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Abstract
Model uncertainty is a prominent feature in many applied settings. This is certainty true in the efficiency analysis realm
where concerns over the proper distributional specification of the error components of a stochastic frontier model is,
generally, still open along with which variables influence inefficiency. Given the concern over the impact that model
uncertainty is likely to have on the stochastic frontier model in practice, the present research proposes two distinct model
averaging estimators, one which averages over nested classes of inefficiency distributions and another that has the ability to
average over distinct distributions of inefficiency. Both of these estimators are shown to produce optimal weights when the
aim is to uncover conditional inefficiency at the firm level. We study the finite-sample performance of the model average
estimator via Monte Carlo experiments and compare with traditional model averaging estimators based on weights
constructed from model selection criteria and present a short empirical application.

Keywords Optimality ● J-fold cross-validation ● Efficiency ● Model selection

1 Introduction

The stochastic frontier model (Aigner et al. 1977, Meeusen
and van den Broeck 1977) has enjoyed widespread applica-
tion across a diverse range of scientific milieus. Efficiency
studies are useful for investigating the impact of the intro-
duction or removal of firm regulations, constructing bench-
marks by which firms are compared and in assessing
improvements over time of the firm holding technology fixed.
However, one of the major impediments to agreement over
the results of efficiency studies is its strict adherence to dis-
tributional assumptions on the nature of efficiency. Indeed,
Stone (2002) notes that any researcher who estimates the
stochastic frontier model must make an arbitrary choice for
the distribution of inefficiency. To combat the need for
parametric assumptions authors have commonly used an array
of techniques to reduce exposure to the impact that invalid

assumptions can have on the analysis (for a recent example
see Tsionas 2017). However, most of this analysis has
focused on relaxing functional form assumptions on the shape
of the frontier itself, with far less work focusing on lessening
distributional assumptions pertaining to inefficiency. As
Kneip et al. (2015, p. 380) note “While some central limit
arguments can be advocated for the Gaussian noise, there
does usually not exist any information justifying particular
distributional assumptions on [inefficiency].”

Setting aside the choice of distribution for firm level
inefficiency, another cause for concern for the practitioner is
the exogenous factors that influence inefficiency, “deter-
minants of inefficient”. There exists considerable debate as
to which variables may influence inefficiency. The recent
work of Alvarez et al. (2006) and Lai and Huang (2010),
develops in-depth frameworks for model selection amongst
a variety of popular specifications arising from the normal-
truncated normal distributional pair when determinants of
inefficiency are present. However, when model uncertainty
presents itself, an alternative to model selection is model
averaging. Rather than selecting a single “winning” model,
a model average estimator compromises across a set of
competing models. Another important motivation behind
model averaging is that accomplished practitioners know
full well that different selection criteria favor more parsi-
monious models (BIC for example) while others favor
models which are more heavily parameterized (the AIC
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being the most prominent). Model averaging can represent
an alternative between these two states of the world.

Traditional model averaging exercises have centered on
two key features: first, prediction of an observable outcome,
and second, averaging over a set of candidate models which
are nested. When either of these two features do not hold
then standard averaging estimators cannot be applied and
alternative strategies are required. This is exactly the fra-
mework that one encounters in the efficiency arena; the main
object of focus is on the construction of firm level predic-
tions of conditional inefficiency (Jondrow et al. 1982, when
no determinants are present). These measures are unob-
served and commonly require distributional assumptions to
recover them, many of which are non-nested (gamma versus
half-normal, say). This makes direct application of standard
model averaging approaches unappealing if the focus is on
conditional inefficiency (as in Huang and Lai 2012).

We propose two different model averaging estimators for
the stochastic frontier model where the focus is on conditional
inefficiency. Both of these estimators are envisioned to be
applied when researchers have access to the so-called
‘determinants of inefficiency’ or contextual variables of pro-
duction. Little to no theoretical guidance exists on how these
determinants/contextual variables enter the production process
or influence inefficiency.1 Rather, a common tactic is brute
force, including all available determinants in a model of
inefficiency and including the contextual variables in a linear
fashion in the production technology and then engaging in
inference and interpretation ex post. Given these forms of
model uncertainty, it would seem prudent to engage in some
type of model averaging exercise to combat the uncertainty
with how exactly these variables enter the model.

Our first approach is to estimate firm level conditional
inefficiency using as large a model as possible, and including
all variables that the researcher has access to which we term
inefficiency focused model averaging. This produces obser-
vable estimates of firm inefficiency which can then be used in
the averaging procedure. From here submodels are penalized
based on the number of parameters that they contain relative
to the the largest possible model. We develop the necessary
theory to show that in the setting where the focus of interest is
unobserved, model averaging can still deliver optimal
weights, albeit still requiring a nested distributional frame-
work. We also demonstrate consistency of our inefficiency
focused weight selection procedure.

The second model averaging estimator that we study can
be thought of as the nonlinear least squares equivalent to

Hansen and Racine’s (2012) jackknife model averaging
estimator.2 Their estimator uses results on the form of the
leave-one-observation-out hat matrix to construct a model
averaging estimator. In the nonlinear regression/maximum
likelihood context similar leave-one-out results do not exist
and to maintain implementation ease, we introduce the J-
fold cross-validation model averaging estimator (JCVMA),
which omits J observations simultaneously, rather than a
single observation.3 We provide optimality of our JCVMA
weights for the proposed estimator, demonstrating that our
weight selection mechanism delivers weights that are as
good as if we used the infeasible set of weights.

While our first model averaging estimator is potentially
useful in settings where no determinants of inefficiency are
present, it is limited by the scope of a nesting structure placed
on the distribution of inefficiency, i.e., truncated-normal nests
half-normal and gamma nests exponential, but a larger dis-
tribution which nests both truncated-normal and gamma is
difficult to conceive. While this is a limitation, we provide the
first attempt (to our knowledge) at developing a model
averaging estimator for an unobserved criterion. Our JCVMA
estimator, does not required a nesting structure, but can only
be applied in settings where determinants of inefficiency are
present and does not explicitly require distributional
assumptions. The JCVMA estimator for the stochastic frontier
model stems from the following observation: Once determi-
nants of inefficiency are present, regardless of the distribution
assumed for inefficiency, the conditional mean of output
depends on these determinants and so we can once again
focus on prediction of output. However, given the one-sided
nature of inefficiency, the component of the conditional mean
of output which depends on the determinants must be non-
linear, and hence the existing jackknife model averaging
estimator will not suffice. Thus, these two estimators each
offer a way around the current limitations of model averaging
estimators in the context of the stochastic frontier model: the
inefficiency focused model averaging estimator allows for an
unobserved criterion while the JCVMA estimator allows one
to potentially dispense with distributional assumptions but
requires determinants of inefficiency.

While the present work can be viewed as the first serious
attempt to formally construct frequentist based model

1 For example, Lai and Huang (2010) include years of education of
the primary decision maker in the household in their study of Indian
farming. It is not theoretically clear if, and how, this variable should
enter the production structure.

2 Note that the model averaging estimator of Hansen and Racine’s
(2012) can accommodate nonlinearity of the unknown conditional
mean through a sequence of bases such as orthogonal polynomials of
varying order, splines of varying order and so forth, but their con-
struction of weights is designed around a quadratic objective function
with parameters which enter the model linearly. Here our focus is on
the construction of weights when we have parameters which enter the
model in a nonlinear fashion and/or the objective function is not
quadratic.
3 The use of J≫ 1 is to reduce the number of leave-one-out samples
that need to be constructed to average over making the estimation
more streamlined.
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averaging methods specifically designed for the cross-
sectional stochastic frontier model, earlier attempts have
appeared providing model averaged estimates for some
features of productivity or inefficiency. Specifically, Sickles
(2005) takes simple averages of technical efficiency esti-
mates for U.S. banks across a range of alternative stochastic
frontier panel data models. While Sickles (2005 pg. 330)
notes that this simple weighting is “clearly naïve, it does
characterize the efficiency findings from the various esti-
mators in a clear and informative summary”. Huang and Lai
(2012) use more formal frequentist model averaging
approaches based on Buckland et al. (1997) approach, but
when the object of interest is inefficiency, the weights can
be viewed as ex post rather then the preferable ex ante
(which is what we propose here).4 A more comprehensive
averaging analysis is performed in Sickles et al. (2014) who
use a variety of weighting schemes beyond the simple
averaging deployed in Sickles (2005) to forecast Asian
countries’ productivity growth.5 Lastly, Olesen and Rug-
giero (2018) use existing model averaging estimators to
construct nonparametric production frontier estimators,
ignoring the error structure completely.

The remainder of the article is setup as follows. Section 2
presents an overview of the canonical stochastic production
frontier model and discusses estimation. Section 3 develops
the necessary steps for constructing our alternative SFMA
estimators and establishes their theoretical properties while
Section 4 discusses selection of the averaging weights.
Section 5 provides a Monte Carlo study illustrating the
advantages of the different SFMA estimators while Section
6 applies these estimators to a commonly investigated
dataset on Philippine rice farmers. Section 7 contains con-
cluding remarks and avenues for future research. All proofs
are contained in an appendix.

2 The basic stochastic frontier framework

Consider the stochastic frontier model6

yi ¼ xi′β� ui þ vi; vi � D 0; σ2vðz1i; γ1Þ
� �

;

ui � Dþ μðz2i; γ2Þ; σ2uðz3i; γ3Þ
� � ; ð1Þ

where xi= (1, xi2, xi3, …, xip)′ is a p × 1 vector of observed
traditional inputs, β is a p × 1 vector of parameters,
z1i ¼ ð1; z1i;2; z1i;3; ¼; z1i;q1Þ′, z2i ¼ ð1; z2i;2; z2i;3; ¼; z2i;q2Þ′
and z3i ¼ ð1; z3i;2; z3i;3; ¼ ; z3i;q3Þ′ are vectors of observed
variables, which may or may not contain elements from xi,

and γ1, γ2, and γ3 are vectors of parameters. Here ui captures
inefficiency and vi captures outside influences beyond the
control of the producer as well as measurement error. We
follow convention and assume that inputs are exogenously
given. Given that ui leads directly to a shortfall in output, it
reduces output and as such it stems from a one-sided
distribution. We allow overlap between xi, z1i, z2i and z3i.

To recover insight about the magnitude of average ineffi-
ciency, more structure is required on the problem. The
benchmark parametric stochastic production frontier was
proposed independently by Aigner et al. (1977) and Meeusen
and van den Broeck (1977). The standard solution is to impose
distributional assumptions on both ui and vi (which induces a
distribution for εi= vi− ui) and estimate all of the parameters
of the model via maximum likelihood. In this framework vi is
normally distributed with z1i= 1, and ui is half normally or
exponentially distributed with z2= 0 and z3= 1, respectively.
Unequivocally, in applied SFA research vi is assumed to be
normally distributed with mean 0 and variance σ2v . The choice
of distribution of ui is less decisive, but the most common
distributions to appear in practice are the half normal dis-
tribution, Nþð0; σ2uÞ, the Exponential distribution, Exp(σu) and
the truncated normal distribution, Nþðμ; σ2uÞ.

Once distributional assumptions are in place for vi and ui,
the density of the convoluted error term, εi≡ vi− ui is
determined, and the model is estimated via maximum like-
lihood. Alternatively, when either z2i or z3i are non-constant,
the model can also be estimated via nonlinear least squares.
Given the one-sided nature of Dþ μðz2i; γ2Þ; σ2uðz3i; γ3Þ

� �
, the

model can be rewritten as (Parmeter et al. 2017):

yi ¼ xi′β� g zi; γð Þ � ui þ g zi; γð Þ þ vi; ð2Þ
where g(zi; γ)= E[u|zi] and zi= (z2i, z3i) and γ ¼ ðγ2′; γ3′Þ′.
The exact form of g(zi; γ) will depend upon the distribu-
tional assumptions placed on u (assuming that the
distribution of v is symmetric). β and γ are both identified
in this setting given the distributional assumptions placed
on both the distribution of u, D+ (⋅,⋅) as well as the exact
functional forms for μ(z2i; γ2) and σ2uðz3i; γ3Þ. If x and z
share no elements in common then it is possible to
nonparametrically identify g(z) (see Parmeter et al. 2017)

The model in (2) can be estimated via (generalized)
nonlinear least squares (NLS) by noting that

yi ¼ xi′β� g zi; γð Þ � u�i þ vi ¼ xi′β� g zi; γð Þ þ ε�i ; ð3Þ
where E½ε�i jxi; zi� ¼ 0 and Var½ε�i jxi; zi� is non-constant;
here u�i ¼ ui � gðzi; γÞ.

Currently, we have only discussed estimation of β and γ,
which provides information regarding the production fron-
tier and the shape of the distribution of ui. This information
is all that is needed if interest hinges on the average level of
technical inefficiency in the sample. However, if interest lies
on the level of inefficiency for a given firm, knowledge of

4 A similar strategy, in the context of productivity measurement across
countries, appears in Sickles et al. (2015).
5 See also Shang (2015).
6 See Parmeter and Kumbhakar (2014) for a detailed account of this
model.
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μ(z2i; γ2) or σ2uðz3i; γ3Þ is not sufficient. Thus, one typically
seeks to recover an observation-specific measure of ineffi-
ciency. The primary solution when z2i and z3i are constant
across firms, is to predict ui with the expected value of ui
conditional on the composed error of the model, εi (Jondrow
et al. 1982). This conditional mean of ui given εi gives a
point estimate of ui. An alternative predictor of firm level
inefficiency is E½e�ui jεi� (Battese and Coelli 1988). Either of
these conditional on ε measures will produce firm specific
measures of inefficiency and can be used to rank firms.

2.1 The scaling case

The stochastic frontier model we have described currently
involves a full parameterization of the distributions of both
v and u. However, it is possible to completely avoid dis-
tributional assumptions by invoking the scaling property
(Simar et al. 1994, Wang and Schmidt 2002):

ui � gðzu;i; δuÞu�i ; ð4Þ
where g(⋅) ≥ 0 is a function of the exogenous variables,
zu;i ¼ ðz2i′; z3i′Þ′, while u�i � 0 is a random variable.
Distributional assumptions (such as half-normal or trun-
cated-normal) can be imposed on u�i ; but it is assumed that
u�i does not depend on zu,i. When ui follows the formulation
in Eq. (4) it is then said to exhibit the scaling property.

An attractive statistical feature of the model with the
scaling property imposed on the distribution of inefficiency
is that it captures the idea that the shape of the distribution
of ui is the same for all firms (Alvarez et al. 2006). The
scaling function g(⋅) essentially stretches or shrinks the
horizontal axis, so that the scale of the distribution of ui
changes but its underlying shape does not. Perhaps the most
important advantage of the scaling property specification is
that the production frontier can be estimated without
invoking distributional assumptions. Rather, nonlinear least
squares (NLS) can be deployed by noting that

yi ¼ xi′β� ezu;i′δ
u

μ� þ vi � ezu;i′δ
uðu�i � μ�Þ

¼ xi′β� ezu;i′δ
u

μ� þ ε�i ; ð5Þ

where μ* is the mean of u�i . This leads to the optimization
criteria7

bβ;bδu; μ̂�� �
¼ min

β;δu;μ�
n�1

Xn
i¼1

yi � xi′βþ μ�ezu;i′δ
u� �2

: ð6Þ

The parameterization ez
′
u;iδ

u

is to ensure that the part of the
conditional mean of y characterized by inefficiency is
negative, consistent with a shortfall in output; alternative
parameterizations for g(zu,i; δ

u) could also be used, provided
they were everywhere nonnegative. We note here that while
the scaling property is attractive, it remains an assumption
of the stochastic frontier model and if erroneous could lead
to interpretation issues of the estimator as well as any
inference conducted.

3 Stochastic frontier model averaging
estimators

We propose two model averaging methods. The first works
for nested model structures, such as averaging over the
truncated normal and half normal families or the gamma
and exponential families. The second allows averaging over
a range of potentially nonnested distributions. Both methods
have strengths and weaknesses. Averaging over nested
model structures is similar to the framework of Huang and
Lai (2012), except our proposal is to construct the model
weights based on conditional inefficiency (which is unob-
served), whereas their approach averages over AIC or BIC
scores from the competing models, which does not neces-
sarily provide the best estimate of inefficiency or the model
weights.

Following (1), let θ ¼ ðγ1′; γ2′; γ3′; β′Þ′. Assume there
are S candidate models containing different combinations of
xi, z1i, z2i and z3i. The s-th candidate model may be written
as

yi ¼ xs;i′βs � us;i þ vs;i; vs;i � D 0; σ2vðzs;1i; γs;1Þ
� �

;

us;i � Dþ μðzs;2i; γs;2Þ; σ2uðzs;3i; γs;3Þ
� � ð7Þ

where xs,i, zs,1i, zs,2i and zs,3i are sub-vectors of xi, z1i, z2i and
z3i, respectively. Further, let �xs;i ¼ ðxs;i; zs;1i; zs;2i; zs;3iÞ′. We
note here that for our inefficiency focused model averaging
estimator the families of distributions that are considered
must be nested across the S different models, whereas for
our J-fold cross-validation model averaging estimator we do
not require the S different models to be nested. If
determinants of inefficiency are not present, zs,2i and zs,3i
are constant, then the JCVMA estimator is not operational
and the inefficiency focused model averaging estimator is
limited in scope given the nesting structure.

3.1 Inefficiency focused stochastic frontier model
average estimators

Let θs ¼ ðγs;1′; γs;2′; γs;3′; βs′Þ and bθs be the maximum
likelihood estimator of θs. Let ρi be the focus parameter of
interest, which can be E(ui|εi) or E e�ui jεi½ �. The

7 Given that the error term ε�i is heteroskedastic, Varðε�jxi; zu;iÞ ¼
σ2v þ σ2�u e2z

′
u;iδ

u

, where σ2v ¼ VarðviÞ and σ2�u ¼ Varðu�Þ, a generalized
nonlinear least squares algorithm (though this requires distributional
assumptions to disentangle σ2v and σ2�u ) or heteroscedasticity robust
standard errors would be required to conduct valid inference.
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corresponding estimator of ρi is

ρ̂s;i ¼ ρðyi; �xs;i; θ̂sÞ: ð8Þ

Let θ0 be the true value of θ. We can write

ρi ¼ ρðyi; �xi; θ0Þ: ð9Þ

The model average estimator of ρi may be written as

ρ̂iðwÞ ¼
XS
s¼1

wsρ̂s;i; ð10Þ

which is a weighted averages of ρ̂s;i across the S candidate
models, where w= (w1, …, wS)′ is the weight vector,
belonging to the set W ¼ fw 2 0; 1½ �S: PS

s¼1 ws ¼ 1g.
We mention here that this specific stochastic frontier

model averaging estimator is based on the focus of the
averaging being the conditional (on the composed error)
mean of inefficiency from the model. This is most pertinent
when no determinants of inefficiency are present. However,
when determinants of inefficiency are present, an alternative
approach linking to jackknife cross-validation is available.

3.2 J-fold cross-validation model averaging

The second method we propose is “J-fold Cross-Validation
model averaging (JCVMA), similar in spirit to Hansen and
Racine’s (2012) Jackknife model averaging (JMA).
Beginning with the general form defined in (1) define bi= E
(yi|xi, zi) and b= (b1, …, bn)′. JCVMA treats b as the target
parameter.

For the sth candidate model, let

bs;i ¼ Esðyij�xs;iÞ;
where Es is the expectation operator under the assumption
that the sth candidate is the correct model. We need an
explicit closed form expression for bs,i, which is readily
obtainable once distributional assumptions for vi and ui have
been made (or the scaling property is invoked). We first
estimate the parameters of the sth candidate model by MLE
or NLS, and then plug these estimates into b̂s;i to obtain b̂s;i.
Thus, we have the vector of estimators b̂s ¼ ðb̂s;1; ¼ ; b̂s;nÞ′.

Write w= (w1, …, wS)′ as the weight vector, belonging

in the set W ¼ fw 2 0; 1½ �S: PS
s¼1 ws ¼ 1g. The model

average estimator of b is

bbðwÞ ¼ XS
s¼1

ws
bbs: ð11Þ

To apply JCVMA to choose weights in Eq. (11), we divide
the data set into J groups such that for each group there

are M= n/J observations. Write ebð�jÞ
s as the estimator of

(bs,1+(j−1)M,…, bs,jM)′ with the jth group removed from the

sample. Let ebs ¼ stack ebð�1Þ
s ; ¼ ;ebð�JÞ

s

� �
where the func-

tion stack(·) stacks the vectors on top of one another. That
is, for each of the J groups, we hold out M observations,
estimate the sth candidate model by MLE or NLS, and then
use these estimates to predict the M observations which
were excluded. This exercise is repeated a total of J times
until each observation in the initial sample has been held out

once. The vector ebs is of the same order and length as y. The
JCVMA estimator of b is thus

ebðwÞ ¼ XS
s¼1

ws
ebs: ð12Þ

While there does not exist an optimal theory on the size of
J, we note that Hansen and Racine’s (2012) JMA exhibits a
simple formulation based on leaving a single observation
out due to the linear-in-parameters nature that they study. In
models that are nonlinear in parameters, such a simple
leave-one-observation-out solution may not exist. In these
settings, JCVMA may offer a more expedient approach. We
note here that the selection of J in model averaging
exercises is an intensely studied topic but no concrete
solutions exist at present. The appropriate selection of J is
left for future research.

4 Weight choice

4.1 Inefficiency focused weight selection

We use squared error loss defined as LðwÞ ¼ Pn
i¼1

ρ̂iðwÞ � ρif g2 as the basis for weight choice. Our aim is
to select w such that L(w) is minimized. Let bθfull be the
estimator of θ under the full model (1), ρ= (ρ1, …, ρn)′,bρfull ¼ ρ̂ðy1; x1;bθfullÞ; ¼ ; ρ̂ðyn; xn;bθfullÞn o

′, bρs ¼ ρ̂s;1; ¼;
�

ρ̂s;nÞ′, and bρðwÞ ¼ ρ̂1ðwÞ; ¼ ; ρ̂nðwÞf g′. We propose to
choose w by minimizing the following criterion:

CðwÞ ¼ bρðwÞ � bρfullk k2 þ n1=2 logðnÞk′w; ð13Þ

where k= (k1, …, kS)′, and ks is the dimension of θs. The
first term of C(w), bρðwÞ � bρfullk k2, can be thought of as an
estimator of the squared error loss L(w), whereas the second
term n1/2log(n)k′w gives rise to a penalty. Without the
penalty component, a weight of unity will always be given
to the largest model. The quantity n1/2log(n) in the penalty
term is a tuning parameter in order for the inefficiency
focused model averaging estimator to satisfy consistency as
stated in Theorem 1 below.
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The criterion in Eq. (13) results in the empirically opti-
mal weight vector

bw ¼ argmin
w2W

CðwÞ: ð14Þ

We denote the true model by t as one that contains
exclusively all the non-zero parameters. Any model that
nests the true model is an over-fitted model, contained by
the set O. Note that the set of all candidate models is {1, …,
S}. We assume that S is finite and the dimension of θs is
fixed. Let O1 ¼ fO∪ ftgg \ f1; ¼ ; Sg.
Assumption C.1. For any s 2 fO∪ ftgg, ∂ρ̂s;i=∂bθ′s jbθs¼eθs;i¼
Opð1Þ uniformly for i= 1, …, n, and for any eθs;i that lies
between bθs and its limit. Furthermore, for any s∈ {1, …,
S}, ρ̂s;i ¼ Opð1Þ and ρi=Op(1) uniformly for i= 1, …, n.

Theorem 1. Consistency If O1 is not an empty set and
Assumption C.1 holds, then

n�1 bρðbwÞ � ρk k2¼ Opðn�1=2 logðnÞÞ: ð15Þ

Let so and m* be two models in O1. If Assumption C.1
holds and model sois nested within m*, then

ŵm� ¼ Opðlog�1ðnÞÞ: ð16Þ

By Eq. (15), the average estimation loss associated withbρðbwÞ has a convergence rate of n−1/2log(n). A direct
implication of Eq. (16) is that if the true model is one of the
candidate models, then our weight choice criterion would
lead to weights assigned to the over-fitted models which
converge to zero asymptotically. While Eq. (16) is no
longer relevant when the true model is not nested within the
candidate set, the subsequent asymptotic optimality in
Theorem 2 is still valid. That is, the weight vector obtained
based on our proposed method is asymptotically equivalent
to that based on the infeasible optimal weight vector (even
if the true model is not among the candidate models). This
suggests that we can still construct asymptotically optimal
weights even when the true model is not a member of the
candidate set, which suggests a specific form of robustness
for our inefficiency focused stochastic frontier model
averaging estimator.

While the logarithmic rate of convergence for the
weights in Theorem 1 may seem slow and impractical for
applied work, this rate stems directly from the use of log(n)
in the criterion (Eq. 13). This log(n) impacts the con-
vergence rates of both bρðbwÞ and ŵm� . As is clear from the
proof of Theorem 1, the rate of ŵm� can be increased by
increasing log(n) in the criterion to a scalar increasing faster
than log(n), however, the convergence rate of the

inefficiency focused model averaging estimator, bρðbwÞ, will
be slower. Thus, the practitioner faces a trade off between
speed of convergence in the weights and speed of con-
vergence in the model averaging estimator. Since the main
aim is conceivably the construction of the inefficiency
focused model averaging estimator the rate of convergence
of the weights is not as important and hence, with slower
convergence for the weight vector, we obtain faster con-
vergence of the averaging estimator, hence the use log(n) in
Eq. (13). Lastly, the use of log(n) is similar to model
selection using BIC and the log(n) rate is the typical rate of
convergence for BIC model selection (as in Lai and Huang
2010, for example).

We now develop the asymptotic optimality of bρðbwÞ.
For any candidate model s, it can be seen from Assump-
tions A1–A3 of White (1982) that there exists a limit θ�s
such that

bθs � θ�s ¼ Opðn�1=2Þ: ð17Þ

Let

bρ�s ¼ ρ̂ðy1; x1; θ�s Þ; ¼ ; ρ̂ðyn; xn; θ�s Þ
� 	

′;

bρ�ðwÞ ¼ bρ�1ðwÞ; ¼ ;bρ�nðwÞ� 	
′ ¼ PS

s¼1
ws bρ�s ; ;

and ξn ¼ inf
w2W

bρ�ðwÞ � ρk k2.

Assumption C.2. ξ�1
n n1=2 logðnÞ ¼ opð1Þ.

Assumption C.2 implies all candidate models are mis-
specified. By this assumption, the full model cannot be one
of the candidate models.

Theorem 2 Asymptotic Optimality Suppose that Assump-
tion C.1 holds for any candidate model, Assumption C.2 is
satisfied, and Eq. (17) holds. Then

bρðbwÞ � ρk k2
inf w2W bρðwÞ � ρk k2 !

P
1: ð18Þ

By Theorem 2, the squared error due to using the esti-
mator bρðbwÞ is asymptotically equivalent to that of the esti-
mator based on the infeasible optimal weight vector. In
other words, the model average estimator bρðbwÞ is optimal in
the class where the weights are restricted to W. We label
our estimator as the OPT estimator hereafter.

It might not be readily apparent that we can construct
optimal weights from an object which we do not directly
observe. However, the criterion in Eq. (13) should make it
clear that the replacement of ρ with bρfull presents a path
forward in the construction of the weights. Moreover, both
Theorems 1 and 2 demonstrate that we can obtain optimal
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weights even without observing our target criterion,
ρ, which from the standpoint of the stochastic frontier
model is technical inefficiency; this suggests in some sense
robustness of our replacement of the unknown ρ with the
estimator from the full model. The idea of replacing an
unobservable object with an estimator is not new. For
example, Mallows’ Cp criterion (Mallows 1973) contains an
unknown σ2 which is routinely replaced by the estimator
from the full model (although ρ and σ2 are intrinsically
different).

Aside from the intuition that C(w) is a penalized esti-
mator of the loss, L(w), further intuition behind the criterion
C(w) exists. C(w) is analogous with the Mallows’ criterion
of Hansen (2007). For the linear regression, y=Xβ+ v,
assume that in the sth candidate model, the regressor matrix

is Xs, a sub-matrix of X. Let bβs ¼ ðXs′XsÞ�1Xs′y andbβfull ¼ ðX′XÞ�1X′y. Then, the Mallows’ criterion in Hansen

(2007) is equivalent to kPS
s¼1 wsXs

bβs � Xbβfullk2 þ 2k′w,
which uses the observable Xbβfull in place of unobservable
Xβ. In the criterion, in Eq. (13), we use bρfull in place of ρ.
Hence, the intuition behind the criterion in Eq. (13) and the
Mallows’ criterion are similar.

4.2 JCVMA weight selection

Given that the JCVMA estimator defined in Eq. (12) is non-
operational as it depends on the unknown weights w, we
propose an estimator of the weight vector. To begin, define
our criterion function for the selection of the weights as

CVJðwÞ ¼ ebðwÞ � y



 


2: ð19Þ

The weight vector bw is chosen such that

bw ¼ argmin
w2W

CVJðwÞ: ð20Þ

The JCVMA estimator of b is thus bbðbwÞ as defined in Eq.
(11).

Let b�s ¼ bbs jbθs¼θ�s
, b�ðwÞ ¼ PS

s¼1 wsb
�
s , σ

2 ¼ max1�i�n

Eððyi � biÞ2jxi; ziÞ, and ζn ¼ infw2W b�ðwÞ � bk k2.

Assumption C.3. inf ζ�1
n n1=2 ¼ opð1Þ and ζ�2

n σ2
PS

s¼1

b�s � b


 

2 is uniformly integrable and equals op(1).

Assumption C.4. ∂b̂s;i=∂bθ′s jbθs¼eθs;i¼ Opð1Þ uniformly for

any s, i= 1, …, n, and any eθs;i that lies between bθs and its
limit.

A direct implication of Assumption C.3 is that all can-
didate models are misspecified. We establish the asymptotic
optimality of JCVMA in the following theorem.

Theorem 3 Asymptotic Optimality Suppose Assumptions
C.3–C.4 are satisfied and Eq. (17) holds. Then

bbðbwÞ � b



 


2

inf
w2W

bbðwÞ � b



 


2 !

P 1: ð21Þ

The interpretation of Theorem 3 is analogous to that of
Theorem 2, namely, the squared error due to using bbðbwÞ is
asymptotically equivalent to the squared error resulting
from the infeasible optimal weight vector.

5 Finite sample results

5.1 Inefficiency focused stochastic frontier model
averaging results

This section reports results from a Monte Carlo study
undertaken to compare the performance of the inefficiency
focused model averaging estimator against AIC and BIC
model selection (wAIC and wBIC, respectively) estimators
as well as more traditional model averaging estimators
based on the smoothed-AIC (s-AIC) and smoothed-BIC (s-
BIC) weights, along with our inefficiency focused estimator
(OPT) and the maximum likelihood estimator of the full
model (FULL).

We generate the data from Eq. (1) with Dð�Þ ¼ Nð0; σ2vÞ,
σv= 2, D+ (μ, σu)= Exp(σu), σu= 1, μ= E(u)= 2, β= (2,
−0.01, 1)′, xi � Nð0;ΣÞ, Σ ¼ ðΣj1; j2Þ, Σj1; j2 ¼ 0:6j1�j2 and
n= 50, 100 and 200. Although the true error distributions
are normal-exponential, we treat them as normal-half nor-
mal or normal-truncated normal in the estimation process.
As xi is a 3-dimensional vector, there are S= (23− 1) × 2=
14 candidate models. Table 1 presents the mean and stan-
dard deviation of bρðbwÞ � ρk k2=n for varying values of κ ¼
σ2u=σ

2
v based on 100 replications.

The results show that when κ ≤ 0.5, in terms of both the
mean and standard deviation of the squared estimation
errors, model averaging by the proposed OPT weight
invariably results in the best estimates, while model selec-
tion by wBIC and wAIC always yield the worst and second
worst results respectively. As well, for these values of κ, the
sAIC and sBIC model average estimators generally result in
estimates that are inferior to OPT but superior to other
strategies; exceptions occur when κ= 0.3 and n= 100 and
200, for which the sBIC estimator delivers estimates with
larger mean squared errors than the full model estimator. An
increase in κ beyond 0.5 has the effect of worsening the
relative performance of the OPT estimator. These results
may be explained by noting that when κ is small, which
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implies a small σu relative to σv, it is difficult to identify a
single winning model, and accordingly model averaging
outperforms selection. However, As κ increases, the afore-
mentioned difficulty dissipates and model selection
becomes the preferred strategy.

5.2 JCVMA results

We generate the data from yi ¼ lnðxiÞ′βþ vi � ui with
vi � Nð0; σ2vÞ, σv= 1, ui � ez

′
uδ

u
Nþð0; π=2Þ, β= (0.62,

0.51)′, δu= (2, −0.2, 0.3)′, ðxi′; zi′Þ′ � Nðμ;ΣÞ, μ= (4, 8,
−1.0, −0.5, −0.5)′, Σ ¼ ðΣj1;j2Þ, Σj1;j2 ¼ 0:6j1�j2 and n=
200, 400, 800 and 1600. Lastly, we set the variance of z1=
0.5. We always include both ln x1 and ln x2 (i.e., we keep
the production technology fixed) and average over all
combinations of zi. As zi is a 3-dimensional vector, there are
S= 23− 1= 7 candidate models.

Table 2 presents the mean, median, and standard devia-
tion of bðbwÞ � bk k2=n, where b= E[y|x, z], based on AIC
and BIC model selection, as well as s-AIC and s-BIC model
averaging, the full (correctly specified model) and two
variants of JCVMA across 1000 replications. JCVMA1
uses bðbwÞ ¼ bbðbwÞ, as defined in Eq. (11), the fitted values
from S candidate models not using hold-out samples, while
JCVMA2 uses bðbwÞ ¼ ebðbwÞ, as defined in Eq. (12), the
leave-J-observations-out fitted values from the estimated
models. Note that both JCVMA1 and JCVMA2 use the
same weights, bw, obtained from Eq. (20), they just conduct
the averaging over different sets of fitted values. For all the
simulations we leave out 10% of the sample size for our
hold-out prediction (i.e., for n= 200, we hold out 20
observations at a time, for n= 400 we hold out 40 obser-
vations at a time, etc.).

Several insights are immediate from Table 2. First, as n
increases, all of the methods, both selection and averaging,
perform better. Second, JCVMA2 outperforms JCVMA1. It
appears from Table 2 that selection or averaging over AIC
or BIC offers no perceptible difference in performance.
Regarding mean risk, JCVMA2 always outperforms the
other methods, and also has equal standard deviation of risk.
The relative gains across the methods dissipate as n
increases, which is also to be expected. Overall, the results
here, while limited, suggest that JCVMA offers promise.

6 Application to Philippines rice farming

We apply our JCVMA estimator to rice farming data col-
lected in the Philippines. This data has become a benchmark
example in applied efficiency analysis, serving as the
dominant example in Coelli et al. (2005) and also appearing
recently in Rho and Schmidt (2015). The data are composed
of 43 farmers observed annually for eight years. Even
though the data constitutes a panel, we will ignore this for
our purposes. The output variable is tonnes of freshly
threshed rice with the main input variables being area of
planted rice (hectares), total labor used (man-days of family
and hired-labor) and fertilizer used (kilograms). There is
also a fourth input, other inputs, which is measured relative
to farm 17 in the data via the Laspeyres index for 1991.8

We model inefficiency as depending upon several firm
characteristics. For the current dataset this includes age of
household head, education of household head, household
size, number of adults in the household, and the percentage
of area classified as bantog (upland) fields. Ex ante it is not
clear which of these variables impacts expected ineffi-
ciency. For example, in a translog production framework,

Table 1 Simulation results for the inefficiency focused model
averaging estimator—100 simulations

wAIC wBIC sAIC sBIC OPT Full

κ= 0.1 n= 50 Mean 0.617 0.709 0.507 0.574 0.403 0.428

s.d. 0.049 0.041 0.046 0.043 0.033 0.052

n= 100 Mean 0.475 0.590 0.408 0.492 0.335 0.347

s.d. 0.041 0.035 0.038 0.036 0.029 0.040

n= 200 Mean 0.329 0.472 0.300 0.387 0.270 0.242

s.d. 0.034 0.033 0.032 0.031 0.023 0.030

κ= 0.3 n= 50 Mean 0.414 0.444 0.315 0.344 0.255 0.345

s.d. 0.032 0.030 0.032 0.031 0.024 0.035

n= 100 Mean 0.318 0.371 0.241 0.278 0.205 0.268

s.d. 0.023 0.024 0.024 0.024 0.019 0.024

n= 200 Mean 0.252 0.293 0.190 0.215 0.166 0.194

s.d. 0.018 0.018 0.019 0.020 0.015 0.018

κ= 0.5 n= 50 Mean 0.365 0.380 0.277 0.285 0.244 0.382

s.d. 0.028 0.026 0.028 0.027 0.021 0.030

n= 100 Mean 0.288 0.304 0.216 0.228 0.202 0.289

s.d. 0.020 0.022 0.019 0.020 0.015 0.021

n= 200 Mean 0.247 0.246 0.177 0.171 0.166 0.204

s.d. 0.016 0.015 0.015 0.016 0.012 0.017

κ= 1 n= 50 Mean 0.414 0.379 0.313 0.288 0.332 0.522

s.d. 0.031 0.029 0.026 0.025 0.022 0.035

n= 100 Mean 0.379 0.270 0.253 0.215 0.286 0.386

s.d. 0.030 0.023 0.020 0.017 0.017 0.032

n= 200 Mean 0.246 0.232 0.192 0.161 0.218 0.227

s.d. 0.025 0.023 0.021 0.015 0.016 0.027

κ= 2 n= 50 Mean 0.589 0.525 0.463 0.406 0.548 0.730

s.d. 0.055 0.049 0.036 0.032 0.045 0.063

n= 100 Mean 0.477 0.337 0.338 0.262 0.423 0.484

s.d. 0.057 0.042 0.038 0.025 0.039 0.057

n= 200 Mean 0.255 0.213 0.201 0.158 0.287 0.239

s.d. 0.041 0.033 0.030 0.018 0.030 0.040

wAIC and wBIC refer to model selection through AIC and BIC,
respectively, sAIC and sBIC refer to model averaging with weights
calculated through the AIC and BIC criterion while OPT refer to our
proposed model averaging approach. Full represents the model using
all variables

8 See Coelli et al. (2005, Appendix 2) for a more detailed description
of the data.
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assuming a normal-half normal setup, Rho and Schmidt
(2015, Table 11) find that household size and number of
adults do not impact inefficiency, on average. Further, when
they model the probability of being inefficient using the
zero inefficiency stochastic frontier model of Kumbhakar
et al. (2013), they find that none of the five variables
influence inefficiency directly.

Here we confine ourselves to the normal-half normal
distributional framework, but consider averaging over an
array of different specifications for the variance parameter
of the half normal distribution. Specifically, our distribu-
tional assumptions are vi � Nð0; σ2vÞ and ui �
Nþ 0; σ2uðzi; γÞ

� �
where σ2uðzi; γÞ ¼ ezi′γ. We average over

every combination possible for z. Including the setup where
no determinants (aside from the intercept) are included this
leads to 32 different models which we average over. We
divide the data into eight distinct groups which suggests
J= 43 for our hold out size. We also use five multi-starts
for the estimation of every model to ensure that we are not
stuck in a local optimum. Lastly, the data is shuffled prior to
removing the hold out samples to ensure that the observa-
tions which are removed at each stage are done so
randomly.

Table 3 lists the nine models that received non-zero
weight from our model average procedure as well as the
model weights. Age appears in eight of the nine models
(and the one model that it does not appear in has the second
smallest of the nine weights), while education only appears
in three models. Both the number of adults in the household
and Banrat appear four times. The model including all five
of the determinants received zero weight, while eight of the
nine models contained three or less of the five potential
determinants of inefficiency. While this application is
heuristic, given the general lack of theory on which

determinants of inefficiency actually matter, our results here
speak to the fact that model averaging may provide deeper
insights than a kitchen sink approach.

7 Concluding remarks

Within the productivity and efficiency literature, beyond
standard inputs, little in the way of theoretical guidance
exists for informing how environmental and contextual
variables influence the production structure. However,
applied research abounds that uses these contextual vari-
ables in a wide array of manners. A natural avenue to deal
with these issues of uncertainty is through model averaging.
We propose two stochastic frontier model averaging esti-
mators which can average over both environmental vari-
ables which influence the production structure directly, as
well as indirectly through the determinants of inefficiency.
Our selection of the weights across models is optimal pro-
vided that we do not include the full specified model
amongst our set of candidate, misspecified models.

The JCVMA estimator which we propose is especially
appealing as it does not necessarily require distributional
assumptions to implement, if the scaling property is
invoked. Further, by focusing on the conditional mean of
output, a wide array of distributions can be averaged over,
which our inefficiency-focused model averaging estimator
is not capable of. We anticipate the JCVMA stochastic
frontier estimator to have broad applicability.

Our simulations highlight that model averaging can
provided estimates with lower risk than using traditional
model selection procedures, which tend to favor larger
models at the expense of parsimony. Natural extensions of
this approach include construction of weights to average

Table 2 Simulation results for
the JCVMA estimator—
1000 simulations

wAIC wBIC sAIC sBIC JCVMA1 JCVMA2 Full

n= 200 Mean 0.328 0.325 0.332 0.330 0.339 0.283 0.332

Median 0.128 0.125 0.135 0.133 0.128 0.130 0.132

s.d. 0.569 0.569 0.569 0.569 0.686 0.534 0.569

n= 400 Mean 0.260 0.260 0.261 0.262 0.261 0.224 0.260

Median 0.101 0.103 0.104 0.106 0.103 0.107 0.103

s.d. 0.483 0.483 0.483 0.482 0.507 0.410 0.483

n= 800 Mean 0.215 0.216 0.215 0.217 0.224 0.182 0.214

Median 0.085 0.087 0.087 0.089 0.087 0.085 0.087

s.d. 0.399 0.399 0.399 0.399 0.424 0.361 0.399

n= 1600 Mean 0.200 0.201 0.200 0.201 0.209 0.166 0.200

Median 0.065 0.065 0.065 0.067 0.073 0.071 0.065

s.d. 0.269 0.269 0.269 0.269 0.362 0.247 0.269

wAIC and wBIC refer to model selection through AIC and BIC, respectively, sAIC and sBIC refer to model
averaging with weights calculated through AIC and BIC criterion while JCVMA1 and JCVMA2 refer to our
proposed model averaging approach. Full represents the model using all variables
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over uncertainty as it pertains to the distribution of ineffi-
ciency as well as alternative focus variables, for instance,
measuring returns to scale or elasticities of substitution.
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8 Appendices

A.1. Proof of Theorem 1. We first decompose C(w) as
follows:

CðwÞ ¼ bρðwÞ � bρfullk k2 þ n1=2 logðnÞk′w
¼ bρðwÞ � ρk k2 þ bρfull � ρk k2�2 bρðwÞ � ρf g′ bρfull � ρf g

þ n1=2 logðnÞk′w:
ðA:1Þ

From the
ffiffiffi
n

p
-consistency property of MLE and Assumption

C.1, we have, for any s� 2 fO∪ ftgg,

bρs� � ρk k2¼
Xn
i¼1

∂bρs�;i
∂bθ′s� jbθs�¼eθs� ;i ðbθs� � θs� Þ













2

¼ Opð1Þ; ðA:2Þ

where eθs�;i lies between bθs� and θs� . By the definition of bw in
Eq. (14), we have

CðbwÞ � bρs� � bρfullk k2 þ n1=2 logðnÞks�
� 2 bρs� � ρk k2 þ 2 bρfull � ρk k2 þ n1=2 logðnÞks� ;

ðA:3Þ

which, along with (A.1), implies that

bρðbwÞ � ρk k2�2 bρðbwÞ � ρf g′ bρfull � ρf g � 2 bρs� � ρk k2

þ bρfull � ρk k2 þOðn1=2 logðnÞÞ
;

and thus

bρðbwÞ � ρk k2 � 2 bρs� � ρk k2 þ bρfull � ρk k2
þOðn1=2 logðnÞÞ þ 2 bρðbwÞ � ρk k bρfull � ρk k:

Therefore,

bρðbwÞ � ρk k � bρfull � ρk kf g2 � 2 bρs� � ρk k2

þOðn1=2 logðnÞÞ þ 2 bρfull � ρk k2: ðA:4Þ

The full model belongs to O1 provided that any one
candidate model belongs to O1. Hence we can obtain Eq.
(15) from (A.2) and (A.4).

We next prove Eq. (16). Let

as;m ¼ bρs � bρfullð Þ′ bρm � bρfullð Þ ðA:5Þ

and Φ be an S × S matrix with its smth element given by

Φs;m ¼ as;m þ n1=2 logðnÞðks þ kmÞ=2: ðA:6Þ

It can be easily shown that for any w 2 W, C(w)=w′
Φw. Now, define

ew ¼ bw1; ¼ ; bwso�1; bwso þ bwm� ; bwsoþ1; ¼ ; bwm��1; 0; bwm�þ1; ¼ ; bwSð Þ′:

Table 3 Models with non-zero
weights selected by JCVMA for
the normal-half normal Cobb-
Douglas stochastic production
frontier with determinants of
inefficiency

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Age 1 1 1 1 1 1 1 – 1

Educ – – – 1 1 – – – 1

HH Size – 1 – 1 – 1 – 1 1

# Adults – – – – 1 1 1 1 –

Bantog – – 1 – – – 1 1 1

Model weights 0.0749 0.1726 0.0593 0.1080 0.2141 0.1917 0.0224 0.0500 0.1069

RTS 0.956 0.953 0.984 0.961 0.944 0.958 0.959 0.960 0.954

Median TE 1.000 0.999 1.000 1.000 1.000 1.000 0.782 0.999 0.921

All models contain an intercept. RTS refers to returns to scale while TE is the estimated level of technical
efficiency of the farm. Median TE is rounded up, hence the appearance of 1.000
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Then we have

0 � CðewÞ � CðbwÞ
¼ ew′Φew� bw′Φbw
¼ ewþ bwð Þ′Φðew� bwÞ
¼ f2bw′� ð0; ¼ ; 0; bwm� ; 0; ¼ ; 0;�bwm� ; 0; ¼ ; 0ÞgΦ 0; ¼ ; 0; bwm� ; 0; ¼ ; 0;�bwm� ; 0; ¼ ; 0ð Þ′
¼ bw2

m� ð2Φso;m� �Φso;so �Φm�;m� Þ þ 2bw′Φ 0; ¼ ; 0; bwm� ; 0; ¼ ; 0;�bwm� ; 0; ¼ ; 0ð Þ′
¼ bw2

m� ð2Φso;m� �Φso;so �Φm�;m� Þ þ 2bwm�bw′ Φ1;so �Φ1;m� ; ¼ ;ΦS;so � ΦS;m�
� �

′

¼ bw2
m� ð2Φso;m� �Φso;so �Φm�;m� Þ þ 2bwm�

Ps
s¼1

bwsðΦs;so �Φs;m� Þ

¼ bw2
m�Opð1Þ þ 2bwm�

PS
s¼1

bws Opðn1=2Þ þ n1=2 logðnÞðkso � km� Þ=2� 	
¼ bw2

m�Opð1Þ þ 2bwm�Opðn1=2Þ þ 2bwm�n1=2 logðnÞðkso � km� Þ=2;

where the seventh equality expression is obtained using
(A.2), (A.5) and (A.6). This yields

bwm�n1=2 logðnÞðkm� � ksoÞ=2 � bw2
m�Opð1Þ þ bwm�Opðn1=2Þ

and hence bwm� ¼ Opðlog�1ðnÞÞ, which is Eq. (16).
A.2. Proof of Theorem 2. Write

bρðwÞ � ρk k2 ¼ bρ�ðwÞ � ρk k2 þ bρðwÞ � bρ�ðwÞk k2
þ 2 bρ�ðwÞ � ρf g′ bρðwÞ � bρ�ðwÞf g: ðA:7Þ

From (A.1), (A.7), Assumption C.2, and the proof of
Theorem 1′ in Wan et al. (2010), Theorem 2 holds provided
that the following conditions hold:

sup
w2W

bρðwÞ � bρ�ðwÞk k2bρ�ðwÞ � ρk k2 ¼ opð1Þ; ðA:8Þ

sup
w2W

bρ�ðwÞ � ρf g′ bρðwÞ � bρ�ðwÞf g
��� ���

bρ�ðwÞ � ρk k2 ¼ opð1Þ; ðA:9Þ

and

sup
w2W

bρðwÞ � ρf g′ bρfull � ρf g
��� ���

bρ�ðwÞ � ρk k2 ¼ opð1Þ: ðA:10Þ

From Eq. (17) and Assumption C.1, we have

sup
w2W

bρðwÞ�bρ�ðwÞ

 

2

bρ�ðwÞ� ρ


 

2

�ξ�1
n

Pn
i¼1

sup
w2W

bρiðwÞ � bρ�i ðwÞ� 	2

¼ ξ�1
n

Pn
i¼1

sup
w2W

PS
s¼1

wsðbρs;i � bρ�s;iÞ
 �2

� ξ�1
n

Pn
i¼1

sup
1�s�S

ðbρs;i � bρ�s;iÞ2
¼ ξ�1

n

Pn
i¼1

sup
1�s�S

∂bρs;i
∂bθs′ jbθs¼eθs;iðbθs � θ�s Þ

 �2

¼ Opðξ�1
n Þ:

ðA:11Þ

It follows from (A.11) and Assumption C.2 that (A.8) holds.
In a similar way, we can prove that (A.9) and (A.10) hold.
This proves Theorem 2.

A.3. Proof of Theorem 3. It can be seen that

CVJðwÞ ¼ ebðwÞ � y



 


2

¼ bbðwÞ � bþ ebðwÞ � b�ðwÞ � ðbbðwÞ � b�ðwÞÞ þ b� y
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Hence to prove Theorem 3, it suffices to show that

sup
w2W

ΞnðwÞ
b�ðwÞ � bk k2 ¼ opð1Þ ðA:12Þ

and
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w2W

ΠnðwÞ
b�ðwÞ � bk k2 ¼ opð1Þ: ðA:13Þ

Similar to the proof of (A.2), by Eq. (17) and Assump-
tion C.4, we have
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It is readily seen that

b� yk k2¼ OpðnÞ ðA:15Þ
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For any δ > 0,
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n δ�2σ2 b�s � b



 

2h i
;

where x= (x1,…, xn)′ and z= (z1,…, zn)′, and σ2 is defined
in the line above Assumption C.3. Together with Assump-
tion C.3, this implies

sup
w2W

jðb�ðwÞ � bÞ′ðb� yÞj
b�ðwÞ � bk k2 ¼ opð1Þ: ðA:17Þ

By combining (A.14)–(A.17) and Assumption C.3, we can
obtain (A.12) and (A.13) and hence Eq. (21). This
completes the proof of Theorem 3.

A.4. Simulation Results with Smaller Hold Out
Sample. Similar to Tables 2 and 4 presents the mean,
median and standard deviation of bðbwÞ � bk k2=n, where b
= E[y|x, z], based on AIC and BIC model selection, as well
as s-AIC and s-BIC model averaging, the full (correctly
specified model) and two variants of JCVMA across 1000
replications. JCVMA1 uses bðbwÞ ¼ bbðbwÞ, as defined in Eq.
(11), the fitted values from S candidate models not using

hold-out samples, while JCVMA2 uses bðbwÞ ¼ ebðbwÞ, as
defined in Eq. (12), the leave-J-observations-out fitted
values from the estimated models. Note that both JCVMA1
and JCVMA2 use the same weights, bw, obtained from Eq.
(20), they just conduct the averaging over different sets of
fitted values. For all the simulations we leave out 2.5% of
the sample size for our hold out prediction (i.e., for n= 200,
we hold out 5 observations at a time, for n= 400 we hold
out 10 observations at a time, etc.).

Several insights are immediate from Table 4 relative to
the results from Table 2. JCVMA2 still outperforms
JCVMA1. JCVMA2 always outperforms the other methods
in terms of mean risk, and also has equal standard deviation
of risk. Comparing mean and median risk, it does not appear
that the size of the hold out sample has much effect on the
performance of either of the JCVMA estimators.
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