used to produce average esti-
mates of the unknown parameters and functions. There is ample
evidence indicating thatmodel averaging frequently yieldsmore
accurate predictions of the target variable than model selection.
In a well-cited article, Hansen (2007) developed amodel weight-
ingmethod for linear regressions based on aminimization of the
Mallows criterion, and established an asymptotic optimality for
the resultantmodel average estimator. Building on thiswork, Liu
and Okui (2013) developed a heteroscedasticity-robust variant
of Hansen’s (2007) Mallows model average estimator. Another
common approach to model averaging is to assign weights
based on information criterion scores obtained from different
models, as in Buckland, Burnham, and Augustin (1997), Hjort
and Claeskens (2006), and Zhang, Wan, and Zhou (2012).

The primary object of the current article is to develop a
Mallows-type model averaging criterion for the VCPLM, to
which the FMA literature has paid only scant attention to-date.
Focusing on a VCPLM with measurement errors, Wang, Zou,
and Wan (2012) derived the asymptotic distribution of model
averaging estimators of the unknowns. The analysis of Wang,
Zou, and Wan (2012) is based on the local misspecification
framework introduced by Hjort and Claeskens (2003), which
assumes that the true values of the auxiliary parameters in the
model are in a

√
n-shrinking neighborhood of zero. Under this

framework, for regular models or the family of models with
local asymptotic normality, all maximum likelihood estimators
are

√
n-consistent and have squared bias and variance of order

O(n−1). These properties facilitate the analysis of an estimator’s
asymptotic behavior, but at the cost of assuming a model frame-
work whose realism is subject to considerable criticism. Also,
Wang, Zou, and Wan’s (2012) analysis considered only exist-
ing weightingmethods based on information scores and did not
propose any new method with superior properties.

UnlikeWang, Zou, andWan (2012), our analysis is not based
on the local misspecification framework; therefore, the validity
of our results does not depend on the above-mentioned prop-
erties of the maximum likelihood estimators that arise from
the local misspecification assumption. In addition, we allow
for heteroscedasticity in the model’s errors. Our initial setup
assumes a known covariance matrix of errors. Under this setup,
we propose a weight choice criterion based on aminimization of
an unbiased estimator of the expected predictive squared error
(up to a constant) of the model average estimator. We prove that
under certain regularity conditions, the weights resulting from
this criterion lead to an asymptotically optimal model average
estimator. We further show that when the unknown covariance
matrix is estimated by a plugged-in estimator, the proposed
criterion continues to yield an estimator that is asymptotically
optimal. It is instructive to mention that our proof of optimality
does not follow the methods of Hansen (2007) and Zhang
and Wang (2018) who considered linear parametric and par-
tial linear setups, respectively. Their proof techniques cannot
be used if a varying coefficient nonparametric component is
present. As well, there are two layers of uncertainty for the
VCPLM: the first concerns the choice of covariates, while
the second concerns whether the covariate should enter the
parametric or nonparametric parts of the model. These features

of the VCPLM significantly complicate the analysis and pose
formidable technical challenges with regard to establishing an
asymptotic theory for the FMA estimator.

The remainder of this article is organized as follows.
Section 2 contains a description of the VCPLM and methods
for estimation. Section 3 introduces the Mallows-type weight
choice criterion and the varying coefficient partially linear
model average (VCPLMA) estimator that arises from this cri-
terion. The asymptotic optimality of the VCPLMA estimator is
established in Section 4. Section 5 compares the finite sample
properties of the VCPLMA estimator with several information
criterion-based model selection and averaging estimators. A
real data example is considered in Section 6. Section 7 contains
some concluding remarks. An Appendix contains the sketches
of the proofs of theorems. Detailed proofs are given in an online
supplemental file.

2. Model Set-Up and Parametric Estimation

The VCPLM is described by the following equation:

yi = μi + εi = xT
i β + zT

i α(ti) + εi

=
K∑

k=1

xikβk +
R∑

r=1

zirαr(ti) + εi, i = 1, 2, . . . , n, (1)

where yi is the response variable, xi = (xi1, xi2, . . . , xiK )T and
zi = (zi1, zi2, . . . , ziR)T are covariates, β = (β1, β2, . . . , βK )T

is an unknown coefficient vector associated with xi, α(·) =
(α1(·), α2(·), . . . , αR(·))T is an unknown coefficient function
vector associated with zi, ti is the “effect modifier,” a univari-
ate covariate different from xi and zi, and εi is a disturbance
term with conditional mean E(εi|xi, zi, ti) = 0 and variance
E(ε2i |xi, zi, ti) = σ 2

i . Model (1) permits interactions between ti
and zi in such a way that the effects of zi vary over different lev-
els of ti; a different level of ti is also associated with a different
linear model. In the model averaging literature, the true model
is commonly assumed to be infinite dimensional (Hansen 2007;
Lu and Su 2015). We make the same assumption here, and let K
and R go to infinity.

Equation (1) may be expressed equivalently in matrix
form as

Y = μ + ε = Xβ + S + ε, (2)

whereY = (y1, y2, . . . , yn)T is an n × 1 vector of the dependent
variable, X = (x1, x2, . . . , xn)T is an n × K covariate matrix,
S = (zT

1α(t1), zT
2α(t2), . . . , zT

nα(tn))T, Z = (z1, z2, . . . , zn)T is
an n × R covariate matrix, � = (t1, t2, . . . , tn)T is an n ×
1 vector of the effect modifier, μ = (μ1, μ2, . . . , μn)

T =
Xβ + S is an n × 1 function vector of X,Z, and � , and
ε = (ε1, ε2, . . . , εn)

T is an n × 1 vector of random dis-
turbances with E(ε|X,Z, �) = 0 and E(εεT|X,Z, �) = � =
diag(σ 2

1 , σ 2
2 , . . . , σ 2

n ).
We use M candidate models to approximate the true data-

generating process ofY , whereM is allowed to diverge to infin-
ity as n → ∞. The mth candidate (or approximating) VCPLM
includes km of K regressors in xi and rm of R regressors in zi.
Thus, themth approximating model is

Y = μ(m) + ε(m)

= X(m)β(m) + S(m) + ε(m), m = 1, 2, . . . ,M, (3)
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where X(m) is an n × km matrix containing km columns of
X with full column rank, ε(m) is the error term of the mth
approximatingmodel, S(m) = (zT

(m)1α(m)(t1), zT
(m)2α(m)(t2), . . . ,

zT
(m)nα(m)(tn))T, Z(m) = (z(m)1, z(m)2, . . . , z(m)n)

T is an n × rm
matrix containing rm columns of Z with full column rank
(i.e., the mth candidate model contains km covariates in X
and rm covariates in Z), β(m) = (β(m)1, β(m)2, . . . , β(m)km )T

is a km × 1 unknown coefficient vector, and α(m)(t ) =
(α(m)1(t ), α(m)2(t ), . . . , α(m)rm (t ))T is an rm × 1 unknown
coefficient function vector that varies with t . Following the
convention in the model averaging literature, we assume that all
candidate models are incorrect, and at best, approximations to
the true data-generating process.

Remark 1. Motivated by the common aphorism in statistics that
all models are wrong but some are useful (Box 1976; Box and
Draper 1987), studies of model averaging commonly assume
that no candidate model is the true model. See Hansen (2007),
Wan, Zhang, and Zou (2010), Hansen and Racine (2012), and
Liu and Okui (2013), where the assumption is made explicitly. It
is an important assumption to ensure the validity of our as well
as existing results on the asymptotic optimality ofmodel average
estimators as the conditions on ξn stated under Conditions (C.2)
and (C.9) in Section 4 cannot hold if the truemodel is among the
candidate set.

We estimate β(m) and α(m)(t ) by the profile least-square
method (Fan and Huang 2005; You and Chen 2006) described
as follows. For any t in the neighborhood of t0, let α(m) j(t ) be
approximated by the following linear function:

α(m) j(t ) ≈ α(m) j(t0) + α′
(m) j(t0)(t − t0)

≡ a(m) j + b(m) j(t − t0), j = 1, 2, . . . , rm.

If β(m) is known, then a(m) j and b(m) j are solutions to the follow-
ing weighted local least-square criterion:

min
a(m),b(m)

n∑
i=1

[
yi − xT

(m)iβ(m) − zT
(m)i

{
a(m) + b(m)(ti − t0)

}]2
×Khm (ti − t0), (4)

where a(m) = (a(m)1, a(m)2, . . . , a(m)rm )T, b(m) = (b(m)1, b(m)2,

. . . , b(m)rm )T, Khm (·) = K(·/hm)/hm, K(·) is a kernel function,
and hm is a bandwidth. The solutions may be expressed as

(â(m)1(t ), . . . , â(m)rm (t ), hmb̂(m)1(t ), . . . , hmb̂(m)rm (t ))T

= {DT
(m)tW(m)tD(m)t}−1DT

(m)tW(m)t (Y − X(m)β(m)), (5)

where W(m)t = diag{Khm (t1 − t ),Khm (t2 − t ), . . . ,Khm (tn −

t )}, D(m)t =

⎛
⎜⎝
zT
(m)1

t1−t
hm

zT
(m)1

...
...

zT
(m)n

tn−t
hm

zT
(m)n

⎞
⎟⎠

n×2rm

= (Z(m)

...	(m)tZ(m)) =

(Z
T
2m
...	(m)tZ
T

2m), 	(m)t = diag{ t1−t
hm

, t2−t
hm

, . . . , tn−t
hm

}, and

2m is an rm × R selection matrix.

Remark 2. In theory, one can use different hm’s for differ-
ent candidate models,m = 1, 2, . . . ,M. However, this requires
tremendous computational efforts especially when M is large.

In our numerical analysis, we use the relatively simple rule-of-
thumb bandwidth selection method that results in a common
bandwidth for all models. See Sections 5 and 6 for details.

Suppose that the models of interest are indexed by the sub-
sets {U1} of {1, 2, . . . ,K}. Let 
1m be the selection matrix map-
ping xi = (xi1, xi2, . . . , xiK )T onto the subvector x(m)i = 
1mxi
of components xi j with j ∈ U1. Hence, 
1m is of size km × K
with km being the size of U1. Similarly, let the subsets {U2} of
{1, 2, . . . ,R} index the models of interest, and 
2m be the pro-
jectionmatrixmapping zi = (zi1, zi2, . . . , ziR)T onto the subvec-
tor z(m)i = 
2mzi of components zi j with j ∈ U2. Hence, 
2m is
of size rm × R with rm being the size ofU2.

Substituting (â(m)1(t ), â(m)2(t ), . . . , â(m)rm (t )) in model (3)
yields

yi − ŷ(m)i = (x(m)i − x̂(m)i)
Tβ(m) + ε̃i, (6)

where ε̃i is the random error different from εi,

ŷ(m)i = (zT
(m)i, 0

T){DT
(m)tiW(m)tiD(m)ti}−1DT

(m)tiW(m)tiY,

and

x̂(m)i = [(zT
(m)i, 0

T){DT
(m)tiW(m)tiD(m)ti}−1DT

(m)tiW(m)tiX(m)]T.

Denote

A(m) =

⎛
⎜⎝

(zT
(m)1, 0

T){DT
(m)t1W(m)t1D(m)t1}−1DT

(m)t1W(m)t1
...

(zT
(m)n, 0

T){DT
(m)tnW(m)tnD(m)tn}−1DT

(m)tnW(m)tn

⎞
⎟⎠

n×n

,

(7)

X̂(m) = A(m)X(m), Ŷ(m) = A(m)Y , and P(m) = P̂(m)(In − A(m)) +
A(m), where P̂(m) = (In − A(m))X(m){XT

(m)(In − A(m))
T(In −

A(m))X(m)}−1XT
(m)(In − A(m))

T is an n × n projection matrix.
Fan and Huang (2005) showed that the least-square estimator
of β(m) in (6) is

β̂(m) = {(X(m) − X̂(m))
T(X(m) − X̂(m))}−1

× (X(m) − X̂(m))
T(Y − Ŷ(m))

= {XT
(m)(In − A(m))

T(In − A(m))X(m)}−1XT
(m)

× (In − A(m))
T(In − A(m))Y. (8)

Under themth candidate model, the estimator ofμ is given by

μ̂(m) ≡ X(m)β̂(m) + Ŝ(m)

= X(m)β̂(m) + A(m)(Y − X(m)β̂(m))

= (In − A(m))X(m)β̂(m) + A(m)Y
= [(In − A(m))X(m){XT

(m)(In − A(m))
T(In − A(m))X(m)}−1XT

(m)

×(In − A(m))
T(In − A(m)) + A(m)]Y

= {P̂(m)(In − A(m)) + A(m)}Y
= P(m)Y. (9)

Equation (9) shows that μ̂(m) is linearly dependent onY .
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3. Model Averaging andWeight Choice Criterion

Let w = (w1,w2, . . . ,wM )T be a weight vector in the unit sim-
plex of RM :

Hn =
{

w ∈ [0, 1]M :
M∑

m=1

wm = 1

}
.

The model average estimator of μ is

μ̂(w) =
M∑

m=1

wmμ̂(m) =
M∑

m=1

wmP(m)Y = P(w)Y,

where P(w) = ∑M
m=1 wmP(m). Define the squared error loss

function and the corresponding conditional risk function as
Ln(w) = ‖μ̂(w) − μ‖2 and

Rn(w) = E(Ln(w)|X,Z, �)

= E(‖(P(w) − In)μ + P(w)ε‖2|X,Z, �)

= ‖(P(w) − In)μ‖2 + tr(PT(w)P(w)�), (10)

respectively. Our choice of w is based on the criterion

Cn(w) = ‖Y − μ̂(w)‖2 + 2tr(P(w)�). (11)

It can be readily shown that

E(Cn(w)|X,Z, �) = E{‖μ + ε − μ̂(w)‖2
+ 2tr(P(w)�)|X,Z, �}

= E{‖μ − μ̂(w)‖2 + ‖ε‖2
+ 2εT(μ − μ̂(w))

+ 2tr(P(w)�)|X,Z, �}
= E(Ln(w)|X,Z, �) + tr(�)

− 2E{tr(P(w)�)|X,Z, �}
+ 2E{tr(P(w)�)|X,Z, �}

= E(Ln(w)|X,Z, �) + tr(�).

In other words,Cn(w) is an unbiased estimator of the expected
in-sample squared error loss plus a constant, which is similar
to the Mallows criterion proposed by Hansen (2007). Thus, our
criterion is a Mallows-type criterion.

The optimal weight vector is obtained by minimizingCn(w)

over the weight set Hn, that is,

ŵ = arg min
w∈Hn

Cn(w). (12)

Given that (12) is a quadratic programming problem, the
computation of the optimal weight vector is straightforward.
We refer to the resultant estimator μ̂(ŵ) as the VCPLMA
estimator.

In practice, the covariance matrix � is unknown and
needs to be estimated. Following Hansen (2007), we esti-
mate � based on the largest approximating model indexed by
M∗ = argmax1≤m≤M{km + rm}, leading to the estimator

�̂ = diag(ε̂2(M∗)1, ε̂
2
(M∗)2, . . . , ε̂

2
(M∗ )n), (13)

where ε̂(M∗)i = yi − μ̂(M∗)i and μ̂(M∗ )i is the ith component of
μ̂(M∗).

When � is replaced by �̂, the criterion in (11) changes
accordingly to

Ĉn(w) = ‖Y − μ̂(w)‖2 + 2tr(P(w)�̂), (14)

which may be treated as a feasible counterpart of Cn(w). Mini-
mizing Ĉn(w) with respect to w leads to

w̃ = arg min
w∈Hn

Ĉn(w). (15)

Substituting w̃ in μ̂(w) yields theVCPLMAestimator under the
unknown � case.

4. Asymptotic Optimality of the VCPLMA Estimator

Let ξn = infw∈Hn Rn(w), r̃ = max1≤m≤M rm, h̃ = max1≤m≤M
hm, h = min1≤m≤M hm, λ̄(·) and λ(·) be the maximum and
minimum singular values of a given matrix, respectively, and
w0

m be an M × 1 vector where the mth element is one and all
other elements are zeros. The following regularity conditions
are required for the VCPLMA estimator to achieve asymptotic
optimality. All limiting processes, unless stated otherwise, cor-
respond to n → ∞.

Condition (C.1). For some fixed integer G (1 ≤ G < ∞)

and constant κ < ∞, E(ε4Gi |xi, zi, ti) ≤ κ < ∞, f or all i =
1, 2, . . . , n, a.s.

Condition (C.2). Mξ−2G
n r̃G

∑M
m=1{Rn(w

0
m)}G = op(1).

Condition (C.3). The random variable ti has bounded support

. The density f (·) of ti is continuous and bounded away
from 0 on its support, which is at least twice differentiable. The
function α j(·) is twice continuously differentiable in 
 for all
j = 1, 2, . . . ,R.

Condition (C.4). max1≤m≤M max1≤i≤n zT
(m)iz(m)i = Op(r̃), Cz ≡

E(z jzT
j ) is nonsingular for all j; as well, there exist con-

stants κz, cz, and c̄z, such that E{(zlizlk)2} ≤ κz < ∞,
for all l = 1, 2, . . . , n; i, k = 1, 2, . . . ,R, and 0 < cz ≤
min1≤m≤M λ(
2mCz


T
2m) ≤ max1≤m≤M λ̄(
2mCz


T
2m) ≤ c̄z <

∞.

Condition (C.5). The kernel function K(·) is a bounded
symmetrical density with symmetrical and compact support
supp(K), h̃ = O(n−1/5) and h = O(n−1/5).

Remark 3. Condition (C.1) places a restriction on the condi-
tionalmoment of the error term.Condition (C.2) is analogous to
Condition (8) of Wan, Zhang, and Zou (2010), which is widely
used in studies of model averaging. See, for example, Liu and
Okui (2013) and Ando and Li (2014). Condition (C.3) is an
assumption related to the densities of ti and its functions. It is
similar to Conditions (C1) and (C4) of Wang, Zou, and Wan
(2012). Condition (C.4) places amild condition onZ; it is related
to the norm of z(m)i, the moment of zlizlk, and the singular value
of the expectation of z jzT

j . Condition (C.5) is a common assump-
tion of the kernel function and bandwidth.

The next theorem gives the asymptotic optimality of the
VCPLMA estimator when � is known.
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Theorem 1. Let Conditions (C.1)–(C.5) hold. Then

Ln(ŵ)

inf
w∈Hn

Ln(w)

p−→ 1. (16)

Theorem 1 shows that the VCPLMA estimator based on
ŵ is asymptotically optimal in that it leads to a squared error
loss that is asymptotically identical to that of the infeasible best
possible model average estimator. The Appendix provides a
sketch of the proof of Theorem 1. The detailed proof is available
in the online supplemental file.

Let ρ
(m)
ii be the ith diagonal element of P(m) and k̃ =

max1≤m≤M km. When � is estimated by �̂ given in (13), pro-
vided that the following additional conditions are satisfied, it
can be shown that the VCPLMA estimator based on w̃ shares
the same asymptotic optimality as the corresponding estimator
based on ŵ described in Theorem 1.

Condition (C.6). There exists a constant c such that |ρ(m)
ii | ≤

cn−1|tr(P(m))| for allm ∈ {1, 2, . . . ,M}.
Condition (C.7). μTμ/n = O(1), a.s..

Condition (C.8). n−1r̃2k̃2 = O(1) and n−1h−2r̃3 = O(1).

Condition (C.9). ξ−1
n r̃3/2k̃ = op(1) and ξ−1

n h−1r̃2 = op(1).

Remark 4. Condition (C.6) is commonly used to ensure the
asymptotic optimality of cross-validation. See, for example,
Andrews (1991) and Hansen and Racine (2012). Condition
(C.7) is about the sum of the elements of μ and is commonly
used in the context of linear regression. See, for example, Wan,
Zhang, and Zou (2010) and Liang et al. (2011). Condition (C.8)
has two parts—the first part places a restriction on the rate of
increase of r̃2k̃2 as n → ∞, while the second part is about the
relationship between the bandwidth and r̃3. Condition (C.9)
implies that ξn increases at a rate faster than r̃3/2k̃ and h−1r̃2.

Theorem 2. Suppose that Conditions (C.1)–(C.9) hold. Then as
n → ∞, we have

Ln(w̃)

inf
w∈Hn

Ln(w)

p−→ 1. (17)

Theorem 2 shows that Theorem 1 remains valid when � is
replaced by �̂. The Appendix provides a sketch of the proof of
Theorem 2. A detailed proof is available in the online supple-
mental file.
Remark 5. Our criterion in (11) contains the term tr(P(w)�).
Similar to the approach of Liu and Okui (2013), instead of treat-
ing� in isolation, we treat tr(P(w)�) as one entity and estimate
it by

∑n
i=1 ê

2
i pii(w), where êi = yi − μ̂(M∗)i and pii(w) is the ith

diagonal element of P(w).

5. A Simulation Study

This section is devoted to a comparison of the finite-sample
performance of the VCPLMA estimator that arises from the
proposed Mallows-type weight choice method with several
existing information criterion-based model selection and

averaging methods in a Monte Carlo study. We will begin
with a description of the experimental design, followed by the
estimation procedure and results.

5.1. Experimental Design

We assume that the true data-generating process of yi is given
by

yi = μi + εi =
200∑
k=1

xikβk +
200∑
r=1

zirαr(ti) + εi,

where the observations of xi = (xi1, xi2, . . . , xi200)T and zi =
(zi1, zi2, . . . , zi200)T are generated from a multivariate normal
distribution with mean 0 and covariance �, with the i jth
element of � being �ij, ti

iid∼ U (0, 1), and εi ∼ N(0, η2(x2i2 +
0.01)). We vary η such that R2 = var(μi)/var(yi) varies
between 0.1 and 0.9, where var(μi) and var(yi) are the vari-
ances of μi and yi, respectively. We set n =50, 100, 200, and
400, and consider six experimental designs that differ in terms
of βk, αr(ti), M and the covariances between the elements of xi
and zi. They are showed in Table 1. In the table, �i j denotes
the i jth element of �, the covariance matrices of xi and zi, and
the function INT(·) returns the value of the figure inside the
bracket rounded to the nearest integer. Thus, forDesigns 1 and 2,
M =11, 14, 18, and 22 for n = 50, 100, 200, and 400, respectively.
The value of M for Designs 3–6 arises from the condition that
at least one of the variables in {xi1, xi2, xi3, zi1}must be a covari-
ate in either one of the two component but not in both. Hence,
there are M =

(
4
1

) (
23 − 1

)+
(
4
2

)
(22 − 1) +

(
4
3

)
= 50 can-

didate models.

5.2. Estimation and Comparison

We use the Epanechnikov kernel K(v ) = 3
4 (1 − v2)I{|v|≤1} and

set the bandwidth hm to std(t )n−1/5, which is the optimal
bandwidth choice based on the rule-of-thumb method, for all
m = 1, 2, . . . ,M, where std(t ) is the sample standard deviation
of {ti}ni=1 (see Remark 2). For Designs 1 and 2, where covariate
uncertainty exists only in the parametric component, � is
estimated based on the Mth candidate model containing the
largest number of covariates. Under Designs 3–6, it is estimated
based on the model with the largest number of covariates across
the parametric and nonparametric parts.

We compare the finite sample performance of the VCPLMA
estimator with the AIC- and BIC-based model selection
and averaging estimators. The AIC and BIC scores for the
mth candidate model are AICm = log(σ̂ 2

m) + 2n−1tr(P(m))

and BICm = log(σ̂ 2
m) + n−1tr(P(m)) log(n), respectively,

where σ̂ 2
m = n−1‖y − μ̂(m)‖2. These two criteria each

select a model that corresponds to the smallest of their
respective scores. Buckland, Burnham, and Augustin
(1997) suggested a weight choice for model averaging
based on the following smoothed-version of the AIC and
BIC: SAICm = exp(−AICm/2)/

∑M
l=1 exp(−AICl/2) and

SBICm = exp(−BICm/2)/
∑M

l=1 exp(−BICl/2). Due to its ease
of use, the SAIC and SBIC weight choice methods have been
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Table . Summary of experimental designs for simulation study.

Design βk αr(ti) �i j M Covariate set

 1
k2

sin(2π rti )
r (1/2)|i− j| INT(3n

1
3 ) Assume that zi1 is the only covariate included in the nonparametric part

resulting in a common nonparametric structure of zi1α1(ti) for all
candidate models. Covariates in the parametric part are drawn from the
set {xi1, xi2, . . . , xiM}, with themth candidate model containing the
firstm variables in the set, that is, the candidate models are nested.

 1
k2

sin(2π rti )
r (1/2)|i− j| INT(3n

1
3 ) Identical to Design  except that all models contain the same two

covariates zi1 and zi2 in the nonparametric part, resulting in a common
nonparametric structure of zi1α1(ti) + zi2α2(ti) for all models.

 1
k2

sin(2π rti )
r (1/2)|i− j|  The covariate set contains {xi1, xi2, xi3, zi1}. A candidate model must

contain at least one covariate from the above set in either the
parametric or nonparametric components but not in both.

 1
k3/2

sin(2π rti )
r (1/2)|i− j|  Identical to Design 

 1
k2 tie

(−rti ) (1/2)|i− j|  Identical to Design 

 1
k2

sin(2π rti )
r  if i = j,  Identical to Design 

 if i 
= j

used extensively in the FMA literature. Examples are Hjort and
Claeskens (2006) and Zhang, Wan, and Zhou (2012).

Our evaluation of the performance of estimators is based on
the following sample mean squared error (MSE) of the response
variable:

MSE(d) = 1
nD

D∑
d=1

‖μ̂(d) − μ(d)‖2, (18)

where D = 500 is the number of replications and d indexes the
dth simulation trial.

5.3. Results

As the results produced are similar between Designs 1 and
2, and among Designs 3–6, we only present the results corre-
sponding to Designs 1, 3, and 6, which are given in Figures 1–3,
respectively. One remarkable aspect of the results is that over
a very large region of the parameter space, the VCPLMA
estimator is found to deliver vastly more accurate outcomes
than the other four competing estimators, including the FMA
estimators based on the SAIC and SBIC averagingmethods. The
superiority of the VCPLMA estimator over the others is more
pronounced under Deigns 3–6, where covariate uncertainty
exists in both the parametric and nonparametric parts, than
under Designs 1 and 2, where the inclusion of covariates is
uncertain only for the parametric part. The MSE reduction
relative to model selection achieved by the VCPLMA estimator
is also more substantial when R2 is small than when it is large.
Typically, a small R2 is associated with a high noise content
in the model’s disturbances. Under this situation, it is often
difficult to identify a single best model, leading to model selec-
tion estimators exhibiting very unstable and often poor results.
Averaging, on the other hand, smoothes across all candidate
models, and thus shields against choosing and subsequently
relying on a very bad model. The exact opposite explains why
selection can sometimes outperform averaging when R2 is
large. However, in this case often one single model can take up
an overwhelming proportion of model weights in the model

average, especially when n is large, yielding a model average
estimator with an MSE that is effectively indistinguishable from
that obtained based on the model selection approach. Except
when R2 is large, the VCPLMA estimator is found to produce
more accurate outcomes than the SAIC and SBIC estimators,
which in turn outperform their respective model selection
counterparts. We are especially encouraged by the marked
superiority observed for the VCPLMA estimator under Designs
3–6, which suggests that the VCPLMA estimator is most useful
when covariate uncertainty exists in both the parametric and
nonparametric parts of the model, a phenomenon commonly
encountered in practice. Other things being equal, a large n,
which reduces the noise level of the model, generally plays in
model selection’s favor; as n increases, all estimators enjoy a
reduction in MSE. Recall that the optimality of the VCPLMA
estimator does not depend on the ability to include the true
model in the candidate set. We think that the good showing of
the estimator in finite samples may be attributed to this merit.

6. Empirical Application

We now apply the proposed VCPLMA methodology to a real
dataset that contains observations on aged patients in 36 nurs-
ing homes in San Diego, CA, collected between 1980 and 1982.
The same data were used by Fan, Lin, and Zhou (2006), Morris,
Norton, and Zhou (1994), and Xie, Wan, and Zhou (2015)
in their studies. The dependent variable of interest, y, is the
natural logarithm of the number of days the patient stayed in
a nursing home. The covariates include x1, an indicator equal
to 1 if the patient received medical treatment at the nursing
home and 0 otherwise; x2, which equals 1(0) if the patient is
male(female); x3, which equals 1(0) if the patient is married(not
married); x4, which represents health status, with larger x4
indicating worse health conditions; t = (age − 64)/(102 − 64)
is the normalized age of the patients in the sample, and age
lies between 65 and 102. We treat t as the effect modifier.
The original sample contains 1601 observations including 332
censored observations. Our analysis is based on the remaining
1269 uncensored observations.
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Figure . MSE comparisons under Design .

We have no prior knowledge of which of x1, x2, x3, and x4
to include in the model. All of our candidate models contain
no fewer than one covariate in each of the parametric and
nonparametric parts, with no overlapping covariates in the two.
With four covariates, this results in M = 50 candidate models.
We randomly divide the data into a training sub-sample and
a test subsample. Let n0 be the number of observations in the
training subsample. We set n0 to 600, 700, 800, 900, 1000,
1100, and 1200. Based on the estimated model, we forecast the

remaining n1 = n − n0 observations of y in the corresponding
test subsample. Our performance metric of predictive efficiency
is the normalized mean squared prediction error (NMSPE),
obtained by dividing the MSPE of a given estimator by the
MSPE of the infeasible optimal estimator, which is the estimator
based on one of the M = 50 models that yields the smallest
MSPE across the n1 test observations. We repeat this process
D = 500 times, and calculate the mean and the median of the
normalizedNMSPEs of the fivemethods across the replications.
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Figure . MSE comparisons under Design .

R. ZHU ET AL.888



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.8

1.3

1.8

R2

M
S

E

n=50

AIC
BIC
SAIC
SBIC
VCPLMA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.5

0.7

0.9

1.1

R2

M
S

E

n=100

AIC
BIC
SAIC
SBIC
VCPLMA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R2

M
S

E

n=200

AIC
BIC
SAIC
SBIC
VCPLMA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

R2

M
S

E

n=400

AIC
BIC
SAIC
SBIC
VCPLMA

Figure . MSE comparisons under Design .

Specifically,

NMSPE(d)
mean = 1

D

D∑
d=1

(
MSPE(d)/R(d)

0

)
(19)

and

NMSPE(d)

median = median
d=1,2,...,D

(
MSPE(d)/R(d)

0

)
, (20)

where MSPE(d) = 1
n1

∑n
i=n0+1(y

(d)
i − μ̂

(d)
i )2, R(d)

0 = minm=1,2,

...,M
1
n1

∑n
i=n0+1(y

(d)
i − μ̂

(d)

(m)i)
2, μ̂

(d)
i is the predicted value of

y(d)
i obtained by a given method in the dth trial, and μ̂

(d)

(m)i
indicates that the prediction is based on the mth model. They
are shown in Table 2, which also reports the optimal rate of
each method, defined as the proportion of times in which the
method results in the smallest NMSPE across the D replication
trials.

The results show that the VCPLMA method is the over-
whelming favorite of all methods no matter the performance
yardstick, a finding we consider remarkable. The superiority of
the VCPLMA method over other strategies is most apparent in
terms of optimal rate, for which the VCPLMA estimator always
attains a score of over 50%, meaning that in over half of the tri-
als, theVCPLMAmethod yields the smallest NMSPE among the
five estimators. The SAIC estimator frequently yields an opti-
mal rate that is a distant second to the VCPLMA estimator but
best among the four remaining estimators. In terms of the mean
andmedian of NMSPE, the SBIC estimator has an edge over the
SAIC estimator, but it is never found to be a better alternative
than the VCPLMA estimator. The SAIC and SBIC estimators
both improve over their model selection counterparts in terms
of mean, median, and optimal rate.

Table 3 reports the Diebold and Mariano (1995) test results
for the differences in MSPE. The test statistics and p-values pre-
sented inColumns 4, 7, 9, and 10 of the table show that the differ-
ences in MSPE between the VCPLMA estimator and the other
four estimators are all statistically significant. The test results
shown in Columns 2, 3, 5, and 6 indicate the same about the
differences between each of the SAIC and SBIC estimators and
the two selection-based estimators. However, the same cannot
be said about the difference in performance between the SAIC

Table . Normalized mean squared prediction errors (NMSPE) of five methods
(D = 500).

n0 Method AIC BIC SAIC SBIC VCPLMA

 Mean . . . . 1.007
Median . . . . 1.006
Optimal rate . . . . 0.570

 Mean . . . . 1.007
Median . . . . 1.006
Optimal rate . . . . 0.548

 Mean . . . . 1.008
Median . . . . 1.007
Optimal rate . . . . 0.500

 Mean . . . . 1.010
Median . . . . 1.009
Optimal rate . . . . 0.504

 Mean . . . . 1.012
Median . . . . 1.012
Optimal rate . . . . 0.554

 Mean . . . . 1.017
Median . . . . 1.016
Optimal rate . . . . 0.446

 Mean . . . . 1.032
Median . . . . 1.029
Optimal rate . . . . 0.376
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Table . Diebold–Mariano statistics: Mean squared prediction errors (MSPE) (D = 500).

n0
AIC
BIC

AIC
SAIC

AIC
SBIC

AIC
VCPLMA

BIC
SAIC

BIC
SBIC

BIC
VCPLMA

SAIC
SBIC

SAIC
VCPLMA

SBIC
VCPLMA

 DM . . . . . . . . . .
p-Value . . . . . . . . . .

 DM . . . . . . . . . .
p-Value . . . . . . . . . .

 DM . . . . . . . . . .
p-Value . . . . . . . . . .

 DM . . . . . . . . . .
p-Value . . . . . . . . . .

 DM . . . . . . . -. . .
p-Value . . . . . . . . . .

 DM . . . . . . . . . .
p-Value . . . . . . . . . .

 DM . . . . . . . -. . .
p-Value . . . . . . . . . .

NOTE: A positive Diebold–Mariano statistic indicates that the estimator in the numerator produces a larger MSPE than the estimator in the denominator.

and SBIC estimators, and between the AIC and BIC estimators,
as shown in Columns 1 and 8.

7. Concluding Remarks

In the context of the varying-coefficient partially linear model,
we have demonstrated a Mallows-type VCPLMA estimator that
possesses a large sample justification and has excellent finite
sample properties relative to traditional competingmodel selec-
tion and averaging methods. All things considered, the results
suggest that the VCPLMA estimator represents a credible alter-
native that deserves further attention from both theoretical and
applied statisticians.

There are a number of ways the present approach can be
extended thatmay result in an evenmore effective estimator. For
example, model screening could be introduced into the analysis,
and judging from existing results (e.g., Yuan and Yang 2005),
it is conceivable that removing the poorest models before aver-
aging can contribute to greater estimation and predictive effi-
ciency. Also, although we allow the dimension parameters rm
and km to increase with n, the sample size, they are not allowed
to be greater thann, and their rates of increase are constrained by
Condition (C.8). The development of an optimal model averag-
ing method for high-dimensional VCPLM is an intriguing pos-
sible extension of the current analysis. There is also room for an
extension of the present approach to the generalized varying-
coefficient partially linear model (Li and Liang 2008; Lam and
Fan 2008) that permits a discrete response variable, and more
versatile link functions for error distributions. These remain for
future research.

Appendix: Sketches of the Proofs of Results

This appendix contains sketches of the proofs of Theorems 1 and 2.
Detailed proofs can be found in the online supplemental file.

A.1 Preliminary Results

The proofs of Theorems 1 and 2 require the following lemmas. The
proofs of the lemmas are given in the online supplemental file.

Lemma A.1. Let Conditions (C.3)–(C.5) hold. Then for all
m = 1, 2, . . . ,M and t ∈ 
, we have

1
n
DT

tW(m)tDt

=
(

f (t ) + Oup(h2m) μ2(K)hm f ′(t ) + Oup(h2m)

μ2(K)hm f ′(t ) + Oup(h2m) μ2(K) f (t ) + Oup(h2m)

)
⊗Cz

and

{
1
n
DT
tW(m)tDt

}−1

=
(

f−1(t ) + Oup(h2m) −hm f ′(t ) f−2(t ) + Oup(h2m)

−hm f ′(t ) f−2(t ) + Oup(h2m) μ−1
2 (K) f−1(t ) + Oup(h2m)

)
⊗C−1

z ,

where μ2(K) = ∫
v∈supp(K)

K(v )v2dv , and if a function
g(t ) = Oup(b2m), then g(t )/b2m is bounded in probability uni-
formly for any t within the interior of 
.

Lemma A.2. Assume that Conditions (C.3)–(C.5) are satisfied.
Then we have

max
1≤m≤M

|tr(A(m))| = Op(h−1r̃),

max
1≤m≤M

λ̄(A(m)) = Op(r̃1/2),

and

max
1≤m≤M

λ̄(P(m)) = Op(r̃1/2).

A.2 Proof of Theorem 1

Note thatCn(w) can be written as

Cn(w) = ‖Y − μ̂(w)‖2 + 2tr(P(w)�)

= Ln(w) + ‖ε‖2 − 2εT(P(w) − In)μ
−2{εTP(w)ε − tr(P(w)�)},
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where ‖ε‖2 is independent of w. Hence to prove Theorem 1, we
need only to verify that

sup
w∈Hn

∣∣εT(P(w) − In)μ
∣∣ /Rn(w) = op(1), (A.1)

sup
w∈Hn

∣∣εTP(w)ε − tr(P(w)�)
∣∣ /Rn(w) = op(1), (A.2)

and

sup
w∈Hn

|Ln(w)/Rn(w) − 1| = op(1). (A.3)

Note that

sup
w∈Hn

|Ln(w)/Rn(w) − 1|

= sup
w∈Hn

∣∣2εTPT(w)(P(w) − In)μ

+‖P(w)ε‖2 − tr(PT(w)P(w)�)
∣∣ /Rn(w).

It suffices to show that

sup
w∈Hn

∣∣εTPT(w)(P(w) − In)μ
∣∣ /Rn(w) = op(1), (A.4)

and

sup
w∈Hn

∣∣‖P(w)ε‖2 − tr(PT(w)P(w)�)
∣∣ /Rn(w) = op(1).

(A.5)

As the variables X,Z, � are random, we first prove, for any δ >

0, that

P

(
sup

w∈Hn

∣∣εT(P(w) − In)μ
∣∣ /Rn(w) > δ

∣∣∣X,Z, �

)
= op(1),

then we have P(supw∈Hn
|εT(P(w) − In)μ|/Rn(w) > δ) → 0,

which is Equation (A.1). By similar steps, we can prove (A.2),
(A.4), and (A.5). This proves Theorem 1. A detailed proof of
Theorem 1 is given in the online supplemental file.

A.3 Proof of Theorem 2

When � is replaced by �̂, Cn(w) is correspondingly changed to
Ĉn(w) = Cn(w) + 2{tr(P(w)�̂) − tr(P(w)�)}.From the result of
Theorem 1, to prove Theorem 2, it suffices to prove that

sup
w∈Hn

∣∣∣tr(P(w)�̂) − tr(P(w)�)

∣∣∣ /Rn(w) = op(1). (A.6)

Let Q(m) = diag(ρ(m)
11 , . . . , ρ

(m)
nn ) and Q(w) = ∑M

m=1
wmQ(m). To prove (A.6), we decompose the left-hand side of
(A.6) into five parts as follows:

sup
w∈Hn

∣∣∣tr(P(w)�̂) − tr(P(w)�)

∣∣∣ /Rn(w)

= sup
w∈Hn

∣∣(Y − P(M∗ )Y )TQ(w)(Y − P(M∗ )Y )

− tr(Q(w)�)| /Rn(w)

= sup
w∈Hn

∣∣(ε + μ)T(In − P(M∗ ))
TQ(w)(In − P(M∗ ))(ε + μ)

− tr(Q(w)�)| /Rn(w)

≤ sup
w∈Hn

∣∣εT(In − P(M∗ ))
TQ(w)(In − P(M∗ ))ε

− tr{(In − P(M∗ ))
TQ(w)(In − P(M∗ ))�}∣∣ /Rn(w)

+ 2 sup
w∈Hn

∣∣εT(In − P(M∗ ))
TQ(w)(In − P(M∗ ))μ

∣∣ /Rn(w)

+ sup
w∈Hn

∣∣μT(In − P(M∗ ))
TQ(w)(In − P(M∗ ))μ

∣∣ /Rn(w)

+ sup
w∈Hn

∣∣tr{PT
(M∗ )Q(w)P(M∗ )�}∣∣ /Rn(w)

+ 2 sup
w∈Hn

∣∣tr{PT
(M∗ )Q(w)�}∣∣ /Rn(w)

≡ �1 + �2 + �3 + �4 + �5.

Now, define ρ = max1≤m≤M max1≤i≤n |ρ(m)
ii |. From Lemma A.2

and Condition (C.6), we have ρ = Op(n−1r̃1/2k̃ + n−1h−1r̃). It
follows from Equation (10) and Condition (C.2) that ξ−1

n =
op(1), Mξ−2G

n r̃G = op(1), and ξ−2
n r̃‖P(M∗ )μ − μ‖2 = oP(1). Using

Lemma A.2, Equation (10), Conditions (C.2), (C.6), and (C.8),
Chebyshev’s inequality, and Theorem 2 of Whittle (1960), we can
obtain, for any δ > 0, that P(�1 > δ|X,Z, �) = op(1). Then we
have P(�1 > δ) = o(1), which implies that �1 = op(1). We can
also prove that each of �2, �3 and �4 + �5 is equal to op(1). This
proves Theorem 2. A detailed proof of Theorem 2 is given in the
online supplemental file.

Supplementary Material

The online supplemental file contains the proofs of Lemmas A.1
and A.2 and detailed proofs of Theorems 1 and 2.

Acknowledgment

The authors thank the editor, associate editor, and two referees for insightful
comments that have helped improve the quality of the article. The usual
disclaimer applies.

Funding

Wan’s work was supported by a Strategic Grant from the City
University of Hong Kong (Grant no. 7004786). Zhang’s and Zou’s work
was supported by the following funding bodies: National Natural Science
Foundation of China (Grant nos. 71522004 (Zhang), 11471324 (Zhang),
71631008 (Zhang), 11331011 (Zou), and 11529101 (Zou)) and theMinistry
of Science and Technology of China (Grant no. 2016YFB0502301 (Zou)).

References

Ahmad, I., Leelahanon, S., and Li, Q. (2005), “Efficient Estimation of a
Semiparametric Partially Linear Varying Coefficient Model,” Annals of
Statistics, 33, 258–283. [

Ando, T., and Li, K.-C. (2014), “A Model-Averaging Approach for High-
Dimensional Regression,” Journal of the American Statistical Associa-
tion, 109, 254–265. [

Andrews, D. W. K. (1991), “Asymptotic Optimality of Generalized CL,
Cross-Validation, and Generalized Cross-Validation in Regression
withHeteroskedasticErrors,”Journal of Econometrics,47,359–377.[

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 891

882]

885]

886]



Box, G. (1976), “Science and Statistics,” Journal of the American Statistical
Association, 71, 791–799. [

Box, G., and Draper, N. (1987), Empirical Model Building and Response Sur-
faces, New York: Wiley. [

Buckland, S. T., Burnham, K. P., and Augustin, N. H. (1997), “Model Selec-
tion: An Integral Part of Inference,” Biometrics, 53, 603–618. [

Cleveland,W. S., Grosse, E., and Shyu, W.M. (1991), Local Regression Mod-
els, Pacific Grove, CA: Wadsworth and Brooks/Cole. [

Diebold, F. X., andMariano, R. S. (1995), “Comparing PredictiveAccuracy,”
Journal of Business & Economic Statistics, 13, 253–263. [

Engle, R. F., Granger, C. W. J., Rice, J., andWeiss, A. (1986), “Semiparamet-
ric Estimates of the Relation Between Weather and Electricity Sales,”
Journal of the American Statistical Association, 81, 310–320. [

Fan, J., and Huang, T. (2005), “Profile Likelihood Inferences on Semi-
parametric Varying-Coefficient Partially Linear Models,” Bernoulli, 11,
1031–1057. [

Fan, J., and Jiang, J. (2007), “Nonparametric Inference with Generalized
Likelihood Ratio Tests,” Test, 16, 409–444. [

Fan, J., Lin, H., and Zhou, Y. (2006), “Local Partial-Likelihood Estimation
for Lifetime Data,” Annals of Statistics, 34, 290–325. [

Fan, J., Zhang, C., and Zhang, J. (2001), “Generalized Likelihood Ratio
Statistics andWilks Phenomenon,”Annals of Statistics,29,153–193.[

Hansen, B. E. (2007), “Least Squares Model Averaging,” Econometrica, 75,
1175–1189. [

Hansen, B. E., and Racine, J. S. (2012), “JackknifeModel Averaging,” Journal
of Econometrics, 167, 38–46. [

Härdle, W., Liang, H., and Gao, J. (2000), Partially Linear Models, Heidel-
berg: Physica-Verlag. [

Hastie, T., and Tibshirani, R. (1993), “Varying-Coefficient Models,” Journal
of the Royal Statistical Society, Series B, 55, 757–796. [

Hjort, N. L., and Claeskens, G. (2003), “Frequentist Model Average Estima-
tors,” Journal of the American Statistical Association, 98, 879–899. [

——— (2006), “Focused Information Criteria and Model Averaging for the
Cox’s Hazard Regression Model,” Journal of the American Statistical
Association, 101, 1449–1464. [

Lam, C., and Fan, J. (2008), “Profile-Kernel Likelihood Inference
with Diverging Number of Parameters,” Annals of Statistics, 36,
2232–2260. [

Li, Q., Huang, C. J., Li, D., and Fu, T. T. (2002), “Semiparametric Smooth
Coefficient Models,” Journal of Business & Economic Statistics, 20,
412–422. [

Li, R., and Liang, H. (2008), “Variable Selection in Semiparametric Regres-
sion Modeling,” Annals of Statistics, 36, 261–286. [

Liang, H., Zou, G., Wan, A. T. K., and Zhang, X. (2011), “Optimal Weight
Choice for Frequentist Model Average Estimators,” Journal of the
American Statistical Association, 106, 1053–1066. [

Liu, Q., and Okui, R. (2013), “Heteroskedasticity-Robust Cp Model Aver-
aging,” Econometrics Journal, 16, 463–472. [

Lu, X., and Su, L. (2015), “Jackknife Model Averaging for Quantile Regres-
sions,” Journal of Econometrics, 188, 40–58. [

Morris, C. N., Norton, E. C., and Zhou, X. H. (1994), “Parametric Duration
Analysis of Nursing Home Usage,” in Case Studies in Biometry, eds. N.
Lange, L. Ryan, L. Billard, D. Brillinger, L. Conquest, J. Greenhouse,
pp. 231–248, New York: Wiley. [

Speckman, P. (1988), “Kernel Smoothing in Partial Linear Models,” Journal
of the Royal Statistical Society, Series B, 50, 413–436. [

Wan, A. T. K., Zhang, X., and Zou, G. (2010), “Least Squares Model Aver-
aging by Mallows Criterion,” Journal of Econometrics, 156, 277–283.
[

Wang,H., Zou, G., andWan, A. T. K. (2012), “Model Averaging forVarying-
Coefficient Partially Linear Measurement Error Models,” Electronic
Journal of Statistics, 6, 1017–1039. [

Wang, H. J., Zhu, Z., and Zhou, J. (2009), “Quantile Regression in Par-
tially Linear Varying Coefficient Models,” Annals of Statistics, 37,
3841–3866. [

Whittle, P. (1960), “Bounds for theMoments of Linear andQuadratic Forms
in Independent Variables,” Theory of Probability & its Applications, 5,
331–335. [

Xia, Y., Zhang, W., and Tong, H. (2004), “Efficient Estimation for
Semivarying-Coefficient Models,” Biometrika, 91, 661–681.
[

Xie, S., Wan, A. T. K., and Zhou, Y. (2015), “Quantile Regression Methods
with Varying-Coefficient Models for Censored Data,” Computational
Statistics & Data Analysis, 88, 154–172. [

You, J., and Chen, G. (2006), “Estimation of a Semiparametric Varying-
Coefficient Partially Linear Errors-in-VariablesModel,” Journal ofMul-
tivariate Analysis, 97, 324–341. [ ]

Yuan, Z., and Yang, Y. (2005), “Combining Linear Regression Models:
When and How?” Journal of the American Statistical Association, 100,
1202–1214. [

Zhang, W., Lee, S. Y., and Song, X. (2002), “Local Polynomial Fitting in
Semivarying Coefficient Model,” Journal of Multivariate Analysis, 82,
166–188. [

Zhang, X., Wan, A. T. K., and Zhou, S. Z. (2012), “Focused Information
Criteria, Model Selection, and Model Averaging in a Tobit Model with
a Nonzero Threshold,” Journal of Business & Economic Statistics, 30,
132–142. [

Zhang, X., andWang,W. (2018), “OptimalModel Averaging Estimation for
Partially Linear Models,” Statistica Sinica, preprint. [

Zhao, P., and Xue, L. (2010), “Variable Selection for Semiparametric Vary-
ing Coefficient Partially Linear Errors-in-Variables Models,” Journal of
Multivariate Analysis, 101, 1872–1883. [ ]

R. ZHU ET AL.892

884]

884]

883,886]

882]

889]

882]

882,884]

882]

887]

882]

883,884,885]

884,886]

882]

882]

883]

883,887]

890]

882]

890]

886]

883,884,885,886]

883]

887]

882]

884,885,886]

883,885]

882]

891]

882]

887]

884

890]

882]

883,887]

883]

882


	Abstract
	1.Introduction
	2.Model Set-Up and Parametric Estimation
	3.Model Averaging and Weight Choice Criterion
	4.Asymptotic Optimality of the VCPLMA Estimator
	5.A Simulation Study
	5.1.Experimental Design
	5.2.Estimation and Comparison
	5.3.Results

	6.Empirical Application
	7.Concluding Remarks
	Appendix: Sketches of the Proofs of Results
	7.1.Preliminary Results
	7.2.Proof of Theorem 1
	7.3.Proof of Theorem 2

	Supplementary Material
	Acknowledgment
	Funding
	References

