
MS6215: Forecasting Methods for Business;

Answers to Exam Questions (2017/18)

1. 98412× 2 = 196824

2. 36
2 (1968242)=697316727458

3. TSS=4634264289
RMSE=9616.10928
MSE=92469557.68
SSE=MSE×34=3143964961
∴ R2 = 1− 3143964961

4634264289 = 0.3216

4. H0 : β1 = 0 vs. H1 : β1 6= 0

SSR=1490299328 ∴ F = SSR/1
SSE/34 = 1490299328

92469557.68 = 16.117
F(1,34;0.05)=4.10

∴ Reject H0.

5. Based on the data features shown in Figure 1, a positive slope coefficient is expected.

t =
√
F = 4.0146 = b1

154.27796
∴ b1 = 619.364.

6. Ŷ38 = 86954 + 619.364(38) = 110489.83

7. Some basic properties of the Z, t, χ2 and F distributions are in order:

• Let Zi ∼ N(0, 1) and Zi’s be distributed independently. Then W =
∑v

i=1 Z
2
i ∼ χ2

(v)

• Let Z ∼ N(0, 1). Provided that Z and W are independent, then t = Z/
√
W/v ∼ t(v).

• Let W1 ∼ χ2
(v1) and W2 ∼ χ2

(v2). Provided that W1 and W2 are independent, then

F = W1/v1
W2/v2 ∼ F(v1,v2).

• From the above definitions of t and F , it is straightforward to see that t2(v) = F(1,v).

Now, consider the test of H0 : µ = 0 vs. H1 : µ 6= 0. The usual statistic for testing H0 is T =
Ȳ

s/
√
n

, which may be written as T =
√
nȲ
σ /

√∑
(Yi−Ȳ )2

σ2(n−1)
. Under H0, the numerator in the second

expression of T has the Z distribution and the denominator is the square root of a χ2 divided
by the corresponding d.o.f. (it is well-known that Ȳ ∼ N(µ, σ2/n) and

∑
(Yi − Ȳ )2/σ2 ∼

χ2
(n−1)). As well, the numerator and denominator are independent. Hence, T ∼ t(n−1). Now,

t2(n−1) = F(1,n−1) =
χ2
(1)
/1

χ2
(n−1)

/(n−1)
. From the SAS output, (n2a

2
0) = 697316727458. But a0

2 = Ȳ .

Hence nȲ 2/σ2 = 348658363724/σ2 ∼ χ2
1. Also, s2 =

∑
(Yi−Ȳ )2

n−1 = 4634264289/35. It is readily

seen that 348658363724
4634264289/35 = 2633.22 ∼ F(1,35), and this is precisely the square of the T statistic

for testing H0. Now, F(1,35;0.05) ≈ 4.10 ∴ Reject H0.
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8. h = 18

9. A =
√

(−8740.25)2 + (−7835.8)2

P = tan−1( −7835.8
−8740.25)

For the last harmonic wave, Asin(πt + P ) = cos(πt)Asin(P ). Hence A and P cannot be
separated.

10. f3 = 3/36 L3 = 12

11. n
2 (b213 + b223) = 18((−8740.252) + (−7835.82)) = 2480251170

12. H0 : b13 = b23 = 0
F = 2480251170/2

(4634264289−2480251170)/33 = 18.99
F(2,33;0.05) ≈ 3.3. ∴ Reject H0.

H0 : b1,12 = b2,12 = 0
One can similarly work out that
F = 3.943
Reject H0.

13. Ŷt = 98412− 8740.25sin(2π 1
12 t)− 7835.8cos(2π 1

12 t)

14. t = 38 is equivalent to t = 37 under Proc Spectra.
Hence Ŷ37 = 98412− 8740.25sin(2π 1

1237)− 7835.8cos(2π 1
1237) = 87256.0722

15. Maximum likelihood estimation is applied under Proc Arima. Hence var(Yt) = s2 = 4634264289/36 =
128729563.5. This leads to

r1 = 0.51976 r2 = 0.30488 r3 = 0.28311 r4 = −0.01415 r5 = −0.26077 r6 = −0.18074
r7 = −0.26868 r8 = −0.16206 r9 = 0.07176

16. 2std(rk) = 0.33. Only ρ1 is significantly different from zero. The series is stationary as r1

is not close to 1 and the ACF cuts off after lag 1, i.e., the ACF does not mimic the random
walk pattern of (t− k)/t.

17. Not a white noise process based on the Q test for autocorrelation check for white noise and
the ACF behaviour.

18. p = q = 0 DF = k − p− q = k = 6.

19. ACF cuts off after 1 (ρ2 is marginally significant)
PACF cuts off after lag 1
These features do not fit in any standard ARMA models (Recall that the ARMA model is
only an approximation to the data generating process).
Could try AR(1), MA(1), ARMA(1,1) as approximations.

20. H0 : δ = 0 vs. H1 : δ 6= 0
t = Ȳ

s/
√
n

= 98412
11345.91/6 = 52.04 > 2

∴ Reject H0.

21. The two tests are equivalent and the test statistics differ only in terms of the estimate s2

substituted for the unknown σ2. Note that s2 in Q.20 is the maximum likelihood estimator,
whereas s2 in Q.7 is the unbiased estimator of σ2. If either the maximum likelihood or the
unbiased estimator is used in both questions, then t2 from Q.20 is equal to F in Q.7.
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22. µ̂ = δ̂

1−φ̂1
. Hence for Table 4, δ̂ = 98170(1− 0.53824) = 45330.98; for Table 5, δ̂ = 98425.6.

23. For Table 4, Ŷt = 45330.98 + 0.53824Yt−1

For Table 5, Ŷt = 98425.6 + 0.51818et−1 + 0.09168et−2

24. AIC = −2(ln(L)− g); BIC = −2ln(L) + gln(n). Both AIC and BIC are penalised versions
of the log-likelihood, which always increases as more lagged terms are added to the model.
The penalty term for AIC is 2g (i.e., 2 times the number of coefficients), whereas for the BIC,
it is gln(n). As ln(n) is usually larger than 2, BIC imposes a larger penalty than the AIC on
the log-likelihood when the model’s dimension increases. Hence BIC typically favours a more
parsimonious model. For Table 4, AIC=766.522, BIC=769.689 For Table 5, AIC=770.26,
BIC=775.01

25. Although neither the AR(1) nor the MA(2) results in uncorrelated residuals, the AR(1) model
passes the t-test and yields smaller AIC and BIC values; it is superior by all accounts to the
MA(2) model.

26. ρ1 = −θ1(1−θ2)
1+θ21+θ22

= 0.51818(1+0.09168)
1+0.518182+0.091682

= 0.444088

ρ2 = −θ2
1+θ21+θ22

= 0.071973

27. Yt = (1−B)2Wt = Wt − 2Wt−1 +Wt−2

∴ Wt − 2Wt−1 +Wt−2 = 45330.98 + 0.53824(Wt−1 − 2Wt−2 +Wt−3), and hence
Wt = 45330.98 + 2.53824Wt−1 − 2.07648Wt−2 + 0.53824Wt−3

28. ARIMA(1,2,0)

29. H0 : ρ = 0 vs. H1 : ρ > 0
DW = 1.32, k′ = 1, n = 36, dL = 1.411, dU = 1.525
As DW < dL, reject H0.

30. Q.19 and Q.25 suggest that an AR(1) model, which includes Yt−1 as a regressor, is an accept-
able specification for Yt. This suggests that autocorrelation in the residuals as detected under
Q. 29, is probably due to the omission of Yt−1 as an explanatory variable from the model in
Table 1.

31. α = 0.5. The forecast adjusts reasonably quickly to new observations, but it also depends on
the γ value.

32. α = 1 and γ = 0 ⇒ Yt+1 = Yt + b0.

33. As Figure 1 shows, the data series experiences a number of abrupt, sudden changes. This
violates one basic assumption of exponential smoothing which requires the data to slowly
evolve over time.
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