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Introduction

Nucleic acid sequence represents a unique signature for liv-
ing organism, including mammals, microorganisms, and 
virus. It is of particular interest because it often serves as the 
biomarker associated with diseases or pathogens. For 
example, emerging evidence has shown that seven signa-
ture messenger RNAs (mRNAs) in saliva are elevated due 
to oral cancer.1 MicroRNAs, small (~22 nt) regulatory 
RNAs present in the bloodstream due to the dysfunction of 
cancer, recently found their promise as tissue-based mark-
ers for cancer classification and prognostication.2 In addi-
tion, for analysis of pathogenicity, chromosomal markers with 
species-specific sequences can be used to differentiate 
pathogenic strains,3–5 which is important for food safety and 
homeland security when encountering bioterrorism threats. 
Thus, effective detection and identification affect many 
aspects of our lives, including food safety, water contamina-
tion, and diseases.6

There have been many approaches to analyze nucleic 
acids. Polymerase chain reaction (PCR), coupled with 
molecular fluorophore assays such as real-time PCR or 
DNA microarrays, has been widely used for the detection 

of nucleic acid sequences of interest.5,7–9 In addition, many 
types of nanomaterials, such as gold nanoparticles,10 quan-
tum dots,3,11 and electrochemistry,12–14 have been employed 
for the detection of nucleic acids due to their large surface-
to-volume ratio and the unique physical and chemical 
properties. However, these methods require probes or 
primers specifically designed to determine the presence of 
a specific target DNA/RNA. Without a hypothetical target, 
it is not applicable to differentiate the identity of the 
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Abstract
Nucleic acid biomarkers embody inherent importance for differentiating disease-causing organisms or environmental 
pathogens. Identifying unknown nucleic acids in low abundance remains extremely challenging. Previously, we reported a 
method to identify complementary DNA (cDNA) molecules based on sequence-specific topographical labels measured 
by atomic force microscopy (AFM). However, the accuracy is limited because only one type of nicking endonuclease was 
used as the labeling agent. Here we investigate how accuracy is improved using multiple types of nicking endonucleases in 
combinations. The numerical experiments created cDNA molecules incorporating measurement error or labeling defects, 
which were later compared with the 29,563 human messenger RNA (mRNA) transcript database with ideal labels. After 
comparison, the unknown cDNA molecule was identified as the transcript with the highest matching score. Thus, the 
accuracy was determined by the rate of true positives. We found that the accuracy is positively proportional to the label 
number. Compared with cases using single nicking endonuclease, which has an average accuracy of 51.2% ± 34.4%, the 
average accuracy was improved to 97.1% ± 5.6% using an optimized combination of NtBsmAI + NtBstNBI + NtAlwI. 
This improved accuracy is applicable to more than 85% of human mRNA transcripts. Together, our study suggests an 
optimization strategy for identifying nucleic acids in low abundance using the AFM-based method, with implications for 
diseases diagnosis, pathogen identification, and forensics at the single molecule level.
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unknown nucleic acid species. To identify a DNA/RNA 
molecule, sequencing methods may be employed, which 
include Maxam-Gilbert sequencing15 and chain termina-
tion methods16 for small-scale sequencing and next-gener-
ation sequencing,17 such as the Roche 454 (Roche, 
Indianapolis, IN),18 the Illumina/Solexa Genome Analyzer 
(Illumina, San Diego, CA),19 and the SOLiD System 
(Applied Biosystems, Foster City, CA),20 for large-scale 
sequencing. However, most methods require cloning to 
amplify the copy number. The identification of DNA/RNA 
in low abundance (single molecule level) remains very 
challenging.

Previously, we reported a method that can identify 
short complementary DNA (cDNA) molecules based on 
sequence-specific topographical labeling.21 The length 
and label positions of unknown cDNAs can be precisely 
measured by atomic force microscopy (AFM), which 
yields a unique labeling pattern for sequence mapping 
(Fig. 1). Therefore, it offers a new approach to identify 
nucleic acids without the need of predesigned primers or 
probes based on a hypothetical target. However, by using 
only one type of nicking endonuclease, which restricts the 
number of labeling sites and the population of transcripts 
suitable for this approach, the identification accuracy is 
limited.

Here, instead of using only one type of labeling agent, 
we investigate how accuracy is improved when multiple 
types of nicking endonucleases are applied simultaneously. 
We found a positive correlation between accuracy and the 
number of labels, suggesting a strategy for optimizing the 
combinations of nicking endonucleases. For cases labeled 
with only one type of nicking enzyme, the average accuracy 
is 51.2% ± 34.4%, but with a combination of three selected 
nicking endonucleases (NtBsmAI + NtBstNBI + NtAlwI), 
the average accuracy was significantly increased to 97.1 ± 
5.6% without substantially increasing the experimental cost 
and complexity. This improved accuracy is applicable to 
more than 85% of human mRNA transcripts. Together, our 
results demonstrate an optimized strategy to identify nucleic 
acid molecules, with particular importance for applications 
of samples in low abundance.

Materials and Methods

Simulation of cDNA Molecules

One hundred transcripts were sampled from 29,563 human 
mRNA transcripts from the NCBI Reference Sequence 
(RefSeq) database based on their length distribution (Fig. 
2). Eight types of nicking endonucleases (NtBspQI, 
NtBbvCI, NbBsmI, NbBsrDI, NbBtsI, NtAlwI, NtBstNBI, 
and NtBsmAI) were used in different combinations for 
labeling the sampled transcripts. Based on each sampled 
transcript and a specific combination of nicking endonucle-
ases, 100 cDNA molecules were generated, incorporating 
the errors in labeling and AFM measurement. The AFM 
measurement is limited by its lateral resolution of 5 nm. As 
such, the measurement error of labeling position was 
defined in a range of normal distributed deviations from the 
ideal labeling site, and 5 nm was set as the standard devia-
tion of the normal distribution. Considering incomplete 
reverse transcription when generating the cDNA molecules, 
we implemented a truncation of 0% to 20% of length from 
the 5′ end, which was uniformly distributed among the 100 
cDNA molecules. For missing labeling, the probability was 
assumed as 20% per site. For spurious false labeling, which 
means labeling to a wrong site randomly, the probability 
was assumed as 3%.

Matching the 100 cDNA Molecules to the 
Library with Ideal Labeling Patterns from the 
Human mRNA Transcripts Database

Each simulated cDNA molecule was compared with the 
29,563 human mRNA transcripts from the NCBI RefSeq 
database. Using a specific combination of nicking endonu-
cleases, the 29,563 mRNA transcripts were labeled with the 
nicking endonucleases without considering the errors, which 
renders a library of ideal labeling patterns. Based on the 
library, each cDNA molecule was aligned with each tran-
script decorated with the ideal labeling pattern from  
the 3′ end (Suppl. Fig. S1). We defined a matching score  
S = A
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Figure 1. Schematics of complementary 
DNA (cDNA) molecules with sequence-
specific topographical labels measured by 
atomic force microscopy.
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22 . Note L is the number of aligned labels between 
the cDNA molecule and the mRNA transcript; error is the 
measurement error by AFM, which was estimated as 5 nm; 
M denotes the number of missing labels; F means the num-
ber of false labels; pl is the probability of true labeling, 
which was assumed to be 80%, and pf is the probability of 
false labeling, which was assumed to be 3%; and d is the 
lateral distance between the aligned labels on the cDNA 
molecule and the mRNA transcripts. As such, by comparing 
the labeling position of the cDNA molecules and the 29,563 
mRNA transcripts with ideal labeling patterns side by side, 
based on the matching score S, the mRNA transcript that had 
the highest matching score was used as the identity of that 
cDNA molecule. Consequently, if the matching score paired 
the cDNA and mRNA transcript correctly, it was defined as 
true positive. Otherwise, it was defined as false positive. 
Thus, the percentage of true positives among the 100 cDNA 
molecules was used to represent the accuracy.

Results

Principle of the Sequence-Specific Topographical 
Labeling for Identifying cDNA Molecules

This principle is based on our previously reported method, 
sequence-specific topographical labeling.21 Before AFM 
scanning, cDNA molecules of unknown sequence were labeled 
with nicking endonucleases that can recognize specific 
sequences of five to seven nucleotides (e.g., Nt.BspQI for 
5GCTCTTCN3). Subsequently, the nicked cDNA molecule 
was enzymatically modified with biotinylated nucleotides, 
allowing bindings of streptavidin at the labeling sites and mak-
ing them visible by AFM (Fig. 1). Note that multiple sites in a 
single cDNA molecule can be simultaneously labeled. As such, 
based on the labeling positions, the spacing between the label-
ing, and the total length of the cDNA molecule, this labeling 
pattern yielded unique characteristics representing the unknown 

cDNA molecule. Consequently, comparing the measured label-
ing pattern with a library of ideal labeling patterns of known 
mRNA transcripts, the transcript with the highest matching 
score was used as the identity of the unknown cDNA molecule, 
providing a measurement at the single molecule level.

Generation of cDNA Molecules That Underwent 
Sequence-Specific Labeling

To evaluate the accuracy of this principle, we first conducted 
numerical experiments to simulate the cDNA molecules that 
underwent the sequence-specific labeling. Specifically, we 
simulated the labeling of the molecules considering the 
experimental errors, which may occur in biochemical reac-
tions or AFM imaging. Eight types of nicking endonucleases 
(NtBspQI, NtBbvCI, NbBsmI, NbBsrDI, NbBtsI, NtAlwI, 
NtBstNBI, and NtBsmAI) were applied in different combina-
tions for these numerical experiments. The NCBI RefSeq 
database of 29,563 full-length human transcripts was used as 
the model library. On the basis of the mRNA lengths of the 
entire library (Fig. 2A), we sampled 100 transcripts repre-
senting the general mRNA population (Fig. 2B). For each 
sampled transcript pairing with one specific combination, 
100 cDNA molecules were generated incorporating the fol-
lowing hypothetical errors: (1) inaccurate measurement of 
labeling position by AFM, (2) truncation at the 5′ end due to 
incomplete reverse transcription, (3) missed labeling, and (4) 
spurious false labeling. An example of 100 cDNAs generated 
from the OR8B2 mRNA transcript labeled with a combination 
of NtBstNBI, NtBsmAI, and NtAlwI is shown in Supplemental 
Figure S1.

Accuracy of the Sequence-Specific Topographical 
Labeling for Identifying cDNA Molecules

On the basis of the 100 simulated cDNA molecules repre-
senting one sampled transcript labeled with a specific com-
bination of nicking endonucleases, we next evaluated the 

Figure 2. Distribution of human messenger RNA (mRNA) transcripts. (A) The length distribution of 29,563 full-length human mRNA 
transcripts from the NCBI RefSeq database. (B) The 100 mRNA transcripts sampled according to the length distribution of the entire 
database.
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accuracy of such sequence-specific topographical labeling 
for identifying the cDNA molecules. The labeling patterns 
of the 100 simulated cDNA molecules were compared with 
the ideal labeling patterns of the 29,563 human mRNA tran-
scripts from the NCBI RefSeq database. We defined a true 
positive if the simulated cDNA molecules and its corre-
sponding transcript with ideal labeling had the highest 
matching score. In contrast, if the simulated cDNA mole-
cule was paired with an irrelevant transcript because of the 
higher matching score, the alignment was defined as false 
positive. Thus, the accuracy was calculated as the percent-
age of true positives among the 100 cDNA molecules. By 
placing the accuracy from all 100 sampled transcripts 
applied with all possible combinations of eight nicking 
endonucleases together (~28 combinations × 100 cDNA 
molecules for each sampled transcript; total 100 sampled 
transcripts), the results show that there is a clear increase of 
accuracy when the label number of each molecule is 
increased (Fig. 3). For a label number no less than 10, the 
accuracy reaches 80% to 100% from different combinations 
of nicking endonucleases. Moreover, we also found the 
accuracy is increased when the mRNA transcript is longer 
(color map in Fig. 3). This is because for longer transcripts, 
there are fewer mRNAs in the library that have comparable 
length (Fig. 2A), therefore minimizing the potential mis-
take in pairing.

Label Number of the Eight Types of Nicking 
Endonucleases

As the label number has strong influence on the accuracy, 
we next studied the label numbers for each type of nicking 

endonuclease applied to the entire 29,563 full-length human 
mRNA transcript library. According to the numerical exper-
iments on the 100 sampled transcripts, accuracy is favored 
by having an increased label number (Fig. 3), which implies 
that more types of nicking endonucleases should be applied 
simultaneously. However, using many types of nicking 
endonucleases is impractical because it increases cost and 
experimental complexity. Thus, an optimized strategy 
should be sought to balance the use of nicking endonucle-
ases and at the same time maintain the overall accuracy at a 
sufficient level. Based on the entire library, the label num-
bers of each type of nicking endonuclease show that 
NtAlwI, NtBstNBI, and NtBsmAI provide the most label 
numbers compared with the other five types (Fig. 4A), 
which also can be seen by the average label numbers of 
them (Fig. 4B). Interestingly, compared with other nicking 
endonucleases, the recognition sites for NtAlwI, NtBstNBI, 
and NtBsmAI are the shortest, only five nucleotides (Fig. 
4B), suggesting that the shorter recognition sequence has a 
higher chance to create labels.

Optimized Combination of Nicking 
Endonucleases for the Entire Transcript Library

We next sought an optimized combination of nicking endo-
nucleases to improve the overall accuracy. Among the total 
eight types of nicking endonucleases, we first studied the 
combinations that use only two. A label number no less than 
10 was chosen as the threshold since it offers accuracy 
between 80% and 100% for all 100 sampled transcripts 
from different combinations of nicking endonucleases (Fig. 
3). For the total 28 (8C2 “8 choose 2”) combinations of nick-
ing endonucleases against 29,563 full-length human tran-
scripts, we found that by using a combination of NtBsmAI 
+ NtBstNBI, there are 48.4% of total transcripts having a 
label number no less than 10, which is the best among the 
28 possible combinations (Fig. 4C). This result is consistent 
with the aforementioned findings that NtBsmAI and 
NtBstNBI have the highest average label numbers because 
of their short labeling sites (Fig. 4B), therefore increasing 
the label number as well as the population of transcripts 
having a label number no less than 10. More important, 
among the 100 sampled transcripts, the average accuracy of 
99.5% ± 1.2% (mean ± SD; from 94%-100%) was achieved 
for cases labeled by NtBsmAI + NtBstNBI and with a label 
number no less than 10. Of note, for cases that used only 
one of the eight types of nicking endonuclease, the accuracy 
is only 51.2% ± 34.4% (mean ± SD; from 0%-100%). It 
suggests a significant improvement using the combination 
of nicking endonucleases.

For convenience, cumulative distribution of label num-
ber was used to study the population of human mRNA tran-
scripts and their label number. The cumulative distribution 

Figure 3. Accuracy of identifying the 100 sampled messenger 
RNA (mRNA) transcripts using different combinations of nicking 
endonucleases. The identification accuracy manifests a positive 
correlation with the label number and the mRNA length.
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Figure 4. The analysis of the label numbers for each nicking endonuclease. (A) The distribution of label numbers of each nicking 
endonuclease against the entire messenger RNA (mRNA) library. (B) The average label number versus the number of nucleotide of 
recognition sites. (C) Labeled by combinations of two types of nicking endonuclease, the percentage of mRNA transcripts that have a 
label number of no less than 10.

Figure 5. Cumulative distribution of the percentage of human messenger RNA transcripts that has no less than a specific value of 
label number (A) using two nicking endonucleases (NtBsmAI and NtBstNBI) and (B) using three nicking endonucleases (NtBsmAI, 
NtBstNBI, and NtAlwI).
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was plotted by the percentage of human mRNA transcripts 
(y-axis) that had no less than a specific value of label num-
ber (x-axis). Thus, for the combination of NtBsmAI + 
NtBstNBI, we can easily determine 48.4% when the label 
number was no less than 10 (Fig. 5A), which corresponds to 
99.5% ± 1.2% accuracy.

We next explored whether it is possible to enlarge the 
population of human mRNA transcripts applicable for this 
improvement. The threshold of a label number, 10, was 
chosen during the analysis above. However, the population 
of mRNAs that has a label number no less than 10 was only 
48.4%, restricting the applicable range of this optimized 
combination. To enlarge the applicable range, we first 
changed the threshold of label number to 6. The results 
showed that, while the accuracy was slightly decreased to 
96.4% ± 6.6% (mean ± SD; from 73%-100%), the applica-
ble range was significantly enlarged from 48.4% to 73.6% 
(Fig. 5A) because more mRNAs have a label number no 
less than 6.

To further improve the accuracy as well as the applicable 
range, we resorted to a combination of three nicking endo-
nucleases. NtBsmAI + NtBstNBI + NtAlwI was chosen 
because they used the shortest recognition sites and had the 
most average label numbers (Fig. 4B). The cumulative dis-
tribution shows that 85% of human mRNA transcripts had 
label number no less than 6 using this combination (Fig. 
5B). More important, the average accuracy was improved 
to 97.1% ± 5.6% (mean ± SD; from 76%-100%) for cases 
labeled by NtBsmAI + NtBstNBI + NtAlwI and with a 
label number no less than 6. Consequently, based on our 
numerical analysis, by using the combination of nicking 
endonucleases, NtBsmAI + NtBstNBI + NtAlwI, in this 
sequence-specific topographical labeling, an average 
accuracy of >97% was achieved for 85% of human mRNA 
transcripts.

Discussion

Nucleic acids represents important biomarker for many dis-
eases and pathogens, especially for applications that require 
accurate estimation of the levels of target molecules in low 
abundance (~100), such as patient status or environmental 
contamination. In this article, we demonstrate that, based on 
the sequence-specific topographical labeling, the average 
accuracy was improved from 51.2% ± 34.4% using single 
nicking endonuclease to >97% by using combinatory nick-
ing endonucleases. According to our numerical experi-
ments, this improved accuracy can be applicable for more 
than 85% of human mRNA transcripts. Moreover, instead 
of using eight types of nicking endonucleases, this improve-
ment can be obtained using only three types of nicking 
endonucleases with shortest recognition sites; therefore, 
accuracy was improved without sacrificing the experimen-
tal cost and complexity.

In this study, we found that accuracy is positively corre-
lated with the label number (Fig. 3). As the labeling pattern 
is the key characteristic to identify the unknown cDNA 
molecule, which includes the location of and spacing 
between the labeling sites on cDNA molecules, more label-
ing sites will definitely provide more informative and 
unambiguous labeling patterns for matching with the 
mRNA transcript library. As such, although combinations 
of nicking endonucleases are used, it may not be necessary 
to distinguish which type of nicking endonuclease is at each 
of the labeling sites as long as the label number is suffi-
ciently high.

Interestingly, we have found that the accuracy also has a 
positive correlation with the mRNA length, even if the label 
number is the same (color map in Fig. 3). We propose two 
reasons for this. First, the population of long mRNA tran-
scripts is small, according to the distribution of the mRNA 
population (Fig. 2A), thereby decreasing the probability of 
mismatching. Second, the measurement error by AFM, 
which was defined as 5 nm in our simulations, is more dom-
inant in shorter cDNA, which may result in a larger proba-
bility of mismatching.

This AFM-based method has demonstrated effectiveness 
in identifying transcript isoforms previously.21 However, it 
may have limitations in differentiating cDNA molecules 
with single-base mutations. As the typical lengths of nick-
ing endonuclease recognition sequences are five to seven 
nucleotides, most of the unlabeled parts are only providing 
information about the spacing between the labeling posi-
tions and the total length of the cDNA molecules. As a 
result, it may be difficult to differentiate the single-base 
mutation if it occurs at the unlabeled parts. Thus, while this 
method provides a highly accurate identification of cDNA 
with unknown sequence, postscreening for the single-base 
mutations22 may be needed for the detection of single-base 
or point mutations.

Together, our results demonstrate an identification of 
unknown cDNA molecules in low abundance. Importantly, 
this method does not rely on probes or primers designed to 
determine the presence of a specific target DNA/RNA, pro-
viding a new analytical strategy for disease diagnosis, 
pathogen identification, and forensics at the single molecule 
level.
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