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Abstract
The generalized method of moments (GMM) and empir-
ical likelihood (EL) are popular methods for combining
sample and auxiliary information. These methods are used
in very diverse fields of research, where competing the-
ories often suggest variables satisfying different moment
conditions. Results in the literature have shown that the
efficient-GMM (GMME) and maximum empirical likeli-
hood (MEL) estimators have the same asymptotic distribu-
tion to order n−1/2 and that both estimators are asymptot-
ically semiparametric efficient. In this paper, we demon-
strate that when data are missing at random from the
sample, the utilization of some well-known missing-data
handling approaches proposed in the literature can yield
GMME and MEL estimators with nonidentical properties;
in particular, it is shown that the GMME estimator is semi-
parametric efficient under all the missing-data handling
approaches considered but that the MEL estimator is not
always efficient. A thorough examination of the reason for
the nonequivalence of the two estimators is presented. A
particularly strong feature of our analysis is that we do not
assume smoothness in the underlying moment conditions.
Our results are thus relevant to situations involving non-
smooth estimating functions, including quantile and rank
regressions, robust estimation, the estimation of receiver
operating characteristic (ROC) curves, and so on.
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1 INTRODUCTION

A general methodology that has found wide popularity recently, especially in econometrics
and biostatistics, is to estimate parameters via estimating equations (EEs). Consider a set of
l estimating functions (EFs) g(𝑦, z,𝜽) = (g1(𝑦, z,𝜽), g2(𝑦, z,𝜽), … , gl(𝑦, z,𝜽))T that satisfy the
unbiasedness condition

Eg(Y ,Z,𝜽0) = 0, (1)

where Y is an independent and identically distributed (i.i.d.) response variable with unknown
distribution, Z is a covariate vector, and 𝜽 is a q-dimensional (q ≤ l) parameter vector with true
value 𝜽0. When the EEs are exactly identified, that is, l = q, 𝜽 can be estimated by the standard
method of moments (MoM). When there are more moment conditions than parameters, that is,
l > q, the most widely applied methods of estimating 𝜽 are the generalized method of moments
(GMM) (Hansen, 1982) and empirical likelihood (EL) (Owen, 1988, 1990, 1991).

The flexibility offered by GMM and EL in combining sample and auxiliary information has
made them popular in very diverse fields of research, especially in economics and finance.
Whereas the maximum EL (MEL) estimator attempts to find the parameter values that maxi-
mize the EL function, the efficient-GMM (GMME) estimator is obtained by choosing the weight
matrix that minimizes the asymptotic covariance of the estimator (Hansen, 1982). The GMME
and MEL estimators are equivalent in many ways. For the exactly identified case where l = q, the
GMME and MEL approaches yield the same solution as the MoM. As well, the results of Qin and
Lawless (1994) and Imbens (1997, 2002) demonstrated that the empirical log-likelihood ratio
(ELLR) is asymptotically Chi-square distributed, and if the moment conditions are correct, the
GMME and MEL estimators have the same asymptotic distribution. Given the Chamberlain (1987)
proof that the GMME estimator attains the asymptotic semiparametric efficiency bound, the lat-
ter result means that the MEL estimator is also asymptotically efficient. Until recently, the view
has always been that GMME and MEL produce estimators with the equivalent asymptotic nor-
mality property. However, this long-held view has been altered by some recent results in the
missing-data literature. There is evidence that when data are only partially observed for some
variables, depending on the missing-data handling mechanism, the resultant GMME and MEL
estimators' asymptotic properties are not always in accord.

Consider the situation where observations on the response or covariates may be missing at ran-
dom (MAR), which means that the probability of missingness is only related to the fully observed
variables and not the partially unobserved variables. Let the vector (XT

i ,X
cT
i )T contain shuffled

elements of (Yi,ZT
i )

T such that Xi, a d-dimensional non-null vector, is observed for all i's, whereas
Xc

i contains elements for which observations may or may not be available for some i's, and 𝛿i = 1
if all values in Xc

i are observed, and 𝛿i = 0 otherwise. Under the MAR assumption, the propen-
sity score function is P(Xi)=Pr(𝛿i = 1 |Yi,Zi)=Pr(𝛿i = 1 |Xi). Zhou, Wan, and Wang (2008)
studied the GMM and EL approaches for EFs with missing data based on the following EE
projection (EEP) modified EF:

g̃1 (Yi,Zi,𝜽) = 𝛿ig(Yi,Zi,𝜽) + (1 − 𝛿i)m(Xi,𝜽), (2)

where m(X,𝜽) = E[g(Y,Z,𝜽) | X] is unknown and can be estimated by a kernel smoothing
method. Zhou et al. (2008) showed that the GMME and MEL estimators do not produce the same
asymptotic covariance of the estimator. More specifically, they showed that the GMME estima-
tor is semiparametric efficient by achieving the semiparametric efficiency bound established by
Chen, Hong, and Tarozzi (2008), whereas the MEL estimator does not possess the same property.
As well, they demonstrated that the ELLR statistic is not asymptotically Chi-square distributed
but converges instead in distribution to a weighted sum of Chi-square random variables.
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Tang and Qin (2012) developed an EL approach based on the following augmented inverse
probability weighted (AIPW) EF:

g̃2 (Yi,Zi,𝜽) =
𝛿i

P(Xi)
g(Yi,Zi,𝜽) +

{
1 − 𝛿i

P(Xi)

}
m(Xi,𝜽). (3)

They found that the ELLR based on (3) has an asymptotic Chi-square distribution. More remark-
ably, their results indicated that the AIPW-based MEL estimator yields the same asymptotic
covariance matrix as the GMME estimator under (2), and this covariance matrix attains the semi-
parametric efficiency bound. Recently, Chen, Wan, and Zhou (2015) showed that when the data
are MAR and the EEs are exactly identified, the MoM estimators (which coincide with GMME)
obtained based on the EFs (2) and (3) and the following IPW EF

g̃3 (Yi,Zi,𝜽) =
𝛿i

P(Xi)
g(Yi,Zi,𝜽) (4)

all have the same asymptotic properties and achieve the semiparametric efficiency bound.
Table 1 summarizes the established properties of the GMME and MEL estimators as described

above. The established results have raised some interesting, but also puzzling, questions about
the properties of GMM and MEL estimators. First, it remains to be answered why the GMME
and MEL estimators under the EEP approach have different asymptotic variance. Second, the
properties of the GMM estimator under the AIPW approach are yet to be explored; of particular
interest is whether under the AIPW approach, the GMME estimator can produce a semipara-
metric efficient estimator. Third, it is of interest to ascertain why the EEP and AIPW approaches
produce ELLR statistics with nonidentical asymptotic distributions. Fourth, while the IPW, EEP,
and AIPW methods produce estimators with the same asymptotic normality property when l = q,
it is unclear if this property will continue to hold when l ≤ q. The purpose of this paper is to take
steps in addressing these questions.

Another objective of this paper is to examine GMM and EL inference for nonsmooth EEs
under missing data. It should be noted that the overwhelming majority of the above studies
assumes that the underlying EEs are smooth. This stringent requirement rules out the application

TABLE 1 Summary of existing results

Reference Data type EE Main findings

Qin & Lawless (1994); The GMME and MEL estimators under the same EEs have
Lawless (1997); Fully g the same asymptotic distribution and are semiparametric
Imbens (2002) observed efficient; the ELLR statistic is asymptotically Chi-square

distributed.
Zhou et al. (2008) The MEL estimator does not yield the same

MAR g̃1
semiparametric efficiency as the GMME estimator; the
ELLR statistic converges in distribution to a weighted sum
of Chi-square random variables.

Tang and Qin (2012) MEL is semiparametric efficient; the ELLR statistic
MAR g̃2

has an asymptotic Chi-square distribution;
the MEL estimator under g̃2

has the same asymptotic
distribution as the GMME estimator under g̃1

.
Chen et al. (2015) g̃1

, When the EEs are exactly identified (i.e., l = q),
MAR g̃2

, estimators based on all three types of EEs result in
g̃3

the same asymptotic distribution.

Note. EE = estimating equation; ELLR = empirical log-likelihood ratio; GMME = efficient generalized method of moments;
MAR = missing at random; MEL = maximum empirical likelihood.
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of the established methods to situations including quantile regression, rank regression, robust
estimation, and the estimation of receiver operating characteristic (ROC) curves, distribution
function, and differences of quantiles, where some or all of the underlying EEs are discontinuous.
Chen et al. (2008) developed semiparametric efficient sieve-based GMM estimators for missing
data when the underlying EEs are nonsmooth, but they did not examine EL-based inference.
The extension of the IPW, EEP, and AIPW approaches of handling missing data to nonsmooth
EEs is by no means straightforward because the Taylor series expansion for developing theoret-
ical results under smooth EEs is inapplicable when the smoothness assumption is unfulfilled.
Although Lopez, Van Keilegom, and Veraverbeke (2009) proved the asymptotic normality of the
MEL estimator under nonsmooth EEs when no data are missing, they assumed that the MEL
estimator is consistent without proving it. In this paper, we prove the consistency of the MEL
estimator directly. We consider the latter a noteworthy aspect of our results.

The remainder of this paper is organized as follows. In Section 2, we describe the EEP-, AIPW-,
and IPW-based missing-data handling approaches and outline the estimation methods by GMM
and EL in conjunction with these three approaches. Section 3 contains an analysis of the asymp-
totic properties of the resultant GMM and MEL estimators when at least a subset of the underlying
EFs is nonsmooth. Section 4 presents a thorough examination of the asymptotic nonequivalence
of the GMME and MEL estimators under the current setup and a comparison of the asymp-
totic efficiency of the proposed GMME and MEL estimators with their parametric counterparts.
Section 5 reports simulation findings on the finite-sample properties of the proposed estimators.
Section 6 considers a real data application. Section 7 concludes. Proofs of results are contained in
the Appendix.

2 EE IMPUTATION AND ESTIMATION METHODS

2.1 EE imputation
Throughout our analysis, we assume that the data are MAR, which is justified in many practical
situations (Little & Rubin, 2002, chapter 1). There is a large amount of literature that adopts MAR
as a baseline for analysis. The application of the EEs (2), (3), and (4) involves the imputation of
m(x,𝜽) = E{g(Y,Z,𝜽) | X = x} and P(x). The idea of imputing the conditional expectation of EF
was first explored by Zhou and Pepe (1995) and Paik (1997). Here, we impute m(x,𝜽) and P(x) by
kernel regression based on the observed data from the random sample (Yi,Zi, 𝛿i), i = 1, 2 … ,n.
Let the kernel regression estimators of m(x,𝜽) and P(x) be

m̂(x,𝜽) =
∑n

i=1 h(x − Xi)g(Yi,Zi,𝜽)𝛿i∑n
i=1 h(x − Xi)𝛿i

and P̂(x) =
∑n

i=1 K̄h̄(x − Xi)𝛿i∑n
i=1 K̄h̄(x − Xi)

,

respectively, where h(u) = diag[K(1)(.∕h1)∕hd
1 , … ,K(l)(.∕hl)∕hd

l ], K (i) and K̄ are d-variate kernel
functions, and hi, i = 1, 2, … , l and h̄ are bandwidth parameters. Now, substituting m̂(x,𝜽) and
P̂(x) for m(x,𝜽) and P(x) in (2) and (3), we obtain

ĝ1 (Yi,Zi,𝜽) = 𝛿ig(Yi,Zi,𝜽) + (1 − 𝛿i)m̂(Xi,𝜽), (5)

ĝ2 (Yi,Zi,𝜽) =
𝛿i

P̂(Xi)
g(Yi,Zi,𝜽) +

{
1 − 𝛿i

P̂(Xi)

}
m̂(Xi,𝜽), (6)

and
ĝ3 (Yi,Zi,𝜽) =

𝛿i

P̂(Xi)
g(Yi,Zi,𝜽) (7)
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as the imputed versions of (2), (3), and (4), that is, the EEP-, AIPW-, and IPW-based EFs,
respectively.

It is readily seen that 1
n

∑n
i=1 ĝk (Yi,Zi,𝜽) = 0, k = 1, 2, 3, are asymptotically unbiased EEs

of 𝜽. These imputed EEs, which are not necessarily smooth in 𝜽, will form the basis of our subse-
quent development of estimation and inference methods using the GMM and EL approaches.

2.2 Estimation methods
This subsection outlines the estimation of unknowns by GMM and EL based on the imputed
EEs of (5), (6), and (7) when l, the number of EEs, is greater than q, the number of unknown
parameters.

Now, let

̂kn(𝜽) =

{
1
n

n∑
i=1

ĝk (Yi,Zi,𝜽)

}T

Wkn

{
1
n

n∑
i=1

ĝk (Yi,Zi,𝜽)

}
,

where Wkn is some positive semidefinite symmetric weight matrix, and ĝk (Y ,Z,𝜽), k = 1, 2, 3,
are the EFs given in (5), (6), and (7). The value of𝜽 that minimizes ̂kn(𝜽), 𝜽̂k = arg min𝜽∈Θ̂kn(𝜽),
is the GMM estimator (Hansen, 1982) of𝜽, k = 1, 2, 3. EL estimation (Owen, 2001; Qin & Lawless,
1994), on the other hand, is based on the objective function

Lk(𝜽) = max

{ n∏
i=1

pki

|||||
n∑

i=1
pkiĝk (Yi,Zi,𝜽) = 0, pki ≥ 0,

n∑
i=1

pki = 1

}
,

where pki is a nonnegative probability corresponding to observation i in the sample, and∑n
i=1 pki = 1, k = 1, 2, 3. It is straightforward to show that

p̂ki =
1

n
(
1 + 𝝀T

k ĝk (Yi,Zi,𝜽)
)

maximizes Lk(𝜽), where 𝝀k is a vector of Lagrange multipliers satisfying
n∑

i=1

ĝk (Yi,Zi,𝜽)
n
(
1 + 𝝀T

k ĝk (Yi,Zi,𝜽)
) = 0. (8)

This leads to the ELLR

k(𝜽) = −2 log
n∏

i=1
(np̂ki) = 2

n∑
i=1

log
(
1 + 𝝀T

k ĝk (Yi,Zi,𝜽)
)

(9)

of 𝜽. The MEL estimator of 𝜽 is 𝜽̂ke = arg min𝜽k(𝜽), k = 1, 2, 3.

3 ASYMPTOTIC PROPERTIES OF ESTIMATORS

A major technical challenge of the current work is that the lack of smoothness in the EEs ren-
ders the Taylor series expansion, the main technical tool underlying Zhou et al. (2008) analysis,
inapplicable in proving the consistency and asymptotic normality of estimators. In the present
analysis, we make use of results of the empirical process of the Donsker class and stochastic
equicontinuity stated under assumptions (Ck

5) and (Ck
6) in the Appendix. Assumption (Ck

5) per-
mits the application of the uniform law of large numbers on the objective functions of the GMM
and MEL estimators, which is crucial for establishing estimator consistency. When proving the
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asymptotic normality of estimators, the assumption of stochastic equicontinuity, as stated in (Ck
6),

allows the application of the Taylor series expansion on Eg(.) instead of g(.).
Now, for notational convenience, let us write

m(X) = m(X,𝜽0) = E{g(Y ,Z,𝜽0) |X}, 𝚺g(X) = 𝚺g(X ,𝜽0) = cov{g(Y ,Z,𝜽0) |X},
V1 = E[P(X)𝚺g(X)] + E{m(X)mT(X)}, 𝚪 = E{∇𝜽m(X)} = ∇𝜽E{g(Y ,Z,𝜽0)},

𝚺 = V2 = E
{𝚺g(X)

P(X)

}
+ E{m(X)mT(X)}, V3 = E

{𝚺g(X)
P(X)

}
+ E

{
m(X)mT(X)

P(X)

}
,

and kn = kn(𝜽0) = n−1∕2 ∑n
i=1 ĝk (Yi,Zi,𝜽0), where V1, V2, and V3 are the asymptotic second

moments of EFs (5), (6), and (7), respectively, and 𝚺, which is also equal to V2, is the asymptotic
covariance of (5), (6), and (7). See Lemmas 2 and 3 in the Appendix.

Theorems 1 and 2 summarize the asymptotic properties of the GMM estimators 𝜽̂k, k = 1, 2, 3,
based on the imputed EEs (5), (6), and (7).

Theorem 1. Assume that conditions (Ck
1), (C

k
2), (C

k
4), and (Ck

5) in the Appendix are satisfied,

and there exists a unique 𝜽0 such that Eg(Y,Z ,𝜽0)=0. Then, 𝜽̂k
P

−→𝜽0, k = 1, 2, 3.

Theorem 2. Assume that conditions (Ck
1) − (Ck

2), (C3) and (Ck
4) − (Ck

6) in the Appendix are
satisfied, and there exists a unique 𝜽0 such that Eg(Y,Z,𝜽0) = 0, and 𝚪TWkn𝚪 is nonsingular.
Then, we have√

n(𝜽̂k − 𝜽0)
D
−→N

(
0,
(
𝚪TWkn𝚪

)−1𝚪TWkn𝚺Wkn𝚪
(
𝚪TWkn𝚪

)−1
)
, k = 1, 2, 3.

Thus, the three GMM estimators 𝜽1, 𝜽2, and 𝜽3, based on the EEP, AIPW, and IPW imputed
EFs given in (5), (6), and (7), respectively, are

√
n-consistent. In fact, Theorem 2 shows that they

are asymptotically equivalent. Note that these estimators are determined by the asymptotic dis-
tribution of kn and the derivative of Eg̃k (Y ,Z,𝜽) with respect to 𝜽. From Lemma 2 in the
Appendix, kn's have the same asymptotic distribution for k = 1, 2, 3. As well, under the MAR
assumption, Eg̃k (Y ,Z,𝜽) = Eg(Y ,Z,𝜽) = Em(X,𝜽), for k = 1, 2, 3. Hence, Eg̃k (Y ,Z,𝜽)'s have
the same derivative with respect to 𝜽 for k = 1, 2, 3.

From the standard GMM theory (Hansen, 1982), the most efficient GMM estimator results
when Wkn = 𝚺−1. We denote the GMME estimator as 𝜽̂kg, k = 1, 2, 3. Chen et al. (2008) showed
that the semiparametric efficiency bound of estimators defined by the moment restriction given
in model (1) when the data are MAR is

𝚺−1
0 ∶=

(
𝚪T𝚺−1𝚪

)−1
.

In general, GMM efficiency does not necessarily imply semiparametric efficiency. A GMM-
efficient estimator is semiparametric efficient only if its covariance matrix attains the above
semiparametric efficiency bound. The following corollary shows that 𝜽̂kg, k = 1, 2, 3, are
semiparametric efficient in addition to being GMM efficient.

Corollary 1. Under the assumptions of Theorem 2, if 𝜽̂k = 𝜽̂kg, the GMME estimator that sets
Wkn to 𝚺−1, then √

n
(
𝜽̂kg − 𝜽0

) D
−→N

(
0,𝚺−1

0
)
, k = 1, 2, 3.

The following theorems provide results on the asymptotic properties of the MEL estimators
𝜽̂ke, k = 1, 2, 3, based on the EEP, AIPW, and IPW imputed EFs, respectively.

Theorem 3. Assume that conditions (Ck
1) − (Ck

2), (C3) and (Ck
4) − (Ck

7) in the Appendix are
satisfied, and there exists a unique 𝜽0 such that Eg(Y,Z,𝜽0) = 0. Then, 𝜽̂ke

p
−→𝜽0, k = 1, 2, 3.
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Theorem 4. Assume that conditions (Ck
1) − (Ck

2), (C3) and (Ck
4) − (Ck

7) in the Appendix are
satisfied, and there exists a unique 𝜽0 such that Eg(Y,Z,𝜽0) = 0. Then,√

n
(
𝜽̂ke − 𝜽0

) D
−→N(0,𝚺ke), k = 1, 2, 3,

where 𝚺ke = (𝚪TV−1
k 𝚪)−1𝚪TV−1

k 𝚺V−1
k 𝚪(𝚪TV−1

k 𝚪)−1. Furthermore, the ELLRs, denoted by
k(𝜽0)′s, k = 1, 2, 3, have the following asymptotic distributional properties:

1(𝜽0)
D
−→ 𝜎1𝜔

2
1 + · · · + 𝜎l𝜔

2
l , 2(𝜽0)

D
−→𝜒2

l and 3(𝜽0)
D
−→ 𝜚1𝜔

2
1 + · · · + 𝜚l𝜔

2
l ,

where 𝜔2
i 's, i = 1, … , l, are Chi-square random variables, each with one degree of freedom,

and distributed independently of one another, and the weights 𝜎i's and 𝜚i's, i = 1, … , l, are
eigenvalues of V−1

1 𝚺 and V−1
3 𝚺, respectively.

Thus, the MEL estimators produced by all three missing-data handling approaches are√
n-consistent. It is also seen that V2 = 𝚺; hence, 𝚺2e = 𝚺−1

0 . In other words, 𝜽̂2e, the MEL
estimator based on the AIPW imputed EF (6), attains the semiparametric efficiency bound of
Chen et al. (2008). On the other hand, neither V1 nor V3 is equal to 𝚺 unless P(x) = 1 (i.e., no
observation is missing); hence, 𝜽̂1e and 𝜽̂3e, the MEL estimators based on the EEP and IPW
imputed EFs (5) and (7), cannot attain the same semiparametric efficiency bound when data are
MAR. Another disadvantage of the MEL estimators based on EEP and IPW methods is that they
do not result in an ELLR with a central Chi-square distribution. One can reconcile this latter
problem by applying an adjustment to k(𝜽0), k = 1, 3, as described in the following corollary.

Corollary 2. Write 𝜌̂1k(𝜽0) = [T
knV̂−1

k kn]−1 [T
kn𝚺̂−1kn]. Under the conditions of

Theorem 4, k(𝜽0)𝜌̂1k(𝜽0)
D
−→𝜒2

l , k= 1,3.

Hence, an 𝛼-level confidence region for 𝜽0 based on k(𝜽0) is Ik𝛼 = {𝜽 ∶ 𝜌̂k(𝜽)k(𝜽) ≤ C𝛼} for
k = 1, 3 or Ik𝛼 = {𝜽 ∶ k(𝜽) ≤ C𝛼} for k = 2, where C𝛼 is the upper 𝛼-quantile of the Chi-square
density function with l degrees of freedom. The estimator 𝜽̂ke also facilitates the development of
an ELLR test statistic for testing H0 ∶ 𝜽 = 𝜽0. This statistic may be written as

Rk(𝜽0) = 2𝓁k(𝜽0) − 2𝓁k(𝜽̂ke),

where 𝓁k(𝜽) =
∑n

i=1 log(1 + 𝝀T
2 ĝk (Yi,Zi,𝜽)), k = 1, 2, 3.

The following theorem provides the asymptotic properties of Rk(𝜽0).

Theorem 5. Assume that conditions (Ck
1) − (Ck

2), (C3) and (Ck
4) − (Ck

7) in the Appendix are
satisfied, and there exists a unique 𝜽0 such that Eg(Y,Z,𝜽0) = 0. Then, under H0,

R1(𝜽0)
D
−→ 𝜎̃1𝜔

2
1 + · · · + 𝜎̃q𝜔

2
q, R2(𝜽0)

D
−→𝜒2

q and R3(𝜽0)
D
−→ 𝜚1𝜔

2
1 + · · · + 𝜚q𝜔

2
q, (10)

where 𝜔2
i 's, i = 1, … , q, are Chi-square random variables, each with one degree of freedom,

and distributed independently of one another, and the weights 𝜎̃i's and 𝜚i's, i = 1, … , q, are
eigenvalues of the matrix V−1

1 𝚪(𝚪TV−1
1 𝚪)−1𝚪TV−1

1 𝚺 and V−1
3 𝚪(𝚪TV−1

3 𝚪)−1𝚪TV−1
3 𝚺.

Three corollaries of Theorem 5, labeled as Corollaries 3, 4, and 5, are presented in the
Appendix. Corollary 3 considers the application of an adjustment factor, similar to that used
on k(𝜽0), k = 1, 3, on Rk(𝜽0), k = 1, 3, so that the resultant adjusted statistic converges to a
Chi-square distribution. Corollaries 4 and 5 develop a profile ELLR (PELLR) testing approach for
hypothesis testing when only a subset of 𝜽 is of interest.
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Remark 1. Our derivation of results does not assume smoothness in the EFs as in the works of
Zhou et al. (2008) and Tang and Qin (2012). Instead, we require the conditional expectation of
the EFs to be smooth in the parameters. Despite the fact that the results under the smooth and
nonsmooth EF scenarios are derived under different technical conditions, we have found that
the asymptotic covariances of GMM and MEL estimators under the two scenarios are similar,
the only difference being that 𝚪 = ∇𝜽E{g(Y,Z,𝜽0)} when the EFs are nonsmooth and 𝚪 =
E{∇𝜽g(Y,Z,𝜽0)}when the EFs are smooth. The ELLR and PELLR statistics under smooth and
nonsmooth EFs also have the same limiting distributions. When the underlying EFs are all
smooth and the order of integration and differentiation are exchangeable, our results reduce
to those of Zhou et al. (2008) and Tang and Qin (2012).

Remark 2. The relaxation of the smoothness assumption has significantly complicated the
derivation of the asymptotic properties, especially with regard to the consistency of the MEL
estimator. Note that in proving the asymptotic normality of the MEL estimator under nons-
mooth EFs when no data are missing, Lopez et al. (2009) assumed the consistency of the MEL
estimator without proving it.

In the following, we give three examples for which our proposed methods are applicable.

Example 1. (Quantile regression)
Consider the linear quantile regression model

Y = ZT𝜽𝜏 + 𝜖, (11)
where P(𝜖 < 0 ∣ Z) = 𝜏 for the 𝜏th quantile (0 < 𝜏 < 1). The corresponding EFs are

g(Y ,Z,𝜽) = Z
(

I
(

Y − ZT𝜽𝜏 ≤ 0
)
− 𝜏

)
. (12)

Let X be a non-null subset of (YT,Z)T, which is observed for all subjects, and f𝜖 be the density
of 𝜖. If 𝜖 satisfies 0 < f𝜖|z(0 |Z) < ∞ (e.g., 𝜖 ∼ N(𝜇, 𝜎2) or 𝜖 ∼ U(a, b)), then by the Donsker
property of indicator function classes, (Ck

5) − (Ck
7) hold (see example 19.6 of Van der Vaart,

1998). By choosing a suitable kernel function, condition (Ck
4), k = 1, 2, 3 can be satisfied. For

example, when d = 1, the Gaussian kernel satisfies these conditions. On the other hand,
when d > 1, one can use a suitable higher-order kernel function (see Fan & Hu, 1992). The
requirement associated with f (X) in (C1) can be fulfilled by joint distributions constructed
from various continuous distributions including the normal, uniform, exponential, and other
distributions. Conditions (Ck

2) and (C3) can be satisfied by adding some moment condition to
Z and Y.

Example 2. (Difference of conditional quantiles in a one-sample problem)
Consider again the quantile regression model in (11). Let

q𝜖 |z = F−1
𝜖 |z(𝜏1) − F−1

𝜖 |z(𝜏), (13)

where 1 > 𝜏1 > 𝜏 > 0, F−1
𝜖 |z(𝜏) = inf{e,F𝜖 |z(e |z) ≥ 𝜏}. Then, we have the difference of

conditional quantiles of response

qY |z = F−1
Y |z(𝜏1) − F−1

Y |z(𝜏) = q𝜖 |z + bZT (𝜽𝜏1 − 𝜽𝜏2

)
. (14)

Let 𝜏 = 0.25 and 𝜏1 = 0.75. Then, for obtaining the interquantile range, we have the EFs

g(Y ,Z,𝜽) =
⎧⎪⎨⎪⎩

Z
(

I
(

Y − ZT𝜽𝜏 ≤ 0
)
− 𝜏

)(
I
(

Y − q𝜖 |z − ZT𝜽𝜏1 ≤ 0
)
− 𝜏1

)
Z
(

I
(

Y − q𝜖 |z − ZT𝜽𝜏1 ≤ 0
)
− 𝜏1

)
.
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Similarly, let X be a random variable that is fully observed. We can verify conditions (Ck
1) −

(Ck
7) along the lines of Example 1, and we omit the details here for brevity. The difference of

conditional quantiles in one sample can be generalized to the two-sample case.

Example 3. (ROC curves)
Consider independent responses Y1 and Y2 with distribution functions F1 and F2, respec-
tively. Assume that observations are missing from Y1 and Y2, and the missing propensity score
depends on the covariate Z. For 0 < 𝜏 < 1, consider the ROC curve

𝛼 =∶ ROC(𝜏) = 1 − F1
(

F−1
2 (1 − 𝜏)

)
. (15)

Now, for any z0, we have the EFs

g(Y ,𝜽, 𝛼) =

{
I(Y2 ≤ 𝜃) − (1 − 𝜏)
I(Y1 ≤ 𝜃) − (1 − 𝛼).

We can verify conditions (Ck
1)−(Ck

7) along the lines of Example 1, and we omit the details here
for brevity.

4 EFFICIENCY COMPARISON

4.1 Why are the GMME and MEL estimators not always equivalent?
This subsection provides a thorough discussion on the asymptotic nonequivalence of the GMME
and MEL estimators based on EEP and IPW imputed EFs in (5) and (7). This matter deserves
attention as the finding contradicts the well-known result that the GMME estimator has the same
asymptotic normal distribution as the MEL estimator under the moment restriction (1) when no
data are missing. Now, from the proof of Theorem 3, the ELLR defined in (9) can be written as

k(𝜽) =

{
1√
n

n∑
i=1

ĝk (Yi,Zi,𝜽)

}T

V−1
k (𝜽)

{
1√
n

n∑
i=1

ĝk (Yi,Zi,𝜽)

}
+ op(n−1),

where Vk(𝜽) is the asymptotic second moment of ĝk (Yi,Zi,𝜽). This expression is equivalent to
the GMM objective function with V−1

k as the weight matrix. Thus, the MEL and GMM estimators
based on the same weighted matrix V−1

k have the same asymptotic distribution. Now, if the weight
matrix used by the GMME estimator, namely, the inverse of the asymptotic covariance of the EFs,
is equal to V−1

k , then the GMME estimator is asymptotically equivalent to the MEL estimator. That
is, the two estimators have the same asymptotic efficiency if and only if the second moment and
asymptotic covariance of the EF vector are the same. This same factor also determines if the ELLR
and PELLR test statistics follow a central Chi-square asymptotic distribution. Note that k(𝜽0) is
central Chi-square distributed if and only if the second moment of the EF vector is identical to its
asymptotic covariance.

Now, under the imputed EFs (5) and (7) based on the EEP and IPW approaches, respectively,
Vk ≠ 𝚺 for k = 1, 3. It thus follows that the MEL estimators 𝜽̂1e and 𝜽̂3e do not have the same
asymptotic distribution as their corresponding GMME counterparts 𝜽̂1g and 𝜽̂3g. As Vk ≠ 𝚺 for
k = 1, 3, the corresponding k(𝜽0), Rk(𝜽0) and Rk(𝜽0A, 𝜽̂keB(𝜽0A)) do not follow an asymptotic
central Chi-square distribution. Similar results have been observed in EL-based censored data
studies (Qin & Jing, 2001; Qin & Tsao, 2003). On the other hand, under the imputed AIPW-based
EF (6), V2 = 𝚺, the GMME and MEL estimators are asymptotically equally efficient, and the



370 Scandinavian Journal of Statistics CHEN ET AL.

corresponding ELLR and PELLR test statistics are asymptotically Chi-square distributed. When
no observation is missing, the second moment and covariance matrix of g(Yi,Zi,𝜽) are both equal
to E(ggT). Hence, the MEL and GMME estimators with Wkn = E−1(ggT) have the same asymptotic
normal distribution and are asymptotically semiparametric efficient with a dispersion matrix that
is equal to [𝚪TE−1(ggT)𝚪 ]−1.

4.2 Efficiency comparison of parametric and nonparametric
estimators
In this section, we compare the efficiency of the nonparametric GMME and MEL estimators with
that of their parametric counterparts, which are obtained based on the parametric versions of EFs
(5), (6), and (7). From the work of Chen et al. (2008), the efficient score function for the moment
restriction model (1) when the data are MAR is

gES(Yi,Zi,𝜽) =
𝛿i

P(Xi)
g(Yi,Zi,𝜽) +

{
1 − 𝛿i

P(Xi)

}
m(Xi,𝜽), (16)

with 𝚺−1
0 being the corresponding semiparametric efficiency bound. Corollary 1 shows that the

GMME estimator is determined by the asymptotic covariance of its corresponding modified EFs.
Hence, the GMME estimator is semiparametric efficient if and only if its corresponding EF has
the same asymptotic distribution as the efficient EF n−1∕2 ∑n

i=1 gES(Yi,Zi,𝜽0). On the other hand,
Theorem 4 shows that the MEL estimator is semiparametric efficient if and only if its correspond-
ing EF has the same asymptotic distribution as the efficient EF, and the resultant asymptotic
covariance is equal to the second moment of the EF.

Let us assume that the propensity score P(Xi, 𝜷) and the conditional mean m(Xi,𝜽, 𝜼) of these
parametric methods are dependent on 𝜷 and 𝜼 through some parametric specifications. Now,
denote the parametric counterparts of kn(𝜽) as p

kn(𝜽) = n−1∕2 ∑n
i=1 ĝp

k
(Yi,Zi,𝜽), k = 1, 2, 3,

where P(Xi, 𝜷) and m(X,𝜽) are estimated parametrically by P(Xi, 𝜷̂) and m(Xi,𝜽, 𝜼̂). Let 𝜷̂ and 𝜼̂

be
√

n-consistent estimators of 𝜷 and 𝜼.
After some calculations, we have


p
1n(𝜽) =

1√
n

n∑
i=1

𝛿ig(Yi,Zi,𝜽) + (1 − 𝛿i)m(Xi,𝜽, 𝜼)

+ E
{
(1 − 𝛿i)

𝜕m(Xi,𝜽, 𝜼)
𝜕𝜼

}√
n(𝜼̂ − 𝜼) + op(1),


p
2n(𝜽) =

1√
n

n∑
i=1

𝛿i

P(Xi,𝜷)
g(Yi,Zi,𝜽) +

{
1 − 𝛿i

P(Xi, 𝜷)

}
m(Xi,𝜽, 𝜼)

+ E
{(

1 − 𝛿i

P(Xi,𝜷)

)
𝜕m(Xi,𝜽, 𝜼)

𝜕𝜼

}√
n(𝜼̂ − 𝜼) (17)

+ E
{

𝛿i𝜕P(Xi, 𝜷)∕𝜕𝜷
P2(Xi, 𝜷)

[
m(Xi,𝜽, 𝜼) − g(Yi,Zi,𝜽)

]}√
n(𝜷̂ − 𝜷) + op(1), (18)

and


p
3n(𝜽) =

1√
n

n∑
i=1

𝛿i

P(Xi, 𝜷)
g(Yi,Zi,𝜽) − E

{
𝛿i𝜕P(Xi, 𝜷)∕𝜕𝜷

P2(Xi, 𝜷)
g(Yi,Zi,𝜽)

}√
n(𝜷̂ − 𝜷) + op(1),
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where
√

n(𝜷̂ − 𝜷) and
√

n(𝜼̂ − 𝜼) can be replaced by their respective i.i.d. sum representation,
when parametric functional forms are specified for P(.) and m(.). It is easily seen that when
k = 1, 3, p

kn(𝜽0) can never be asymptotically equivalent to the efficient EF irrespective of
whether P(Xi,𝜷) and m(Xi,𝜽, 𝜼) are correctly specified. Thus, the GMME and MEL estimators
obtained based on (5) and (7), that is, the EEP and IPW EFs, can never achieve the semiparamet-
ric efficiency bound. When the parametric models are correctly specified, the expectations in (17)
and (18) are zero, resulting in the parametric AIPW EF

p
kn(𝜽0)having the same asymptotic distri-

bution as the efficient EF, the second moment of ĝp
k

and asymptotic covariance of p
kn(𝜽0) being

identical. Hence, both the GMME and MEL estimators based on the parametric AIPW method
are semiparametric efficient when the functional forms specified for P(.) and m(.) are correct.
However, this efficiency property is immediately lost when either of the two parametric models
is misspecified.

By the continuous mapping theorem and the dominated convergence theorem, it is readily
seen that ĝk and ĝp

k
have the same second moment. Hence, when the parametric models are

correctly specified, the parametric GMME and MEL estimators based on the AIPW method have
the same efficiency as their nonparametric counterparts. Except for this special case, assuming
that the same 𝚪 and weighted matrix are used in the parametric and nonparametric estima-
tors, from Theorems 1 and 4, the nonparametric GMME and MEL estimators are more efficient
than their corresponding parametric estimators. Based on the same EF, if the MEL estimator is
semiparametric efficient, then so is the GMME estimator, but not vice versa.

Remark 3. The GMME estimators under the IPW, EEP, and AIPW missing-data handling
methods all attain the semiparametric asymptotic efficiency bound and are equally efficient.
For the MEL class of estimators, only the AIPW-based estimator can achieve the same asymp-
totic efficiency. In terms of computational difficulty, the AIPW-based estimators are the most
difficult to compute because the AIPW method involves estimating both P(Xi) and m(Xi, 𝜃).
One disadvantage of the IPW- and AIPW-based estimators is that they can lead to unstable
estimates when P(Xi) is close to zero. On the other hand, the EEP-based estimators do not
suffer from the same drawback. All things considered, the EEP-based GMME estimator is the
preferred estimator.

Remark 4. When the EFs involve plug-in elements (e.g., P̂(x) and m̂(x,𝜽) in ĝk (Yi,Zi,𝜽)),
except when the plug-in elements converge at the same rate as or a slower rate than the EFs,
the asymptotic covariance and the second moment of the EFs will be different due to the
dependence of the asymptotic covariance on the plug-in elements. In general, it would not be
possible to tell from the form of the EF if its asymptotic covariance and second moment are
identical without performing a rigorous theoretical analysis.

5 A SIMULATION STUDY

In this section, we report results of a simulation study on the finite-sample performance of the
GMME and MEL estimators. We consider the following vector of EFs:

g(Y ,Z,𝜽) =

⎛⎜⎜⎜⎜⎝
Z1

(
1
2
− I(Y ≤ 𝜃1Z1 + 𝜃2Z2)

Z2

(
1
2
− I(Y ≤ 𝜃1Z1 + 𝜃2Z2)

Y − 𝜃1Z1 − 𝜃2Z2

⎞⎟⎟⎟⎟⎠
,
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where 𝜽 = (𝜃1, 𝜃2)T = (1, − 2)T, Z1 ∼ U(0, 1), and Z2 ∼ N(0, 1). Given Z1 and Z2, Y has a nor-
mal distribution with mean 𝜃1Z1 + 𝜃2Z2 and variance 1. The first and second EFs in g(Y,Z,𝜽)
correspond to the moment conditions for median regression and are discontinuous in 𝜃1 and 𝜃2;
the third EF, on the other hand, is a condition for the mean of the errors and continuous. It is
readily seen that E{g(Y,Z,𝜽)} = 0, which means that all three EFs are unbiased.

The following scenarios of selection probability under the MAR assumption are considered:

• S1 ∶ P(z2) = 0.5 + 0.5 sin (z2 − 1)2 if |z2 − 1| ≤ 1; P(z2) = 1 otherwise;
• S2 ∶ P(z2) = 0.5 + 0.2|z2 − 1| if |z2 − 1| ≤ 1; P(z2) = 0.8 otherwise;
• S3 ∶ P(z2, y) = 0.5 + 0.2|z2 − y| if |z2 − y| ≤ 1; P(z2) = 0.7 otherwise;
• S4 ∶ P(z2) = exp(0.5 − z2)∕(1 + exp(0.5 − z2));
• S5 ∶ P(z2) = Φ(− z2), where Φ is the distribution function of the N(0, 1) distribution;
• S6 ∶ P(z2) = 0.6.

For all scenarios except S3 and S6, the data missing probability depends only on the fully observed
covariate Z2; for Scenario S3, it depends on both Z2 and the response Y, whereas for S6, the data are
missing completely at random. The average missing percentages for the six scenarios are 17.3%,
29.5%, 32.5%, 39.8%, 49.8%, and 40%, respectively.

We set the sample size n to 100 and the number of replications NS to 500. We adopt the Gaus-
sian kernels K(u) = exp(−u2∕2)∕(2𝜋)1∕2 and K(u, t) = exp(−u2∕2) exp(−t2∕2)∕(2𝜋) for estimating
E(g(Y,Z,𝜽) | Z2) and E(g(Y,Z,𝜽) | Y,Z2), respectively. Following Sepanski, Knickerbocker, and
Carroll (1994), we let h = 𝜎̂Z2 n−1∕3 and h = 𝜎̂Z2Y n−1∕3 be the bandwidths for estimating m(z2,𝜽)
and m(z2, y,𝜽), respectively, where 𝜎̂Z2 is the standard deviation of Z2, and 𝜎̂Z2Y is the stan-
dard deviation of [ZT

2 ,Y T]T . For the estimation of P(z2, y), we choose the Gaussian kernel K(u, t)
and set the bandwidth to h = 1.5𝜎̂Z2Y n−1∕5. The kernel and bandwidth for P(x2) are K(u) and
h = 1.5𝜎̂Z2 n−1∕5, respectively.

The estimators are evaluated with respect to bias (BIAS), standard deviation (SD), standard
errors (SE), confidence interval coverage to the nominal target coverage of 0.95 (COV), and mean
square errors (MSE). The results are reported in Table 2. Although neither the MEL nor the GMME
estimator strictly dominates the other, that the GMME estimator is seen to be superior is about
three quarters of the results presented. A notable exception occurs under Scenario S6, where gains
from using MEL in place of GMME are more frequently observed. The precise reason for the
relative strong showing of the MEL estimator under S6 is unclear, but we think it may be attributed
to the data being missing completely at random for this scenario. If one excludes Scenario S6,
then in over 75% of the comparisons, the GMME estimator is seen to be the favored approach.
The advantage of the GMME estimator is particularly evident with respect to MSE, by which the
GMME estimator is superior to the MEL estimator in all but 4 of the 36 comparisons. In terms of
BIAS, SD, and SE, GMME is the superior approach in between 70% and 80% of the comparisons.
On the other hand, in terms of COV, the two estimators exhibit comparable performance, with
the MEL estimator producing confidence interval coverage closer to 0.95 than does the GMME
estimator in just under half of the instances.

Although our results in Section 3 show that asymptotically, the EEP, IPW, and AIPW
approaches produce identical properties for the GMME estimator, Table 2 reveals that in finite
samples, there are minor differences in the sampling behavior of the GMME estimator under the
three approaches. These differences can be attributed to the sample size and the different band-
widths being used for the different missing-data handling approaches. For the same reason, the
AIPW-based MEL estimator does not yield the same finite-sample characteristics as the GMME
estimators, even though they are equally efficient asymptotically.



CHEN ET AL. Scandinavian Journal of Statistics 373

TABLE 2 Simulation results

EEP IPW AIPW
MEL GMME MEL GMME MEL GMME

𝜽̂𝟏 𝜽̂𝟐 𝜽̂𝟏 𝜽̂𝟐 𝜽̂𝟏 𝜽̂𝟐 𝜽̂𝟏 𝜽̂𝟐 𝜽̂𝟏 𝜽̂𝟐 𝜽̂𝟏 𝜽̂𝟐

S1
BIAS −0.012 −0.002 −0.009 0.006 −0.010 0.004 −0.007 0.004 −0.003 −0.012 −0.003 −0.008
SD 0.241 0.140 0.241 0.139 0.231 0.141 0.236 0.131 0.231 0.133 0.233 0.135
SE 0.272 0.175 0.227 0.145 0.292 0.179 0.231 0.145 0.239 0.152 0.239 0.143
COV 0.952 0.940 0.922 0.915 0.944 0.957 0.934 0.935 0.956 0.982 0.956 0.974
MSE 0.058 0.020 0.057 0.019 0.053 0.020 0.055 0.017 0.053 0.018 0.054 0.018

S2
BIAS −0.002 0.004 0.000 0.004 −0.012 0.002 −0.009 0.005 −0.008 −0.003 −0.002 −0.006
SD 0.264 0.152 0.261 0.151 0.248 0.153 0.247 0.149 0.238 0.141 0.235 0.139
SE 0.317 0.194 0.253 0.158 0.295 0.183 0.268 0.176 0.249 0.161 0.251 0.162
COV 0.970 0.962 0.932 0.921 0.938 0.972 0.954 0.962 0.952 0.980 0.956 0.974
MSE 0.070 0.023 0.068 0.023 0.062 0.023 0.061 0.022 0.057 0.020 0.055 0.019

S3
BIAS 0.006 −0.003 0.001 −0.000 0.003 0.007 −0.001 0.004 0.004 −0.003 0.011 0.001
SD 0.249 0.149 0.245 0.143 0.253 0.150 0.247 0.143 0.217 0.137 0.215 0.138
SE 0.268 0.198 0.254 0.168 0.283 0.184 0.284 0.179 0.233 0.159 0.227 0.160
COV 0.940 0.930 0.925 0.930 0.942 0.962 0.945 0.956 0.964 0.972 0.962 0.968
MSE 0.062 0.022 0.060 0.020 0.064 0.023 0.061 0.020 0.047 0.019 0.046 0.019

S4
BIAS −0.026 −0.017 −0.018 −0.011 −0.013 −0.009 0.004 −0.001 −0.022 −0.013 −0.013 −0.013
SD 0.288 0.195 0.268 0.185 0.259 0.165 0.245 0.159 0.273 0.186 0.266 0.172
SE 0.279 0.189 0.249 0.178 0.239 0.163 0.233 0.169 0.240 0.176 0.238 0.174
COV 0.936 0.938 0.930 0.956 0.926 0.962 0.922 0.962 0.918 0.950 0.922 0.960
MSE 0.083 0.038 0.072 0.034 0.067 0.027 0.060 0.025 0.075 0.035 0.071 0.030

S5
BIAS −0.014 −0.000 −0.002 0.004 −0.001 −0.006 0.016 0.010 −0.001 0.002 0.013 0.000
SD 0.367 0.258 0.314 0.226 0.281 0.169 0.263 0.161 0.348 0.274 0.310 0.219
SE 0.326 0.235 0.324 0.231 0.286 0.190 0.277 0.188 0.331 0.243 0.329 0.234
COV 0.938 0.946 0.962 0.952 0.954 0.980 0.958 0.978 0.944 0.938 0.964 0.966
MSE 0.134 0.067 0.098 0.051 0.079 0.029 0.069 0.026 0.121 0.075 0.096 0.048

S6
BIAS −0.012 −0.003 −0.013 −0.003 −0.011 −0.003 −0.013 0.000 −0.011 −0.002 −0.012 −0.007
SD 0.255 0.158 0.259 0.164 0.252 0.156 0.253 0.154 0.259 0.165 0.255 0.163
SE 0.261 0.175 0.264 0.175 0.226 0.158 0.228 0.161 0.263 0.174 0.264 0.174
COV 0.956 0.970 0.942 0.958 0.922 0.952 0.926 0.950 0.948 0.964 0.952 0.960
MSE 0.065 0.025 0.067 0.027 0.064 0.024 0.064 0.024 0.067 0.027 0.065 0.026

Note. AIPW = augmented inverse probability weighted; BIAS = bias; COV = confidence interval coverage to the nom-
inal target coverage of 0.95; EEP = estimating equation projection; GMME = efficient generalized method of moments;
IPW= inverse probability weighted; MEL=maximum empirical likelihood; MSE=mean square error; SD= standard deviation;
SE = standard error.

6 A REAL DATA EXAMPLE

In this section, we illustrate the proposed method using the data given in the work of
Carpenter and Kenward (2005), extracted from the work of Blatchford, Goldstein, Martin, and
Browne (2002). These data comprise 4,873 observations of a number of attributes of school chil-
dren collected from 172 schools in the U.K. between 1996 and 1997. We randomly select 1,000
observations from this sample for the analysis. An objective of the study is to examine the
extent to which the literacy ability of school children is affected by the different attributes. Our
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TABLE 3 Results of real data analysis

intercept Z1 Z2 Z3 Z4

EEP MEL EST 0.253 0.664 −0.076 −0.110 −0.479
SE 0.044 0.058 0.052 0.053 0.077

GMME EST 0.320 0.687 −0.144 −0.187 −0.511
SE 0.041 0.034 0.053 0.043 0.074

IPW MEL EST 0.259 0.665 −0.127 −0.117 −0.479
SE 0.045 0.042 0.047 0.056 0.0604

GMME EST 0.233 0.626 −0.112 −0.113 −0.468
SE 0.042 0.038 0.054 0.046 0.059

AIPW MEL EST 0.246 0.696 −0.141 −0.102 −0.534
SE 0.045 0.039 0.042 0.045 0.050

GMME EST 0.306 0.793 −0.145 −0.125 −0.646
SE 0.043 0.039 0.051 0.049 0.045

Note. AIPW = augmented inverse probability weighted; EEP = estimating equation projection;
EST= parameter estimator; GMME = efficient generalized method of moments; IPW= inverse
probability weighted; MEL = maximum empirical likelihood; SE = standard error.

illustration is based on the following attributes: Z1 (= prereception literacy score), Z2 (= gender:
1=male, 0= female), Z3 (= eligibility for free school meals: 1= yes, 0=no), and Z4 (= term of
school entry: 1= spring or summer term, 0= autumn term). The dependent variable of the study
is Y (= postreception literacy score). Observations of all variables are complete except for Z1, for
which only 649 observations (or 64.9% of data) are available.

We examine the correlation between the missing indicator and the covariates for which the
data are complete. It is found that all variables except Z4 are correlated with the missing indi-
cator. Hence, it seems reasonable to assume the dependence of the propensity function P(.) on
(Y,Z2,Z3). When analyzing the dependency of Y on the attributes, we utilize both linear mean and
median regressions. From these imputed EEs, we obtain the least squares residuals; while using
the medians of these residuals, we can obtain the moment conditions of the median regression.
Hence, the imputed median regression EEs are based on (5) and (7).

We adopt the Gaussian kernel K(u, v, t) = exp(−u2∕2) exp(−v2∕2) exp(−t2∕2)∕(2𝜋)3∕2 with
bandwidth h = 1.06𝜎̂n−1∕3 for estimating P(Y,X2,X3) and K(u, v, t, s) = exp(−u2∕2) exp(−v2∕2)
exp(−t2∕2) exp(−s2∕2)∕(2𝜋)2 with h = 1.06𝜎̂n−1∕3 for estimating E[g(Y,Z,𝜽)|Y,Z2,Z3,Z4], where
𝜎̂ is the standard deviation of [Y T ,ZT

2 ,ZT
3 ,ZT

4 ]
T .

The results are summarized in Table 3, where EST denotes the parameter estimator and SE
denotes the standard error. From the Table, we observe that there is no significant discrepancy
in results across the two imputed EE procedures and across the two methods of estimation. The
estimation results indicate that the prereception literacy score has a positive association with the
postreception score. There is a slight gender difference in favor of girls, a moderate disadvan-
tage to those eligible for free school meals and a strong advantage to those entering school in the
autumn term. Qualitatively, these conclusions are the same as those obtained by Carpenter and
Kenward (2005). All the four covariates are significant here. On the whole, the GMME estimators
are more efficient than the MEL estimators.

7 CONCLUDING REMARKS

GMM and EL are routinely used for combining sample and auxiliary information. When sample
data are completely observed and the moment conditions are correct, it is a well-established result
that the GMME and MEL estimators are asymptotically equivalent as well as semiparametric
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efficient. This paper shows that this finding need not hold true when the data sample is incom-
plete. We have shown that of the IPW, AIPW, and EEP missing-data handling methods, only the
AIPW method yields a MEL estimator that is semiparametric efficient, whereas the GMME esti-
mators obtained under all three methods are semiparametric efficient. Our theoretical analysis
demonstrates that the MEL estimator has the same asymptotic efficiency as the GMME estimator
if and only if the second moment of the EF vector is identical to the asymptotic covariance of the
EF. Of the situations we have considered, this arises either when no data are missing from the
sample or the AIPW method is used as the missing-data handling procedure. This same condition
also determines if the ELLR and PELLR test statistics follow a central Chi-square asymptotic dis-
tribution. We have also shown that the nonparametric GMME and MEL estimators are generally
more efficient than their parametric counterparts. All our results are derived without assuming
smoothness in the underlying EFs. We consider the relaxation of the smoothness assumption a
significant theoretical advance.

The missing-data scenario considered in this paper is restricted to MAR. Studies by
Hemvanich (2007) and Tang, Zhao, and Zhu (2014) have considered GMM and EL inference in
EFs with nonignorably missing response data. Thorough comparisons of the two approaches as
well as the development of an efficiency bound analogous to that derived by Chen et al. (2008)
under a nonignorable missing-data situation are yet to be considered. These remain for future
research.
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APPENDIX

For simplicity, we apply the same kernel function to m(x,𝜽) and P(x), that is, we set K (i)(.) = K(.)
and K̄(i) = K̄(.), i = 1, 2, … , l. We also assume that K(.) and K̄(.) are symmetric probability density
functions, and when n → ∞, all bandwidths hi's and h̄i's approach 0 in the same order as h and
h̄, that is, hi = O(h) and hi = O(h̄), i = 1, 2, … , l. Write a⊗2 = aaT , 𝜇k = ∫ ukK(u)du, and
𝜇̄k = ∫ ukK̄(u)du, and let 𝜇0 = 1, 𝜇̄0 = 1, 𝜇2 = 1, and 𝜇̄2 = 1. Now, Let f(x) be the probability
density function of X, with f(x) being bounded away from 0 and infinite in the support of X.
Denote r(x) = f (x)P(x). We further assume that the order of integration and differentiation can
be exchanged, V1,𝚺( = V2) and V3 are positive definite, and the parameter space Θ is compact.
The following technical conditions are required for our proofs of results.
(C1) f (x) and P(x) have bounded partial derivatives with respect to x up to an order b with b ≥

2, 2b > d, infxr(x) ≥ c0, and infxP(x) ≥ c̃0, where c0 and c̃0 are arbitrarily small constants.
(Ck

2) m(x,𝜽) have bounded partial derivatives with respect to x up to an order b, and||𝜕m(x,𝜽)∕𝜕𝜽||, ||𝜕2m(x,𝜽)∕𝜕𝜽𝜕𝜽T||, and ||g̃k (.)||3 can be bounded by some integrable
function M(x) in a neighborhood of 𝜽0, k = 1, 2, 3.

(C3) E{[1 − P(X)][∇xm(X ,𝜽0)∕r(X)]2} < ∞, where ∇xm(x,𝜽) = 𝜕m(x,𝜽)
𝜕x

, E[𝚺g(X)∕P(X)] < ∞,
E[g(Y,Z,𝜽)]⊗2 < ∞, and E[m(X,𝜽)]⊗2 < ∞.

(C1
4) K(.) is a kernel function with compact support and order b and satisfies the Lipschitz

condition; h = hn → 0,nh2d → ∞, nh2b → 0, and nhd∕ log n → ∞ as n → ∞.
(C2

4) K(.) and K̄(.) are kernel functions with compact support and order b and satisfy the Lipschitz
condition; h → 0,nh2d → ∞, nh2b → 0,nhd∕ log n → ∞, h̄ = h̄n → 0,nh̄2d → ∞, nh̄2b → 0,
and nh̄d∕ log n → ∞ as n → ∞.

(C3
4) K̄(.) is a kernel function with compact support and order b and satisfies the Lipschitz

condition; h̄ = h̄n → 0,nh̄2d → ∞, nh̄2b → 0, and nh̄d∕ log n → ∞ as n → ∞.
(Ck

5) The class of functions {g̃k (Y ,Z,𝜽),𝜽 ∈ Θ} is a Donsker class, k = 1, 2, 3.
(Ck

6) sup𝜽|n−1∑n
i=1[g̃k (Yi,Zi,𝜽) − Eg̃k (Y ,Z,𝜽) − g̃k (Yi,Zi,𝜽0)]| = op(n−1∕2) uniformly in 𝜽

for 𝜽 − 𝜽0 = Op(n−1/2), k = 1, 2, 3.
(Ck

7) E[g̃k (Y ,Z,𝜽)⊗2 ∣ X] is continuous in a neighborhood of 𝜽0, k = 1, 2, 3.
Similar conditions have been used in other studies. For instance, conditions (C1) are simi-

lar to, but slightly stronger than, conditions (A1) and (A2) of Zhou et al. (2008), condition C1 of
Wang and Chen (2009), and condition (C1) of Xue (2009). Conditions (Ck

2) and (C7) are gener-
alizations of condition (C1) of Lopez et al. (2009) to missing-data situations. Unlike the work
of Lopez et al. (2009), where smoothness conditions are required for Eg(X, 𝜇0, 𝜈), we require a
smoothness condition for m(x,𝜽) = E{g(Y ,Z,𝜽) ∣ X = x} as our EFs are imputed. Moreover,
(Ck

2) is similar to condition (A5) of Zhou et al. (2008) and conditions C2 and C3 of Wang and
Chen (2009). Condition (C3) guarantees a finite variance for the estimator, and (C4) is common
in the nonparametric literature.

Conditions (Ck
5) and (Ck

6) are common when the criterion functions are nonsmooth in the
unknown parameters, and they ensure the consistency and asymptotic normality of estima-
tors. By parts (i) and (v) of corollary 9.32 in the work of Kosorok (2008) (Donsker preservation
results), (Ck

5) is satisfied if {g(Y,Z,𝜽),𝜽 ∈ Θ} and {m(X,𝜽),𝜽 ∈ Θ} are uniformly bounded
Donsker classes because |𝛿| ≤ 1 and |1∕P(x)| ≤ 1∕c̃0 are uniformly bounded. Condition
(Ck

6) is satisfied if {g̃k (Y ,Z,𝜽),𝜽 ∈ Θ} is a Donsker class and g̃k (Y ,Z,𝜽) is L2 continuous
in 𝜽0 (see Lemma 3.3.5 of Van der Vaart & Wellner, 1996). A class of measurable func-
tions  is a Donsker class if its bracketing integral J[ ](∞, ,L2(P)) or its uniform entropy integral
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J(1, ,L2(P)) is finite, where J[ ](𝛿, ,Lr(P)) = ∫ 𝛿

0 [log N[ ](𝜖, ,Lr(P))]
1
2 d𝜖, and J(𝛿, ,Lr(P)) =

∫ 𝛿

0 [log supP N(𝜖||F||P,r, ,Lr(P))]
1
2 d𝜖, with the bracketing number N[ ](𝜖, ,Lr(P)) being the mini-

mum number of 𝜖- brackets in Lr(P) that guarantees every𝑓 ∈  lies in at least one bracket and the
covering number N(𝜖||F||P,r, ,Lr(P)) being the minimum number of Lr(P)𝜖-ball that covers  .
Note that many common function classes are of the Donsker class; for example, the class consists
of all indicator functions with the form ft = I(∞,t], the Lipschitz continuous function class defined
on compact support; the smooth function class { f ∶ f (.,𝜽) ∈ R,𝜽 ∈ Θ, |𝜕𝜈f (𝜽)∕𝜕𝜽𝜈| ≤ M0} for
Θ ∈ Rq being compact and 𝜈 > q∕2. Other examples of the Donsker class include the monotonic
function, bounded variation function, and the Sobolev classes. Among these examples, the indi-
cator Donsker class is most important for nonsmooth EE inference because most nonsmooth EEs
are made up of indicator functions. More details can be found in the works of Van der Vaart (1998)
and Kosorok (2008).

For certain special cases, some of the conditions given above are stronger than necessary.
We provide the stronger conditions only for the purpose of unifying the theoretical analysis for all
cases. For example, GMM generally requires weaker conditions than EL because the GMM objec-
tive function is a quadratic function with desirable properties that EL does not possess. If one is
only interested in GMM inference, then (Ck

5) can be replaced by the following weaker condition
(C̃k

5): n−1 ∑n
i=1[gk (Yi,Zi,𝜽) − Egk (Y ,Z,𝜽)] = Op(n−1∕2) uniformly in 𝜽 in a neighborhood of

𝜽0 and sup𝜽∈Θ|n−1 ∑n
i=1 gk (Yi,Zi,𝜽) − Egk (Y ,Z,𝜽)| = op(1). Also, the conditions required for

ĝ2 are necessarily stronger than those for ĝ1 due to the inclusion of 1∕P̂(X) in ĝ2 . If inter-
est focuses only on ĝ1 , then g̃1 (Y ,Z,𝜽) in conditions (C1

6) − (C1
7) can be replaced by g(Y,Z,𝜽),

and the resultant conditions also guarantee our main results for k = 1. In addition, for GMM
inference based on ĝ1 , g̃1 (.) in (C̃1

5) can be replaced by g(.).
It is worth mentioning that we do not assume the consistency of the MEL estimators; instead,

we prove the consistency based on the conditions stated in the paper. We also do not require the
EFs to be uniformly bounded. Again, unlike the second part of condition (C1) of Lopez et al.
(2009), we do not make assumptions on 𝜻k(𝜽) defined in (A9) to be continuously differentiable in
a neighborhood of 𝜽0, but we derive its differential property instead. This property is then used
to guarantee the smoothness property of the expectation of the ELLR. The latter property is cru-
cial for our present analysis concerning nonsmooth EEs. It is instructive to note that 𝜻k(𝜽), in
fact, plays a similar role to that of 𝝀k, k = 1, 2; for example, while 𝝀k satisfies (8), 𝜻k(𝜽) satisfies
its expectation (A9), and from (A11) and (A12), 𝜻k(𝜽) may be viewed as the limit of 𝝀k. Our con-
ditions are introduced primarily to handle the nonsmooth characteristics of the EFs, and these
conditions generally also hold for smooth EFs. Naturally, for the latter case, the conditions of
Zhou et al. (2008) are also applicable.

Before proving the main results, we present the following three corollaries of Theorem 5.

Corollary 3. Consider the adjustment factor

𝜌̂2k(𝜽0) =
[


T
kn V̂−1

k 𝚪̂
(
𝚪̂TV̂−1

k 𝚪̂
)−1

𝚪̂TV̂−1
k kn

)]−1 [


T
kn𝚺̂

−1𝚪̂
(
𝚪̂T𝚺̂−1𝚪̂

)−1
𝚪̂T𝚺̂−1

kn

]
.

Under the conditions of Theorem 5, Rk(𝜽0)𝜌̂2k(𝜽0)
D
−→𝜒2

q , k = 1, 2.

By Corollary 3, an adjustment factor, similar to that used on k(𝜽0), k = 1, 3, can be applied
to Rk(𝜽0), k = 1, 3, so that the resultant adjusted statistic converges to a Chi-square distribution.

When only a subset of 𝜽 is of interest, a profile likelihood approach may be used for con-
ducting hypothesis tests. Write 𝜽 = (𝜽T

A,𝜽
T
B)T , with 𝜽A and 𝜽B being q1 × 1 and (q − q1) × 1



CHEN ET AL. Scandinavian Journal of Statistics 379

dimensional vectors, respectively. We assume that only 𝜽A is of interest and 𝜽B is a vector of nui-
sance parameters. Denote 𝚪2 = ∇𝜽B E{g(Y ,Z,𝜽0)}. The PELLR test statistic for testing H∗

0 ∶ 𝜽A =
𝜽0A is defined as

Rk
(
𝜽0A, 𝜽̂keB(𝜽0A)

)
= 2𝓁k

(
𝜽0A, 𝜽̂keB(𝜽0A)

)
− 2𝓁k

(
𝜽̂ke

)
,

where 𝜽̂keB is the maximizer of Lk(𝜽) subject to the constraint 𝜽A = 𝜽0A, k = 1, 2, 3. The asymp-
totic distribution of this PELLR test statistic is given in the following corollary.

Corollary 4. Assume that the conditions of Theorem 5 are satisfied. Then, under H∗
0 , we have

R1
(
𝜽0A, 𝜽̂1eB(𝜽0A)

) D
−→ 𝜎̄1𝜔

2
1 + · · · + 𝜎̄q1𝜔

2
q1
, R2

(
𝜽0A, 𝜽̂2eB(𝜽0A)

) D
−→𝜒2

q1
, (A1)

and

R3
(
𝜽0A, 𝜽̂3eB(𝜽0A)

) D
−→ 𝜚̄1𝜔

2
1 + · · · + 𝜚̄q1𝜔

2
q1
, (A2)

where 𝜔2
i 's, i = 1, … , q1, are Chi-square random variables, each with one degree of freedom,

and distributed independently of one another, and the weights 𝜎̄i's and 𝜚̄i's, i = 1, … , q1, are
eigenvalues of 𝚺

1
2 V−1

k [𝚪(𝚪TV−1
k 𝚪)−1𝚪T − 𝚪2(𝚪T

2 V−1
k 𝚪2)−1𝚪T

2 ]V
−1
k 𝚺

1
2 for k = 1, 3, respectively.

An adjusted version of Rk(𝜽0A, 𝜽̂1eB(𝜽0A)), k = 1, 3 that converges to an asymptotic Chi-square
distribution is provided in the following corollary.

Corollary 5. Let 𝜌̂3k(𝜽0A, 𝜽̂keB(𝜽0A)) = {T
knV̂−1

k [𝚪̂(𝚪̂TV̂−1
k 𝚪̂)−1𝚪̂T − 𝚪̂2(𝚪̂T

2 V−1
k 𝚪̂2)−1 𝚪̂T

2 ]V̂
−1
k

kn)}−1 {T
kn𝚺̂−1[𝚪̂ × (𝚪̂T𝚺̂−1𝚪̂)−1𝚪̂T − 𝚪̂2(𝚪̂T

2 𝚺̂
−1𝚪̂2)−1𝚪̂T

2 ]𝚺̂
−1kn)}. Under the conditions of

Theorem 5, we have

Rk
(
𝜽0A, 𝜽̂keB(𝜽0A)

)
𝜌̂3k

(
𝜽0A, 𝜽̂keB(𝜽0A)

) D
−→𝜒2

q1
, k = 1, 3. (A3)

Now, we prove the main results. In the interest of brevity, we will prove our main results when
X is a scalar and K(.) and K̄(.) are kernel functions with order 2. The extension from the univariate
to the multivariate case is reasonably straightforward.

Lemma 1. Suppose that f(x) and E{𝜙(X,U) ∣ X = x} are continuous and twice differentiable
at x and E|𝜙(X,U)|2 < ∞. Then, as n → ∞, we have

sup
x∈

||||| 1
nh

n∑
i=1

K
(

Xi − x
h

)(
Xi − x

h

)k

𝜙(Xi,Ui) − 𝑓 (x)E(𝜙(X ,U ) ∣ X = x)𝜇k

+ h∇x [𝑓 (x)E(𝜙(X ,U) |X = x)]𝜇k+1

||||| = O(𝛿n) a.s.,

where  is the support of X, ∇x denotes the first-order derivative with respect to x, and 𝛿n =
h2 + ( log h−1

nh
)1∕2.

Proof. This lemma is similar to Lemma A.1 in the work of Zhou et al. (2008).

Lemma 2. For k = 1, 2, 3, assume that conditions (Ck
1) − (Ck

2), (C3), and (Ck
4) are satisfied,

that is,
1√
n

n∑
i=1

ĝk (Yi,Zi,𝜽0)
D
−→N(0,𝚺).
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Proof. The proof of this lemma is the same as that of Lemmas 8, 9, and 7 in the work of
Chen et al. (2015) when k = 1, 2, 3, respectively. We omit it here for brevity.

Lemma 3. Assume that conditions (Ck
1) − (Ck

2), (C3) and (Ck
4) − (Ck

7) are satisfied. Then, for
k = 1, 2, we have

1
n

n∑
i=1

ĝk (Yi,Zi,𝜽)ĝT
k

(Yi,Zi,𝜽)
P

−→Vk(𝜽).

Proof. The proof of this lemma is similar to that of Lemma A.6 of in the work of Zhou et al.
(2008), and we omit the details here.

Lemma 4. Define

Qk0(𝜽) =∶ −(Eg(Y ,Z,𝜽))TWknEg(Y ,Z,𝜽) = −
[
Eg̃k (Y ,Z,𝜽)

]TWknEg̃k (Y ,Z,𝜽).

Assume that condition (Ck
2) holds. Then, there exists a neighborhood  of 𝜽0 and a constant

K1 > 0 such that Qk0(𝜽) ≤ −K1||𝜽 − 𝜽0||2 for all 𝜽 ∈  and k = 1, 2, 3, where ||.|| is the
Euclidean norm.

Proof. By a Taylor series expansion of Em(X,𝜽) about 𝜽 = 𝜽0, we have

Qk0(𝜽) = −[Em(X,𝜽)]TWkn [Em(X,𝜽)]

= −{𝚪(𝜽 − 𝜽0) + o(𝜽 − 𝜽0)}TWkn {𝚪(𝜽 − 𝜽0) + o(𝜽 − 𝜽0)} .

Note that −[𝚪(𝜽 − 𝜽0)]TWkn[𝚪(𝜽 − 𝜽0)] ≤ −K1||𝜽 − 𝜽0||2, where K1 is the smallest eigenvalue
of the matrix 𝚪TWkn𝚪. This completes the proof of Lemma 4.

Lemma 5. For k = 1, 2, 3, define Q̂kn(𝜽) =∶ −̂kn(𝜽) and

Qkn(𝜽) =∶ −

{
1
n

n∑
i=1

g̃k (Yi,Zi,𝜽)

}T

Wkn

{
1
n

n∑
i=1

g̃k (Yi,Zi,𝜽)

}
.

Under conditions (Ck
2), (C

k
4), and (Ck

5), we have

Q̂kn(𝜽) = Qk0(𝜽) + Op
(

n−1∕2||𝜽 − 𝜽0||) + op
(||𝜽 − 𝜽0||2) + Op(n−1), k = 1, 3 and

Q̂2n(𝜽) = Q20(𝜽) + Op
(

n−1∕2||𝜽 − 𝜽0||) + op
(||𝜽 − 𝜽0||2) + op(n−1)

uniformly in 𝜽, for 𝜽 − 𝜽0 = op(1).

Proof. By Lemmas 3-6 in the work of Chen et al. (2015), we know that

1
n

n∑
i=1

[
g̃k (Yi,Zi,𝜽) − ĝk (Yi,Zi,𝜽)

]
= Op(n−1∕2), k = 1, 3, (A4)

and
1
n

n∑
i=1

[
g̃2 (Yi,Zi,𝜽) − ĝ2 (Yi,Zi,𝜽)

]
= op(n−1∕2). (A5)
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Thus, for k = 1, 2, 3, we have

Q̂kn(𝜽) − Qkn(𝜽)

=

{
1
n

n∑
i=1

[
g̃k (Yi,Zi,𝜽) − ĝk (Yi,Zi,𝜽)

]}T

Wkn

{
1
n

n∑
i=1

[
g̃k (Yi,Zi,𝜽) − ĝk (Yi,Zi,𝜽)

]}

+ 2

{
1
n

n∑
i=1

[
g̃k (Yi,Zi,𝜽) − ĝk (Yi,Zi,𝜽)

]}T

Wkn

{
1
n

n∑
i=1

ĝk (Yi,Zi,𝜽)

}
.

Hence, Q̂kn(𝜽)−Qkn(𝜽) = Op(n−1) for k = 1, 3 and Q̂2n(𝜽)−Q2n(𝜽) = op(n−1). By (Ck
5), we have

Qkn(𝜽) − Qk0(𝜽)

= −

{
1
n

n∑
i=1

g̃k (Yi,Zi,𝜽) − Eg̃k (Y ,Z,𝜽)

}T

Wkn

{
1
n

n∑
i=1

g̃k (Yi,Zi,𝜽) − Eg̃k (Y ,Z,𝜽)

}

− 2(Eg̃k (Y ,Z,𝜽))TWkn

{
1
n

n∑
i=1

g̃k (Yi,Zi,𝜽) − Eg̃k (Y ,Z,𝜽)

}
= Op(n−1) − 2E

[
∇𝜽m(X ,𝜽0)(𝜽 − 𝜽0) + O

(||𝜽 − 𝜽0||2)]Op(n−1∕2)

= Op(n−1) + Op
(

n−1∕2||𝜽 − 𝜽0||) + op
(||𝜽 − 𝜽0||2) , k = 1, 3.

Similarly, we can show that Q2n(𝜽) − Q20(𝜽) = op(n−1) + Op(n−1∕2||𝜽 − 𝜽0||) + op(||𝜽 − 𝜽0||2).
These imply

Q̂kn(𝜽) = Q10(𝜽) + Op
(

n−1∕2||𝜽 − 𝜽0||) + Op(n−1) + op
(||𝜽 − 𝜽0||2) , k = 1, 3 and

Q̂2n(𝜽) = Q20(𝜽) + Op
(

n−1∕2||𝜽 − 𝜽0||) + op(n−1) + op
(||𝜽 − 𝜽0||2)

uniformly in 𝜽, for 𝜽 − 𝜽0 = o(1). This completes the proof of Lemma 5.

Proof of Theorem 1. Note that sup𝜽∈Θ| 1
n

n∑
i=1

{ĝk (Yi,Zi,𝜽) − g̃k (Yi,Zi,𝜽)}| = op(1), for k =

1, 2, 3. Hence, we have

sup
𝜽∈Θ

|||Q̂kn(𝜽) − Qkn(𝜽)
|||

≤ sup
𝜽∈Θ

||||| 1
n

n∑
i=1

{
ĝk (Yi,Zi,𝜽) − g̃k (Yi,Zi,𝜽)

}T
|||||Wkn sup

𝜽∈Θ

||||| 1
n

n∑
i=1

{
ĝk (Yi,Zi,𝜽) − g̃k (Yi,Zi,𝜽)

}|||||
+ 2 sup

𝜽∈Θ

||||| 1
n

n∑
i=1

{
ĝk (Yi,Zi,𝜽) − g̃k (Yi,Zi,𝜽)

}T
|||||Wkn sup

𝜽∈Θ

||||| 1
n

n∑
i=1

g̃k (Yi,Zi,𝜽)
|||||

= op(1).
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On the other hand, by (Ck
5), we have

sup
𝜽∈Θ

|Qkn(𝜽) − Qk0(𝜽)|
≤ sup

𝜽∈Θ

||||| 1
n

n∑
i=1

{
g̃k (Yi,Zi,𝜽) − Eg̃(Y ,Z,𝜽)

}T
|||||Wkn sup

𝜽∈Θ

||||| 1
n

n∑
i=1

g̃k (Yi,Zi,𝜽) − Eg̃k (Y ,Z,𝜽)
|||||

+ sup
𝜽∈Θ

2 ||(Eg̃k (Y ,Z,𝜽))T||Wkn sup
𝜽∈Θ

||||| 1
n

n∑
i=1

g̃k (Yi,Zi,𝜽) − Eg̃k (Y ,Z,𝜽)
|||||

= op(1).

This leads to sup𝜽∈Θ |Q̂kn(𝜽) − Qk0(𝜽)| = op(1). By (Ck
2), we see that Qk0(𝜽) is continuous in 𝜽.

Using these results and Theorem 2.1 in the work of Newey and McFadden (1994), we can
establish the consistency of the GMM estimator 𝜽̂k.

Proof of Theorem 2. By Lemmas 4 and 5, the conditions of Theorem 1 in the work of Sherman
(1993) can be shown to hold. Applying methods similar to the Proof of Theorem 1 of Sherman
(1993), we can show that |𝜽̂k − 𝜽0| = Op(n−1∕2), k = 1, 2, 3. Hence, we focus on the Op(n−1/2)
neighborhood of 𝜽0. Note that, for k = 1, 2, 3, we have

Q̂kn(𝜽) = −

{[
1
n

n∑
i=1

ĝk (Yi,Zi,𝜽) − Eg̃k (Y ,Z,𝜽) − 1
n

n∑
i=1

ĝk (Yi,Zi,𝜽0)

]

+

[
Eg̃k (Y ,Z,𝜽) + 1

n

n∑
i=1

ĝk (Yi,Zi,𝜽0)

]}T

Wkn

×

{[
1
n

n∑
i=1

ĝk (Yi,Zi,𝜽) − Eg̃k (Y ,Z,𝜽) − 1
n

n∑
i=1

ĝk (Yi,Zi,𝜽0)

]

+

[
Eg̃k (Y ,Z,𝜽) + 1

n

n∑
i=1

ĝk (Yi,Zi,𝜽0)

]}
=∶ −

{
DT

k1WknDk1 + 2DT
k2WknDk1 + DT

k2WknDk2
}
,

where Dk1 = n−1 ∑n
i=1 ĝk (Yi,Zi,𝜽) − Eg̃k (Y ,Z,𝜽) − n−1 ∑n

i=1 ĝk (Yi,Zi,𝜽0) and Dk2 =
Eg̃k (Y ,Z,𝜽) + n−1 ∑n

i=1 ĝk (Yi,Zi,𝜽0).
Applying Lemma 1 and (Ck

6) and noting that nh4 → 0,
√

nh2 → 0, nh̄4 → 0,
√

nh̄2 → 0,
and Eg̃k (Y ,Z,𝜽) = Eg(Y ,Z,𝜽), we can show that

Dk1 = 1
n

n∑
i=1

g̃k (Yi,Zi,𝜽) − Eg̃k (Y ,Z,𝜽) − 1
n

n∑
i=1

g̃k (Yi,Zi,𝜽0) + O(h2) = op(n−1∕2).

Then, we have DT
k1WknDk1 = op(n−1), and

DT
k2WknDk1 =

[
Em(X,𝜽) + 1

n

n∑
i=1

ĝk (Yi,Zi,𝜽0)

]T

Wkn
[
op(n−1∕2)

]
=
[
𝚪(𝜽 − 𝜽0) + o(n−1∕2) + Op(n−1∕2)

]TWkn
[
op(n−1∕2)

]
= op(n−1).
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Also, for k = 1, 2, 3, we have

DT
k2WknD2k =

[
Em(X,𝜽) + 1

n

n∑
i=1

ĝk (Yi,Zi,𝜽0)

]T

Wkn

[
Em(X,𝜽) + 1

n

n∑
i=1

ĝk (Yi,Zi,𝜽0)

]

=

[
𝚪(𝜽 − 𝜽0) +

1
n

n∑
i=1

ĝk (Yi,Zi,𝜽0) + o
(

n− 1
2

)]T

Wkn

[
𝚪(𝜽 − 𝜽0) +

1
n

n∑
i=1

ĝk (Yi,Zi,𝜽0) + o
(

n− 1
2

)]
.

Hence, for k = 1, 2, 3, we obtain

Q̂kn(𝜽) = −

[
𝚪(𝜽 − 𝜽0) +

1
n

n∑
i=1

ĝk (Yi,Zi,𝜽0)

]T

Wkn

[
𝚪(𝜽 − 𝜽0) +

1
n

n∑
i=1

ĝk (Yi,Zi,𝜽0)

]
+ op(n−1).

As expected, 𝜽̂k = arg max𝜽∈ΘQ̂kn(𝜽) satisfies

Wkn

[
𝚪(𝜽̂k − 𝜽0) +

1
n

n∑
i=1

ĝk (Yi,Zi,𝜽0)

]
+ op(n−1∕2) = 0,

which implies(
𝜽̂k − 𝜽0

)
= −

(
𝚪TWkn𝚪

)−1𝚪TWkn
1
n

n∑
i=1

ĝk (Yi,Zi,𝜽0) + op(n−1∕2). (A6)

Using Lemma 2, we have√
n
(
𝜽̂k − 𝜽0

) D
−→N

(
0,
(
𝚪TWkn𝚪

)−1𝚪TWkn𝚺Wkn𝚪
(
𝚪TWkn𝚪

)−1
)
,

for k = 1, 2, 3. This completes the proof of Theorem 2.

Proof of Corollary 1. The proof of Corollary 1 can be obtained directly from the proof of
Theorem 2.

We now prove the results pertaining to the properties of the MEL estimator. Define

Ĝkn(𝜽) =∶ − 1
n

n∑
i=1

log
(
1 + 𝝀T

k ĝk (Yi,Zi,𝜽)
)

(A7)

and
Gk0(𝜽) =∶ −E

{
log

(
1 + 𝜻T

k g̃k (Y ,Z,𝜽)
)}

, (A8)
where 𝝀k satisfies (8) and 𝜻k satisfies

E
{ g̃k (Y ,X ,𝜽)

1 + 𝜻k(𝜽)g̃k (Y ,X ,𝜽)

}
= 0, (A9)

for k = 1, 2, 3.

Lemma 6. Assume that (Ck
2), (C3), (Ck

4), and (Ck
5) hold. Then, for 𝜽 ∈ Θ, we have

𝝀k(𝜽) = Op(n−1∕2) and 𝜻k(𝜽) = O(n−1∕2), (A10)
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𝝀k(𝜽) = V−1
k (𝜽) 1

n

n∑
i=1

ĝk (Yi,Zi,𝜽) + op(n−1∕2), (A11)

and
𝜻k(𝜽) = V−1

k (𝜽)Eg̃k (Y ,Z,𝜽) + o(n−1∕2), (A12)
for k = 1, 2, 3.

Proof. The proof may be constructed by following the proof of Theorem 3.2 in the work of
Owen (2001) and combining Lemma 3 of Owen (1990) with conditions (Ck

2), (C3), (Ck
4), and

(Ck
5), and the uniform integrability of g̃k (Y ,Z,𝜽). The uniform integrability property can be

easily shown by noting the existence of the second moment of g̃k (Y ,Z,𝜽) (see condition
(C3)).

Lemma 7. Under conditions (Ck
2), (C3), (Ck

5), (C
k
7), and (Ck

8), 𝜽̂ke = arg max𝜽Ĝkn(𝜽) and 𝜽0 =
arg max𝜽Gk0(𝜽), for k = 1, 2, and 3.

Proof. By Lemma 6, we know that 𝜻k(𝜽) is continuous in 𝜽 and 𝜻k(𝜽0) = 0. The proof of the
remaining part of this lemma is similar to that of Lemma 1 in the work of Lopez et al. (2009).

Lemma 8. Assume that (Ck
2), (C3), (Ck

4)−(Ck
5), and (Ck

7) hold. Then, there exists a neighborhood
 of 𝜽0 and a constant Kk2 > 0 such that for all 𝜽 ∈  , Gk0(𝜽) ≤ −Kk2||𝜽− 𝜽0||2, k = 1, 2, 3.

Proof. From Lemma 6, we have 𝜻k(𝜽) = O(n−1/2) in a neighborhood  of 𝜽0. By Lemma 11.2
in the work of Owen (2001), we have |𝜻k(𝜽)T g̃k (Y ,Z,𝜽)| = op(1). Along the lines of the proof
of Lemma 3 in the work of Lopez et al. (2009), we have Gk0(𝜽) ≤ −Kk2||𝜽 − 𝜽0||2, where Kk2
is the smallest eigenvalue of 𝚪TVk(𝜽)−1𝚪.

Lemma 9. Assume that (Ck
2), (C3), (Ck

4), and (Ck
5) hold. Then, we have

Ĝkn(𝜽) = G10(𝜽) + Op
(

n−1∕2||𝜽 − 𝜽0||) + op
(||𝜽 − 𝜽0||2) + Op(n−1), k = 1, 3 and

Ĝ2n(𝜽) = G20(𝜽) + Op
(

n−1∕2||𝜽 − 𝜽0||) + op
(||𝜽 − 𝜽0||2) + op(n−1)

uniformly in 𝜽, with 𝜽 − 𝜽0 = op(1).

Proof. Note that, for k = 1, 2, 3, we have

Ĝkn(𝜽) − Gk0(𝜽) = −

{
1
n

n∑
i=1

[
log

(
1 + 𝝀T

k ĝk (Yi,Zi,𝜽)
)
− log

(
1 + 𝜻T

k g̃k (Yi,Zi,𝜽)
)]}

−

{
1
n

n∑
i=1

log
(
1 + 𝜻T

k g̃k (Yi,Zi,𝜽)
)
− E

(
log

(
1 + 𝜻T

k g̃k (Y ,Z,𝜽)
))}

=∶ Ik6 + Ik7.

We can write

Ik6 = −

{
1
n

n∑
i=1

[
log

(
1 + 𝝀T

k ĝk (Yi,Zi,𝜽)
)
− log

(
1 + 𝜻T

k ĝk (Yi,Zi,𝜽)
)]}

−

{
1
n

n∑
i=1

[
log

(
1 + 𝜻T

k ĝk (Yi,Zi,𝜽)
)
− log

(
1 + 𝜻T

k g̃k (Yi,Zi,𝜽)
)]}

= Ik61 + Ik62.
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Also, we obtain

Ik61 = − 1
n

n∑
i=1

{(𝝀k − 𝜻k)T ĝk (Yi,Zi,𝜽)
1 + 𝜻T

k ĝk(Yi,Zi,𝜽)
+ 1

2

[
(𝝀k − 𝜻k)T ĝk (Yi,Zi,𝜽)

]2(
1 + 𝜼T

k1ĝk (Yi,Zi,𝜽)
)2 },

where 𝜼k1 lies between 𝝀k and 𝜻k, for k = 1, 2, 3. By Lemma 11.2 of Owen (2001), we have
max1≤i≤n|𝜻T

k ĝk (Yi,Zi,𝜽)| = op(1) and max1≤i≤n|𝜼T
k1ĝk (Yi,Zi,𝜽)| = op(1). By Lemmas 3

and 6, Ik61 = Op(n−1). Similarly, we have

Ik62 = − 1
n

n∑
i=1

{
𝜻T

k
(
ĝk (Yi,Zi,𝜽) − g̃k (Yi,Zi,𝜽)

)
1 + 𝜻T

k g̃k(Yi,Zi,𝜽)

+1
2

[
𝜻T

k
(
ĝk (Yi,Zi,𝜽) − g̃k (Yi,Zi,𝜽)

)]2
)

(
1 + 𝜼T

k2g̃k (Yi,Zi,𝜽)
)2

⎫⎪⎬⎪⎭ ,

where 𝜼k2 lies between 0 and 𝜻k, k = 1, 2, 3. Note that 1
n

∑n
i=1[g̃k (Yi,Zi,𝜽)− ĝk (Yi,Zi,𝜽)] =

Op(n−1∕2), k = 1, 3 and 1
n

∑n
i=1[g̃2 (Yi,Zi,𝜽) − ĝ2 (Yi,Zi,𝜽)] = op(n−1∕2). Thus, we obtain

Ik62 = Op(n−1), k = 1, 3 and I262 = op(n−1), respectively. Now, write

Ik7 = −
⎧⎪⎨⎪⎩

1
n

n∑
i=1

[
𝜻T

k g̃k (Yi,Zi,𝜽) − E
(
𝜻T

k g̃k (Y ,Z,𝜽)
)]

− 1
2n

n∑
i=1

[(
𝜻T

k g̃k (Yi,Zi,𝜽)
)2 − E

(
𝜻T

k g̃k (Y ,Z,𝜽)
)2
]

+ 1
3n

n∑
i=1

⎡⎢⎢⎣
(
𝜻T

k g̃k (Yi,Zi,𝜽)
)3(

1 + 𝜼T
3kg̃k (Yi,Zi,𝜽)

)3 − E
⎛⎜⎜⎝

(
𝜻T

k g̃k (Y ,Z,𝜽)
)3(

1 + 𝜼T
3kg̃k (Y ,Z,𝜽)

)3

⎞⎟⎟⎠
⎤⎥⎥⎦
⎫⎪⎬⎪⎭

=∶ Ik71 + Ik72 + Ik73,

where 𝜼k3 lies between 0 and 𝜻k, k = 1, 2, 3.
By Lemma 7 and (Ck

2), (C
k
5), and (Ck

8), we have

Ik71 =
[
V−1

k 𝚪(𝜽 − 𝜽0) + O
(||𝜽 − 𝜽0||2) + op(n−1∕2)

]T
[

1
n

n∑
i=1

g̃k (Yi,Zi,𝜽) − E
(
g̃k (Y ,Z,𝜽)

)]
= Op

(
n−1∕2||𝜽 − 𝜽0||) + op

(||𝜽 − 𝜽0||2) ,
and Ik72 = op(||𝜽− 𝜽0||2). Note that 1

n

∑n
i=1 g̃k (Yi,Zi,𝜽)⊗2g̃k (Yi,Zi,𝜽) = op(n1∕2) byLemma3

in Owen (1990). Then, by (Ck
2), we have

|Ik73| ≤ ||𝜻k||3 {‖‖‖‖‖ 1
n

n∑
i=1

g̃k (Yi,Zi,𝜽)g̃T
k

(Yi,Zi,𝜽)g̃k (Yi,Zi,𝜽)
‖‖‖‖‖ + E

|||||
|||||g̃k (Y ,Z,𝜽)

|||||
|||||
3}

× 1
1 − op(1)

= op(n−1).

This completes the proof of Lemma 9.

Proof of Theorem 3. Using Lemma 11.2 of Owen (2001) and Lemma 6, we can show
that max1≤i≤n |𝜻k(𝜽)T g̃k (Yi,Zi,𝜽i)| = o(1) and max1≤i≤n |𝝀k(𝜽)T ĝk (Yi,Zi,𝜽)| = op(1).
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We then obtain

Ĝkn(𝜽) = − 1
n

n∑
i=1

[
𝝀k(𝜽)T ĝk (Yi,Zi,𝜽) −

1
2
{
𝝀k(𝜽)T ĝk (Yi,Zi,𝜽)

}2
]
+ Rkn1

and

Gk0(𝜽) = −E
[
𝜻k(𝜽)T g̃k (Y ,Z,𝜽) − 1

2
{
𝜻k(𝜽)T g̃k (Y ,Z,𝜽)

}2
]
+ Rkn2,

where

Rkn1 = − 1
3n

n∑
i=1

(
𝝀k(𝜽)T ĝk (Yi,Zi,𝜽)

)3(
1 + 𝝀∗T

k ĝk (Yi,Zi,𝜽)
)3 , Rkn2 = −1

3
E

{ (
𝜻k(𝜽)T g̃k (Y ,Z,𝜽)

)3(
1 + 𝜻∗T

k g̃k (Y ,Z,𝜽)
)3

}
,

𝝀∗
k lies between 0 and 𝝀k, and 𝜻∗k lies between 0 and 𝜻k. By Lemma 6, Lemma 3 in Owen (1990),

and (Ck
2 ), it follows that Rkn1 = op(n−1) and Rkn2 = o(n−1). Thus, we have

Ĝkn(𝜽) = −1
2

{
1
n

n∑
i=1

ĝk (Yi,Zi,𝜽)

}T

V−1
k (𝜽)

{
1
n

n∑
i=1

ĝk (Yi,Zi,𝜽)

}
+ op(n−1)

and Gk0(𝜽) = −1
2
[
Eg̃k (Y ,Z,𝜽)

]TV−1
k (𝜽)

[
Eg̃k (Y ,Z,𝜽)

]
+ o(n−1).

This implies that the EL method is almost identical to the GMM method that uses V−1
k (𝜽) as

the weight matrix, because the terms of orders op(n−1) and o(n−1) have only negligible effects
on the estimator of the parameter. The remainder of the proof is similar to that of Theorem 1,
and we omit it here for brevity.

Proof of Theorem 4. Note that by Lemmas 8 and 9 and Theorem 1 of Sherman (1993), we have
𝜽̂ke − 𝜽0 = Op(n−1∕2), k = 1, 2, 3. Thus, it makes sense to consider the Op(n−1/2) neighborhood
of 𝜽0. Note that

Ĝkn(𝜽) = − 1
n

n∑
i=1

𝝀k(𝜽)T ĝk (Yi,Zi,𝜽) +
1

2n

n∑
i=1

(
𝝀k(𝜽)T ĝk (Yi,Zi,𝜽)

)2

− 1
3n

n∑
i=1

(
𝝀k(𝜽)T ĝk (Yi,Zi,𝜽)

)3(
1 + 𝜼T

k4ĝk (Yi,Zi,𝜽)
)3

=∶ Ik8 + Ik9 + Ik10,

where 𝜼k4 lies between 0 and 𝝀k.
By (A11), (A12), (Ck

6), and Lemma 6 and noting that Dk1 defined in the proof of Theorem 2
is op(n−1/2), we obtain

𝝀k(𝜽) = 𝜻k(𝜽) +
(
𝜻k(𝜽) − 𝝀k(𝜽)

)
= V−1

k 𝚪(𝜽 − 𝜽0) + V−1
k

[
1
n

n∑
i=1

ĝk (Yi,Zi,𝜽) − Eg̃k (Y ,Z,𝜽)

− 1
n

n∑
i=1

ĝk (Yi,Zi,𝜽0) +
1
n

n∑
i=1

ĝk (Yi,Zi,𝜽0)

]
+ op(n−1∕2)

= V−1
k

[
𝚪(𝜽 − 𝜽0) +

1
n

n∑
i=1

ĝk (Yi,Zi,𝜽0)

]
+ op(n−1∕2). (A13)
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By (A13), Eĝk (Y ,Z,𝜽) = Eg̃k (Y ,Z,𝜽) + o(n1∕2). Write Ik8 =∶ Ik81 + Ik82. It follows from
Lemma 6 that

Ik81 = − 1
n

n∑
i=1

𝝀k(𝜽)T [ĝk (Yi,Zi,𝜽) − ĝk (Yi,Zi,𝜽0)
]

= − 1
n

n∑
i=1

𝝀k(𝜽)T {[ĝk (Yi,Zi,𝜽) − Eĝk (Y ,Z,𝜽) − ĝk (Yi,Zi,𝜽0)
]
+ Eĝk (Y ,Z,𝜽)

}
= −

{
V−1

k

[
𝚪(𝜽 − 𝜽0) +

1
n

n∑
i=1

ĝk (Yi,Zi,𝜽0)

]
+ op(n−1∕2)

}T [
𝚪(𝜽 − 𝜽0) + op(n−1∕2)

]
= −(𝜽 − 𝜽0)𝚪TV−1

k 𝚪(𝜽 − 𝜽0) + n−1∕2(𝜽 − 𝜽0)𝚪TV−1
k kn + op(n−1)

and

Ik82 = − 1
n

n∑
i=1

𝝀k(𝜽)T ĝk (Yi,Zi,𝜽0) =−
{

n−1∕2(𝜽− 𝜽0)𝚪TV−1
k kn +n−1


T
knV−1

k kn
}
+op(n−1),

with kn = 1√
n

∑n
i=1 ĝk (Yi,Zi,𝜽0). Write Ik9 =∶ Ik91 + Ik92, where

Ik91 = 1
2n

n∑
i=1

(
𝝀k(𝜽)T ĝk (Yi,Zi,𝜽0)

)2

= 1
2
[
(𝜽 − 𝜽0)𝚪TV−1

k 𝚪(𝜽 − 𝜽0) + 2n−1∕2(𝜽 − 𝜽0)𝚪TV−1
k kn + n−1


T
knV−1

k kn
]
+ op(n−1)

and

Ik92 = 1
2n

n∑
i=1

[(
𝝀k(𝜽)T ĝk (Yi,Zi,𝜽)

)2 −
(
𝝀k(𝜽)T ĝk (Yi,Zi,𝜽0)

)2
]
= op(n−1),

by the continuity of Vk (which can be easily derived by (Ck
2) and (Ck

7)) in a neighborhood of
𝜽0. For Ik10, by Lemma 3 in Owen (1990), we have

|Ik10| ≤ ||𝝀k||3 ||||| 1
n

n∑
i=1

{
g̃k (Yi,Zi,𝜽)⊗2g̃k (Yi,Zi,𝜽)

}||||| = op(n−1).

Thus, we obtain

Ĝkn(𝜽) = −1
2
[
V−1

k 𝚪(𝜽 − 𝜽0) + n−1∕2V−1
k kn

]TVk
[
V−1

k 𝚪(𝜽 − 𝜽0) + n−1∕2V−1
k kn

]
+ op(n−1).

(A14)
Hence, for k = 1, 2, 3, we have[

V−1
k 𝚪

(
𝜽̂ke − 𝜽0

)
+ n−1∕2V−1

k kn + op(n−1∕2)
]
= 0

or √
n
(
𝜽̂ke − 𝜽0

)
= −

(
𝚪TV−1

k 𝚪
)−1𝚪TV−1

k
1√
n

n∑
i=1

ĝk (Yi,Zi,𝜽0) + op(n−1∕2). (A15)

We then obtain
√

n(𝜽̂ke−𝜽0)
D
−→N(0, (𝚪TV−1

k 𝚪)−1𝚪TV−1
k 𝚺V−1

k 𝚪(𝚪TV−1
k 𝚪)−1). Noting that V2 =

𝚺, we can easily show that (𝚪TV−1
2 𝚪)−1𝚪TV−1

2 𝚺V−1
2 𝚪(𝚪TV−1

2 𝚪)−1 = 𝚺−1
0 . Moreover, by (A14),

we have

k(𝜽0) = −2nĜkn(𝜽0) =
{
𝚺− 1

2 kn

}T (
𝚺

1
2 V−1

k 𝚺
1
2

){
𝚺− 1

2 kn

}
+ op(n−1).

This completes the proof of Theorem 4.
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Proof of Theorem 5. By (A14) and (A15), we have

2𝓁k(𝜽̂ke) = −2nĜkn(𝜽̂2e) = 
T
kn

[
V−1

k − V−1
k 𝚪

(
𝚪TV−1

k 𝚪
)−1𝚪TV−1

k

]
kn (A16)

and 2𝓁k(𝜽0) = −2nĜ2n(𝜽0) = 
T
knV−1

k kn + op(n−1). Hence, we get

Rk(𝜽0) =
{
𝚺− 1

2 kn

}T
𝚺

1
2 V−1

k 𝚪
(
𝚪TV−1

k 𝚪
)−1𝚪TV−1

k 𝚺
1
2

{
𝚺− 1

2 kn

}
.

Recognizing the above result, Lemma 2, and the fact that V2 = 𝚺, (𝚺− 1
2 𝚪(𝚪T𝚺−1𝚪)−1𝚪T𝚺− 1

2 )
is idempotent with trace equal to q. On the basis of these observations, we can easily obtain
Theorem 5.

Proof of Corollary 2. Similarly, by (A14), (A15), and (A16), we have

2𝓁k(𝜽A0, 𝜽̂keB) = 
T
kn

[
V−1

k − V−1
k 𝚪2

(
𝚪T

2 V−1
k 𝚪2

)−1𝚪T
2 V−1

k

]
kn and

Rk(𝜽A0, 𝜽̂keB) = 
T
knV−1

k

[
𝚪
(
𝚪TV−1

k 𝚪
)−1𝚪T − 𝚪2

(
𝚪T

2 V−1
k 𝚪2

)−1𝚪T
2

]
V−1

k kn

=
{
𝚺− 1

2 
T
kn

}
𝚺

1
2 V−1

k

[
𝚪
(
𝚪TV−1

k 𝚪
)−1𝚪T − 𝚪2

(
𝚪T

2 V−1
k 𝚪2

)−1𝚪T
2

]
V−1

k 𝚺
1
2

{
𝚺− 1

2 kn

}
.

Noting that V2 = 𝚺, the conclusion can be obtained immediately.


	On the asymptotic non-equivalence of efficient-GMM and MEL estimators in models with missing data
	Abstract
	INTRODUCTION
	EE IMPUTATION AND ESTIMATION METHODS
	EE imputation
	Estimation methods

	ASYMPTOTIC PROPERTIES OF ESTIMATORS
	EFFICIENCY COMPARISON
	Why are the GMME and MEL estimators not always equivalent?
	Efficiency comparison of parametric and nonparametric estimators

	A SIMULATION STUDY
	A REAL DATA EXAMPLE
	CONCLUDING REMARKS
	References
	APPENDIX  


