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ABSTRACT: Visual detection of nucleic acids provides
simple and rapid screening for infectious diseases or
environmental pathogens. However, sensitivity is the current
bottleneck, which may require enzymatic amplification for
targets in low abundance and make them incompatible with
detection at resource-limited sites. Here we report an enzyme-
free amplification that provides a sensitive visual detection of
ssDNA/RNA oligonucleotides on the basis of nano “sticky
balls”. When target oligonucleotides are present, magnetic
microparticles (MMPs) and gold nanoparticles (AuNPs) were
linked together, allowing the collection of AuNPs after magnetic attraction. Subsequently, the collected AuNPs, which carry
many oligonucleotides, were used as the sticky balls to link a second pair of MMPs and polymer microparticles (PMPs). Thus,
because the magnetic field can attract the MMPs as well as the linked PMPs to the sidewall, the reduction of suspended PMPs
yields a change of light transmission visible by the naked eye. Our results demonstrate that the limit of detection is 10 amol for
ssDNAs (228 fM in 45 μL) and 75 amol for ssRNAs (1.67 pM in 45 μL). This method is also compatible with the serum
environment and detection of a microRNA, miR-155, derived from human breast cancer cells. With significantly improved
sensitivity for visual detection, it provides great potential for point-of-care applications at resource-limited sites.
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1. INTRODUCTION

Visual detection of nucleic acids provides simple and rapid
assays with visualized readout,1 and has been widely used for
pathogen identification2−5 or disease diagnosis.6−8 Nanoma-
terials, such as gold nanoparticles (AuNPs),9−14 silver nano-
particles,15 and graphene oxide,16 have been employed for
visual detection according to their unique optical properties,
biocompatibility, conductivity, and high surface-to-volume
ratio.17−22 For example, AuNPs were used for detection of
target molecules by modifying capturing probes on the surface
of AuNPs.14,17,23−25 As such, the presence of target molecules
would cause the aggregation of AuNPs and induce a change of
solution color from red to purple. Moreover, this scheme was
recently developed into lateral flow strips and magnetophoretic
assays that provide fast visual readout for detection of ssDNA/
RNA oligonucleotides.26−29 However, although promise was
shown, these visual detections are subject to the limit of
detection (LOD), which usually falls into nanomole per liter
level because a large amount of target oligonucleotides is
required to induce AuNP aggregation. Thus, without
amplification, these methods are not desirable for detecting
targets in low abundance.30

To improve the sensitivity of visual detection, various
amplification methods have been suggested. Enzymatic
amplification has been widely used in visual or other types of

detection.31−33 However, enzymatic amplifications require
specific conditions for enzymatic reactions, e.g., thermal cycles,
and special storage for protein enzymes that may be difficult for
resource-limited sites. Therefore, enzyme-free amplification has
attracted increasing attention, including biobarcode-based
detection34−36 or hybridization DNA circuits.37−42 Biobarcode
amplification uses target molecules to connect nanoparticles
that carry a vast number of barcode DNAs. The barcode DNAs,
whose amount is proportional to the target molecules, are
subsequently dissociated from the nanoparticles and detected,
resulting in amplified signals representing the target molecules.
However, the dissociation of biobarcode DNAs may require
time-consuming dithiothreitol (DTT) treatment43 or toxic
cyanide,36 which may increase complexity of the assays.
Alternatively, hybridization DNA circuits rely on short DNA
strands that act as catalysts or triggers to initiate a series of
opening and assembly of DNA hairpins;37−42 therefore, an
isothermal and enzyme-free amplification were achieved.
However, possibly because of the undesired opening of
hairpins, the sensitivity of these assays reached 10 fmol37 or
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14−50 pM,38,40,42 which requires improvement for point-of-
care applications in practical aspects.
Here we report an enzyme-free amplification based on a new

scheme: a nano “sticky balls” amplified magnetophoretic effect
for sensitive and quantitative visual detection of ssDNA/RNA
oligonucleotides (Scheme 1). Our method consists of two

steps. In the first step, the AuNPs and magnetic microparticles
(MMPs) were modified with oligonucleotide probes such that
they can bind together by hybridizing with target oligonucleo-
tides in juxtaposition which allows the collection of linked
AuNPs via magnetic attraction. In the second step, the collected
AuNPs were used as nano sticky balls connecting a second pair
of MMPs and polymer microparticles (PMPs), forming a
MMPs−AuNPs−PMPs complex. Therefore, after applying the
magnetic field, the MMPs−AuNPs−PMPs could be moved to
the sidewall, yielding a change of solution turbidity from
opaque to transparent due to the reduction of suspended
PMPs. Note that because the PMPs are large (1.04 μm in
diameter) the change of turbidity is caused by Mie scattering
that can effectively attenuate light transmission with signifi-
cantly enhanced extinction coefficient (∼3 orders of magnitude
greater than that of commonly used gold nanoparticles44).
More importantly, because the AuNPs are nanoscale, only very
small amount of target oligonucleotides was required for the
collection of AuNPs in the first step. Therefore, the few target
nucleotides were exchanged to AuNPs modified with many
oligonucleotide probes, which were used for the connection
between MMPs and PMPs with significantly enhanced binding
strength that amplified the signals. Using this enzyme-free
amplification, we found that the LOD reached 10 amol for
ssDNAs (228 fM in 45 μL) and 75 amol for ssRNAs (1.67 pM
in 45 μL). Moreover, this method can be applicable for
detection of the target oligonucleotides in the blood serum and
microRNAs, miR-155, extracted from human mammary gland
metastatic epithelial cells (MDA-MB-231 cell line). With
greatly improved sensitivity, our approach shows potential for
disease diagnosis with quantitative readouts at resource-limited
sites.

2. EXPERIMENTAL SECTION
Materials and Reagents. The single-strand oligonucleotides, tris

(2-carboxyethyl) phosphine (TCEP), and sodium dodecyl sulfate
(SDS) were purchased from Sangon Biotech Ltd. The tris-ethyl-
enediaminetetraacetic acid (Tris-EDTA) buffer, potassium phosphate,
Tris-HCl, EDTA, Trition X-100, and NaCl were obtained from Sigma-
Aldrich. The blood serum was fetal bovine serum from Life
Technology. The MMPs of 0.90 μm in diameter (CM01N, Bangs
Laboratories, Inc., USA) and PMPs of 1.04 μm in diameter
(polystyrene basis, CP01F, Bangs Laboratories, Inc., USA) were
functionalized with a streptavidin coating by the manufacturer using
covalent conjugation with a zero-length cross-linker. The AuNPs with
diameter of 30 nm were from PERSer Nanotechnology, Ltd. All
chemicals were of analytical grade. Deionized (DI) water with a
resistivity of 18.2 MΩ cm was obtained from a Milli-Q Plus system.

Oligonucleotide Sequence. The single-strand oligonucleotides
were dissolved in Tris-EDTA buffer. These sequences are listed in
Table 1. The oligonucleotide probes M155 and B155 were designed

with sequence complementarity to the target oligonucleotide MB155
in juxtaposition, and oligonucleotide probes BC1 and BC2 were
designed with sequence complementarity to the oligonucleotide B155
in juxtaposition. (Complementary sequences are underlined.) The
oligonucleotide B155 was functionalized with (PEG)6-thiol at its 3′
end, which avoids steric hindrance during hybridization between BC2
and B155. Bi155 was designed on the basis of B155, but the (PEG)6-
thiol at its 3′ end was replaced by biotin. MBr155 is the RNA-based
oligonucleotide designed accordingly to the sequence of MB155. SNP
A, SNP T, and SNP C were designed with a single-base mismatch
(shown in bold italic) compared to MB155.

Modification of AuNPs. (PEG)6-thiol-functionalized probe B155
(100 μM, 25 μL) was first activated by 5 equiv of TCEP for 1 h. Then,
the TCEP-activated B155 was added to 1 mL of gold nanoparticles
(30 nm, 300 pM) at room temperature. After 16 h, 0.01% SDS was
added to the solution, and it was brought to a final concentration of
1.0 M NaCl through a stepwise process. Upon aging for 40 h, the
AuNPs were isolated by centrifugation 13.8 × g for 10 min, washed
three times with hybridization buffer (pH 7.4, 10 mM phosphate, 0.3
M NaCl, 0.01% SDS), dispersed in the hybridization buffer, and finally
stored at 4 °C until use. To estimate the number of oligonucleotides
loaded on the AuNPs, we used FAM-labeled DNAs to modify AuNPs.
The FAM-labeled DNAs were later dissociated by mixing with an
equal volume of 1.0 M DTT in 0.18 M PBS buffer (pH 8.0) for
incubation overnight.43 After removing AuNPs by centrifugation, the
fluorescence of the solution was measured and compared to a standard
curve of the fluorescence intensity and FAM concentration. By this
method, we found that there were approximately 330 oligonucleotides
loaded on each AuNP, which was equal to 2.919 × 1012/cm2.

Modification of MMPs and PMPs. The oligonucleotide probes
(M155, Bi155, BC1, and BC2) were biotinylated so that they can

Scheme 1. Working Principle of the Enzyme-Free Amplified
Magnetophoretic Effect Using AuNPs as Nano Sticky Balls
for Visual Detection of ssDNA/RNA Oligonucleotides

Table 1. Sequences of the Oligonucleotides

strand
name sequence

M155a 5′-/biotin/-CCCCTATCACG-3′
B155a 5′-ATTAGCATTAAACTCGGATCACTCG-(PEG)6- thiol-3′
Bi155a 5′-ATTAGCATTAA-/biotin/-3′
MB155 5′-TTAATGCTAATCGTGATAGGGG-3′
MBr155 5′-UUAAUGCUAAUCGUGAUAGGGG-3′
SNP A 5′-TTAATACTAATCGTGATAGGGG-3′
SNP T 5′-TTAATTCTAATCGTGATAGGGG-3′
SNP C 5′-TTAATCCTAATCGTGATAGGGG-3′
BC1b 5′-GTTTAATGCTAAT-/biotin/-3′
BC2b 5′-/biotin/-CGAGTGATCCGA-3′

aThe sequences complementary to MB155 or MBr155 in
juxtaposition are underlined. bThe sequences complementary to
B155 in juxtaposition are underlined.
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spontaneously attach to streptavidin-coated MMPs and PMPs. Briefly,
3.5 μL of MMPs or PMPs solution (10 mg/mL; 1.278 × 1010 and
1.617 × 1010 particles/mL for MMPs and PMPs, respectively) was
added to the solution containing 2.5 μg of oligonucleotide probes.
Note that each MMP and PMP would allow the attachment of 1.6 ×
106 and 2.5 × 105 oligonucleotide probes, respectively (6.28 × 108

/cm2 on MMPs and 4.32 × 108 /cm2 on PMPs). Here, 2.5 μg of
oligonucleotide probes were mixed with 35 μg of MMPs or PMPs,
which is equal to 3.5 × 106 and 5.4 × 105 oligonucleotide probes for
each MMP and PMP, respectively. Thus, the provided number of
oligonucleotide probes is significantly greater than the total capacity of
microparticles, which ensures that all binding sites were fully loaded.
The mixture was incubated for 30 min at room temperature with
gentle shaking to allow the immobilization of biotinylated
oligonucleotides on streptavidin-coated microparticles. Next, the
MMPs and PMPs were rinsed three times with 200 μL of wash
buffer (20 mM Tris-HCl, pH 7.5, 1 M NaCl, 1 mM EDTA, 0.0005%
Trition X-100) to remove residual oligonucleotides. For each washing
step, the MMPs were collected using a magnetic separation rack,
whereas the PMPs were collected using a centrifuge (13.8 × g for 5
min). At the end, the MMPs and PMPs were suspended in
hybridization buffer with the final concentration 10 mg/mL.
Hybridization of MMPs and AuNPs with Target Oligonu-

cleotides. For the detection of oligonucleotide, 1 μL of control
sample containing pure hybridization buffer, target oligonucleotide
solution with varying concentration prepared in hybridization buffer,
or target oligonucleotides with single-base mismatch at 250 pM in
hybridization buffer was added to 3.5 μL of MMPs (10 mg/mL)
modified with M155 probes. For MBr155, RNAase inhibitor at 1 U/
μL was supplemented. Hybridization was conducted for 30 min with
gentle vortexing at room temperature. Then, 40.5 μL of B155-
modified AuNPs was added to the mixed solution, hybridization was
allowed with gentle vortexing for 30 min, and the final volume became
45 μL.
Hybridization of MMPs and AuNPs with Target Oligonu-

cleotides in Blood Serum. Pure blood serum (1 μL of control
sample) or blood serum containing varying concentration of target
oligonucleotides MB155 was added to 3.5 μL of MMPs (10 mg/mL)
modified with M155 and hybridization was allowed for 30 min with
gentle vortexing at room temperature. Then, the MMPs with target
oligonucleotides were collected by magnetic field. After rinsing the
MMPs three times to remove the residue from blood serum, 4.5 μL of
hybridization buffer was added. Next, 40.5 μL of B155-modified
AuNPs were added allowed to hybridiz with gentle vortexing for 30
min, and the final volume was left as 45 μL.
Collection of Linked AuNPs. After hybridization, the MMPs−

targets−AuNPs could be attracted to the sidewall by applying the
magnetic field for 2 min, and the unlinked AuNPs were removed.
Next, the MMPs−targets−AuNPs were resuspended in 5 μL of DI
water and heated at 70 °C for 5 min to release the AuNPs. Note that
the thiol−gold bond can remain stable in this heating step.34,35 Finally,
the salt concentration of the released-AuNPs solution was adjusted by
adding 5 μL of 2× hybridization buffer (pH 7.4, 20 mM phosphate, 0.6
M NaCl, 0.02% SDS), and the final volume was 10 μL.
Visual Detection of MMPs−AuNPs−PMPs Based on Magne-

tophoretic Effect. To the solution of released AuNPs was then
added 3.5 μL of BC2-modified MMPs (10 mg/ml), and hybridization
was conducted with gentle vortexing at room temperature for 60 min.
Next, to the mixture was added 3.5 μL of BC1-modified PMPs (10
mg/mL), and hybridization was conducted with gentle vortexing for
60 min at room temperature. The final volume was 17 μL. Finally, a
magnetic field was applied for 2 min to attract the unreacted MMPs
and MMPs−AuNPs−PMPs to the sidewall so that the solution with
PMP suspension can be collected for direct visual inspection or
quantitative analysis by UV−vis spectrometer (BioDrop μLITE, UK).
Cell Culture. MDA-MB-231 human mammary gland metastatic

epithelial cells (ATCC, USA) were cultured in Dulbecco’s modified
Eagle’s medium/nutrient mixture F-12 (DMEM/F-12) supplemented
with 10% fetal bovine serum and 1% penicillin−streptomycin (PS).
MCF-10A human mammary gland epithelial cells (ATCC, USA) were

cultured in DMEM/F-12 supplemented with 5% horse serum (HS),
1% PS, 20 ng/mL epidermal growth factor, 0.5 mg/mL hydro-
cortisone, and 10 ug/mL insulin. For neutralizing the toxicity of
trypsin during passaging, a resuspension medium for MCF-10A cells
was prepared using DMEM/F-12 supplemented with 20% HS and 1%
PS. All the cell lines were incubated at 37 °C in a humidified incubator
(5% CO2 and 95% air) and passaged every 3 days.

Extraction and Detection of MicroRNAs from Cells. Trizol (1
mL) was added to 6 million cells (or fewer) for 5 min at room
temperature. Then, 0.2 mL of chloroform was added and vortexed for
15 s. The mixed solution was incubated on ice for 10 min and
centrifuged at 13.8 × g at 4 °C for 15 min. Next, the upper aqueous
phase was transferred to a new tube, and to this was added 0.5 mL of
isopropyl alcohol with gentle vortexing, followed by incubation for 10
min. The mixed solution was centrifuged at 13.8 × g at 4 °C for 15
min, and the supernatant was removed. After adding 1 mL of ethanol
to wash the RNAs gently, the mixture was centrifuged at 13.8 × g at 4
°C for 5 min, followed by removal of the supernatant and drying to
make sure all the ethanol had been evaporated. Finally, DEPC-treated
water was added, and the mixture was incubated at 65 °C to resuspend
the RNAs in a final volume of 7 μL for storage at −80 °C. DEPC-
treated water without RNA (7 μL) was used as the control sample. For
detection, the RNA solution was added with PCR buffer (200 mM
Tris HCl (pH 8.4), 500 mM KCl, 15 mM MgCl2) to adjust salt
concentration and RNAase inhibitor at 1 U/μL, and the final volume
was adjusted to 10 μL. The RNA solution was then incubated with 3.5
μL of MMPs solution for 0.5 h, followed by isolation of MMPs and
hybridization with AuNPs for subsequent visual detection via the
aforementioned procedure.

Quantitative Reverse Transcription PCR (qRT-PCR). Total
RNAs was extracted from 0.68 million cells (MDA-MB-231 and MCF-
10A) using a commercial kit (12183555, Life Technology), and its
concentration was measured via Biodrop (BioDrop μLITE, UK). The
RNA solution from both cell types was mixed with reverse
transcription (RT) master mix solution (4366596, Life Technology)
and RT primer (assay no. 002623 for miR-155 or assay no. 001973 for
U6, the endogenous normalizer, 4427975, Life Technologies). The
sealed tube was incubated on ice for 5 min, followed by thermal cycles
according to the kit protocol. After reverse transcription, the RT
product was added to TaqMan Universal Master Mix II (4440038, Life
Technology) and TaqMan Assay 20× (4427975, Life Technologies)
following the kit protocol. The sealed strips were loaded into the real-
time PCR system (Bio-Rad CFX Connect Real-Time System)
following the kit protocol. All samples were repeated three times.
The qRT-PCR results were analyzed by relative expression of miR-155
in fold changes by ΔΔCT (cycle threshold) method.

3. RESULTS AND DISCUSSION

Nano Sticky Balls Amplified Magnetophoretic Effect.
The working principle is illustrated in Scheme 1. For the target
oligonucleotide MB155, we adopted a sequence the same as
that of a type of microRNA, miR-155, that is highly expressed
in breast cancer cells. This assay consists of two steps. In the
first step, because oligonucleotide probes M155 and B155 were
designed with sequence complementary to that of the target
oligonucleotide MB155 in juxtaposition (Table 1), the MMPs
modified with M155 and AuNPs modified with B155 were
linked together via hybridization with target oligonucleotides
MB155, forming MMPs−targets−AuNPs complex. After
applying a magnetic field, the MMPs and MMPs−targets−
AuNPs would be attracted to the sidewall. Note that in this step
the solution color was unchanged because only small amount of
AuNPs were attracted. After removing the unused AuNPs, the
linked AuNPs were released by nucleic acid denaturation. In
the second step, the released AuNPs containing hundreds of
B155 oligonucleotides with sequence complementary to the
sequence of BC1 and BC2 (Table 1) were acting as the sticky
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balls that can link BC2-modified MMPs and BC1-modified
PMPs by hybridization in juxtaposition, forming a MMPs−
AuNPs−PMPs complex. Thus, when a magnetic field was
applied, the MMPs−AuNPs−PMPs were moved to the sidewall
and induced a change of solution turbidity from opaque to
transparent due to the reduction of PMPs in the solution
(Movie S1). Note that the PMPs were chosen as the visual
effectors in the magnetophoretic assay because of their large
size, which allows an effective change of light transmission via
Mie scattering.
We first optimized the ratio of MMPs and PMPs. Using 2.25

fmol (7.5 μL at 300 pM) or 0.45 fmol (1.5 μL at 300 pM) of
AuNPs modified with B155 to link MMPs with BC2 and PMPs
with BC1, the ratio of MMPs and PMPs was varied to obtain
the greatest reduction of solution turbidity. By changing the
PMP concentration while keeping the MMP concentration
intact (35 μg in 17 μL), the most significant reduction of
solution turbidity was achieved when the ratio of MMPs and
PMPs is 1:1 (Figure S1). This condition was observed for both
high and low concentrations of AuNPs. Alternatively, by
changing the MMP concentration only, a similar result was
obtained for a high concentration of AuNPs (Figure S2).
Notably, the absorbance was slightly lower when the ratio is
1:0.5 or 1:0.25 if a low concentration of AuNPs was used.
However, because this improvement was subtle and not
applicable for a high concentration of AuNPs, the ratio of
MMP and PMP was chosen as 1:1 for the optimized
combination.
We next tested the feasibility of this AuNP-based

amplification. As shown in the Figure 1, using target

oligonucleotides at 250 pM in the first step, the AuNP-
amplified magnetophoretic effect caused the solution turbidity
to become as transparent as that of the buffer solution.
Measured by UV−vis spectrometer, the spectral absorbance
was almost the same (red and green lines in Figure 1). For
comparison, we conducted another experiment where 1 nM
B155 oligonucleotide molecules were directly applied to the
mixture of BC2-modified MMPs and BC1-modified PMPs.
Without AuNP amplification, the results showed that the
solution was almost as opaque as the control sample that only
had MMPs and PMPs. The UV−vis spectrum also showed that
the absorbance only decreased little (black line in Figure 1)
compared to that of control sample (blue line in Figure 1).

Thus, using AuNPs as the nano sticky balls for signal
amplification, the sensitivity was significantly enhanced.

Limit of Detection. We next explored the LOD of this
method. As shown in Figure 2A, with the use of different
concentrations of target oligonucleotide MB155 ranging from 1
pM to 250 pM, the solution turbidity gradually changed from
opaque to transparent. Thus, the LOD was 2.25 fmol (50 pM
in 45 μL) as determined by the naked eye. In addition,
measured by spectral absorbance (Figure 2B,C), the calibration
graph was linear in the range of 1−100 pM (Figure 2D), with
calibration equation determined as lg(RA) = −0.00968CMB155 −
0.05498, where RA is the relative absorbance at 400 nm, CMB155
is the concentration of MB155, and the corresponding
correlation coefficient (R2) of the calibration curve is 0.9474.
On the basis of the calibration graph, the LOD was 10 amol
(228 fM in 45 μL, calculated on the basis of 3σ/m, where σ is
the standard deviation of the lg(RA) of control sample, and m is
the absolute slope of the calibration equation), which is much
better than that of other types of visual assays such as AuNP
aggregation with DNA circuit38,40,42,45 or lateral flow strip.26

Notably, the target MB155 is a DNA oligonucleotide.
Because short RNA oligonucleotides are extremely degradable,
it may not be compatible with the operation principle and may
be damaged during the detection procedure, even in well-
defined buffer solution. To demonstrate the compatibility of
RNAs, we used MBr155, which is an RNA-based oligonucleo-
tide designed according to the sequence of target DNA MB155.
Measured by spectral absorbance (Figure 2E), the calibration
graph was linear in the range of 1−250 pM (Figure 2F). The
calibration equation was determined as lg(RA) =
−0.0017CMBr155 − 0.16673, where RA is the relative absorbance
at 400 nm, CMBr155 is the concentration of MBr155, and the
corresponding correlation coefficient (R2) of the calibration
curve is 0.971. On the basis of the calibration graph, the LOD
was 75 amol for ssRNAs (1.67 pM in 45 μL, calculated on the
basis of 3σ/m). The result showed that we can still achieve a
low level of LOD, validating the compatibility and practicability
of both DNA and RNA biomarkers in our amplified visual
detection.

Amplification Rate. We next determined the amplification
rate by comparing the signal with/without AuNP amplification.
To conduct detection without AuNP amplification, we used
two types of oligonucleotide probes, M155 and Bi155, with
sequences complementary to that of the target oligonucleotide
MB155 in juxtaposition. M155 and Bi155 were modified to
MMPs and PMPs, respectively, and MMPs−targets−PMPs
were formed after hybridization. The result showed that we can
detect the concentration as low as 250 pM (Figure S3; relative
absorbance, 0.94, total volume for hybridization, 45 μL).
Compared to the detection with AuNP amplification, a similar
readout was achieved for MB155 at 1 pM (Figure 2; relative
absorbance, 0.91, total volume for hybridization, 45 μL). Thus,
the amplification rate is about 250.

Selectivity of Single-Nucleotide Polymorphisms. We
next investigated the selectivity of single-nucleotide poly-
morphisms, which is important for preventing nonspecific
bindings and applications in gene expression assays. The
seventh base G in MB155 was replaced by A, T, and C (SNP A,
SNP T, and SNP C, respectively; Table 1). Using 250 pM in 45
μL, a concentration above the linear range, the results showed
that although the solution turbidity become transparent for
target molecules with complementary sequence the single-base-
mismatched sequence caused the solution to remain opaque

Figure 1. Spectral absorbance and (inset) optical images of the
solution with PMP suspension resulting from the tests with or without
AuNP amplification.
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(Figure 3A). In addition, as measured by UV−vis spectrometer,
there was only a slight decrease of absorbance compared to that
of the control sample (Figure 3B). The selectivity contrast ratio
of SNP A, SNP T, and SNP C is 28, 30, and 36, respectively.
Therefore, this result demonstrates the selectivity of our

method for differentiating between target oligonucleotides with

single-base-mismatched sequences.
Detection in Serum Environment. Some types of

nucleic-acid-based biomarkers, such as microRNAs in blood-

stream, were recently found to have promise for cancer

Figure 2. Visual detection of ssDNA/RNA oligonucleotides with varying concentrations (0 M, 1 pM, 5 pM, 10 pM, 50 pM, 100 pM, 250 pM in 45
μL). (A) Optical images showing the change of solution turbidity resulting from ssDNA MB155. (B) Spectral absorbance of the solution with PMP
suspension resulting from ssDNA MB155. (C) Relative absorbance at 400 nm of data shown in B (mean ± max deviation, n = 3). Absorbance of the
solution with PMP suspension resulting from the control sample was used as the reference. (D) Linear range of the relative absorbance with respect
to the concentration of ssDNA MB155. (E) Spectral absorbance of the solution with PMP suspension resulting from ssRNA MBr155. (F) Linear
range of the relative absorbance with respect to the concentration of ssRNA MBr155 (mean ± max deviation, n = 2).

ACS Applied Materials & Interfaces Research Article

DOI: 10.1021/acsami.5b05018
ACS Appl. Mater. Interfaces 2015, 7, 22821−22830

22825

http://dx.doi.org/10.1021/acsami.5b05018


classification and prognostication.46 However, the presence in
complex biofluid such as blood serum, which contains many
interfering materials, e.g., protein, RNAs, DNase/RNase, may
create considerable challenges or even complete failure of
detection. To demonstrate the compatibility with complex
biofluid, we next investigated the detection of target
oligonucleotides MB155 with varying concentration in the
blood serum. The results showed that the solution turbidity can
still gradually changed from transparent to opaque with
addition of target oligonucleotides (Figure 4) where the LOD
was 100 pM in 45 μL by naked eyes and 2.7 pM in 45 μL by
UV−vis spectra measurement (linear range, 0−100 pM,
calculated on the basis of 3σ/m) demonstrating the
compatibility with complex biofluid.
Detection of RNAs Extracted from Cells. To further

demonstrate the ability of detecting real biological markers, we
applied this assay for detecting microRNAs derived from in

vitro cell culture. The target oligonucleotide MB155 was
designed with a sequence the same as a type of microRNA,
miR-155, that is highly expressed in breast cancer cells (MDA-
MB-231).36 Thus, the oligonucleotide probes used above can
be directly applied for detecting the miR-155 extracted from
MDA-MB-231 cells. For comparison, the RNAs extracted from
MCF-10A cells, the breast epithelial cell line, was also used as a
reference.
We first investigated the expression level of miR-155 for both

cell types. Using qRT-PCR, the results showed that the miR-
155 was indeed highly expressed in MDA-MB-231 cells but not
in MCF-10A cells (Figure 5A), which is consistent with
previous findings.47,48 After isolating the total RNAs from both
cell types, the RNA solution was directly applied to our AuNP-
amplified assay. The results showed a significant decrease of
absorbance for RNA samples from MDA-MB-231 cells,
suggesting that miR-155 was detected (Figure 5B,C). In

Figure 3. Detection of target oligonucleotides with single-base-mismatched sequence at 250 pM in 45 μL. (A) Optical images and relative
absorbance at 400 nm of the solution with PMP suspension resulting from the control sample, solutions containing SNP A, SNP T, or SNP C with
single-base-mismatched sequence, or solution containing MB155 with complementary sequence (mean ± max deviation, n = 3). Absorbance of the
solution with PMP suspension resulting from the control sample was used as the reference. (B) Spectral absorbance of the solution with PMP
suspension.

Figure 4. Detection of target oligonucleotides MB155 in blood serum. (A) Optical images and relative absorbance at 400 nm of solution with PMP
suspension resulting from the control sample or solutions containing target oligonucleotides MB 155 with varying concentrations (0 M, 10 pM, 50
pM, 100 pM, 250 pM in 45 μL) (mean ± max deviation, n = 4). Absorbance of the solution with PMP suspension resulting from the control sample
was used as the reference. (B) Spectral absorbance of the solution with PMP suspension.
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contrast, for the MCF-10A cells, there was only a slight
decrease of absorbance compared to the control sample, which
may have resulted from the nonspecific adsorption of cellular
components or low expression of miR-155 in cell lysates.
Furthermore, using different numbers of MDA-MB-231 cells

for detection, the results showed a quantitative correlation
between the absorbance and cell number, demonstrating the
potential for quantitative analysis of our assays (Figure 5D).
For MCF-10A cells, the decrease of absorbance remained at a
similar level regardless of the increase of cell number (Figure
5E). Consequently, the result indicates that our method
provides a potential solution for the detection of microRNAs
and disease diagnosis with quantitative readouts.

4. DISCUSSION

In this paper, we demonstrate enzyme-free amplification via a
Mie scattering based magnetophoretic assay for visual detection
of ssDNA/RNA oligonucleotides. Magnetophoretic effect has
been suggested as an effective approach for detection of
ssDNA/RNA oligonucleotides.28,29,37 On the basis of a
colorimetric signal produced by AuNPs,28,29 the LOD at 5028

and 100 pM29 was obtained. In addition, combining electro-
chemiluminescence signal and hybridization DNA circuits,37

magnetophoretic effect was also employed for the detection of
microRNAs, and the LOD was improved to 10 fmol. Compared
to the aforementioned methods, our assay using Mie scattering
with magnetophoretic assay, this nonenzymatic amplification
demonstrated the LOD of 10 amol for ssDNAs (228 fM in 45

μL) and 75 amol for ssRNAs (1.67 pM in 45 μL), which is, to
our knowledge, so far the most sensitive visual detection of
ssDNA/RNA oligonucleotides. In addition, comparing total
analysis time among different amplifications, our assay requires
3 h, which is comparable with the requirements of enzymatic
methods (2 h and 40 min),49 DNA circuits (4 h),45 and
biobarcode assay (3−4 h).34 With similar total analysis time,
this AuNP-based amplification does not require enzymatic
reaction or additional chemical reaction to dissociate
biobarcode oligonucleotides and is compatible with the blood
serum or detection of microRNAs extracted from cell lysates.
Although our method is compatible with the serum

environment, the interfering materials indeed caused decreased
sensitivity and greater fluctuation of the readouts. As compared
in the analytical figures of merit for detection in buffer solution
or blood serum (Table 2), the assays in blood serum showed
decreased sensitivity from 0.00968 to 0.00109 and increased
LOD from 228 fM to 2.7 pM (total volume, 45 μL). More
importantly, the increased fluctuation can be observed and
quantified by the increase of relative standard deviation (RSD).
This reduction of detection performance may be partially due

Figure 5. Detection of microRNA miR-155 extracted from MDA-MB-231 cells (MDA) or MCF-10A cells (MCF). (A) qRT-PCR analysis of the
relative expression of miR-155 from MDA cells or MCF cells (mean ± SEM, n = 3). (B) Optical images and relative absorbance at 400 nm of the
solution with PMP suspension resulting from the control sample or solutions containing extracted microRNAs (mean ± max deviation, n = 3). (C)
Spectral absorbance of the solution with PMP suspension. (D and E) Relative absorbance at 400 nm of the solution with PMP suspension resulting
from microRNAs extracted from varying number of MDA cells (D) or MCF cells (E) (mean ± max deviation, n = 3). Absorbance of the solution
with PMP suspension resulting from the control sample was used as the reference.

Table 2. Comparison of the Analytical Figures of Merit

in buffer in serum

sensitivity (pM−1) 0.00968 0.00109
LOD (pM) 0.228 2.7
RSD (%) 1.1 (10 pM) 8.5 (10 pM)
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to nonspecific bindings of proteins present in blood serum,
causing particle agglomeration or making the particles
dispersion unstable. Moreover, the presence of DNase/RNase
may also provide a negative influence on the detection efficacy.
Because MMPs were used to capture the target oligonucleotide,
surface modification with blocking agents may be needed to
obtain the same level of sensitivity conducted in the buffer
solution.
Notably, PMPs of 1.04 μm in diameter were used as the

visual effectors, which provide a significantly enhanced
extinction coefficient due to the Mie scattering. Mie scattering
describes a phenomenon where an electromagnetic plane wave
passes by homogeneous spheres, of which the size is
comparable to or greater than the wavelength of light.44,50−54

Using dynamic light scattering, the results showed that the
diameter of PMPs is 1.1 ± 0.23 μm (mean ± standard
deviation) (Figure S4), which does not significantly deviate
from the manufacturer’s specification and meets the require-
ment of Mie scattering. We calculated the extinction coefficient
according to the Lambert−Beer Law, Aλ = εcL, where Aλ is the
spectral absorbance at the wavelength of λ = 400 nm, ε is
extinction coefficient, and L is the path length of light, 0.05 cm.
The concentration c of the stock solution of PMPs was
calculated on the basis of the number concentration provided
by the manufacturer (1.617 × 1010 particles/mL, which is equal
to 2.686 × 10−11 M). On the basis of the measured absorbance
for a serial dilution of PMP suspension, the extinction
coefficient ε was calculated as 4.457 × 1012 M−1 cm−1.
Compared to AuNPs, which are commonly used in many types
of visual detection and have an extinction coefficient at the scale
of 109 M−1 cm−1 for a diameter of 20−40 nm,55 the extinction
coefficient of PMPs using Mie scattering is 3 orders of
magnitude greater. Thus, the improved sensitivity in our visual
method can be attributed to the significantly enhanced binding
strength of nano sticky balls as well as the increased extinction
coefficient by Mie scattering.

5. CONCLUSIONS

Visual detection is a powerful method for detection at resource-
limited sites because of its simple and instrument-free
procedure. However, the current bottleneck is sensitivity that
usually falls at a nanomoles per liter level and is insufficient for
detecting target molecules in low abundance. Using AuNPs as
nano sticky balls to amplify the magnetophoretic effect in an
enzyme-free manner, we report an improved LOD of 10 amol
for ssDNAs (228 fM in 45 μL) and 75 amol for ssRNAs (1.67
pM in 45 μL). Compared to other amplification methods such
as enzymatic amplifications that require incubation with specific
conditions for enzymatic reaction, biobarcode-based amplifica-
tion that requires additional chemical reaction to dissociate
oligonucleotides from AuNPs, which is nontrivial, and
hybridization chain reaction that may be subject to undesired
hairpin opening even when target is absent, our method only
needs two steps, and the whole procedure could be finished
with low requirement of facilities (mostly by pipettes and a
magnetic rack), which allows simple and direct assays for point-
of-care applications. More importantly, we have also demon-
strated its ability for detecting target oligonucleotides in blood
serum or microRNAs extracted from the breast cancer cells.
Therefore, we show a simple and highly sensitive visual method
that has a potential application for wide range of applications
such as on-site examination in the future.
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