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ABSTRACT
In this paper, we consider a partially linear transformation model
for data subject to length-biasedness and right-censoring which fre-
quently arise simultaneously in biometrics and other fields. The par-
tially linear transformationmodel canaccount fornonlinear covariate
effects in addition to linear effects on survival time, and thus rec-
onciles a major disadvantage of the popular semiparamnetric linear
transformation model. We adopt local linear fitting technique and
developanunbiasedglobal and local estimatingequations approach
for the estimation of unknown covariate effects. We provide an
asymptotic justification for the proposed procedure, and develop an
iterative computational algorithm for its practical implementation,
and a bootstrap resampling procedure for estimating the standard
errors of the estimator. A simulation study shows that the proposed
method performs well in finite samples, and the proposed estimator
is applied to analyse the Oscar data.
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1. Introduction

Incident and prevalent cohort designs are two primary types of epidemiological study
designs. An incident cohort study follows subjects that are disease-free at the time of sam-
pling to a failure event or censoring due to loss of follow-up. While incident sampling
represents an ideal form of analysis, it is often an expensive undertaking because it typ-
ically requires a large cohort with lengthy follow-up. In contrast, prevalent designs, which
recruit only the living subjects diagnosed with the disease before the time of sampling, are
more economical and efficient. However, by excluding subjects who died before sampling
took place, prevalent cohort data are intrinsically biased towards cases of longer survival
as well as being left-truncated, where the truncation time is the observed time interval
between the disease onset and recruitment into the prevalent cohort. These are serious
statistical problems that render standard methods of survival analysis inapplicable. In the
case of a stable disease, the occurrence of disease incidence is a stationary Poisson pro-
cess over time, and the truncation time has a Uniform distribution. Under this set-up, the
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survival time in the prevalent cohort is said to have a length-biased distribution, where the
probability of a survival time being sampled is proportional to its length.

Broadly speaking, there are twomainmethodological strategies for estimating the unbi-
ased survival distribution from length-biased data. Themajority of this work also accounts
for right-censoring, which is another common feature of survival data due to loss of follow-
up. The conditional approach, popularised by thework of Turnbull (1976), Lagakos, Barraj,
and De Gruttola (1988), Wang (1991), and others, is conditional on the observed trunca-
tion times. There are pros and cons of this approach. On the one hand, it yields a simple and
an easily implementable estimator; on the other hand, there is the drawback of efficiency
loss when the Uniform distributional property of the truncation times is ignored. This
shortcoming leads to the development of the alternative unconditional approach that fully
utilises the aforementioned distributional information of the truncation times by max-
imising the full likelihood, see Vardi (1982, 1985, 1989), Gill, Vardi, and Wellner (1988),
Asgharian, M’Lan, and Wolfson (2002) and Asgharian and Wolfson (2005). However, as
noted by Luo and Tsai (2009), the estimator obtained by the unconditional approach has
neither a closed-form expression nor an explicit limiting variance, and the method is dif-
ficult to implement. These limitations of the unconditional approach motivated Luo and
Tsai (2009) to develop a pseudo-partial likelihood approach that has the advantage of sim-
plicity of the conditional approach and yields an estimator that is only marginally inferior
to that obtained under the unconditional approach.

There has also been a growth of interest in the modelling of risk factors on the unbi-
ased failure times when the observed failure times are length-biased. Studies based on
Cox’s proportional hazards (PH)model and its variants includeWang (1996), Shen (2009),
Tsai (2009), Qin and Shen (2010), Qin, Ning, Liu, and Shen (2011), Huang andQin (2012),
Hu, Chen, and Sun (2015), among others. When the PHmodel is inappropriate, the accel-
erated failure time (AFT) model is often a useful alternative, and several authors have
considered the AFTmodel under length-biased sampling, see Shen, Ning, and Qin (2009),
Chen (2010) and Ning, Qin, and Shen (2014a,b). One approach that has garnered con-
siderable interests in survival analysis in recent years is the semiparametric linear trans-
formation (SLT) model (Cheng, Wei, and Ying 1995), which is a flexible formulation that
includes the PH, proportional odds (PO) and several other well-known models as special
cases. The SLT model affords greater flexibility than the traditional survival models, and
is evidently gaining prominence and replacing the PH model as the workhorse of survival
analysis. Inferential procedures for the SLT model under various types of biased sampling
schemes including length-biased sampling have been developed by Shen et al. (2009), Liu,
Qin, and Shen (2012), Kim, Lu, Sit, and Ying (2013), Cheng and Huang (2014) and Wang
and Wang (2015). Despite the SLT model’s flexibility and many advantages, one impor-
tant weakness of this model is that it constrains the effects of covariates to be linear. This
is an unduly restrictive assumption adopted primarily for mathematical convenience and
inappropriate in many situations. Indeed, nonlinear covariate effects are commonplace in
survival analysis. Lu andZhang (2010) cited examples froma lung cancer study (Kalbfleisch
and Prentice 2002), where the survival time has a nonlinear dependence on age, and a study
on women’s health by New York University, where the time of developing breast carcinoma
is thought to depend nonlinearly on sex hormone levels. Clearly, to dissect the potential
nonlinear penetrance of the covariates, there is a need to develop a more powerful tool
than the SLT model.
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The partially linear transformation (PLT)model developed by Lu andZhang (2010) (see
also Ma and Kosorok 2005) is an attempt to address the aforementioned deficiency of the
SLT model. The PLT model extends the SLT model by incorporating nonlinear covariate
effects in the model through the inclusion of an unknown smooth function of covariates.
As such, the PLTmodel is a generalisation of the SLTmodel. Several models that have been
used to study the nonlinear and linear covariate effects for survival data, including the par-
tially linear PH (PLPH) (Cai, Fan, Jiang, and Zhou 2007) and partially linear proportional
odds (PLPO) models (Lu and Zhang 2010), are nested as special cases in the PLT frame-
work. Lu and Zhang (2010) developed amartingle-based estimating equations approach to
estimate the linear and nonlinear covariate effects in the PLTmodel and an asymptotic the-
ory for the properties of the estimators. They also proposed an efficient iterative algorithm
for implementing the procedure. There have been several interesting attempts to extend
the basic PLT set-up by incorporating, for example, an additive nonparametric specifica-
tion (Liu, Li, and Zhang 2014), a varying-coefficients function (Qiu and Zhou 2015), and a
single index function (Liu et al. 2014) in themodel. However, to the best of our knowledge,
no study has considered the PLTmodel under length-biased sampling, and the purpose of
this paper is to take steps in this direction.

In this paper, we consider the PLT model when the observed failure times are length-
biased and subject to right-censoring. We adopt the same martingale-based estimation
procedure of Lu and Zhang (2010) to deal with the difficulties associated with the simul-
taneous estimation of the transformation and covariate functions in the model. However,
refinements to the procedure of Lu and Zhang (2010) are made in the following aspects.
Firstly, we modify Lu and Zhang (2010)’s estimating equation to account for the two chal-
lenges encountered in the length-biased sampling data, i.e. the biasedness and informative
censoring. Also, our approach fully utilises the exchangeability of the left-truncation time
and the residual survival time of the length-biased data. The utilisation of this informa-
tion is expected to lead to an efficiency gain in the estimator. Furthermore, we establish
the asymptotic properties of the estimators by overcoming the difficulties caused by the
biasedness of the data and employ a simple bootstrap scheme to obtain the estimator’s
variance.

We organise the rest of this paper as follows. In Section 2, we describe our model
set-up and introduce the notations. Section 3 develops the estimation method and an
algorithm for computing the estimates. In Section 4, we develop an asymptotic theory for
the proposed estimator and a resampling method for estimating the estimator’s standard
deviation. Simulations results on the finite sample performance of the proposedmethod are
reported in Section 5. A real data example illustrating themethod is contained in Section 6.
Section 7 concludes the paper and proofs of technical results are contained in an appendix.

2. Data andmodel specification

Let T̃ be the failure time of interestmeasured from the initial event to the failure event,A be
the truncation time (or backward recurrence time) measured from the initial event to the
time of enrolment, and V be the residual survival time (or forward recurrence time) mea-
sured from the time of enrolment to the failure event. Under length-biased sampling (Shen
et al. 2009; Huang and Qin 2012; Liu et al. 2012), we only observe T = A+V, the length-
biased version of T̃ within the subset of T̃ > A. Allowing for loss of follow-up, which often
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occurs with clinical trial studies, V is often right-censored, and we let C be the associated
censoring variable measured from the time of enrolment to censoring and assume that C
is independent of A and V. Thus, the total censoring time is represented by A+C.

Our method for analysing T̃ is based on the following PLT model:

H(T̃) = −Z�β − f (W) + ε, (1)

where H(·) is an unknown monotonic increasing function of transformation, Z is a p × 1
dimensional time-independent covariate, β is an unknown p × 1 vector of regression coef-
ficients, W is a scalar covariate, f (·) is an unspecified smooth function with f (0) = 0 for
identifiability purpose, and ε is an error term with a completely specified distribution and
independent of Z andW. We use λε(t) and�ε(t) to denote the hazard and the cumulative
hazard functions of ε, respectively. Thus, model (1) can exploit both linear and nonlinear
predictability patterns in the covariates on the unbiased lifetime T̃. When ε follows the
extreme value and standard logistic distributions, model (1) reduces to the PLPH and
PLPOmodels, respectively.When f (·) ≡ 0, model (1) degenerates to the conventional SLT
model.

The observed data set {(Ai,Xi, δi,Zi,Wi), i = 1, . . . , n} consists of n independently and
identically distributed (i.i.d.) realisations from the population (A,X, δ,Z,W), where X =
min(T,A + C),T = A + V , δ = I(V ≤ C), and I(·) is an indicator function. Through-
out our analysis, we assume that C and (A,V) are independent given the covariates Z
and W. As well, we let the survival function of C be SC(·), and allow it to be covariate-
dependent. It is worth noting that T andA+Cmay be dependent as they share a common
component A. Actually, Asgharian and Wolfson (2005) showed that except for trivial
cases, Cov(A + V ,A + C) = Cov(A,V) + Var(A) > 0. The data are thus informatively
censored under length-biased sampling. This informative censoring feature is the major
challenge in analysing length-biased and right-censored data as the methods for the con-
ventional right-censored data may be failed to account for this. In the next section, we
describe the approach for estimating β ,H(·) and f (·).

3. Estimationmethodology and computational algorithm

3.1. Estimatingmethodology

Denote the conditional density and survival functions of T̃ given Z andW as fU(t | Z,W)

and SU(t | Z,W), respectively. Under the stationarity assumption for length-biased data,
the conditional density function of T (Shen et al. 2009) is

fLB(t | Z,W) = tfU(t | Z,W)

u(Z,W)
,

where u(Z,W) = ∫∞
0 tfU(t | Z,W) dt < ∞ is a normalising constant. In the absence of

right-censoring, Asgharian and Wolfson (2005) showed that (A,V) has an exchangeable
joint density conditional on Z andW, i.e.

fA,V(a, v | Z,W) = fU(a + v | Z,W)

u(Z,W)
.
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Thus, A and V share the same marginal conditional density function

fA(A = t | Z,W) = fV(V = t | Z,W) = SU(t | Z,W)

u(Z,W)
,

and the conditional density functions of A given V,Z andW and that of V given A,Z and
W have the same form, with the former density function given by

fA|V(A = a | V = v,Z,W) = fU(a + v | Z,W)

SU(v | Z,W)
, (2)

and the latter function being defined analogously.
However, in the presence of right-censoring, A and V no longer have an exchangeable

joint density function becauseA is always observed, whereasV is right-censored. Consider
the bivariate variable (A, Ṽ) of the uncensored observations, where Ṽ = min(V ,C) is the
observed residual lifetime. From Huang and Qin (2012), the conditional density function
of A = a given δ = 1, Ṽ = v,Z andW is given by

P(A = a | δ = 1, Ṽ = v,Z,W) = fU(a + v | Z,W)

SU(v | Z,W)
. (3)

Comparing the density functions (2) and (3), we can infer that given δ = 1, the con-
ditional density of A given Ṽ = v is the same as the conditional density function of
V given A in the prevalent cohort that is not subject to right-censoring. Cheng and
Huang (2014) showed that in the case of the SLTmodel under length-biased sampling and
right-censoring, the utilisation of this exchangeability information can improve estimation
efficiency. Cheng and Huang (2014)’s method is based on a combined unbiased estimating
equations approach taking into account the aforementioned exchangeability between the
conditional density functions ofA andV. Our approach, to be described below, generalises
Cheng and Huang (2014)’s method from the SLT model to the PLT model.

Let us define Ni(t) = I(Xi ≤ t)δi,Y1
i (t) = I(Ai ≤ t ≤ Xi),Y2

i (t) = δiI(Ṽi ≤ t ≤ Xi),
Yi(t) = 1

2 {Y1
i (t) + Y2

i (t)}, and Mi(t) = Ni(t) − ∫ t
0 Yi(u) d�ε(H0(u) + Z�

i β0 + f0(Wi)),
where Ṽi = Xi − Ai, i = 1, . . . , n, andH0(·),β0 and f0(·) are the true values ofH(·),β and
f (·), respectively. Using results fromCheng andHuang (2014), it can be readily shown that
Mi(t) is a mean zero process, and if f (·) is known, it degenerates to the case of SLT model
considered by Cheng and Huang (2014). The mean zero property of Mi(t) allows us to
construct the following global estimating equations for β and H(·) with fixed f (·):

n∑
i=1

{
dNi(t) − Yi(t) d�ε(H(t) + Z�

i β + f (Wi))
}

= 0 (4)

and
n∑
i=1

∫ τ

0
Zi
{
dNi(t) − Yi(t) d�ε(H(t) + Z�

i β + f (Wi))
}

= 0, (5)

where τ = inf{t : Pr(X > t) = 0}, H(·) is a nondecreasing function that satisfies H(0) =
−∞, and has positive jumps only at the points corresponding to K uncensored obser-
vations 0 < t1 < · · · < tK < ∞. In practice, we can substitute τ by tK . Moreover, it is
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instructive to note that Equation (4) is a difference equation for the estimation of the trans-
formation function H(·) when β and f (·) are fixed, and Equation (5) is for the purpose of
identifying β with fixed H(·) and f (·).

We use the local linear fitting technique to estimate the smooth nonparametric function
f (·). The smoothness assumption of f (·) enables us to apply the Taylor series expansion,
and write, for any u in the neighbourhood of w,

f (u) ≈ α0(w) + α1(w)(u − w), (6)

where α0(w) = f (w),α1(w) = ḟ (w) and ḟ (w) is the first-order derivative of f (w). We call
Equation (6) the local model. Let K(·) be a kernel function and Kh(t) = K(t/h)/h, where
h>0 is the bandwidth parameter. Then for any fixed β and H(·), by substituting f (·) by
Equation (6), the kernel-weighted local estimating equation for α0(·) and α1(·) can be
constructed as follows:

n∑
i=1

∫ τ

0

(
1

Wi − w

)
Kh(Wi − w){dNi(t) − Yi(t) d�ε(H(t)

+ Z�
i β + α0(w) + α1(w)(Wi − w))} = 0. (7)

The introduction of the kernel function K(·) in Equation (7) reflects the fact that the local
model (6) is only valid for the data near w. The estimators of β ,H(·) and f (·) are solutions
to the estimating equations (4), (5) and (7).

Remark 3.1: Weuse the kernel-based local linear fitting technique to estimate f (·) only for
the purpose of simplicity. Other fitting techniques and smoothers, such as local polynomial
regression (Fan and Gijbels 1996, Chapter 2) or spline smoothers (Schumaker 2007), may
also be used.

3.2. Computational algorithm

It is clear from the preceding discussion that solutions to the estimating equations (4), (5)
and (7) can only be obtained iteratively. To this end, we propose the following iterative
algorithm along the lines of Carroll, Fan, Gijbels, and Wand (1997), Cai et al. (2007), Cai,
Fan, Jiang, and Zhou (2008) and Lu and Zhang (2010):

Step 0: Choose an initial value for f (·) and denote it as f̃ (0)(·). Following Carroll
et al. (1997), Cai et al. (2007, 2008) and Lu and Zhang (2010), we use the naive one-step
estimator as the initial value. We prove that the naive one-step estimator is locally consis-
tent in the appendix. Fix f (·) at this initial value, we then solve Equations (4) and (5) for
H(·) and β using Chen, Jin, and Ying (2002)’s algorithm for the SLTmodel. We denote the
estimators as H̃(·) and β̃ .

Step 1: Based on H̃(·) and β̃ , we solve Equation (7) to obtain the estimators α̃0(Wi) and
α̃1(Wi) ofα0(w) andα1(w), respectively, at the observed pointsw = Wi, i = 1, . . . , n. This
leads to the estimators f̃ (Wi) = α̃0(Wi), i = 1, . . . , n.

Step 2: Update the estimators of β and H(·) by solving the estimating equations (4)
and (5) again, with f (Wi) replaced by f̃ (Wi), i = 1, . . . , n.
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Step 3: Repeat Steps 1 and 2 alternately until the estimators of β andH(·) converge. We
denote the final estimators of β and H(·) as β̂ and Ĥ(·), respectively.

Step 4: Substituting β̂ and Ĥ(·) for β andH(·), we solve Equation (7) to obtain the esti-
mators α̂0(w, h, β̂ , Ĥ) and α̂1(w, h, β̂ , Ĥ) of α0(w) and α1(w), respectively, at the selected
grid points w = wi, i = 1, . . . , s. The algorithm ends after completing this step and the
final estimators of β , H(·) and f (·) are β̂ , Ĥ(·) and f̂ (w) = α̂0(w, h, β̂ , Ĥ), respectively.

Remark 3.2: We use the following convergence criterion based on l2-norm for Step 3 of
the algorithm:

	(m) =
⎧⎨
⎩

p∑
j=1

(β̃
(m)
j − β̃

(m−1)
j )2 +

K∑
j=1

(H̃(m)(tj) − H̃(m−1)(tj))2

⎫⎬
⎭

1/2

,

where β̃(m) and H̃(m)(·) are the estimates of β andH(·) at themth iteration. The algorithm
exits Step 3 when 	(m) is less than a prescribed threshold value.

Remark 3.3: The choice of an appropriate bandwidth parameter h is required for the suc-
cessful implementation of the algorithm. It is worthwhile to note that h plays different roles
for different steps of the algorithm. For Steps 1–3, h should be chosen to be optimal for the
estimation of β andH(·). For Step 4, an appropriate h should be selected in order for f̂ (·) to
attain the desired optimal property. Due to the nonuniform purpose of h, we select two val-
ues of h, one for Steps 1–3, and the other for Step 4. Our choice of h for Step 4 is the optimal
bandwidth ĥopt = C0n−1/5 (see Theorem 4.3 and Section 4.1), where C0 can be estimated
by a range of methods such as the rule-of-thumb, cross-validation, or the approaches of
Carroll et al. (1997) and Cai et al. (2007, 2008). In our simulation and real data analy-
sis, we will use a simple data-adaptive criterion. See Section 5 for details. The bandwidth
used for Steps 1–3 is the ad-hoc bandwidth (Carroll et al. 1997; Cai et al. 2007, 2008):
ĥad−hoc = ĥopt × n1/5 × n−1/3 = ĥopt × n−2/15.

4. Asymptotic properties and estimation of asymptotic variance

4.1. Asymptotic properties of the proposed estimator

In this section, we establish the asymptotic properties of the proposed estimators
β̂ , Ĥ(·), α̂0(w) and α̂1(w). First, we define the following quantities for any s and t ∈ (0, τ ]:

B1(t) = E[Y(t)λ̇ε(H0(t) + Z�β0 + f0(W))],

B2(t) = E[Y(t)λε(H0(t) + Z�β0 + f0(W))],

B(t, s) = exp
{∫ t

s

B1(u)
B2(u)

dH0(u)
}
,

BZ1 (t) = E[ZY(t)λ̇ε(H0(t) + Z�β0 + f0(W))],

BZ2 (t) = E[ZY(t)λε(H0(t) + Z�β0 + f0(W))],
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z(t) = 1
B2(t)

{
BZ2 (t) +

∫ τ

t

[
BZ1 (s) − BZ2 (s)B1(s)

B2(s)

]
B(t, s) dH0(s)

}
and

λ∗{H0(t)} = B(t, 0), �∗(x) =
∫ x

−∞
λ∗(u) du for x ∈ (−∞,∞),

where λ̇ε(t) is the first-order derivative of λε(t).
As well, define

A1 =
∫ τ

0
E[{Z − z(t)}Z�Y(t)λ̇ε(H0(t) + Z�β0 + f0(W))] dH0(t),

A2 =
∫ τ

0
E

{
[Z − mZ(t)]Y(t)

e�1 (W)

e31(W)
λ̇ε(H0(t) + Z�β0 + f0(W))

}
dH0(t),


∗ = E
{∫ τ

0
{[Z − mZ(t)] − [Z∗ − mZ∗]} dM(t)

}⊗2
and A = A1 − A2,

whereM(t) = N(t) − ∫ t
0 Y(u) d�ε(H0(u) + Z�β0 + f0(W)) and a⊗2 = aa� for any vec-

tor a. Moreover, for i = 1, . . . , n, we have

Z∗
i =

∫ τ

0 E[ZY(t)λ̇ε{H0(t) + Z�β0 + f0(W)} |W = Wi] dH0(t)∫ τ

0 E[Y(t)λ̇ε{H0(t) + Z�β0 + f0(W)} |W = Wi] dH0(t)
and

mZ∗
i

=
∫ τ

0 mZ(t)E[Y(t)λ̇ε{H0(t) + Z�β0 + f0(W)} |W = Wi] dH0(t)∫ τ

0 E[Y(t)λ̇ε{H0(t) + Z�β0 + f0(W)} |W = Wi] dH0(t)
,

where mZ(t) = q(t)(λ∗{H0(t)}/B2(t)) and q(t) is the solution to the following integral
equation:

q(t) −
∫ τ

0
q(s)D1(s, t) dH0(s) = B2(t)z(t)

λ∗{H0(t)} − c3(t), t ∈ [0, τ ], (8)

where the definitions of e1(·), e31(·),D1(·, ·) and c3(·) are given in the proof of Theorem 4.1
in the appendix.

Wenow summarise the asymptotic properties, including the consistency and asymptotic
normality, of the proposed estimators β̂ , Ĥ(·), α̂0(w) and α̂1(w) in the following theorems,
the proof of which are given in the appendix.

Theorem 4.1 (Asymptotic Properties of β̂): Assume that conditions (C1)–(C7) in the
appendix are satisfied. If nh2/ log(1/h) → ∞ and nh4 → 0, and given β̂ in a small neigh-
bourhood of β0, then as n → ∞, we have

β̂
P→ β0,

where P→ denotes convergence in probability. In addition, as n → ∞, we have

√
n(β̂ − β0)

D→ N(0,
),

where D→ denotes convergence in distribution and 
 = A−1
∗(A−1)�.
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Theorem 4.2 (Asymptotic Properties of Ĥ(·)): Assume that conditions (C1)–(C7) in the
appendix are satisfied. If nh2/ log(1/h) → ∞ and nh4 → 0, then as n → ∞, we have

√
n(Ĥ(t) − H0(t)) = 1√

n

n∑
i=1

κi(t)
λ∗{H0(t)} + op(1)

for t ∈ [0, τ ], where κi(t), i = 1, . . . , n, are independent mean zero functions (see Equation
(A23) in the appendix for definitions of these functions). Thus,

√
n(Ĥ(t) − H0(t)) converges

weakly to a mean zero Gaussian process.

Theorem 4.3 (Asymptotic Properties of α̂0(w) and α̂1(w)): Assume that conditions
(C1)–(C7) in the appendix are satisfied. If nh5 is bounded, and β and H( · ) are estimated
at the order Op(n− 1

2 ), then as n → ∞, we have

√
nh
((

α̂0(w) − f0(w)

h(α̂1(w) − ḟ0(w))

)
− bn(w)

)
D→ N(0,D(w)),

where D(w) = 
−1
1 (w)
2(w)
−1

1 (w), and 
1(w) and 
2(w) are defined in the appendix.

4.2. Estimation for the asymptotic variance of β̂

Wehave established the asymptotic normality of the estimator β̂ and derived an expression
for its asymptotic variance
 = A−1
∗(A−1)� in Theorem 4.1. Unfortunately, the derived
expression of
 involves solving integral equations and cannot be easily computed. For the
computation of the variance of β̂ , instead of using the derived formula of
, we propose to
implement the resampling procedure developed by Gross and Lai (1996). The procedure
is described as follows.

Let �n be the empirical distribution that assigns probability 1/n on each of the original
observations (Ai,Xi, δi,Zi,Wi), i = 1, . . . , n. A simple bootstrap sample can be obtained by
generatingn i.i.d. observations (A∗

i ,X
∗
i , δ

∗
i ,Z

∗
i ,W

∗
i ), i = 1, . . . , n, from the distribution�n.

Based on this bootstrapped sample, estimating equations analogous to Equations (4), (5)
and (7) with (Ai,Xi, δi,Zi,Wi) replaced by (A∗

i ,X
∗
i , δ

∗
i ,Z

∗
i ,W

∗
i ), i = 1, . . . , n, can be con-

structed. The iterative algorithm of Section 3.2 is then applied to solve these estimating
equations and obtain the estimators β∗,H∗(·) and f ∗(·) of β , H(·) and f (·), respectively.
By repeating this procedureB times, a sequence of β∗

i ’s, i = 1, . . . ,B, is obtained. Gross and
Lai (1996) established an asymptotic theory of this simple bootstrap method and showed
that the simple bootstrap approximations to the sampling distributions of various non-
parametric statistics from left-truncated and right-censored data are accurate to the order
of Op(n−1). Thus, the asymptotic variance of the estimator β̂ can be approximated by the
empirical sample variances of β∗

i , i = 1, . . . ,B.

5. Simulation results

The purpose of this section is to conduct a simulation exercise to assess the finite sam-
ple performance of the proposed method. We generate the unbiased data T̃ from the PLT
model (1), where the hazard function of ε is λε(t) = exp(t)/(1 + r ∗ exp(t)) with r=0,1



JOURNAL OF NONPARAMETRIC STATISTICS 341

(Dabrowska and Doksum 1988). Note that the model in Equation (1) degenerates to the
PLPH and PLPOmodels when r=0 and r=1, respectively. We consider two independent
covariates Z1 and Z2, generated from the N(0, 1) and Bernoulli(0.5) distributions, respec-
tively, to enter the linear component of the model, and let the true value β0 be (1,−1)�.
Additionally, we let the nonparametric function be f (w) = 2w − w2, whereW ∼ U(0, 2)
and is independent of Z1 and Z2, and the transformation functions beH(t) = 2 log(t) and
H(t) = log(exp(t) − 1) when r=0 and r=1, respectively.

For the generation ofT, the length-biased data, we use the sampling procedure described
in Shen et al. (2009). This process involves generating the truncation variable A from the
Uniform distribution U(0, τA) independently of T̃, the unbiased data, where τA is a con-
stant that exceeds the upper bound of T̃. The latter constraint on τA is imposed to guarantee
the stationary of the length-biased data. In our experiment, we set τA = 100.We then select

Table 1. Simulation results for β .

β1 = 1 β2 = −1

Censoring mechanism CR(%) Bias SE SD CP(95%) Bias SE SD CP(95%)

PLPH case

Covariate-independent 20% 0.0771 0.1637 0.1745 95.7 −0.0659 0.2451 0.2621 98.0
Censoring 40% 0.0881 0.2002 0.2094 97.0 −0.0807 0.2847 0.3105 97.0
Covariate-dependent 20% 0.0721 0.1672 0.1808 96.3 −0.0707 0.2592 0.2614 95.7
Censoring 40% 0.0818 0.2300 0.2397 93.7 −0.0928 0.2959 0.3202 95.7

PLPO case

Covariate-independent 20% −0.0192 0.2927 0.3327 97.3 −0.0216 0.6123 0.6239 96.7
Censoring 40% −0.0048 0.3293 0.3575 97.7 0.0340 0.5964 0.6440 97.7
Covariate-dependent 20% −0.0059 0.3444 0.3513 95.0 0.0010 0.6051 0.6205 97.0
Censoring 40% −0.0185 0.3990 0.4429 97.3 0.0638 0.6344 0.6971 96.7

Table 2. Simulation results for f (·).
PLPH case PLPO case

Censoring mechanism CR(%) w0 f (w0) f̂ (w0) Bias SE SD f̂ (w0) Bias SE SD

Covariate-independent 20% 0.3 0.5100 0.4827 −0.0273 0.1589 0.1712 0.5084 −0.0016 0.3435 0.4352
Censoring 0.6 0.8400 0.8034 −0.0366 0.1244 0.1360 0.8098 −0.0302 0.3402 0.4159

1.2 0.9600 0.9448 −0.0152 0.1300 0.1387 0.9105 −0.0495 0.3894 0.4343
1.5 0.7500 0.7221 −0.0279 0.1207 0.1372 0.7190 −0.0310 0.3552 0.3938
1.8 0.3600 0.3509 −0.0091 0.2213 0.2215 0.3962 0.0362 0.4726 0.5467

40% 0.3 0.5100 0.4781 −0.0319 0.1759 0.2134 0.5257 0.0157 0.3940 0.4679
0.6 0.8400 0.8144 −0.0256 0.1449 0.1617 0.8338 −0.0062 0.3747 0.4225
1.2 0.9600 0.9215 −0.0385 0.1543 0.1672 0.9166 −0.0434 0.3874 0.4471
1.5 0.7500 0.7015 −0.0485 0.1474 0.1692 0.7053 −0.0447 0.3621 0.4258
1.8 0.3600 0.3152 −0.0448 0.2424 0.2689 0.2879 −0.0721 0.5130 0.5941

Covariate-dependent 20% 0.3 0.5100 0.4887 −0.0213 0.1543 0.1743 0.4994 −0.0106 0.3938 0.4494
Censoring 0.6 0.8400 0.8082 −0.0318 0.1275 0.1415 0.8205 −0.0195 0.3788 0.4126

1.2 0.9600 0.9268 −0.0332 0.1288 0.1440 0.9530 −0.0070 0.3910 0.4348
1.5 0.7500 0.7244 −0.0256 0.1207 0.1398 0.7521 0.0021 0.3648 0.3989
1.8 0.3600 0.3651 0.0051 0.1909 0.2249 0.3850 0.0250 0.4881 0.5439

40% 0.3 0.5100 0.4798 −0.0302 0.1833 0.2214 0.4668 −0.0432 0.4354 0.5159
0.6 0.8400 0.8005 −0.0395 0.1416 0.1699 0.7970 −0.0430 0.3845 0.4688
1.2 0.9600 0.9217 −0.0383 0.1435 0.1742 0.9431 −0.0169 0.4260 0.4860
1.5 0.7500 0.7036 −0.0464 0.1453 0.1754 0.7032 −0.0468 0.3768 0.4546
1.8 0.3600 0.3459 −0.0141 0.2665 0.2752 0.3252 −0.0348 0.5703 0.6316
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n=100 pairs of (A, T̃) that satisfy A < T̃ from the sample, and this subset of T̃ constitutes
our length-biased data T.

In addition, we consider covariate-independent as well as covariate-dependent cases
of right-censoring. For the independent censoring case, we generate the residual censor-
ing variable C from the U(0, c1) distribution, while for the dependent case, we generate C
from −2Z1 − Z2 + EXP(c2), where c1 and c2 are chosen such that the censoring percent-
ages (CR) are 20% or 40%. Notably, the total censoring time equals A+C. The number of
replications is set to 300, and the number of bootstraps associated with the aforementioned
described resampling procedure is set to 50. We use the Gaussian kernel in all cases, and

Figure 1. The true and estimated curves of f (w) under the PLPH case. Sub-figure (a) is for the covariate-
independent censoring casewith a censoring rate of 20%, (b) is for the covariate-independent censoring
casewith a censoring rate of 40%, (c) is for the covariate-dependent censoring casewith a censoring rate
of 20% and (d) is for the covariate-dependent censoring casewith a censoring rate of 40%. In each of the
four sub-figures, the black solid curve is the true curve of f (w), and the red dashed curve is the estimated
curve of f (w) based on the proposed method.
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choose h1 = 0.6n−1/3 for estimating β and H(·), and h2 = 0.6n−1/5 for estimating f (w)

under all scenarios.
The simulation results are presented in Tables 1 and 2. Table 1 summarises the perfor-

mance of the estimator of β based on bias magnitude (BIAS), standard errors of estimates
(SE), estimated standard deviations (SD) and coverage probabilities (CP) corresponding to
the nominal 95% confidence interval. The SE is calculated as the standard deviation of the
estimates from the replicated samples, and the SD is obtained from the bootstrap resam-
pling procedure. Table 2 reports the performance of the estimator of the nonlinear function
f (w) at the fixed points w=0.3,0.6,1.2,1.5,1.8. At each of these points, we present the aver-
age estimate of f (w) across the replications as well as the true value of f (w). The results are
presented for CR = 20% and 40%, and for r=0 and r=1 corresponding to the cases of the
PLPH and PLPOmodels respectively. Table 1 shows that when estimating β , the proposed

Figure 2. The true and estimated curves of f (w) under the PLPO case. The notations are the same as in
Figure 1.
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estimator leads to biases of negligible magnitude, and SEs and SDs that are very close to
each other, indicating that the resampling procedure works well. In addition, the CPs are
all very close to the nominal 95% level. A change from covariate-independent to covariate-
dependent censoring has no significant impact on the results, but an increase in CR from
20% to 40% generally has the effect of worsening the performance of the estimator. As far
as the estimation of f (w) is concerned, the above comments concerning the bias, SE and
SD of the estimator also apply in broad terms. Specifically, irrespective of the values of r
and CR, the biases are never very large; there are evidently larger deviations between SE
and SD compared to the case when one is estimating β , but the differences between the two
measures are still not very substantial. Indeed, we plot the the true and estimated curves of
f (w) side by side for the cases of r=0 and r=1 in Figures 1 and 2, respectively. It can be
seen that f (w) and f̂ (w) nearly coincide everywhere inw. All of the above comments apply
to the case of the PLPH model (r=0) as much as to the PLPO model (r=1). In all cases
considered, the iterative computational algorithm converges within a few iterations.

6. A real data example

Social status is often considered to be a determinant of life expectancy. Higher social sta-
tus is commonly believed to be correlated with lower mortality. To study the relationship
between social status and life expectancy, Redelmeier and Singh (2001) and Sylvestre,
Huszti, and Hanley (2006) considered the Oscar data set. They found that actors and
actresses who had won Oscar awards tended to live longer than those who had not. In
this section, we apply the proposed method to the same data set.

TheOscar data set contains information on a number of professional and personal char-
acteristics of 1670 actors and actresses from the first AcademyAward toMarch 2001. Thus,
observations corresponding to those who were alive in March 2001 are subject to right-
censoring. Among the 1670 actors and actresses included in the data set, 902 were never
nominated for an Oscar, 529 received at least one nomination but never won any award,
and the remaining 239 were nominated and won at least one Oscar.

In our analysis, the central question is the influence of winning an Oscar on the nomi-
nee’s life expectancy. Thus, we exclude the 902 actors and actress who did not receive any
Oscar nomination and focus only on the 768 Oscar nominees. We further exclude 5 obser-
vations with the wrong record (ID 908, 1075, 1192, 1430 and 1521) from the observations.
These result in a data set containing 763 observations with a censoring rate of 57.14%.
The same data set has been used in the studies of Wolkewitz, Allignol, Schumacher, and
Beyersmann (2010), Chen, Wan, and Zhou (2014), and Lin and Zhou (2014).

These 763 Oscar nominees were included in the data set after their first Oscar nom-
ination, and the nominees were alive at the time. Thus, the data are left-truncated and
right-censored with the age of the nominee at the first nomination as the left-truncation
variable. Chen et al. (2014) applied the test of Addona andWolfson (2006) to the same data
and confirmed that they satisfy the stationarity assumption, therefore, it is reasonable to
regard this data set as length-biased and right-censored. Let T̃ be the nominee’s lifetime,
A be the nominee’s age at the first nomination, and C be the time from the nominee’s first
nomination to death or the end of the study, whichever occurred first. The following char-
acteristics of the nominee are used as covariates in the linear part of the model: gender
(1=male, 0= female) (Z1), country of birth (1= born in the U.S., 0= born elsewhere)



JOURNAL OF NONPARAMETRIC STATISTICS 345

(Z2), ethnicity (1= white, 0=others) (Z3), name change (1=has changed name, 0=has
never changed name) (Z4), the number of four star films acted (Z5), and whether a winner
of Oscar (1=has won at least one Oscar, 0=has never won any Oscar award) (Z6). We
scale the number of films in which the nominee has starred before the end of study to lie
between 0 and 1 and use the resultant scaled variable as the nonlinear factorW. Therefore,
our model is

H(T̃) =
6∑

i=1
βiZi + f (W) + ε,

where ε follows the extreme value distribution under the PLPH model and the stan-
dard logistic distribution under the PLPO model, and the transformation function H(·)
takes the corresponding form as in simulations. We also use the Gaussian kernel under
both models and set the bandwidth to h = 0.6n−1/3 for estimating of H(·) and β , and
h = 0.6n−1/5 for estimating f (·). We report the estimated coefficients (EST), estimated
standard deviations (SD) and estimated 95% confidence intervals (CI) for the regression
coefficients βi, i = 1, . . . , 6 in Table 3, where SD is calculated based on 50 iterations of the

Table 3. Estimation Results for the Oscar nomination data.

β1 β2 β3 β4 β5 β6

PLPH case

EST −0.5864 −0.2293 0.0606 −0.0560 0.0351 0.1348
SD 0.1288 0.1141 0.1511 0.1210 0.0123 0.1075
CI(95%) (−0.839,−0.334) (−0.453,−0.006) (−0.236, 0.357) (−0.293, 0.181) (0.011, 0.059) (−0.076, 0.346)

PLPO case

EST −1.0571 −0.4168 0.2234 −0.1445 0.0567 0.2197
SD 0.1316 0.1071 0.2147 0.1333 0.0118 0.1240
CI(95%) (−1.315,−0.799) (−0.627,−0.207) (−0.197, 0.644) (−0.406, 0.117) (0.034, 0.080) (−0.023, 0.463)

Figure 3. The estimated curve of f (w) and its corresponding 95% pointwise confidence intervals based
on the Oscar data set. Sub-figure (a) is for the PLPH case and (b) is for the PLPO case. In each sub-figure,
the red solid curve is the estimated nonparametric function, and the green dashed curves represent the
95% pointwise confidence intervals.
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bootstrap resampling procedure used in the simulation study. Furthermore, we plot the
estimated curve f (W) and its corresponding 95% pointwise confidence intervals based on
the two models in Figure 3.

The results in Table 3 show that based on the PLPH model, gender, country of birth
and name change are negatively related to a nominee’s life expectancy; on the other hand,
ethnicity, the number of four star films acted and having been an Oscar winner have posi-
tive impacts on life expectancy. However, only the coefficients of gender, country of birth
and the number of four star films acted are significantly different from zero, as their cor-
responding 95% confidence intervals do not contain 0. We therefore conclude that there is
no obvious difference in life expectancy between Oscar winners and nominees who never
won the award. This conclusion concurs with those of Sylvestre et al. (2006) and Chen
et al. (2014). Table 3 shows that the PLPO and PLPH models yield very similar results.
Figure 3 shows that the covariateW indeed has a nonlinear effect on life expectancy, and the
estimated nonparametric functions of f (w) based on the PLPO and PLPH models exhibit
substantial similarities.

7. Concluding remarks

One important advantage of the partially linear transformation model lies in its ability to
capture both linear and nonlinear effects of the covariates on the dependent variable. We
have considered this model and proposed estimators for the unknown covariate effects
when the data are subject to length-biasedness and right-censoring. We have shown that
the proposed estimators possess optimal asymptotic properties and fare well in finite sam-
ples. The partially linear transformation model may be extended to the following partially
linear transformation varying-coefficients model (Qiu and Zhou 2015):

H(T) = −ZTβ − f T(W)V + ε, (9)

whereV is a q × 1 dimensional covariate, f (·) is an unspecified q × 1 dimensional smooth
vector function, and other quantities are defined as in Section 2. When V ≡ 1, model (9)
degenerates to model (1) directly. Model (9) can accommodate interaction effects between
covariates and and the dynamic effects of the covariates on the dependent variable through
the varying coefficients.Work in progress by the authors considers thismodel in the context
of length-biased and right-censored data.

Moreover, as one of the referees commented, wemay also develop amethodology based
on a full likelihood approach for estimating β and H(·), in order to pursuit more effi-
cient estimators, even though the actual computation of the estimates will likely be very
cumbersome. Ma and Kosorok (2005) considered the current status data under the same
model framework as ours and proposed a penalised log-likelihood estimation method.
They showed that their proposed estimator of β is asymptotically efficient, and thus a sim-
ilarmethodmay be developed for the length-biased and right-censored data case.However,
this is beyond the scope of this paper andwill be an interesting point of departure for future
research.
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Appendix 1. Assumptions for the asymptotic theories

This appendix provides the proofs of the main results given in Section 4. Let ‖a‖ denote
the Euclidean norm for a vector a and ‖f ‖ the supremum norm for a function f, i.e. ‖f ‖ =
supt∈[0,τ ] |f (t)|. Our proofs of the theorem require the following conditions:

(C1) The unique true parameter β0 belongs to the interior of the compact parameter spaceB ∈ R
p.

(C2) The covariateZ is a p × 1 dimensional bounded vector not contained in a (p − 1) dimensional
hyperplane. The covariate W has a compact support W and the density function g(·) of W
has a bounded second derivative.

(C3) τ is finite with P(T > τ) > 0 and P(A + C > τ) > 0.
(C4) λε(t) is positive, bounded and continuously differentiable on (−∞,m) for any finite constant

m, and limt→−∞ λε(t) = 0.
(C5) H0(t) has a continuous and positive derivative Ḣ0(t) on [0, τ ], and f0 has a continuous second

derivative.
(C6) D1(·, ·) in the integral equation (8) satisfies supt∈[0,τ ]

∫ τ

0 | D1(s, t) | dH0(s) < ∞.
(C7) A and 
∗ are finite and nonsingular matrices.

Appendix 2. Proofs of the theorems

We first propose a naive one-step estimator of the unknown parameters similar to Carroll
et al. (1997), Cai et al. (2007, 2008) and Lu and Zhang (2010), which can be used as the initial value
of the iterative algorithm described in Section 3.2. In addition, we prove that the naive one-step
estimator is locally consistent. Specifically, for any fixed w ∈ W , the naive estimators ofH(·),β and
α1(w) are obtained by solving the following estimating equations:

n∑
i=1

Kh(Wi − w){dNi(t) − Yi(t) d�ε(H(t) + Z�
i β + α1(w)(Wi − w))} = 0, t ≥ 0 (A1)

and
n∑

i=1

∫ τ

0

(
Zi

Wi − w

)
Kh(Wi − w){dNi(t) − Yi(t) d�ε(H(t)

+ Z�
i β + α1(w)(Wi − w))} = 0. (A2)

The estimating equations (A1) and (A2) can be solved by applying the algorithm of Chen
et al. (2002). It is worth noting that the intercept term α0(w) that appears in Equation (7) is included
in the function H(t). Denote the resultant estimators from above estimating equations as H̆(t), β̆
and ᾰ1(w) respectively, and f (w) can be estimated by f̆ (w) = ∫ w

0 ᾰ1(u) du. Under some regularity
conditions, we can show that β̆ , ᾰ1(w) and f̆ (w) are locally consistent. This is summarised in Lemma
A.1 as follows. For the implementation of the algorithm in Section 3.2, the initial values of β and
f (·) are set to β̃(0) = β̆ and f̃ (0)(w) = f̆ (w), respectively.
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Lemma A.1 (Local consistency of the naive one-step estimator): Under the regularity conditions
(C1)–(C5), if h → 0 and nh → ∞ as n → ∞, Aw (given in Equation (A3)) is finite and nonsingular
for any w ∈ W , then β̆ , ᾰ1(w), f̆ (w) are locally consistent.

Proof: This proof uses a similar approach to that of Chen et al. (2002). For any given β and α1(w),
the l.h.s. of Equation (A1) is monotone with respect to H(·). Let H̆(t;β ,α1(w)) be the nondecreas-
ing function uniquely determined by Equation (A1), and H̆(t;β ,α1(w)) exists when β is in a small
neighbourhood of β0 and α1(w) is bounded for w ∈ W . Mimicking Step 1 of the proof of Kim
et al. (2013), we can show that H̆(t;β0, ḟ0(w)) converges almost surely to H0(t) + f0(w) on [0, τ ].

For any w ∈ W , we define the conditional version of the items given in Section 4 for any s, t ∈
[0, τ ] as follows:

B1w(t) = E[Y(t)λ̇ε(H0(t) + ZTβ0 + f0(W)) | W = w],

B2w(t) = E[Y(t)λε(H0(t) + ZTβ0 + f0(W)) | W = w],

Bw(t, s) = exp
{∫ t

s

B1w(u)
B2w(u)

dH0(u)
}
,

BZ1w(t) = E[ZY(t)λ̇ε(H0(t) + ZTβ0 + f0(W)) | W = w],

BZ2w(t) = E[ZY(t)λε(H0(t) + ZTβ0 + f0(W)) | W = w],

zw(t) = 1
B2w(t)

{
BZ2w(t) +

∫ τ

t

[
BZ1w(s) − BZ2w(s)B1w(s)

B2w(s)

]
Bw(t, s) dH0(s)

}
,

λ∗
w{H0(t)} = Bw(t, 0), �∗

w(x) =
∫ x

−∞
λ∗
w(u) du for x ∈ (−∞,∞).

Replacing H(t) by H̆(t;β ,α1(w)) in (A1) and taking the derivative with respect to β on both sides
of the resultant equation, for any t ∈ [0, τ ], we can obtain

∂H̆(t;β ,α1)

∂β

∣∣∣∣∣
β=β0,α1=ḟ0

= −
∫ t

0

Bw(s, t)
B2w(s)

BZ1w(s) dH0(s) + op(1)

and

d
∂H̆(t;β ,α1)

∂β

∣∣∣∣∣
β=β0,α1=ḟ0

= − 1
B2w(t)

⎧⎨
⎩BZ1w(t) + B1w(t)

∂H̆(t;β ,α1)

∂β

∣∣∣∣∣
β=β0,α1=ḟ0

+ op(1)

⎫⎬
⎭ dH0(t).

Similarly, taking the derivative with respect to α1(w) on both sides of the resultant equation, we have

∂H̆(t;β ,α1(w))

∂α1(w)

∣∣∣∣∣
β=β0,α1=ḟ0

= 0.

The above calculations imply that for t in a compact subset of the interior of the support of X, the
derivative of H̆(t;β ,α1(w))with respect toβ is bounded in the neighbourhood ofβ0, and the deriva-
tive of H̆(t;β ,α1(w)) with respect to α1(w) is 0 in the neighbourhood of ḟ0. Because H̆(t;β0, ḟ0(w))

converges uniformly to H0(t) + f0(w) on [0, τ ], we obtain that H̆(t; β̆ , ᾰ1(w)) converges uniformly
to H0(t) + f0(w) on [0, τ ], provided that β̆ → β0 and ᾰ1(w) is bounded.

We replace H(t) by H̆(t;β ,α1(w)) in Equation (A2) and denote

Ŭw(β ,α1(w)) = 1
n

n∑
i=1

∫ τ

0

(
Zi

Wi − w

)
Kh(Wi − w){dNi(t) − Yi(t) d�ε(H̆(t;β ,α1(w))

+ Z�
i β + α1(w)(Wi − w))}.
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Similar to Step 4 of Chen et al. (2002), using the law of large numbers and standard non-
parametric techniques, we can show that Ŭw(β ,α1(w)) converges almost surely to a determin-
istic vector ŭw(β ,α1(w)) for β that lies in a small neighbourhood of β0 and α1(w) that lies
in a small neighbourhood of ḟ0(w). Thus, we have ŭw(β0, ḟ0(w)) = 0. Denote Ŭw(β ,α1(w)) =
(Ŭw1(β ,α1(w)), Ŭw2(β ,α1(w)))�. Then we have

∂Ŭw1(β ,α1(w))

∂β

∣∣∣∣∣
β=β0,α1=ḟ0

= − 1
n

n∑
i=1

∫ τ

0
(Zi − 1

B2w(t)
[BZ2w(t) +

∫ τ

t
[BZ1w(s) − B1w(s)BZ2w(s)

B2w(s)
]Bw(t, s)dH0(s)])

× ZT
i Kh(Wi − w)Yi(t)λ̇ε(H0(t) + Z�

i β0 + f0(Wi)) dH0(t) + op(1)

= − 1
n

n∑
i=1

∫ τ

0
(Zi − zw(t))Z�

i Kh(Wi − w)Yi(t)λ̇ε(H0(t) + Z�
i β0 + f0(Wi)) dH0(t) + op(1)

= −
∫ τ

0
g(w)E[(Z − zw(t))Z�Y(t)λ̇ε(H0(t) + Z�

i β0 + f0(W)) | W = w] dH0(t) + op(1)

:= R1 + op(1),

∂Ŭw1(β ,α1(w))

∂α1(w)

∣∣∣∣∣
β=β0,α1=ḟ0

= − 1
n

n∑
i=1

∫ τ

0
ZiKh(Wi − w)Yi(t)λ̇ε(H0(t) + Z�

i β0 + f0(Wi))(Wi − w) dH0(t) + op(1)

= op(1),

∂Ŭw2(β ,α1(w))

∂β

∣∣∣∣∣
β=β0,α1=ḟ0

= − 1
n

n∑
i=1

∫ τ

0
(Wi − w)Kh(Wi − w)Yi(t)λε(H0(t) + Z�

i β0 + ḟ0(Wi))d
∂H̆(t;β ,α1(w))

∂β

∣∣∣∣∣
β=β0,α1=ḟ0

− 1
n

n∑
i=1

∫ τ

0
(Wi − w)Kh(Wi − w)Yi(t)λ̇ε(H0(t) + Z�

i β0 + ḟ0(Wi))

×
⎛
⎝ ∂H̆(t;β ,α1(w))

∂β

∣∣∣∣∣
β=β0,α1=ḟ0

+ Zi

⎞
⎠ dH0(t) + op(1)

= op(1),

∂Ŭw2(β ,α1(w))

∂α1(w)

∣∣∣∣∣
β=β0,α1=ḟ0

= − 1
n

n∑
i=1

∫ τ

0
(Wi − w)2Kh(Wi − w)Yi(t)λ̇ε(H0(t) + Z�

i β0 + f0(Wi) dH0(t) + op(1)

= −
∫ τ

0
h2g(w)k2E[Y(t)λ̇ε(H0(t) + Z�β0 + f0(W)) | W = w] dH0(t) + op(1)

:= R2 + op(1),
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where k2 = ∫
w2K(w)dw < ∞. Hence, we obtain

lim
n→∞

∂Ŭw(β ,α1(w))

∂(β ,α1(w))

∣∣∣∣∣
β=β0,α1=ḟ0

=
(
R1 0
0 R2

)
:= Aw. (A3)

The above calculations also yield

sup
β∈Dε1 ,α1∈F1

εw

∥∥∥∥∥ ∂Ŭw(β ,α1)

∂(β ,α1(w))
− Aw

∥∥∥∥∥ → 0 as n → ∞, ε1, εw → 0

in probability, where Dε1 = {β ∈ B : ‖β − β0‖ ≤ ε1} and F1
εw = {α1 : ‖α1(w) − ḟ0(w)‖ ≤ εw}.

Following arguments used in Step A5 of Chen et al. (2002), consider Ŭw(β ,α1(w)) as a random
mapping from an arbitrarily small but fixed ball Qε = {(β ,α1) : ‖(β ,α1(w)) − (β0, ḟ0(w)‖ ≤ ε} to
another open connected set inR

p+1. By the assumption of LemmaA.1,Aw is finite and nonsingular.
Then with probability 1, Ŭw(β ,α1(w)) is homeomorphic from Qε to En, its image. The conver-
gence of Ŭw(β , ḟ0) to 0 indicates that En contains 0 ∈ R

p+1 with probability tending to 1. Because
Ŭw(β̆ , ᾰ1(w)) = 0 andQε is an arbitrarily small neighbourhood centred at (β0, ḟ0(w)), β̆ and ᾰ1(w)

are locally consistent, resulting in the local consistency of f̆ (w). This completes the proof. �

The above analysis has established the local consistency of the naive one-step estimator used as
the initial value in the iterative algorithm. Next, we establish the asymptotic properties of the fully
iterated estimator. The following proof mimics the approach of Lu and Zhang (2010).

Proof of Theorem 4.1: Let us first establish the local consistency of Ĥ(·), β̂ and f̂ (·) that result from
the proposed iterative algorithm. Specifically, we want to show that the proposed estimating equa-
tions have unique solutions in small neighbourhoods of the true parameters β0 and f0, respectively.
Furthermore, for β and f in this neighbourhood, we show that the estimator of H(·) is close to
H0(·). Based on the arguments of Carroll et al. (1997) and Lemma A.1, it is expected that β̂ , α̂0 and
α̂1 are locally consistent estimators of β0, f0 and ḟ0, respectively. Hence, it suffices to show the local
consistency of Ĥ(·).

For any fixed β and f (·), Equation (4) is monotone with respect to H(·), and thus there exists a
unique solution to Equation (4). Let Ĥ(·;β , f ) be the function implicitly defined as the unique solu-
tion of Equation (4). Similar to the proof given in Kim et al. (2013), we first prove the consistency of
Ĥ(·;β0, f0) toH0(·), i.e. supt∈[0,τ ] |Ĥ(t;β0, f0) − H0(t)| → 0 in probability as n → ∞. By themono-
tonicity of Ĥ(·;β0, f0), it suffices to show that H̄(·) is identical toH0(·), where H̄(·) is a limit function
of Ĥ(·;β0, f0) defined on [0, τ ]. By the law of large numbers, we obtain

E[N(t)] =
∫ t

0
E[Y(s)λε(H̄(s) + Z�β0 + f0(W))] dH̄(s)

from Equation (4). This indicates that H̄(·) is differentiable and must therefore satisfy

dH̄(t)
dt

= dE[N(t)]
dt

{E[Y(t)λε(H̄(t) + Z�β0 + f0(W))]}−1. (A4)

Note that as Equation (A4) is a Cauchy problem, it results in a unique solution under some local
smoothness assumptions (see Theorem 3.4.2 in Reinhard 1986, p. 40). Moreover, by the definition
of M(t), H0(·) satisfies Equation (A4), hence we obtain H̄(·) = H0(·), and Ĥ(·;β0, f0) converges to
H0(·).

Similar to the proof of Lemma A.1, for t in a compact subset of the interior of the support of
X, we can show that the derivatives of Ĥ(t;β ,α0) with respect to β and α0 are bounded in a small
neighbourhood of β0 and f0, respectively. Thus, we have Ĥ(t; β̂ , α̂0) → Ĥ(t;β0, f0), provided that
β̂ → β0 and α̂0 → f0. This yields Ĥ(t; β̂ , α̂0) → H0(t) if β̂ → β0 and α̂0 → f0 hold, meaning that
Ĥ(t; β̂ , α̂0) is consistent. Next, we prove the asymptotic normality of β̂ . Our proof consists of 4 parts.
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Part 1: By the definition ofMi(t) and Equation (4), it follows from the law of large numbers that

1
n

n∑
i=1

dMi(t)

= 1
n

n∑
i=1

dNi(t) − 1
n

n∑
i=1

Yi(t) d�ε(H0(t) + Z�
i β0 + f0(Wi))

= 1
n

n∑
i=1

Yi(t) d

{
λε(H0(t) + Z�

i β0 + f0(Wi))

λ∗{H0(t)} (�∗{Ĥ(t;β0, f0)} − �∗{H0(t)})
}

+ op(n−1/2)

= 1
n

n∑
i=1

Yi(t)
λε(H0(t) + Z�

i β0 + f0(Wi))

λ∗{H0(t)} d[�∗{Ĥ(t;β0, f0)} − �∗{H0(t)}]

+ 1
n

n∑
i=1

Yi(t)[�∗{Ĥ(t;β0, f0)} − �∗{H0(t)}] dλε(H0(t) + Z�
i β0 + f0(Wi))

λ∗{H0(t)} + op(n−1/2)

= B2(t)
λ∗{H0(t)}d[�

∗{Ĥ(t;β0, f0)} − �∗{H0(t)}]

+ [�∗{Ĥ(t;β0, f0)} − �∗{H0(t)}]
B1(t) dH0(t) − B2(t)B1(t)B2(t)dH0(t)

λ∗{H0(t)} + op(n−1/2)

= B2(t)
λ∗{H0(t)}d[�

∗{Ĥ(t;β0, f0)} − �∗{H0(t)}] + op(n−1/2),

which yields

�∗{Ĥ(t,β0, f0)} − �∗{H0(t)} = 1
n

n∑
i=1

∫ t

0

λ∗{H0(s)}
B2(s)

dMi(s) + op(n−1/2).

Note that the op(n−1/2) term on the r.h.s. of the above equation is due to the
√
n-consistency of

Ĥ(·;β0, f0), which can be established by the empirical process theory for Z-estimators (van der Vaart
and Wellner 1996).

Part 2: From Equation (4), note that

n∑
i=1

{dNi(t) − Yi(t) d�ε(Ĥ(t;β , f ) + Z�
i β + f (Wi))} = 0. (A5)

Taking derivative with respect to β on both sides of Equation (A5), we have

n∑
i=1

Yi(t)λε(Ĥ(t;β , f ) + Z�
i β + f (Wi)) d

∂Ĥ(t;β , f )
∂β

+
n∑
i=1

Yi(t)λ̇ε(Ĥ(t;β , f ) + Z�
i β + f (Wi))

(
∂Ĥ(t;β , f )

∂β
+ Zi

)
dĤ(t;β , f ) = 0.

Using the law of large numbers and recognising that Ĥ(t;β0, f0) converges to H0(t), we obtain

∂Ĥ(t;β , f )
∂β

∣∣∣∣∣
β=β0,f=f0

= −
∫ t

0

B(s, t)
B2(s)

BZ1 (s) dH0(s) + op(1). (A6)
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Hence we have

d
∂Ĥ(t;β , f )

∂β

∣∣∣∣∣
β=β0,f=f0

= − 1
B2(t)

⎧⎨
⎩BZ1 (t) + B1(t)

∂Ĥ(t;β , f )
∂β

∣∣∣∣∣
β=β0,f=f0

+ op(1)

⎫⎬
⎭ dH0(t). (A7)

Denote

V1(β , f ) = 1
n

n∑
i=1

∫ τ

0
Zi
{
dNi(t) − Yi(t) d�ε(Ĥ(t;β , f ) + ZT

i β + f (Wi))
}

obtained by substituting Ĥ(t;β , f ) in Equation (5). By differentiating V1(β , f ) with respect to β ,
setting β = β0 and f = f0, and using the law of large numbers and Equations (A6) and (A7), we
obtain

∂V1(β , f )
∂β

∣∣∣∣
β=β0,f=f0

= − 1
n

n∑
i=1

∫ τ

0
ZiYi(t)λε(Ĥ(t;β0, f0) + Z�

i β0 + f0(Wi)) d
∂Ĥ(t;β , f )

∂β

∣∣∣∣∣
β=β0,f=f0

− 1
n

n∑
i=1

∫ τ

0
ZiYi(t)

⎛
⎝Zi + ∂Ĥ(t;β , f )

∂β

∣∣∣∣∣
β=β0,f=f0

⎞
⎠

�

λ̇ε(Ĥ(t;β0, f0)

+ Z�
i β0 + f0(Wi)) dĤ(t;β0, f0)

= − 1
n

n∑
i=1

∫ τ

0
{Zi − z(t)}Z�

i Yi(t)λ̇ε(H0(t) + Z�
i β0 + f0(Wi)) dH0(t) + op(1)

= −
∫ τ

0
E[{Z − z(t)}Z�Y(t)λ̇ε(H0(t) + Z�β0 + f0(W))] dH0(t) + op(1)

= −A1 + op(1).

Part 3: For any w ∈ W , denote

V2(α0,α1,H,β)(w) = 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)

(
1

Wi − w
h

)
[dNi(t) − Yi(t) d�ε{H(t)

+ Z�
i β + α0(w) + α1(w)(Wi − w)}].

Then we have V2(α̂0, α̂1, Ĥ(·; β̂ , α̂0), β̂)(w) = 0, where (α̂0, α̂1) is the solution of Equation (7) at
convergence, and (β̂ , Ĥ(·; β̂ , α̂0)) is the solution of Equations (4) and (5) at convergence. Using the
Taylor series expansion and the law of large numbers, we have

V2(α̂0, α̂1, Ĥ(·; β̂ , α̂0), β̂)(w)

= V2(α̂0, α̂1, Ĥ(·;β0, α̂0),β0)(w)

− 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
[d�ε{Ĥ(t; β̂ , α̂0)

+ Z�
i β̂ + α̂0(w) + α̂1(w)(Wi − w)}

− d�ε{Ĥ(t;β0, α̂0) + Z�
i β0 + α̂0(w) + α̂1(w)(Wi − w)}]

= V2(α̂0, α̂1, Ĥ(·;β0, α̂0),β0)(w) − E1(w) + op(n−1/2),



JOURNAL OF NONPARAMETRIC STATISTICS 355

where

E1(w)

= 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
d

⎡
⎢⎣λε{Ĥ(t;β0, α̂0) + Z�

i β0 + α̂0(w) + α̂1(w)(Wi − w)}

×
⎛
⎝Zi + ∂Ĥ(t;β , α̂0)

∂β

∣∣∣∣∣
β=β0

⎞
⎠

�

(β̂ − β0)

⎤
⎥⎦

= 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
λε{Ĥ(t;β0, α̂0) + Z�

i β0 + α̂0(w) + α̂1(w)(Wi − w)}

×
⎛
⎝d ∂Ĥ(t;β , α̂0)

∂β

∣∣∣∣∣
β=β0

⎞
⎠

�

(β̂ − β0)

+ 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
λ̇ε{Ĥ(t;β0, α̂0) + Z�

i β0 + α̂0(w) + α̂1(w)(Wi − w)}

×
⎛
⎝Zi + ∂Ĥ(t;β , α̂0)

∂β

∣∣∣∣∣
β=β0

⎞
⎠

�

dĤ(t;β0, α̂0)(β̂ − β0).

Similar to Part 2, we can obtain

∂Ĥ(t;β , α̂0)

∂β

∣∣∣∣∣
β=β0

= −
∫ t

0

B(s, t)
B2(s)

BZ1 (s) dH0(s) + op(1) (A8)

and

d
∂Ĥ(t;β , α̂0)

∂β

∣∣∣∣∣
β=β0

= − 1
B2(t)

⎧⎨
⎩BZ1 (t) + B1(t)

∂Ĥ(t;β , α̂0)

∂β

∣∣∣∣∣
β=β0

+ op(1)

⎫⎬
⎭ dH0(t). (A9)

Using standard nonparametric techniques and the law of large numbers, and substituting Equa-
tions (A8) and (A9) into E1(w), we can show that E1(w) converges to the following deterministic
function:

E1(w)

= − 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
λε{Ĥ(t;β0, α̂0) + Z�

i β0 + α̂0(w) + α̂1(w)(Wi − w)}

× 1
B2(t)

{
BZ1 (t) − B1(t)

∫ t

0

B(s, t)
B2(s)

BZ1 (s) dH0(s)
}
dH0(t)(β̂ − β0)

+ 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
λ̇ε{Ĥ(t;β0, α̂0) + Z�

i β0 + α̂0(w) + α̂1(w)(Wi − w)}

×
(
Zi −

∫ t

0

B(s, t)
B2(s)

BZ1 (s) dH0(s)
)�

dĤ(t;β0, α̂0)(β̂ − β0) + op(n−1/2)

:=
(
e�1 (w)

0�
)

(β̂ − β0) + op(n−1/2),
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where

e�1 (w) = g(w)

∫ τ

0

{
BZ1w(t) − B2w(t)

B2(t)

{
BZ1 (t) − B1(t)

∫ t

0

B(s, t)
B2(s)

BZ1 (s) dH0(s)
}

− B1w(t)
∫ t

0

B(s, t)
B2(s)

BZ1 (s) dH0(s)
}
dH0(t).

In addition, we can obtain

V2(α̂0, α̂1, Ĥ(·;β0, α̂0),β0)(w)

= V2(α̂0, α̂1,H0,β0)(w)

− 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
[d�ε{Ĥ(t;β0, α̂0)

+ Z�
i β0 + α̂0(w) + α̂1(w)(Wi − w)}

− d�ε{H0(t) + Z�
i β0 + α̂0(w) + α̂1(w)(Wi − w)}]

= V2(α̂0, α̂1,H0,β0)(w) − E2(w) + op(n−1/2),

where

E2(w) = 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
d

[
λε{H0(t) + Z�

i β0 + α̂0(w) + α̂1(w)(Wi − w)}
λ∗{H0(t)}

× [�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}]
]

= 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
λε{H0(t) + Z�

i β0 + α̂0(w) + α̂1(w)(Wi − w)}
λ∗{H0(t)}

× d[�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}]

+ 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
[�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}]

× d
λε{H0(t) + Z�

i β0 + α̂0(w) + α̂1(w)(Wi − w)}
λ∗{H0(t)}

= g(w)

∫ τ

0

( B2w(t)
λ∗{H0(t)}

0

)
d[�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}] + op(n−1/2)

:=
∫ τ

0

(
e2(w, t)

0

)
d[�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}] + op(n−1/2),

with

e2(w, t) = g(w)
B2w(t)

λ∗{H0(t)} .
Furthermore,

V2(α̂0, α̂1,H0,β0)(w)

= V2(f0, ḟ0,H0,β0)(w)

− 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
[d�ε{H0(t) + Z�

i β0 + α̂0(w) + α̂1(w)(Wi − w)}
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− d�ε{H0(t) + Z�
i β0 + f0(w) + ḟ0(w)(Wi − w)}]

= V2(f0, ḟ0,H0,β0)(w) − E3(w)

(
α̂0(w) − f0(w)

h(α̂1(w) − ḟ0(w))

)
+ op(n−1/2),

where

E3(w) = 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)(
1

Wi − w
h

)
λ̇ε{H0(t)

+ Z�
i β0 + f0(w) + ḟ0(w)(Wi − w)} dH0(t)

= g(w)

∫ τ

0

(
1 0
0 k2

)
B1w(t) dH0(t) + op(n−1/2)

:= e3(w) + op(n−1/2).

The above calculations lead to

E3(w)

(
α̂0(w) − f0(w)

h(α̂1(w) − ḟ0(w))

)
= V2(f0, ḟ0,H0,β0)(w) − E1(w) − E2(w) + op(n−1/2).

Thus we have(
α̂0(w) − f0(w)

h(α̂1(w) − ḟ0(w))

)

= e−1
3 (w)V2{f0, ḟ0,H0,β0}(w) − e−1

3 (w)

(
e�1 (w)

0�

)
(β̂ − β0)

− e−1
3 (w)

∫ τ

0

(
e2(w, t)

0

)
d[�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}] + op(n−1/2),

where

e−1
3 (w) = 1∫ τ

0 g(w)B1w(t) dH0(t)

⎛
⎝1 0

0
1
k2

⎞
⎠ :=

⎛
⎜⎝

1
e31(w)

0

0
1

k2e31(w)

⎞
⎟⎠ .

Specifically, for any w ∈ W , the asymptotic representations of α̂0(w) − f0(w) and h(α̂1(w) − ḟ0(w))

are

α̂0(w) − f0(w) = 1
e31(w)

V21{f0, ḟ0,H0,β0}(w) − e�1 (w)

e31(w)
(β̂ − β0)

−
∫ τ

0

e2(w, t)
e31(w)

d[�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}] + op(n−1/2) (A10)

and

h(α̂1(w) − ḟ0(w)) = 1
k2e31(w)

V22{f0, ḟ0,H0,β0}(w) + op(n−1/2),

where V2(f0, ḟ0,H0,β0)(w) = (V21{f0, ḟ0,H0,β0}(w),V22{f0, ḟ0,H0,β0}(w))�.
Part 4: For any fixed β , Ĥ(t;β , α̂0) is the solution to the equation

n∑
i=1

[dNi(t) − Yi(t) d�ε(H(t) + Z�
i β + α̂0(Wi))] = 0, (A11)

and β̂ is the solution to the estimating equation
n∑
i=1

∫ τ

0
Zi[dNi(t) − Yi(t) d�ε(Ĥ(t;β , α̂0) + Z�

i β + α̂0(Wi))] = 0. (A12)
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Using Equation (A11) and mimicking the procedures in Part 1, we have

1
n

n∑
i=1

dMi(t)

= 1
n

n∑
i=1

Yi(t) d�ε(Ĥ(t;β0, α̂0) + Z�
i β0 + α̂0(Wi)) − 1

n

n∑
i=1

Yi(t) d�ε(H0(t) + Z�
i β0 + f0(Wi))

= 1
n

n∑
i=1

Yi(t) d

[
λε(H0(t) + Z�

i β0 + f0(Wi))

λ∗{H0(t)} [�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}]

+ λε(H0(t) + Z�
i β0 + f0(Wi))(α̂0(Wi) − f0(Wi))

]
+ op(n−1/2)

= B2(t)
λ∗{H0(t)}d[�

∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}]

+ 1
n

n∑
i=1

Yi(t){α̂0(Wi) − f0(Wi)} dλε(H0(t) + Z�
i β0 + f0(Wi)) + op(n−1/2). (A13)

Write the l.h.s. of Equation (A12) as nU(β , Ĥ(t;β , α̂0), α̂0), i.e.

U(β , Ĥ(t;β , α̂0), α̂0) = 1
n

n∑
i=1

∫ τ

0
Zi[dNi(t) − Yi(t) d�ε{Ĥ(t;β , α̂0) + Z�

i β + α̂0(Wi)}].

As U(β̂ , Ĥ(t; β̂ , α̂0), α̂0) = 0, by the Taylor series expansion, we have

U(β̂ , Ĥ(t; β̂ , α̂0), α̂0)

= U(β0, Ĥ(t;β0, α̂0), f0) − 1
n

n∑
i=1

∫ τ

0
ZiYi(t) d[�ε(Ĥ(t; β̂ , α̂0) + Z�

i β̂ + α̂0(Wi))

− �ε(Ĥ(t;β0, α̂0) + Z�
i β0 + f0(Wi))]

= U(β0, Ĥ(t;β0, α̂0), f0) − 1
n

n∑
i=1

∫ τ

0
ZiYi(t) d[λε(Ĥ(t;β0, α̂0)

+ Z�
i β0 + f0(Wi)){α̂0(Wi) − f0(Wi)}]

− 1
n

n∑
i=1

∫ τ

0
ZiYi(t) d[λε(Ĥ(t;β0, α̂0) + Z�

i β0 + f0(Wi))

×
⎧⎨
⎩Zi + ∂Ĥ(t;β , α̂0)

∂β

∣∣∣∣∣
β=β0

⎫⎬
⎭

�

(β̂ − β0)] + op(n−1/2)

= U(β0, Ĥ(t;β0, α̂0), f0) − 1
n

n∑
i=1

∫ τ

0
ZiYi(t){α̂0(Wi) − f0(Wi)} dλε(H0(t) + Z�

i β0 + f0(Wi))

−
∫ τ

0
E[{Z − z(t)}Z�Y(t)λ̇ε(H0(t) + Z�β0 + f0(W))] dH0(t)(β̂ − β0) + op(n−1/2)
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= U(β0, Ĥ(t;β0, α̂0), f0) − 1
n

n∑
i=1

∫ τ

0
ZiYi(t){α̂0(Wi) − f0(Wi)} dλε(H0(t) + Z�

i β0 + f0(Wi))

− A1(β̂ − β0) + op(n−1/2).

Moreover,

U(β0, Ĥ(t;β0, α̂0), f0)

= 1
n

n∑
i=1

∫ τ

0
Zi[dNi(t) − Yi(t) d�ε{Ĥ(t;β0, α̂0) + Z�

i β0 + f0(Wi)}]

= 1
n

n∑
i=1

∫ τ

0
Zi dMi(t) + 1

n

n∑
i=1

∫ τ

0
ZiYi(t) d�ε{H0(t) + Z�

i β0 + f0(Wi)}

− 1
n

n∑
i=1

∫ τ

0
ZiYi(t) d�ε{Ĥ(t;β0, f0) + Z�

i β0 + f0(Wi)}

= 1
n

n∑
i=1

∫ τ

0
Zi dMi(t)

− 1
n

n∑
i=1

∫ τ

0
ZiYi(t) d

[
λε(H0(t) + Z�

i β0 + f0(Wi))

λ∗{H0(t)} [�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}]
]

+ op(n−1/2)

= 1
n

n∑
i=1

∫ τ

0
Zi dMi(t) −

∫ τ

0

BZ2 (t)
λ∗{H0(t)}d[�

∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}]

−
∫ τ

0
[�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}]

BZ1 (t) − BZ2 (t)B1(t)B2(t)

λ∗{H0(t)} dH0(t) + op(n−1/2).

The above calculations lead to

1
n

n∑
i=1

∫ τ

0
ZidMi(t)

= 1
n

n∑
i=1

∫ τ

0
ZiYi(t){α̂0(Wi) − f0(Wi)} dλε(H0(t) + Z�

i β0 + f0(Wi)) + A1(β̂ − β0)

+ 1
n

n∑
i=1

∫ τ

0

BZ2 (t)
λ∗{H0(t)}d[�

∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}]

+ 1
n

n∑
i=1

∫ τ

0
[�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}]

BZ1 (t) − BZ2 (t)B1(t)B2(t)

λ∗{H0(t)} dH0(t) + op(n−1/2). (A14)

Substituting Equation (A10), the asymptotic representations of α̂0(w) − f0(w), into Equation (A13),
we obtain

B2(t)
λ∗{H0(t)}d[�

∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}]

= 1
n

n∑
i=1

dMi(t) − 1
n

n∑
i=1

Yi(t)
V21{f0, ḟ0,H0,β0}(Wi)

e31(Wi)
dλε(H0(t) + Z�

i β0 + f0(Wi))
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+ 1
n

n∑
i=1

Yi(t)
e�1 (Wi)(β̂ − β0)

e31(Wi)
dλε(H0(t) + Z�

i β0 + f0(Wi))

+ 1
n

n∑
i=1

Yi(t)
∫ τ

0

e2(Wi, t)
e31(Wi)

d[�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}] dλε(H0(t) + Z�
i β0 + f0(Wi))

+ op(n−1/2)

= 1
n

n∑
i=1

dMi(t) − 1
n

n∑
i=1

Yi(t)
V21{f0, ḟ0,H0,β0}(Wi)

e31(Wi)
dλε(H0(t) + Z�

i β0 + f0(Wi))

+ d{c1(t)}(β̂ − β0) +
∫ τ

0
c2(t, s) d[�∗{Ĥ(s;β0, α̂0)} − �∗{H0(s)}] dH0(t) + op(n−1/2),

where

d{c1(t)} = E

{
Y(t)

e�1 (W)

e31(W)
λ̇ε(H0(t) + Z�β0 + f0(W))

}
dH0(t) and

c2(t, s) = E
{
Y(t)

e2(W, s)
e31(W)

λ̇ε(H0(t) + Z�β0 + f0(W))

}
.

Hence we have

B2(t)
λ∗{H0(t)}d[�

∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}] − d{c1(t)}(β̂ − β0)

−
∫ τ

0
c2(t, s) d[�∗{Ĥ(s;β0, α̂0)} − �∗{H0(s)}] dH0(t)

= 1
n

n∑
i=1

dMi(t)

− 1
n

n∑
i=1

Yi(t)
V21{f0, ḟ0,H0,β0}(Wi)

e31(Wi)
dλε(H0(t) + Z�

i β0 + f0(Wi)) + op(n−1/2). (A15)

Multiplying mZ(t) on the both sides of Equation (A15) and integrating both sides of the resultant
equation with respect to t from 0 to τ , we obtain

∫ τ

0

[
q(t) −

∫ τ

0
mZ(s)c2(s, t) dH0(s)

]
d[�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}]

= 1
n

n∑
i=1

∫ τ

0
mZ(t) dMi(t) + A21(β̂ − β0)

− 1
n

n∑
i=1

∫ τ

0
mZ(t)Yi(t)

V21{f0, ḟ0,H0,β0}(Wi)

e31(Wi)
dλε(H0(t) + Z�

i β0 + f0(Wi))

+ op(n−1/2), (A16)

where

A21 =
∫ τ

0
mZ(t) d{c1(t)}.
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Similarly, substituting Equation (A10) into Equation (A14), we obtain

1
n

n∑
i=1

∫ τ

0
Zi dMi(t)

= 1
n

n∑
i=1

∫ τ

0
ZiYi(t)

V21{f0, ḟ0,H0,β0}(Wi)

e31(Wi)
dλε(H0(t) + Z�

i β0 + f0(Wi))

− 1
n

n∑
i=1

∫ τ

0
ZiYi(t)

e�1 (Wi)

e31(Wi)
dλε(H0(t) + Z�

i β0 + f0(Wi))(β̂ − β0)

− 1
n

n∑
i=1

∫ τ

0
ZiYi(t)

∫ τ

0

e2(Wi, s)
e31(Wi)

d[�∗{Ĥ(s;β0, α̂0)} − �∗{H0(s)}] dλε(H0(t)

+ Z�
i β0 + f0(Wi))

+ A1(β̂ − β0) +
∫ τ

0

BZ2 (t)
λ∗{H0(t)}d[�

∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}]

+
∫ τ

0

∫ τ

t

BZ1 (s) − BZ2 (s)B1(s)B2(s)

λ∗{H0(s)} dH0(s)d[�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}] + op(n−1/2),

which is equivalent to

(A1 − A22)(β̂ − β0) − 1
n

n∑
i=1

∫ τ

0
Zi dMi(t)

+
∫ τ

0

[
B2(t)z(t)
λ∗{H0(t)} − c3(t)

]
d[�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}]

= − 1
n

n∑
i=1

∫ τ

0
ZiYi(t)

V21{f0, ḟ0,H0,β0}(Wi)

e31(Wi)
dλε(H0(t)

+ Z�
i β0 + f0(Wi)) + op(n−1/2), (A17)

where

A22 =
∫ τ

0
E

[
ZY(t)

e�1 (W)

e31(W)
λ̇ε(H0(t) + Z�β0 + f0(W))

]
dH0(t).

Note that A2 = A22 − A21 and q(t) is the solution to the following integral equation:

q(t) −
∫ τ

0
q(s)D1(s, t) dH0(s) = B2(t)z(t)

λ∗{H0(t)} − c3(t),

where

D1(s, t) = λ∗{H0(s)}
B2(s)

c2(s, t) and

c3(t) =
∫ τ

0
E
[
ZY(s)

e2(W, t)
e31(W)

λ̇ε(H0(s) + Z�β0 + f0(W))

]
dH0(s).
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Thus, by subtracting Equation (A16) from Equation (A17), we obtain

(A1 − A2)(β̂ − β0)

= 1
n

n∑
i=1

∫ τ

0
[Zi − mZ(t)] dMi(t)

− 1
n

n∑
i=1

∫ τ

0
ZiYi(t)

V21{f0, ḟ0,H0,β0}(Wi)

e31(Wi)
dλε(H0(t) + Z�

i β0 + f0(Wi))

+ 1
n

n∑
i=1

∫ τ

0
mZ(t)Yi(t)

V21{f0, ḟ0,H0,β0}(Wi)

e31(Wi)
dλε(H0(t) + Z�

i β0 + f0(Wi)) + op(n−1/2)

:= 1
n

n∑
i=1

∫ τ

0
[Zi − mZ(t)] dMi(t) − (G1 − G2) + op(n−1/2),

where

G1 = 1
n

n∑
i=1

∫ τ

0
ZiYi(t)

V21{f0, ḟ0,H0,β0}(Wi)

e31(Wi)
dλε(H0(t) + Z�

i β0 + f0(Wi)) and

G2 = 1
n

n∑
i=1

∫ τ

0
mZ(t)Yi(t)

V21{f0, ḟ0,H0,β0}(Wi)

e31(Wi)
dλε(H0(t) + Z�

i β0 + f0(Wi)).

Applying standard nonparametric techniques together with the Taylor series expansion, we have

G1 = 1
n

n∑
i=1

∫ τ

0

ZiYi(t)
e31(Wi)

1
n

n∑
j=1

∫ τ

0
Kh(Wj − Wi)[dNj(t) − Yj(t) d�ε{H0(t)

+ Z�
j β0 + f0(Wi) + ḟ0(Wi)(Wj − Wi)}] dλε(H0(t) + Z�

i β0 + f0(Wi))

= 1
n

n∑
i=1

∫ τ

0

∫ τ

0 E[ZY(t)λ̇ε{H0(t) + Z�β0 + f0(W)} |W = Wi] dH0(t)∫ τ

0 E[Y(t)λ̇ε{H0(t) + Z�β0 + f0(W)} |W = Wi] dH0(t)
dMi(t) + op(n−1/2)

= 1
n

n∑
i=1

∫ τ

0
Z∗
i dMi(t) + op(n−1/2)

and

G2 = 1
n

n∑
i=1

∫ τ

0
mZ(t)

Yi(t)
e31(Wi)

1
n

n∑
j=1

∫ τ

0
Kh(Wj − Wi)[dNj(t) − Yj(t) d�ε{H0(t)

+ Z�
j β0 + f0(Wi) + ḟ0(Wi)(Wj − Wi)}] dλε(H0(t) + Z�

i β0 + f0(Wi))

= 1
n

n∑
i=1

∫ τ

0

∫ τ
0 mZ(t)E[Y(t)λ̇ε{H0(t) + Z�β0 + f0(W)} |W = Wi] dH0(t)∫ τ

0 E[Y(t)λ̇ε{H0(t) + Z�β0 + f0(W)} |W = Wi] dH0(t)
dMi(t) + op(n−1/2)

= 1
n

n∑
i=1

∫ τ

0
mZ∗

i
dMi(t) + op(n−1/2).
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Combining the above results, we obtain
√
n(β̂ − β0)

= (A1 − A2)
−1

{
1√
n

n∑
i=1

∫ τ

0
[Zi − mZ(t)] dMi(t) − 1√

n

n∑
i=1

∫ τ

0
[Z∗

i − mZ∗
i
] dMi(t)

}
+ op(1)

= (A1 − A2)
−1

{
1√
n

n∑
i=1

∫ τ

0
{[Zi − mZ(t)] − [Z∗

i − mZ∗
i
]} dMi(t)

}
+ op(1). (A18)

The asymptotic normality of
√
n(β̂ − β0) follows immediately and the proof is completed. �

We next establish the asymptotic representation of
√
n(Ĥ(t; β̂ , α̂0) − H0(t)). We first give the

following Lemma A.2 that is useful for proving Theorem 4.2.

Lemma A.2: Under the regularity conditions (C1)–(C7), if nh2/{log(1/h)} → ∞ and nh4 → 0 as
n → ∞, then Ŝn(t) = √

n{�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}} satisfies the following integral equation
asymptotically:

Ŝn(t) −
∫ τ

0
p(t, s) dŜn(s) = Wn(t), t ∈ [0, τ ], (A19)

where p(t, s) is a deterministic function (to be defined ahead in the proof that follows), and Wn(t) is
a summation of independent mean zero functions, i.e. Wn(t) = n−1/2∑n

i=1 wi(t), which converges
weakly to a mean zero Gaussian process as n → ∞.

Proof: By Equation (A15) from the proof of Theorem 4.1, we have
B2(t)

λ∗{H0(t)}dŜn(t) −
∫ τ

0
c2(t, s) dŜn(s) dH0(t)

= d{c1(t)}
√
n(β̂ − β0) + 1√

n

n∑
i=1

dMi(t)

− 1√
n

n∑
i=1

Yi(t)
V21{f0, ḟ0,H0,β0}(Wi)

e31(Wi)
dλε(H0(t) + Z�

i β0 + f0(Wi)) + op(1).

Multiplying λ∗{H0(t)}/B2(t) on both sides of the above equation and integrating the equation with
respect to t from 0 to t, we have

Ŝn(t) −
∫ τ

0

∫ t

0

λ∗{H0(u)}
B2(u)

c2(u, s) dH0(u) dŜn(s)

=
∫ t

0

λ∗{H0(u)}
B2(u)

d{c1(u)}
√
n(β̂ − β0) + 1√

n

n∑
i=1

∫ t

0

λ∗{H0(u)}
B2(u)

dMi(u)

− 1√
n

n∑
i=1

∫ t

0
Yi(u)

λ∗{H0(u)}
B2(u)

V21{f0, ḟ0,H0,β0}(Wi)

e31(Wi)
dλε(H0(u) + Z�

i β0 + f0(Wi)) + op(1).

It follows from Equation (A18) that∫ t

0

λ∗{H0(u)}
B2(u)

d{c1(u)}
√
n(β̂ − β0)

=
∫ t

0

λ∗{H0(u)}
B2(u)

d{c1(u)}(A1 − A2)
−1

{
1√
n

n∑
i=1

∫ τ

0
{[Zi − mZ(t)] − [Z∗

i − mZ∗
i
]} dMi(t)

}

+ op(1).
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Using standard nonparametric techniques, we obtain

1√
n

n∑
i=1

∫ t

0
Yi(u)

λ∗{H0(u)}
B2(u)

V21{f0, ḟ0,H0,β0}(Wi)

e31(Wi)
dλε(H0(u) + Z�

i β0 + f0(Wi))

= 1√
n

n∑
i=1

∫ t

0

λ∗{H0(u)}
B2(u)

Yi(u)
e31(Wi)

1
n

n∑
j=1

∫ τ

0
Kh(Wj − Wi)[dNj(s) − Yj(s) d�ε{H0(s)

+ Z�
j β0 + f0(Wi) + ḟ0(Wi)(Wj − Wi)}] dλε(H0(u) + Z�

i β0 + f0(Wi))

= 1√
n

n∑
i=1

∫ τ

0

∫ t
0

λ∗{H0(u)}
B2(u) E[Y(u)λ̇ε{H0(u) + Z�β0 + f0(W)} |W = Wi]dH0(u)∫ τ
0 E[Y(u)λ̇ε{H0(u) + Z�β0 + f0(W)} |W = Wi] dH0(u)

dMi(s) + op(1)

:= 1√
n

n∑
i=1

∫ τ

0
m̃Z∗

i
(t) dMi(s) + op(1),

where m̃Z∗
i
(t) = ∫ t

0 (λ∗{H0(u)} /B2(u))E[Y(u)λ̇ε{H0(u) + Z�β0 + f0(W)} |W = Wi] dH0(u) /
∫ τ

0
E[Y(u)λ̇ε{H0(u) + Z�β0 + f0(W)} |W = Wi] dH0(u). Combining these results, we can show the
following result is true asymptotically:

Ŝn(t) −
∫ τ

0
p(t, s) dŜn(s) = Wn(t) = n−1/2

n∑
i=1

wi(t),

where p(t, s) = ∫ t
0 (λ

∗{H0(u)}/B2(u))c2(u, s) dH0(u), and

wi(t) =
∫ t

0

λ∗{H0(u)}
B2(u)

d{c1(u)}(A1 − A2)
−1
{∫ τ

0
{[Zi − mZ(t)] − [Z∗

i − mZ∗
i
]} dMi(t)

}

+
∫ t

0

λ∗{H0(u)}
B2(u)

dMi(u) −
∫ τ

0
m̃Z∗

i
(t) dMi(s), i = 1, . . . , n,

which are independent mean zero functions. Thus, by the functional central limit theorem, Wn(t)
converges weakly to a mean zero Gaussian process as n → ∞. This completes the proof. �

Proof of Theorem 4.2: We will now establish the asymptotic representation of
√
n{Ĥ(t; β̂ , α̂0) −

H0(t)}, where (α̂0, α̂1) are the solutions of Equation (7) at convergence. First, by using the Taylor
series expansion, for any t ∈ [0, τ ], we have

�∗{Ĥ(t; β̂ , α̂0)}

= �∗{Ĥ(t;β0, α̂0)} + λ∗{Ĥ(t;β0, α̂0)}
⎛
⎝ ∂Ĥ(t;β , α̂0)

∂β

∣∣∣∣∣
β=β0

⎞
⎠

�

(β̂ − β0) + op(n−1/2)

= �∗{Ĥ(t;β0, α̂0)} −
∫ t

0

BZ1 (s)
B2(s)

d�∗{H0(s)}(β̂ − β0) + op(n−1/2),

where the last equality follows from Part 3 of Theorem 4.1.
By Lemma A.2, we proved that Ŝn(t) = √

n[�∗{Ĥ(t;β0, α̂0)} − �∗{H0(t)}] satisfies the integral
equation (A19) for any t ∈ [0, τ ]. Using integration by part, we can rewrite Equation (A19) as a
Fredholm integral equation of the second kind with the kernel ∂p(t, s)/∂s, i.e.

Ŝn(t) +
∫ τ

0
Ŝn(s)

∂p(t, s)
∂s

ds = Wn(t) + p(t, s)Ŝn(s)
∣∣∣τ
s=0

.
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The uniqueness of the solution to the integral equation (A19) can be guaranteed by the condition

sup
t∈[0,τ ]

∫ τ

0

∣∣∣∣∂p(t, s)∂s

∣∣∣∣ ds < ∞. (A20)

Moreover, we can construct a solution to Equation (A19) as follows:

Ŝn(t) = Wn(t) +
∫ τ

0
r(t, s) dWn(s). (A21)

By substituting Equation (A21) into Equation (A19), we can obtain that r(t, s) is the solution to the
following equation:

r(t, s) = p(t, s) +
∫ τ

0
p(t, u)

∂r(u, s)
∂u

du, t, s ∈ [0, τ ], (A22)

which can be written as a Fredholm integral equation of the second kind with the kernel ∂p(t, s)/∂s.
Thus, given Equation (A20), Equation (A22) also has a unique solution, and Ŝn(t) defined in
Equation (A21) is thus a solution to the integral equation (A19).

Based on the above derivations and Equation (A18), the asymptotic representation of
√
n(β̂ −

β0) established in the proof of Theorem 4.1, we can obtain

√
n[�∗{Ĥ(t; β̂ , α̂0)} − �∗{H0(t)}] = 1√

n

n∑
i=1

κi(t) + op(1),

where

κi(t) = wi(t) +
∫ τ

0
r(t, s) dwi(s) −

∫ t

0

BZ1 (s)
B2(s)

d�∗{H0(s)}

× (A1 − A2)
−1
{∫ τ

0
{[Zi − mZ(t)] − [Z∗

i − mZ∗
i
]} dMi(t)

}
+ op(1) (A23)

are independent mean zero functions for i = 1, . . . , n. Thus we have

√
n[Ĥ(t; β̂ , α̂0) − H0(t)] = 1√

n

n∑
i=1

κi(t)
λ∗{H0(t)} + op(1),

which can be shown to converge weakly to a mean zero Gaussian process by the functional central
limit theorem (see Theorem 10.6 in Pollard 1990). Thus, the proof is complete. �

Proof of Theorem 4.3: Our goal is to establish the asymptotic representations of
√
nh(α̂0(w) −

f0(w)) and
√
nh(hα̂1(w) − hḟ0(w)). Note that V2(α̂0, α̂1, Ĥ(·; β̂ , α̂0), β̂)(w) = 0,

√
n(β̂ − β0) =

Op(1) and
√
n|Ĥ(t; β̂ , α̂0) − H0(t)| = Op(1) for any t ∈ [0, τ ]. Thus, we can readily obtain

V2(α̂0, α̂1,H0,β0)(w) = Op(n−1/2) = op(1/
√
nh).

Denote α(w) = (α0(w), hα1(w))�, α̂(w) = (α̂0(w), hα̂1(w))� and f̃ (w) = (f0(w), hḟ0(w))�. By
the Taylor series expansion, we have

V2(α̂0, α̂1,H0,β0)(w) = V2(f0, ḟ0,H0,β0)(w) + ∂V2(α
∗
0 ,α

∗
1 ,H0,β0)(w)

∂α(w)
{α̂(w) − f̃ (w)}

= op
(

1√
nh

)
, (A24)
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where α∗(w) = (α∗
0 (w), hα∗

1 (w)) lies between α̂(w) and f̃ (w). Thus, we have α∗(w) → f̃ (w) in
probability. Moreover, consider

∂V2(α0,α1, Ĥ(·; β̂ , α̂0), β̂)(w)

∂α(w)

= − 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)λ̇ε{Ĥ(·; β̂ , α̂0) + Z�

i β̂ + α0(w) + α1(w)(Wi − w)}

×
(

1
Wi − w

h

)(
1

Wi − w
h

)
dĤ(·; β̂ , α̂0),

which is negative definite. By the strong law of large numbers and standard nonparametric tech-
niques, we can show that ∂V2(α0,α1, Ĥ(·; β̂ , α̂0), β̂)(w)/∂α(w) converges to −v̇α(α0,H0,β0), a
deterministic negative definite matrix, where

v̇α(α0,H0,β0) = g(w)

∫ τ

0
E[Y(t)λ̇ε{H0(t) + Z�β0 + α0(w)} | W = w]dH0(t)

(
1 0
0 k2

)
.

Let


1(w) = − lim
n→∞

∂V2(f0, ḟ0,H0,β0)(w)

∂α(w)
= v̇α(f0,H0,β0).

By the definition ofMi(t), we have

V2(f0, ḟ0,H0,β0)(w)

= 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)

(
1

Wi − w
h

)
dNi(t)

− 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
d�ε{H0(t) + Z�

i β0 + f0(w) + ḟ0(w)(Wi − w)}

= 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)

(
1

Wi − w
h

)
dMi(t)

+ 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
d[�ε{H0(t) + Z�

i β0 + f0(Wi)}

− �ε{H0(t) + Z�
i β0 + f0(w) + ḟ0(w)(Wi − w)}]

:= C1 + C2, (A25)

where

C1 = 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)

(
1

Wi − w
h

)
dMi(t)

and

C2 = 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
d[�ε{H0(t) + Z�

i β0 + f0(Wi)}

− �ε{H0(t) + Z�
i β0 + f0(w) + ḟ0(w)(Wi − w)}].

Similar to the proof of Theorem 4 of Cai et al. (2007), using the central limit theorem, we obtain

(nh)1/2C1
D→ N{0,
2(w)} as n → ∞,
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where


2(w) = h
(
1 0
0 k2

)
g(w)E

{∫ τ

0
dM(t) | W = w

}2
.

C2 = 1
n

n∑
i=1

∫ τ

0
Kh(Wi − w)Yi(t)

(
1

Wi − w
h

)
λ̇ε{H0(t) + Z�

i β0 + f0(w)}

×
[
f̈0(w)

(Wi − w)2

2

]
dH0(t) + op(h2)

= h2

2
f̈0(w)g(w)

(
k2
0

)∫ τ

0
E[Y(t)λ̇ε{H0(t) + Z�β0 + f0(w)} |W = w] dH0(t) + op(h2)

:= 
1(w)bn(w) + op(h2),

where

bn(w) = h2

2
f̈0(w)g(w)
−1

1 (w)

(
k2
0

)∫ τ

0
E[Y(t)λ̇ε{H0(t) + Z�β0 + f0(w)} |W = w] dH0(t).

Combining the above derivations and Equations (A24) and (A25), we have


1(w)(nh)1/2{[α̂(w) − f̃ (w)] − bn(w) + op(h2)} = (nh)1/2C1.

Hence (nh)1/2{[α̂(w) − f̃ (w)] − bn(w)} weakly converges to a mean zero Gaussian Process with
covariance matrix 
−1

1 (w)
2(w)
−1
1 (w). This completes the proof. �


	1. Introduction
	2. Data and model specification
	3. Estimation methodology and computational algorithm
	3.1. Estimating methodology
	3.2. Computational algorithm

	4. Asymptotic properties and estimation of asymptotic variance
	4.1. Asymptotic properties of the proposed estimator
	4.2. Estimation for the asymptotic variance of 

	5. Simulation results
	6. A real data example
	7. Concluding remarks
	Acknowledgments
	Disclosure statement
	Funding
	References

