# MS6215: Forecasting Methods for Business; Answers to Exam Questions (2017/18) 

1. $98412 \times 2=196824$
2. $\frac{36}{2}\left(196824^{2}\right)=697316727458$
3. $\mathrm{TSS}=4634264289$

RMSE=9616.10928
MSE=92469557.68
$\mathrm{SSE}=\mathrm{MSE} \times 34=3143964961$
$\therefore R^{2}=1-\frac{3143964961}{4634264289}=0.3216$
4. $H_{0}: \beta_{1}=0$ vs. $H_{1}: \beta_{1} \neq 0$
$\mathrm{SSR}=1490299328 \therefore F=\frac{S S R / 1}{S S E / 34}=\frac{1490299328}{92469557.68}=16.117$
$F_{(1,34 ; 0.05)}=4.10$
$\therefore$ Reject $H_{0}$.
5. Based on the data features shown in Figure 1, a positive slope coefficient is expected.
$t=\sqrt{F}=4.0146=\frac{b_{1}}{154.27796}$
$\therefore b_{1}=619.364$.
6. $\widehat{Y}_{38}=86954+619.364(38)=110489.83$
7. Some basic properties of the $Z, t, \chi^{2}$ and $F$ distributions are in order:

- Let $Z_{i} \sim N(0,1)$ and $Z_{i}$ 's be distributed independently. Then $W=\sum_{i=1}^{v} Z_{i}^{2} \sim \chi_{(v)}^{2}$
- Let $Z \sim N(0,1)$. Provided that $Z$ and $W$ are independent, then $t=Z / \sqrt{W / v} \sim t_{(v)}$.
- Let $W_{1} \sim \chi_{(v 1)}^{2}$ and $W_{2} \sim \chi_{(v 2)}^{2}$. Provided that $W_{1}$ and $W_{2}$ are independent, then $F=\frac{W_{1} / v 1}{W_{2} / v 2} \sim F_{(v 1, v 2)}$.
- From the above definitions of $t$ and $F$, it is straightforward to see that $t_{(v)}^{2}=F_{(1, v)}$.

Now, consider the test of $H_{0}: \mu=0$ vs. $H_{1}: \mu \neq 0$. The usual statistic for testing $H_{0}$ is $T=$ $\frac{\bar{Y}}{s / \sqrt{n}}$, which may be written as $T=\frac{\sqrt{n} \bar{Y}}{\sigma} / \sqrt{\frac{\sum\left(Y_{i}-\bar{Y}\right)^{2}}{\sigma^{2}(n-1)}}$. Under $H_{0}$, the numerator in the second expression of $T$ has the $Z$ distribution and the denominator is the square root of a $\chi^{2}$ divided by the corresponding d.o.f. (it is well-known that $\bar{Y} \sim N\left(\mu, \sigma^{2} / n\right)$ and $\sum\left(Y_{i}-\bar{Y}\right)^{2} / \sigma^{2} \sim$ $\left.\chi_{(n-1)}^{2}\right)$. As well, the numerator and denominator are independent. Hence, $T \sim t_{(n-1)}$. Now, $t_{(n-1)}^{2}=F_{(1, n-1)}=\frac{\chi_{(1)}^{2} / 1}{\chi_{(n-1)}^{2} /(n-1)}$. From the SAS output, $\left(\frac{n}{2} a_{0}^{2}\right)=697316727458$. But $\frac{a_{0}}{2}=\bar{Y}$. Hence $n \bar{Y}^{2} / \sigma^{2}=348658363724 / \sigma^{2} \sim \chi_{1}^{2}$. Also, $s^{2}=\frac{\sum\left(Y_{i}-\bar{Y}\right)^{2}}{n-1}=4634264289 / 35$. It is readily seen that $\frac{348658363724}{4634264289 / 35}=2633.22 \sim F_{(1,35)}$, and this is precisely the square of the $T$ statistic for testing $H_{0}$. Now, $F_{(1,35 ; 0.05)} \approx 4.10 \therefore$ Reject $H_{0}$.
8. $h=18$
9. $A=\sqrt{(-8740.25)^{2}+(-7835.8)^{2}}$
$P=\tan ^{-1}\left(\frac{-7835.8}{-8740.25}\right)$
For the last harmonic wave, $A \sin (\pi t+P)=\cos (\pi t) A \sin (P)$. Hence $A$ and $P$ cannot be separated.
10. $f_{3}=3 / 36 L_{3}=12$
11. $\frac{n}{2}\left(b_{13}^{2}+b_{23}^{2}\right)=18\left(\left(-8740.25^{2}\right)+\left(-7835.8^{2}\right)\right)=2480251170$
12. $H_{0}: b_{13}=b_{23}=0$
$F=\frac{2480251170 / 2}{(4634264289-2480251170) / 33}=18.99$
$F_{(2,33 ; 0.05)} \approx 3.3 . \therefore$ Reject $H_{0}$.
$H_{0}: b_{1,12}=b_{2,12}=0$
One can similarly work out that
$F=3.943$
Reject $H_{0}$.
13. $\widehat{Y}_{t}=98412-8740.25 \sin \left(2 \pi \frac{1}{12} t\right)-7835.8 \cos \left(2 \pi \frac{1}{12} t\right)$
14. $t=38$ is equivalent to $t=37$ under Proc Spectra.

Hence $\widehat{Y}_{37}=98412-8740.25 \sin \left(2 \pi \frac{1}{12} 37\right)-7835.8 \cos \left(2 \pi \frac{1}{12} 37\right)=87256.0722$
15. Maximum likelihood estimation is applied under Proc Arima. Hence $\operatorname{var}\left(Y_{t}\right)=s^{2}=4634264289 / 36=$ 128729563.5. This leads to
$r_{1}=0.51976 r_{2}=0.30488 r_{3}=0.28311 r_{4}=-0.01415 r_{5}=-0.26077 r_{6}=-0.18074$
$r_{7}=-0.26868 r_{8}=-0.16206 r_{9}=0.07176$
16. $2 \operatorname{std}\left(r_{k}\right)=0.33$. Only $\rho_{1}$ is significantly different from zero. The series is stationary as $r_{1}$ is not close to 1 and the ACF cuts off after lag 1, i.e., the ACF does not mimic the random walk pattern of $(t-k) / t$.
17. Not a white noise process based on the Q test for autocorrelation check for white noise and the ACF behaviour.
18. $p=q=0 D F=k-p-q=k=6$.
19. ACF cuts off after 1 ( $\rho_{2}$ is marginally significant)

PACF cuts off after lag 1
These features do not fit in any standard ARMA models (Recall that the ARMA model is only an approximation to the data generating process).
Could try $\operatorname{AR}(1)$, MA(1), $\operatorname{ARMA}(1,1)$ as approximations.
20. $H_{0}: \delta=0$ vs. $H_{1}: \delta \neq 0$
$t=\frac{\bar{Y}}{s / \sqrt{n}}=\frac{98412}{11345.91 / 6}=52.04>2$
$\therefore$ Reject $H_{0}$.
21. The two tests are equivalent and the test statistics differ only in terms of the estimate $s^{2}$ substituted for the unknown $\sigma^{2}$. Note that $s^{2}$ in Q. 20 is the maximum likelihood estimator, whereas $s^{2}$ in Q. 7 is the unbiased estimator of $\sigma^{2}$. If either the maximum likelihood or the unbiased estimator is used in both questions, then $t^{2}$ from Q. 20 is equal to $F$ in Q. 7 .
22. $\widehat{\mu}=\frac{\widehat{\delta}}{1-\widehat{\phi}_{1}}$. Hence for Table $4, \widehat{\delta}=98170(1-0.53824)=45330.98$; for Table $5, \widehat{\delta}=98425.6$.
23. For Table 4, $\widehat{Y}_{t}=45330.98+0.53824 Y_{t-1}$

For Table 5, $\widehat{Y}_{t}=98425.6+0.51818 e_{t-1}+0.09168 e_{t-2}$
24. AIC $=-2(\ln (L)-g) ; B I C=-2 \ln (L)+g \ln (n)$. Both AIC and BIC are penalised versions of the log-likelihood, which always increases as more lagged terms are added to the model. The penalty term for AIC is $2 g$ (i.e., 2 times the number of coefficients), whereas for the BIC, it is $g \ln (n)$. As $\ln (n)$ is usually larger than 2, BIC imposes a larger penalty than the AIC on the log-likelihood when the model's dimension increases. Hence BIC typically favours a more parsimonious model. For Table 4, AIC=766.522, BIC=769.689 For Table 5, AIC=770.26, $\mathrm{BIC}=775.01$
25. Although neither the $\mathrm{AR}(1)$ nor the $\mathrm{MA}(2)$ results in uncorrelated residuals, the $\mathrm{AR}(1)$ model passes the t-test and yields smaller AIC and BIC values; it is superior by all accounts to the MA(2) model.
26. $\rho_{1}=\frac{-\theta_{1}\left(1-\theta_{2}\right)}{1+\theta_{1}^{2}+\theta_{2}^{2}}=\frac{0.51818(1+0.09168)}{1+0.51818^{2}+0.09168^{2}}=0.444088$
$\rho_{2}=\frac{-\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}}=0.071973$
27. $Y_{t}=(1-B)^{2} W_{t}=W_{t}-2 W_{t-1}+W_{t-2}$
$\therefore W_{t}-2 W_{t-1}+W_{t-2}=45330.98+0.53824\left(W_{t-1}-2 W_{t-2}+W_{t-3}\right)$, and hence $W_{t}=45330.98+2.53824 W_{t-1}-2.07648 W_{t-2}+0.53824 W_{t-3}$
28. ARIMA $(1,2,0)$
29. $H_{0}: \rho=0$ vs. $H_{1}: \rho>0$
$D W=1.32, k^{\prime}=1, n=36, d_{L}=1.411, d_{U}=1.525$
As $D W<d_{L}$, reject $H_{0}$.
30. Q. 19 and Q. 25 suggest that an $\operatorname{AR(1)~model,~which~includes~} Y_{t-1}$ as a regressor, is an acceptable specification for $Y_{t}$. This suggests that autocorrelation in the residuals as detected under Q. 29, is probably due to the omission of $Y_{t-1}$ as an explanatory variable from the model in Table 1.
31. $\alpha=0.5$. The forecast adjusts reasonably quickly to new observations, but it also depends on the $\gamma$ value.
32. $\alpha=1$ and $\gamma=0 \Rightarrow Y_{t+1}=Y_{t}+b_{0}$.
33. As Figure 1 shows, the data series experiences a number of abrupt, sudden changes. This violates one basic assumption of exponential smoothing which requires the data to slowly evolve over time.

