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Assumptions

I The validity and properties of least squares estimation depend
very much on the validity of the classical assumptions
underlying the regression model. As we shall see, many of
these assumptions are rarely appropriate when dealing with
data for business. However, they represent a useful starting
point dealing with the inferential aspects of the regression and
for the development of more advanced techniques.

I The assumptions are as follows:
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Assumptions

1. The regression model is linear in the unknown parameters.

2. The elements in X are non-stochastic, meaning that the
values of X are fixed in repeated samples (i.e., when repeating
the experiment, choose exactly the same set of X values on
each occasion so that they remain unchanged).
I Notice, however, this does not imply that the values of Y also

remain unchanged from sample to sample. The Y values
depend also on the uncontrollable values of ε, which vary from
one sample to another. Y as well as ε are therefore stochastic,
meaning that their values are determined by some chance
mechanism and hence subject to a probability distribution.

I Essentially this means our regression analysis is conditional on
the given values of the regressors.

I It is possible to weaken the assumption to one of stochastic X
distributed independently of the disturbance term.
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Assumptions

3. Zero mean value of the disturbance εi , i.e., E (εi ) = 0, ∀ i , or
in matrix terms,

E (ε) = E


ε1

ε2
...
εn

 =


0
0
...
0


= 0

leading to

E (Y ) = Xβ

The zero mean of the disturbances implies that no relevant
regressors have been omitted from the model.
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Assumptions

4. The variance-covariance matrix of ε is a scalar matrix. That is,

E (εε′) = E (


ε1

ε2
...
εn

 [ε1 ε2 · · · εn
]
)

=


E (ε2

1) E (ε1ε2) · · · E (ε1εn)
E (ε2ε1) E (ε2

2) · · · E (ε2εn)
...

...
. . .

...
E (εnε1) E (εnε2) · · · E (ε2

n)

 =


σ2 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σ2


= σ2I .
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Assumptions

This variance covariance matrix embodies two assumptions:

I var(εi ) = σ2 ∀ i . This assumption is termed homoscedasticity
(the converse is heteroscedasticity).

I cov(εiεj) = 0 ∀ i 6= j . This assumption is termed pairwise
uncorrelatedness (the coverse is serial correlation or
autocorrelation).
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Assumptions

5. ρ(X ) = rank(X ) = k < n. In other words, the explanatory
variables do not form a linear dependent set as X is n × k.
We say that X has full column rank. If this conditions fails,
then X ′X cannot be inverted and O.L.S. estimation becomes
infeasible. This problem is known as perfect multicollinearity.

6. As n→∞,
∑n

i=1(xij − x̄j)
2/n→ Qj , where Qj is finite,

j = 1, · · · , k.
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Properties of O.L.S.

When some or all of the above assumptions are satisfied, the O.L.S.
estimator b of β possesses the following properties. Note that not
every property requires all of the above assumptions to be fulfilled.

Properties of the O.L.S. estimator:

I b is a linear estimator in the sense that it is a linear
combination of the observations of Y :

b = (X ′X )−1X ′Y

=


c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
. . .

...
ck1 ck2 · · · ckn



y1

y2
...
yn


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Properties of O.L.S.

I Unbiasedness

E (b) = E ((X ′X )−1X ′Y )

= E (β + (X ′X )−1X ε)

= β + (X ′X )−1X ′E (ε)

= β

Thus, b is an unbiased estimator of β. That is, in repeated
samples, b has an average value identical to β, the parameter
b tries to estimate.
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Properties of O.L.S.

I Variance-Covariance matrix:

COV (b) = E ((b − E (b))(b − E (b))′)

= E ((b − β)(b − β)′)

= E ((X ′X )−1X ′εε′X (X ′X )−1)

= (X ′X )−1X ′E (εε′)X (X ′X )−1

= σ2(X ′X )−1

Main diagonal elements are the variances of bj ’s,
j = 1, · · · , k; off-diagonal elements are covariances. For the
special case of a simple linear regression,

Cov(

[
b1

b2

]
) =

[
σ2( 1

n + x̄2∑n
i=1(xi−x̄)2 ) −σ2 x̄∑n

i=1(xi−x̄)2

−σ2 x̄∑n
i=1(xi−x̄)2

σ2∑n
i=1(xi−x̄)2

]
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Properties of O.L.S.

I b is the best linear unbiased (B.L.U.) estimator of β. Refer to
the Gauss-Markov theorem. The B.L.U. properties implies
that each bj , j = 1, · · · , k , has the smallest variance among
the class of all linear unbiased estimators of βj . More
discussion in class.

I b is the minimum variance unbiased (M.V.U.) estimator of β,
meaning that bj has a variance no larger than that of any
unbiased estimator of βj , linear or non-linear. More discussion
in class.

I b is a consistent estimator of β, meaning that when n
becomes sufficiently large, the probability of bj = βj converges
to 1, j = 1, · · · , k . We say that b converges in probability to
the true value of β. More discussion in class.
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Matters of Inference

I If one assumes additionally that ε ∼ MVN(0, σ2I ), then
I Y ∼ MVN(Xβ, σ2I )
I b ∼ MVN(β, σ2(X ′X )−1)

I Using properties of the sampling distribution of b, inference
about the population parameters in β can be drawn.
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Matters of Inference

I However, we need an estimator of σ2, the variance around the
regression line. This estimator is given by

s2 =
e ′e

n − k
=

∑n
i=1(yi − ŷi )

2

n − k
,

where n − k is the model’s degrees of freedom (d.o.f.) - the
number of logically independent pieces of information in the
data.

I It can be shown that e ′e/σ2 ∼ χ2
(n−k), or

(n − k)s2/σ2 ∼ χ2
(n−k).

I Using the properties of the Chi-square distribution, it can be
shown that E (s2) = σ2, i.e., s2 is an unbiased estimator of σ2.
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Matters of Inference

I The quantities bj , j = 1, · · · , k , are simply point estimates
(single numbers). Often it is more desirable to state a range
of values in which the parameter is thought to lie rather than
a single number. These ranges are called confidence interval
(C.I.) estimates.

I Although the interval estimate is less precise, the confidence
that the true population parameters falls between the interval
limits is increased. The interval should be precise enough to
be practically useful.
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Matters of Inference

I Consider a coefficient βj in β. The interval L ≤ βj ≤ U is a
100(1− α) % confidence interval for βj in the sense that,
prior to sampling,

P(L ≤ βj ≤ U) = 1− α

I This definition states that the C.I. with confidence coefficient
1− α is an interval estimate such that the probability is 1− α
that the calculated limits include βj for any random trial.
That is, in many random samples of size n, 100(1− α)
percent of the interval estimates will include βj .
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Matters of Inference

I Recall that b ∼ N(β, σ2(X ′X )−1). Hence
bj−βj
σcjj
∼ N(0, 1),

where c2
jj is the jj th element of (X ′X )−1.

I Hence

P(z(α/2) ≤
bj − βj
σcjj

≤ z(1−α/2)) = 1− α

I Recognising that z(α/2) = −z(1− α/2) and after some
manipulations, we can write

P(bj − z(1−α/2)σcjj ≤ βj ≤ bj + z(1−α/2)σcjj) = 1− α
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Matters of Inference

I However, σ2 is typically unknown. Replacing σ2 by s2 results

in
bj−βj
scjj
∼ t(n−k).

I If Z ∼ N(0, 1) and W ∼ χ2
(n−k) and Z and W are

independently distributed, then Z√
W /(n−k)

∼ t(n−k). More

discussion on t distribution in class.

I Hence the confidence interval becomes

P(bj − t(1−α/2,n−k)scjj ≤ βj ≤ bj + t(1−α/2,n−k)scjj) = 1− α
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Matters of Inference

I Hypothesis tests about βj can also be performed. The most
common test about a coefficient in a regression is:

H0 : βj = β∗j vs. H1 : βj 6= β∗j

at a significance level α, the probability of rejecting H0 when
H0 is correct, the so-called Type I error.

I To test this hypothesis, a t statistic is used:

t =
bj − β∗j
scjj

If H0 is true then t has a t distribution with n − k degrees of
freedom.
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5. Inference on Prediction

Matters of Inference

I If H0 is true, then t is expected to lie not too far from the
centre of the distribution.

I The decision rule is:

Reject H0 if t > t(1−α/2,n−k) or t < −t(1−α/2,n−k)

Do not reject otherwise.

I Testing this hypothesis is equivalent to asking if β∗j lies in the
100(1− α) percent C.I. of βj .

I It is a common practice to test the hypothesis of H0 : βj = 0.
Failure to reject this hypothesis would imply that βj is not
significantly different from zero, or equivalently, Xj has no
significant impact on the behaviour of Y , at level of
significance α.
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5. Inference on Prediction

Matters of Inference

I Return to Example 1.3, and consider the estimation of β2.

I Back in Chapter 1, we already computed b2 = 0.332. The
output shows that e ′e =

∑25
i=1 e

2
i = 32501.95754. Note that

d .o.f . = 25− 3 = 22. Hence s2 = e ′e/22 = 1477.362.

I From (X ′X )−1, c2
22 = 0.000020048. Hence

s.e.(b2) =
√

1477.362× 0.000020048 = 0.1721.

I Set α = 0.05. From the t distribution table,
t(1−0.05/2,22) = 2.074. Hence the 95 percent C.I. for β2 is

0.3318− (2.074)(0.1721) ≤ β2 ≤ 0.3318 + (2.074)(0.1721)

or

−0.0251 ≤ β2 ≤ 0.6887
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5. Inference on Prediction

Matters of Inference

I This C.I. contains 0, meaning that if we test H0 : β2 = 0 vs.
H1 : β2 6= 0, we would not be able to reject H0 at α = 0.05.
This is indeed the case.

I Note that for testing H0, t = 0.33183
0.1721 = 1.928, which lies to

the left of t(1−0.05/2,22) = 2.074. Hence H0 cannot be rejected
at α = 0.05.

I Alternatively, one can base the decision on the p-value, which
is the probability of obtaining a value of t at least as extreme
as the actual computed value if H0 is true. In our example,
the p-value is 0.0668, meaning that
P(t > 1.928 or t < −1.928) = 0.0668.
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Matters of Inference

I The p−value can be viewed as the minimum level of
significance chosen for the test to result in a rejection of H0.
Thus, a decision rule using p-value may be stated as:

Reject H0 if p-value< α
Do not reject H0 if p-value≥ α

I In the last example, the p-value is 0.0668. Hence we cannot
reject H0 at α = 0.05. On the other hand, H0 can be rejected
at any significance level at or higher than 0.0668.

I Similarly, we can test H0 : β3 = 0 and conclude that H0 is
rejected at α = 0.05.
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5. Inference on Prediction

Matters of Inference

I Altogether, it means allowing for a 5% Type 1 risk, disposable
income is not significant for explaining consumption but the
total value of assets is significant.

I Note that if we conclude that βj = 0, it does not necessarily
follow that Xj is unrelated to Y . It simply means that, when
the other explanatory variables are included in the model, the
marginal contribution of Xj to further improving the model’s
fit is negligible.

I Sometimes it also makes sense to conduct a hypothesis test
for the intercept coefficient. This should be done only when
there are data that span X = 0 or at least near X = 0, and
the difference between Y equaling zero and not equaling zero
when X = 0 is scientifically plausible and interesting.
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5. Inference on Prediction

Type 1 and Type 2 errors

I Rejecting H0 when it is true is called a Type 1 error. Recall
that if H0 is true the probability that it will be (incorrectly)
rejected is P(t > t(1−α/2,n−k)) + P(t < −t(1−α/2,n−k)) = α.
This is the significance level; by choosing α, we effectively
determine the probability that the test will incorrectly reject a
true hypothesis.

I If H0 is false and it is not rejected then a Type 2 error has
been committed. While we can fix P(Type 1 error), the same
control of Type 2 error is not possible. See the following
diagram for an illustration for testing H0 : β2 = 50 with σ2

known and var(b2) = 0.25. Suppose that β2 is either 50 or
50.5. Note that Type 2 error probability depends on the true
value of β2 which is unknown in practice.
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5. Inference on Prediction

Type 1 and Type 2 errors

I Most elementary texts define the ”power” of the test as the
probability of rejecting a false H0, i.e., the probability of doing
the right thing in the face of an incorrect H0. By this
definition, the power is equal to 1 minus the Type 2 error
probability.

I Sometimes the power is simply defined as the probability of
rejecting H0. By this definition, α, the significance level, is a
point on the power curve.
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Type 1 and Type 2 errors

I Let H0 : β2 = β∗2 .
P(Type 2 error|β2 6= β∗2) = P(Not rejecting H0|β2 6= β∗2).

I Power(β2) = P(rejecting H0|β2)
I A test is ”unbiased” if

Power(β2|β2 6= β∗2) ≥ P(Type 1 error).
I For a test where H0 corresponds to a point in the parameter

space (e.g., a two-sided t test), the significance level is a point
on the power curve.

I For a test where H0 corresponds to a region in the parameter
space (e.g., a one-sided t test), the significance level is the
maximum probability of committing a Type 1 error within the
region defined by H0, and P(Type 1 error) has a range of
values with α being the maximum of the range.
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Partitioning of Total Sum of Squares

I Analysis of variance (ANOVA) is a useful and flexible way of
analysing the fit of the regression. To motivate, consider

yi = ŷi + ei

yi − ȳ = ŷi − ȳ + ei
n∑

i=1

(yi − ȳ)2 =
n∑

i=1

(ŷi − ȳ)2 +
n∑

i=1

e2
i + 2

n∑
i=1

(ŷi − ȳ)ei
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Partitioning of Total Sum of Squares

I Note that

n∑
i=1

(yi − ȳ)2 = Total Sum of Squares (TSS)

n∑
i=1

(ŷi − ȳ)2 = Regression Sum of Squares (RSS)

n∑
i=1

e2
i = Error Sum of Squares (ESS)

n∑
i=1

(ŷi − ȳ)ei = 0 (provided that there is an intercept)
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Coefficient of Determination

I Thus,

TSS = RSS + ESS

or

R2 =
RSS

TSS

= 1− ESS

TSS
,

which is the coefficient of determination. It measures the
model’s ”goodness of fit”: the proportion of variability of the
sample Y values that has been explained by the regression.

I Obviously, 0 ≤ R2 ≤ 1.
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Partitioning of Degrees of Freedom

I TSS has n− 1 d.o.f. because there are n deviations yi − ȳ that
enter into TSS, but one constraint on the deviations, namely,∑n

i=1(yi − ȳ) = 0. So there are n − 1 d.o.f. in the deviations.

I ESS has n− k d.o.f. because there are n residuals but k d.o.f.
are lost due to k constraints on the ei ’s associated with
estimating the β’s.

I RSS has k − 1 d.o.f. because the regression function contains
k parameters but the deviations ŷi − ȳ are subject to the
constraint that

∑n
i=1(ŷi − ȳ) = 0.

I The d.o.f. add up: (n − 1) = (n − k) + (k − 1)
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5. Inference on Prediction

Mean Squares

I A sum of squares divided by its associated d.o.f. is called a
mean square.

I Mean Square Regression (MSR) = RSS/(k − 1)

I Mean Square Error (MSE) = ESS/(n − k)

I In Example 1.3, n=25, k=3, RSS=126186.66, ESS=32501.96,
TSS=158688.61. Hence

R2 = 126186.66/158688.61 = 0.7952

MSR = 126186.66/2 = 63093.33

MSE = 32501.96/22 = 1477.362
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5. Inference on Prediction

Overall Significance of the Model

I Frequently, one may wish to test whether or not there is a
relationship between Y and the regression model constructed.
It is a test of

H0 : β2 = β3 = · · · = βk = 0 vs.

H1 : at least one of β′js, (j = 2, · · · , k), is non-zero.

I The test statistic is

F =
MSR

MSE
=

RSS/(k − 1)

ESS/(n − k)

distributed as F(k−1,n−k) if H0 is true.
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Overall Significance of the Model

I The decision rule is:
To reject H0 if F > F1−α,k−1,n−k or p-value< α;
Not to reject H0 otherwise.

I F ∼ F(k−1,n−k) because under H0, RSS/σ2 ∼ χ2
(k−1),

ESS/σ2 ∼ χ2
(n−k), and RSS and ESS are distributed

independently.

I Refer to Example 1.3, F = 63093.33
1477.362 = 42.70676.

F(0.95,2,22) = 3.44. Hence we reject H0 convincingly at
significance level 0.05. We cannot reject H0 only if α is set to
2.66073E-08 or lower, as indicated by the test statistic’s
p-value.
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2.66073E-08 or lower, as indicated by the test statistic’s
p-value.
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4. Analysis of Variance, Goodness of Fit and the F test

5. Inference on Prediction

Overall Significance of the Model

Why do we perform an F test in addition to t tests? What can we
learn from the F test?

I In the intercept only model, all of the fitted values equal the
mean of the response variable. Therefore, if the overall F test
is significant, the regression model predicts the response
better than than the mean of the response.

I While R2 provides an estimate of the strength of the
relationship, it does not provide a formal hypothesis test for
this relationship. If the overall F test is significant, one can
conclude that the R2 is significantly different from zero. In
fact, the F statistic can be written as

F =
R2/(k − 1)

(1− R2)/(n − k)
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5. Inference on Prediction

Overall Significance of the Model

I If the overall F test is significant, but few or none of the t
tests are significant then it is an indication that
multicollinearity might be a problem for the data. More on
multicollinearity in Chapter 3.

Notice that for a simple linear regression model, the null
hypothesis for the overall F test is simply β2 = 0, which is
precisely the same null for the t test of β2 = 0. In fact, when
k = 1, F(1,n−k) = t2

(n−k).

I In Example 1.1, for testing H0 : β2 = 0,
F = 94.41 = (9.717)2 = t2, p-values are exactly the same.

I In Example 1.2, for testing H0 : β2 = 0,
F = 194.252 = (13.937)2 = t2, p-values are exactly the same.
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F test for linear restrictions

I In fact, the usefulness of the F test is not limited to testing
overall significance. The F test can be used for testing any
linear equality restrictions on β.

I The general formula for the F statistic is

F =
(e ′er − e ′eur )/m

e ′eur/(n − k)

=
(R2

ur − R2
r )/m

(1− R2
ur )/(n − k)

∼ F(m,n−k)|H0,

where the subscripts ur and r correspond to the unrestricted
and restricted models respectively, and m is the number of
restrictions under H0.
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F test for linear restrictions

I e ′er is the ESS associated with the restricted model (i.e., the
model that imposes the restrictions implied by H0; e ′eur is the
ESS associated with the unrestricted model (i.e., the model
that ignores the restrictions). R2

r and R2
ur are defined

analogously.

I The F statistic for testing H0 : β2 = β3 = · · · = βk = 0 is a
special case of (1), because under H0, m = k − 1, e ′er = TSS
(the restricted model has no explanatory power) and
correspondingly, R2

r = 0.
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F test for linear restrictions

I Example 2.1 One model of production that is widely used in
economics is the Cobb-Douglas production function:

yi = β∗1x
β2

2i x
β3

3i exp(εi ),

where yi=output; x2i=labour input; x3i=capital input.

I Or, in log-transformed terms,

lnyi = lnβ∗1 + β2lnx2i + β3lnx3i + εi ,

= β1 + β2lnx2i + β3lnx3i + εi ,
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F test for linear restrictions

I To illustrate, we use annual data for the agricultural sector of
Taiwan for 1958-1972.

I Results obtained using SAS:
                                       The REG Procedure 
                                          Model: MODEL1 
                                     Dependent Variable: lny 
 
                             Number of Observations Read          15 
                             Number of Observations Used          15 
 
 
                                       Analysis of Variance 
 
                                              Sum of           Mean 
          Source                   DF        Squares         Square    F Value    Pr > F 
 
          Model                     2        0.53804        0.26902      48.07    <.0001 
          Error                    12        0.06716        0.00560 
          Corrected Total          14        0.60520 
 
 
                       Root MSE              0.07481    R-Square     0.8890 
                       Dependent Mean       10.09654    Adj R-Sq     0.8705 
                       Coeff Var             0.74095 
 
 
                                       Parameter Estimates 
 
                                    Parameter       Standard 
               Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
               Intercept     1       -3.33846        2.44950      -1.36      0.1979 
               lnx2          1        1.49876        0.53980       2.78      0.0168 
               lnx3          1        0.48986        0.10204       4.80      0.0004 
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F test for linear restrictions

I β2 is the elasticity of output with respect to the labour input;
it measures the percentage change in output due to a one
percent change in labour input; β3 is interpreted analogously.

I The sum β2 + β3 gives information on returns to scale, that is,
the response of output to a proportional change in the inputs.
In particular, if this sum is 1, then there are constant returns
to scale, that is, doubling the inputs will double the outputs.

I Hence one may be interested in testing H0 : β2 + β3 = 1.
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F test for linear restrictions

I The restricted model is one that imposes the restriction
β2 + β3 = 1 onto the coefficients in the minimisation of the
SSE. The least squares estimator (referred to as restricted
least squares (R.L.S.)) is obtained by minimising the objective
function

φ = (y − Xb∗)
′(y − Xb∗)− 2λ′(Rb∗ − r),

where R is a m× k matrix of constants, r is a m× 1 vector of
constants and b∗ is the R.L.S. estimator.

I For this example, R = [0 1 1] and r = 1.
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F test for linear restrictions

I The SAS results are as follows:

                                        The REG Procedure 
                                          Model: MODEL1 
                                     Dependent Variable: lny 
 
                   NOTE: Restrictions have been applied to parameter estimates. 
 
 
                             Number of Observations Read          15 
                             Number of Observations Used          15 
 
 
                                       Analysis of Variance 
 
                                              Sum of           Mean 
          Source                   DF        Squares         Square    F Value    Pr > F 
 
          Model                     1        0.51372        0.51372      73.01    <.0001 
          Error                    13        0.09147        0.00704 
          Corrected Total          14        0.60520 
 
 
                       Root MSE              0.08388    R-Square     0.8489 
                       Dependent Mean       10.09654    Adj R-Sq     0.8372 
                       Coeff Var             0.83082 
 
 
                                       Parameter Estimates 
 
                                    Parameter       Standard 
               Variable     DF       Estimate          Error    t Value    Pr > |t| 
 
               Intercept     1        1.70856        0.41588       4.11     0.0012 
               lnx2          1        0.38702        0.09330       4.15     0.0011 
               lnx3          1        0.61298        0.09330       6.57     <.0001 
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F test for linear restrictions

I Using the F test procedure, to test
H0 : β2 + β3 = 1 vs. H1 : otherwise

F =
(R2

ur − R2
r )/m

(1− R2
ur )/(n − k)

=
(0.8890− 0.8489)/1

(1− 0.8890)/12

= 4.34

I At α = 0.05, F(0.95,1,12) = 4.75. Hence we cannot reject H0 at
0.05 level of significance and conclude that the returns to
scale is constant.
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F test for linear restrictions

I SAS can perform the test automatically. The result from the
following output concurs with the result based on our
calculations. The p-value indicates that H0 can be rejected
only when α is set to at least 0.0592.

                                       
 
                                        The REG Procedure 
                                          Model: MODEL1 
 
                            Test 1 Results for Dependent Variable lny 
 
                                                    Mean 
                    Source             DF         Square    F Value    Pr > F 
 
                    Numerator           1        0.02432       4.34    0.0592 
                    Denominator        12        0.00560 
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Coefficient of variation

I The coefficient variation is obtained by dividing the standard
error of the regression by the mean of yi values and
multiplying by 100.

I It expresses the standard error of the regression in unit free
values. Thus the coefficients of variation for two different
regressions can be compared more readily than the standard
errors because the influence of the units of the data has been
removed.

I The SAS program for Example 2.1 is as follows.
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SAS Program for Example 2.1

data example21; 
input y x2 x3; 
ods html close; 
ods listing; 
lny=log(y); 
lnx2=log(x2); 
lnx3=log(x3); 
cards; 
16607.7 275.5 17803.7 
17511.3 274.4 18096.8 
20171.2 269.7 18271.8 
20932.9 267.0 19167.3 
20406 267.8 19647.6 
20831.6 275 20803.5 
24806.3 283 22076.6 
26465.8 300.7 23445.2 
27403 307.5 24939 
28628.7 303.7 26713.7 
29904.5 304.7 29957.8 
27508.2 298.6 31585.9 
29035.8 295.5 33474.5 
29281.5 299.0 34821.8 
31535.8 288.1 41794.3 
; 
proc reg data=example21; 
model lny=lnx2 lnx3; 
test lnx2+lnx3=1; 
run; 
proc reg data=example21; 
model lny=lnx2 lnx3; 
restrict lnx2+lnx3=1; 
run; 
ods html close; 
ods html; 
run; 
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Adjusted Coefficient of Determination

I Some statisticians have suggested to modify R2 to recognise
the number of independent variables in the model. The reason
is that R2 can generally be made larger if additional
explanatory variables are added to the model. A measure that
recognises the number of explanatory variables in the model is
called the adjusted coefficient of determination:

R2
a = 1− ESS/(n − k)

TSS/(n − 1)

I For the unrestricted model of Example 2.1,

R2
a = 1− 0.06716/12

0.6052/14
= 0.8705

I Hence the adjustment has only a small effect, as R2
a is almost

the same as R2.
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Inference on Prediction

I A point prediction is obtained by inserting the given X values
into the regression equation, giving

ŷf = b1 + b2xf 2 + b3xf 3 + · · ·+ bkxfk

I Let g ′ = (1, xf 2, xf 3, · · · , xfk). Then ŷf = g ′b. Note that
var(g ′b) = g ′var(b)g . If we assume normality for the
disturbance term, it follows that

g ′b − g ′β√
var(g ′b)

∼ N(0, 1)
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Inference on Prediction

I When the unknown σ2 in var(b) is replaced by s2, the usual
shift to the t distribution occurs, giving

ŷf − E (yf )

s
√
g ′(X ′X )−1g

∼ t(n−k),

from which a 100(1− α) percent confidence (or prediction)
interval for E (yf ) is

ŷf ± t(1−α/2,n−k)s
√
g ′(X ′X )−1g (1)
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Inference on Prediction

I Returning to Example 1.3, the estimated regression equation
is:

ŷi = 36.79 + 0.3318xi2 + 0.1258xi3

A family with annual disposable income of $50,000 and liquid
assets worth $100,000 is predicted to spend

ŷf = 36.79 + 0.3318(50) + 0.1258(100)

= 65.96

thousand dollars on non-durable goods and services in a year.
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Inference on Prediction

I For this example,

(X ′X )−1 =

 0.202454971 −0.001159287 0.000046500
−0.001159287 0.000020048 −0.000003673
0.000046500 −0.000003673 0.000000961


I Hence g ′(X ′X )−1g =

[
1 50 100

]  0.202454971 −0.001159287 0.000046500
−0.001159287 0.000020048 −0.000003673
0.000046500 −0.000003673 0.000000961

 1
50

100


= 0.1188
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Inference on Prediction

I s = 38.436 and t(0.975,22) = 2.074. Thus, the 95% prediction
interval for E (yf ) is

65.96± 2.074(38.436)
√

0.1188

or 38.484 to 93.436

I Sometimes one may wish to obtain a prediction interval for yf
rather than E (yf ). The two differ only by the disturbance
term εf , which is unpredictable with a mean of 0, so the point
prediction remains the same.

I However, the uncertainty of the prediction increases due to
the presence of εf . Now, yf = g ′β + εf . Therefore,
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65.96± 2.074(38.436)
√

0.1188

or 38.484 to 93.436

I Sometimes one may wish to obtain a prediction interval for yf
rather than E (yf ). The two differ only by the disturbance
term εf , which is unpredictable with a mean of 0, so the point
prediction remains the same.

I However, the uncertainty of the prediction increases due to
the presence of εf . Now, yf = g ′β + εf . Therefore,
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Inference on Prediction

I ef = yf − ŷf = εf − g ′(b − β).

I Squaring both sides and taking expectations gives

var(ef ) = σ2 + g ′var(b)g

= σ2(1 + g ′(X ′X )−1g)

from which we can derive the following t statistic:

ŷf − yf

s
√

1 + g ′(X ′X )−1g
∼ t(n−k)
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Inference on Prediction

I which leads to the 100(1− α) percent confidence interval for
yf :

ŷf ± t(1−α/2,n−k)s
√

1 + g ′(X ′X )−1g

I Comparison with (1) shows that the only difference is an
increase of 1 inside the square root term. Thus, for the data
in Example 1.3, the prediction interval for yf is:

65.96± 2.074(38.436)
√

1 + 0.1188

or -18.359 to 150.279
I One can obtain these outputs directly using SAS by adding

the following options to PROC REG:
/p CLM CLI;
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Inference on Prediction
                                       The REG Procedure 
                                          Model: MODEL1 
                                      Dependent Variable: y 
 
                                        Output Statistics 
 
            Dependent Predicted    Std Error 
        Obs  Variable     Value Mean Predict     95% CL Mean        95% CL Predict    Residual 
 
          1   52.3000   62.0385      14.2215   32.5448   91.5322  -22.9553  147.0322   -9.7385 
          2   78.4400   55.5902      13.9639   26.6309   84.5495  -29.2196  140.4000   22.8498 
          3   88.7600   86.9782      12.9449   60.1321  113.8243    2.8666  171.0899    1.7818 
          4   54.0800   84.5425      11.8498   59.9675  109.1175    1.1279  167.9571  -30.4625 
          5  111.4400   79.5205      11.8869   54.8686  104.1724   -3.9168  162.9578   31.9195 
          6  105.2000  123.6442      12.5496   97.6180  149.6704   39.7906  207.4978  -18.4442 
          7   45.7300   97.8786      10.4611   76.1835  119.5736   15.2666  180.4905  -52.1486 
          8  122.3500  118.8644       9.6670   98.8162  138.9126   36.6696  201.0592    3.4856 
          9  142.2400   97.9041      11.8335   73.3629  122.4453   14.4995  181.3087   44.3359 
         10   86.2200  123.5498       8.8086  105.2818  141.8177   41.7709  205.3286  -37.3298 
         11  174.5000  158.9706       9.8584  138.5256  179.4156   76.6781  241.2631   15.5294 
         12  185.2000  143.1395       8.0145  126.5185  159.7606   61.7128  224.5663   42.0605 
         13  111.8000  144.3668       8.6545  126.4184  162.3152   62.6588  226.0748  -32.5668 
         14  214.6000  168.0892       7.8309  151.8489  184.3295   86.7393  249.4391   46.5108 
         15  144.6000  174.1641       7.9982  157.5769  190.7514   92.7443  255.5840  -29.5641 
         16  174.3600  222.2363      12.2390  196.8542  247.6183  138.5804  305.8922  -47.8763 
         17  215.4000  179.6848      10.6226  157.6550  201.7147   96.9843  262.3853   35.7152 
         18  286.2400  239.1630      13.2191  211.7482  266.5778  154.8681  323.4579   47.0770 
         19  188.5600  184.3890      12.6369  158.1818  210.5962  100.4791  268.2989    4.1710 
         20  237.2000  232.0104      10.7190  209.7806  254.2402  149.2564  314.7644    5.1896 
         21  181.8000  225.9031      11.5935  201.8597  249.9465  142.6436  309.1626  -44.1031 
         22  373.0000  316.3485      25.2885  263.9033  368.7936  220.9307  411.7662   56.6515 
         23  191.6000  230.0371      17.7840  193.1553  266.9189  142.2059  317.8683  -38.4371 
         24  247.1200  304.4020      17.7175  267.6581  341.1459  216.6286  392.1754  -57.2820 
         25  269.6000  228.9247      23.0191  181.1861  276.6633  136.0106  321.8388   40.6753 
         26         .   65.9602      13.2497   38.4820   93.4384  -18.3553  150.2757         . 
 
 
                           Sum of Residuals                           0 
                           Sum of Squared Residuals               32502 
                           Predicted Residual SS (PRESS)          48738 
 57 / 57


	1. Assumptions in the Linear Regression Model
	2. Properties of the O.L.S. Estimator
	3. Inference in the Linear Regression Model
	4. Analysis of Variance, Goodness of Fit and the F test
	5. Inference on Prediction

