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Abstract Cell polarization, in which intracellular substances are asymmetrically distributed, enables
cells to carry out specialized functions. While cell polarity is often induced by intracellular or extracel-
lular spatial cues, spontaneous polarization (the so-called symmetry breaking) may also occur in the
absence of spatial cues. Many computational models have been used to investigate the mechanisms of
symmetry breaking, and it was proved that spontaneous polarization occurs when the lateral diffusion
of inactive signaling molecules is much faster than that of active signaling molecules. This conclusion
leaves an important question of how, as observed in many biological systems, cell polarity emerges
when active and inactive membrane bound molecules diffuse at similar rates while cycling between
cytoplasm and membrane takes place. The recent studies of Rätz and Röger showed that, when the
cytosolic and membrane diffusion are very different, spontaneous polarization is possible even if the
membrane bound species diffuse at the same rate. In this paper, we formulate a two-equation non-local
reaction-diffusion model with general forms of positive feedback. We apply Turing stability analysis
to identify parameter conditions for achieving cell polarization. Our results show that spontaneous
polarization can be achieved within some parameter ranges even when active and inactive signaling
molecules diffuse at similar rates. In addition, different forms of positive feedback are explored to
show that a non-local molecule mediated feedback is important for sharping the localization as well
as giving rise to fast dynamics to achieve robust polarization.
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1 Introduction

Cell polarization, in which substances previously uniformly distributed become asymmetrically local-
ized, is fundamental to various cellular processes such as differentiation, migration and development.
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Failure in polarization may lead to lethality or dysfunctionality of the cells. How cell polarity is es-
tablished and maintained has been a central question in cell biology. The fundamental mechanisms
for cell polarization remain controversial, but it is known that polarity development typically involves
the localization of signaling molecules to a proper location of the cell membrane [2], which can be
exemplified by the localization of PAR proteins [5], Scribble proteins [7], phosphoinositide lipids [10],
and Rho family GTPase [18]. These signaling molecules are initially distributed in the cytoplasm, and
then, in response to extracellular or intracellular cues, they are finally localized at a proper location
on the plasma membrane. The localization of signaling molecules activates certain cellular pathways,
and ultimately leads to the organization of the cytoskeleton or other responses, which contributes to
cell morphogenesis or motility.

The budding yeast Saccharomyces cerevisiae has been an excellent model system to study cell
polarization owing to simple, yet powerful experimental tools available in this organism. In yeast cell,
a new daughter cell emerges from the original (mother) cell, referred to as budding, and this is a result
of cell polarization at the bud site. In wild-type cells, the selection of a bud site is determined by spatial
cues that are distinct in each cell type. However, most previous works have studied polarization in
the absence of these spatial cues [17, 22] by deleting a crucial molecule, Rsr1, which links the spatial
cue and the downstream polarization machinery. As a result, the cells will choose their bud sites in
a fully random and spontaneous manner, which is the so-called symmetry breaking. This symmetry
breaking is not unique to yeast, but can also be observed in mammalian neutrophils and amoeba
[3, 25]. To understand the mechanisms underlying symmetry breaking, several mathematical models
have been proposed, which can roughly be categorized into two groups. The first type is deterministic
models, that is, reaction-diffusion equations. In those models, Turing-type mechanism was suggested
to be responsible for the self-organization of molecules which gives rise to cell polarity [6, 8, 19].
The second type is stochastic models in which individual molecular interactions are considered [1, 4].
Though from different perspectives, both continuum and stochastic models emphasize the importance
of cycling of GTP and GDP bound forms of the polarized protein Cdc42 (we will refer them as
active and inactive forms, respectively) and the Bem1 or Rdi1 mediated positive feedback that
further accelerates the recruitment and activation of Cdc42. In particular, Altschuler et al. [1] have
shown that an intrinsic stochastic mechanism through linear positive feedback alone is sufficient to
account for the spontaneous establishment of a single site of polarity, but the same linear positive
feedback is not sufficient for symmetry breaking in deterministic models, which suggests a fundamental
difference between stochastic and deterministic models. On the other hand, this conclusion raises
interesting questions: why does linear positive feedback fail to work in deterministic model? Is there a
mathematical explanation? What would be the general ‘admissible’ forms of positive feedback which
give rise to robust cell polarization? In this paper, we attempt to use mathematical analysis to address
the above questions and propose possible mechanisms through which the feedback is established.

In previous works [6, 8, 19] concerning Turing-type mechanism for cell polarization, numerical
simulations have been performed to investigate the parameters, but conditions for Turing instability,
therefore cell polarization, are not studied in detail. By considering the cytoplasmic and membrane-
bound inactive species as one pooled variable, and the membrane-bound active species as the other
variable, usually assuming the ratio of the diffusion rates of these two is large, stability analysis
has been performed [19, 21]. In the recent work [19], Rätz et al. presented a non-local reaction-
diffusion model and performed a Turing stability analysis to study the conditions for achieving Turing
instability. They reach the conclusion that Turing instability occurs when the lateral diffusion of
inactive signaling molecules is much faster than that of active signaling molecules. In [21], the authors
performed weakly nonlinear analysis to a similar system to obtain information about the dynamics of
the solution. There are also models which separate the membrane bound species and cytosolic species
in different domains, with the communication of molecules between these two domains represented
by fluxes [11, 20]. In [20], linear stability analysis was performed for this type of model, with two
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possible mechanisms of cell polarization were identified: Turing stability or polarization induced by
the difference in cytosolic and lateral diffusion. This result supports that spontaneous polarization
is possible even when lateral diffusion coefficients are same and the biochemical network in [20] has
been applied for studying cell motility [14]. In many biological systems, the membrane-bound active
and inactive signaling molecules diffuse at similar rates, while the inactive form cycles between the
cytoplasm and membrane, for example, Cdc42 molecules in budding yeast [6, 12]. It is important to
know whether Turing instability occurs in that case. In this paper, we formulate a non-local reaction-
diffusion model with two membrane-bound species and general forms of positive feedback. Turing
stability analysis [24] is applied to identify parameter conditions for achieving cell polarization. Our
analysis shows that Turing instability indeed exists when active and inactive signaling molecules have
the same diffusion rates. Also, different forms of positive feedback are explored to show the relationship
between feedback function forms and the robustness of cell polarization.

This paper is organized as follows. In Section 2, we present a two-equation reaction-diffusion model
of cell polarization with a general function form of positive feedback. In Section 3, we perform Turing
stability analysis to the model proposed in Section 2 to derive conditions for which cell polarity
emerges. Sections 4 and 5 contain the discussion of different forms of positive feedback which lead
to different localization patterns. In Section 6, we show that a robust polarization can be achieved
through non-local positive feedback and that the polarization is tight. Finally, conclusion is presented
in Section 7.

2 A two-equation model for cell polarization

Cell polarization can be generally simplified as processes involving exchange of active and inactive
forms of polarized molecules, feedbacks through molecular interactions, as well as physical mecha-
nisms such as transport and diffusion. Reaction-diffusion mathematical models have been widely used
to model cell polarization for different biological systems, and these models have led to proposed mech-
anisms such as wave pinning [9, 13] and Turing instability [6, 24] to explain how robust localization of
molecules forms in the presence of cytoplasmic or membrane diffusion. Despite the differences among
various previous models for the emergence of cell polarity, all these models include a positive feedback
mechanism, mediated through either chemical interactions with other species or physical transport.

In this paper, we consider a continuum mathematical model describing the dynamics of a polarized
signaling molecule on the cell membrane: the variables include its active and inactive membrane-bound
forms (we use the term “active form” to indicate that only this form is functional to induce the
downstream cellular responses, although the “inactive” molecules are also important in the cycling of
molecules). The cytoplasmic inactive form of this molecule is also involved, but it is modeled implicitly
through conservation of total molecules. This type of polarized molecules can be well exemplified by
Cdc42-GTPase cycle in budding yeast, with Cdc42-GDP its inactive form and Cdc42-GTP its active
form. Most of the GTPase cycles have a common mechanism that enables them to switch between the
active (GTP-bound) and inactive (GDP-bound) states. The switch from inactive to active is initiated
by hydrolysis and it can be reversed by Guanine nucleotide exchange factors (GEFs), which cause the
GDP to dissociate from the GTP. When the GDP is bound, GDIs bind to the GTPase and release
the GDP from the cell membrane to the cytoplasm. This process can be reversed by the action of a
GDI displacement factor.

The domain in our model could be the membrane of a cell, which is a sphere, or for simplicity it
could be the cross section of the cell, which is a circle. The domain is denoted by M , which is either
a circle (one-dimensional domain) or a spherical surface (two-dimensional domain). We use a and b to
represent active and inactive membrane-bound signaling molecules, respectively; without confusion in
the context, we will also use a and b to denote their corresponding particle fractions, which is unit-less
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[1]. Thus, the exact partical numbers of active and inactive signaling molecules in any open subset A
of the domain M can be calculated by

NaA =
N

|M |

∫
A

a dS and NbA =
N

|M |

∫
A

b dS,

where |M | equals to the total area of the domain M , and N is the total number of active and inactive
signaling molecules in the whole cell including membrane and cytoplasm.

The dynamics of a and b are thus governed by a reaction-diffusion system, which may be non-local
depending on the function form of F (·, ·):

∂a

∂t
= Dm∇2a+ F (a, ân)b− koffa, (1)

∂b

∂t
= Dm∇2b− F (a, ân)b+ koffa+ gon(1− â− b̂)− goff b, (2)

with ân =
∫
M
an dS/|M |, â =

∫
M
a dS/|M | and b̂ =

∫
M
b dS/|M | respectively representing the

average values of an, a and b over the cell membrane. In this paper, two kinds of spatial domain are
considered: 1) one-dimensional cross section of the cell membrane of radius R µm, as in Fig. 1A; 2)
two-dimensional spherical surface of the cell membrane of radius R µm. Periodic boundary conditions
are used for both domains.

The first terms of the right-hand side in Eqs. (1) and (2) represent the diffusion of species a and
b with Dm the lateral surface diffusion rate and ∇2 the Laplacian operator on the cell membrane. In
many systems such as budding yeast, it is reasonable to assume that the membrane diffusion rates
of active (Cdc42-GTP) and inactive (Cdc42-GDP) signaling molecules are approximately the same
[12, 6], and therefore we take the same value Dm for both species.

In our model, a key assumption is that the total number of active and inactive signaling molecules
in the whole cell is conserved. Along with the fact that â and b̂ represent the total fractions of the
membrane bound species, we obtain

N = N(â+ b̂+ Fracc), (3)

where Fracc stands for the fraction of cytoplasmic signaling molecules. Hence, by (3), Fracc = 1− â− b̂.
Under the assumption that signaling molecules are uniformly distributed throughout the cytoplasm
due to fast cytoplasmic diffusion and the recruitment rate is proportional to the fraction of cytoplasmic
signaling molecules, gon(1− â− b̂) is the recruitment rate of the inactive molecules from the cytoplasm
to the membrane. We remark here that to ensure 1 − â − b̂ being between 0 and 1 to represent the
fraction, the initial value for â+ b̂ needs to be less than 1, which is assumed throughout this paper. The
last term in Eq. (2), goff b, is the rate at which membrane-bound signaling molecules are extracted
into the cytoplasm. The constant koff is the deactivation rate coefficient of signaling molecules from
active form to inactive form.

In Eqs. (1)-(2), the function F represents the activation rate for signaling molecules. By assuming
that active signaling molecules form a feedback loop to promote activation, meaning that the activation
from the inactive form (b) to the active form (a) is positively regulated by the active molecules (a),
the function F is thus positively correlated with the particle density of a. In this paper, we consider
two different feedback functions:

F (a) = k11 + k12a
n; (4)

and

F (a, ân) = kon
k21 + k22a

n

1 + k21 + k22ân
. (5)
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The first function form in Eq. (4) is a direct cooperative feedback which only depends on the local
values of a. This feedback process includes multi-step cooperative interactions such as recruitment
and binding. This nonlinear cooperativity is modeled by the an, with n ≥ 1, and n stands for the
degree of cooperativity and is called the cooperativity coefficient. This type of feedback has been
used in many Turing type systems [15, 24]. The parameter k11 represents the basal activation rate
of Cdc42 and the parameter k12 represents the activation rate coefficient through the cooperative
feedback. The second function form in Eq. (5) involves a non-local term ân, as well as the local
density a. This function models feedback that is mediated through another species initially uniformly
distributed in the cytoplasm, as in [6, 12]. A good example is the well-known positive feedback of
Cdc42-GTP mediated by the Bem1 complex in budding yeast. Other than Bem1 complex, Smith et
al. [23] proposed that Rdi1, the Cdc42 guanine nucleotide dissociation inhibitor, plays a critical role for
symmetry breaking. Similar to Bem1 complex, Rdi1 is initially uniformly distributed in the cytoplasm
and forms a Rdi1-Cdc42 complex which enhances Cdc42 localization on the membrane. The detailed
derivation of this feedback will be discussed in Section 6. These two forms of positive feedback are
illustrated in Figs. 1B and C, with the corresponding interactions and parameters in model (1)-(2).

Inactive
Active

Inactive

B

Active

feedback

molecule 

feedback

molecule 

C

Inactive

Inactive

o�
ko�

k

F(a)

o�
gon

g
o�

g
on

g

D
m

D
m D

m D
m

a a
b b

0°
R µm πR

Cell membrane

A

F(a,a   )n^

Fig. 1 One-dimensional spatial domain and two forms of positive feedback in the cell polarization model. Variables
and parameters are as in model (1)-(2). (A) Simplified one-dimensional spatial domain represents the cross section
of the cell membrane of radius R µm; (B) Molecule interactions with a local positive feedback (4); (C) Molecule
interactions with a non-local positive feedback (5).

3 Linear stability analysis

In this section, we apply Turing stability analysis [24] to study the conditions of the parameters to
achieve spontaneous cell polarization. We remark here that the stability analysis in this section can
be applied for general feedback function F (a, ân).

First, we study a homogeneous steady state solution (a0, b0) of the system (1)-(2), which satisfies
the following equations:

0 = F (a0, a
n
0 )b0 − koffa0, (6)

0 = −F (a0, a
n
0 )b0 + koffa0 + gon(1− a0 − b0)− goff b0. (7)

Note that since a0 is homogeneous over space, ân0 = an0 , â0 = a0, and b̂0 = b0. By summing up (6)
and (7), we obtain

0 = gon(1− a0 − b0)− goff b0,
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and hence
b0 =

gon
gon + goff

(1− a0). (8)

By substituting (8) into (6), we have

0 =
gon

gon + goff
F (a0, a

n
0 )(1− a0)− koffa0. (9)

When a0 = 1, the right-hand side of (9) is negative; when a0 = 0, the right-hand side of (9) is
positive (F is a positive function because it represents positive feedback). By the intermediate value
theorem, at least one homogeneous steady state solution a0 exists between 0 and 1, and then by (8),
a corresponding non-negative homogeneous steady state solution b0 can be found.

To examine the stability of a homogeneous steady state solution with respect to small pertur-
bations, we define a(x, t) and b(x, t) as slightly perturbed functions from the homogeneous steady
state:

a(x, t) = a0 + εa1(x, t), (10)

b(x, t) = b0 + εb1(x, t), (11)

where the perturbation amplitude ε� 1 is much smaller than a0 and b0. After substituting (10) and
(11) into the model (1)-(2) and applying Taylor expansion around (a0, b0), the leading terms satisfy
the following system:

∂a1
∂t

= Dm∇2a1 + (FX1
(a0, a

n
0 )a1 + nan−1

0 â1FX2
(a0, a

n
0 ))b0 − koffa1 + F (a0, a

n
0 )b1, (12)

∂b1
∂t

= Dm∇2b1 − (FX1
(a0, a

n
0 )a1 + nan−1

0 â1FX2
(a0, a

n
0 ))b0 + koffa1 − F (a0, a

n
0 )b1

−gonâ1 − gonb̂1 − goff b1, (13)

where FX1
and FX2

denote the partial derivatives with respect to the first and the second arguments,
respectively. We note that when the local feedback function (4) is considered, FX1

is positive and
FX2

equals to zero; when the non-local feedback function (5) is considered, FX1
is positive and FX2

is negative.
Here we consider a particular spatially periodic perturbation

a1(x, t) = αeλtEk(x),

b1(x, t) = βeλtEk(x),

where α and β are nonzero parameters, k is a non-negative integer and Ek(x) is the k-th non-zero
eigenfunction of Laplace operator. System (12)-(13) becomes

λ

(
α
β

)
=

(
−σkDm + (FX1

+ δ(k)nan−1
0 FX2

)b0 − koff F

−(FX1
+ δ(k)nan−1

0 FX2
)b0 + koff − δ(k)gon −σkDm − F − δ(k)gon − goff

)(
α
β

)
(14)

where

δ(k) =

{
1 if k = 0,

0 if k > 0,

and the eigenvalue

σk =

{
k2/R2 for a one-dimensional cross section,

2k2/R2 for a two-dimensional spherical surface,
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where R is the radius of the circle or sphere, and FX1
, FX2

, F are evaluated at (a0, a
n
0 ). It is worth to

make a remark that all the analysis can be applied for two-dimensional smooth ellipsoid surface (not
necessarily spherical surface) by considering corresponding eigenvalues and eigenfunctions of Laplace
operator.

If we define

J =

(
−σkDm + (FX1

+ δ(k)nan−1
0 FX2

)b0 − koff F

−(FX1
+ δ(k)nan−1

0 FX2
)b0 + koff − δ(k)gon −σkDm − F − δ(k)gon − goff

)
,

then Eq. (14) becomes

J

(
α
β

)
= λ

(
α
β

)
. (15)

Therefore, λ is an eigenvalue of J, and (α, β)T is the corresponding eigenvector. Eq. (15) has a nonzero
solution (α, β) if and only if det(J − λI) = 0, which means that λ should be a zero of the following
characteristic polynomial:

λ2 − λ
(
−2σkDm + (FX1

+ δ(k)nan−1
0 FX2

)b0 − koff − F − δ(k)gon − goff
)

+σ2
kD

2
m − σkDm

(
(FX1

+ δ(k)nan−1
0 FX2

)b0 − koff − F − δ(k)gon − goff
)

−(δ(k)gon + goff )((FX1
+ δ(k)nan−1

0 FX2
)b0 − koff ) + Fδ(k)gon = 0. (16)

The emergence of cell polarity relies on the (Turing) instability of the homogeneous steady state.
To achieve that, two conditions are required:

(i) If the perturbation is spatially homogeneous, the homogeneous steady state (a0, b0) is linearly
stable. This condition ensures that starting from a constant initial condition close to (a0, b0),
(a0, b0) will be an attractor. This condition is equivalent to that when the wave number k is zero,
all eigenvalues λ are negative;

(ii) For some positive integers k, at least one λ satisfying Eq. (16) is positive, which means that (a0, b0)
is linearly unstable under a perturbation with some positive wave lengths[24, 19].

Together, these two conditions imply that wave functions perturbed from the homogeneous steady
state are moving toward another steady state for and only for positive wave lengths.

The first condition is equivalent to that when k = 0, the trace of J is negative and the determinant
of J is positive:

(FX1
+ nan−1

0 FX2
)b0 − koff − F − gon − goff < 0, (17)

and

− (gon + goff )((FX1
+ nan−1

0 FX2
)b0 − koff ) + Fgon > 0. (18)

The inequality (18) can be rewritten as

(FX1
+ nan−1

0 FX2
)b0 − koff −

gon
gon + goff

F < 0. (19)

It is easy to show that (19) implies (17), and therefore one only needs to check the inequality (19) for
condition (i).

The second condition is equivalent to the conditions that for some positive k, the determinant of
J is negative or the trace of J is positive:

− 2σkDm + FX1
b0 − koff − F − goff > 0 (20)
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or

σ2
kD

2
m − σkDm (FX1

b0 − koff − F − goff )− goff (FX1
b0 − koff ) < 0, k ≥ 1. (21)

As (a0, b0) is a homogeneous steady state, we can apply equality (8) to Eqs. (20) and (21), and rewrite
them as

− 2σkDm +
gon

gon + goff
FX1

(1− a0)− koff − F − goff > 0 (22)

and

− σkDm +
gon

gon + goff
FX1

(1− a0)− koff −
σkDm

σkDm + goff
F > 0. (23)

It can be observed that the inequality (22) implies (23). Since (22) or (23) needs to be satisfied, it
suffices to check the inequality (23).

Moreover, if there exists a positive integer kc such that

− σkc
Dm +

gon
gon + goff

FX1
(1− a0)− koff −

σkc
Dm

σkc
Dm + goff

F > 0,

then the inequality (23) holds for any positive integer k ≤ kc. Thus, the second condition can be
reduced to

− σ1Dm +
gon

gon + goff
FX1

(1− a0)− koff −
σ1Dm

σ1Dm + goff
F > 0. (24)

Finally, we summarize that Turing instability exists at a homogeneous steady state solution (a0,
b0) if the system (1)-(2) satisfies the following two conditions

gon
gon + goff

(FX1
+ nan−1

0 FX2
)(1− a0)− koff −

gon
gon + goff

F < 0, (25)

and

− σ1Dm +
gon

gon + goff
FX1

(1− a0)− koff −
σ1Dm

σ1Dm + goff
F > 0. (26)

When the conditions (25) and (26) are satisfied, positive λk can be solved from (16) for some
positive k:

λk =
−2σk +Q1 +

√
Q2

1 + goffQ2

2
, (27)

where Q1 = gon
gon+goff

FX1
(1−a0)−koff −F − goff and Q2 = gon

gon+goff
FX1

(1−a0)−koff . We remark

that Q2 is larger than zero since (26) is satisfied.

Since σk is increasing with respect to k ≥ 1, λk is decreasing with respect to k ≥ 1. Then the
fastest growing mode occurs when k = 1. This supports that single peak mode may dominate until
reaching steady state and the model will end up with a single peak.
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4 Linear feedback is not sufficient for achieving symmetry breaking

The simplest form of feedback is a linear function dependent only on the density of the active polarized
species a, namely,

F (a) = k11 + k12a.

To see if this form of feedback can produce spontaneous cell polarization, one needs to check (25) and
(26). Considering the term

gon
gon + goff

FX1
(1− a0)− koff

in (26), since a0 is a homogeneous steady state solution, by the equality (9), we deduce that

gon
gon + goff

F ′(1− a0)− koff =
1

a0

(
gon

gon + goff
k12a0(1− a0)− koffa0

)
= − gon

gon + goff

k11(1− a0)

a0
< 0.

Therefore, the left-hand side of (26) is negative, and the second condition of Turing instability is not
satisfied.

Although the above analysis suggests that linear positive feedback will not give rise to polarity
establishment, this feedback was used in [1] and was able to produce spontaneous polarization under
a stochastic setting for budding yeast cells. This work [1] definitely has shown the effect of random
fluctuation and demonstrated the essential difference between deterministic and stochastic models.
However, while the feedback of Cdc42 cycle during yeast budding involves the recruitment of Guanine
nucleotide exchange factors, i.e., the GEF, and the formation of the Bem1 complexes including the
GEF [17], the feedback is more likely a multi-step cooperative process than a linear one. Hence, we
will consider the cooperative feedback in the following section.

5 Cooperative feedback can lead to symmetry breaking

A multiple-step cooperative feedback process can be modeled by a local feedback function with n ≥ 2:

F (a) = k11 + k12a
n, n ≥ 2, (28)

where the parameter n determines the cooperativity of the response to the density of molecules. Here
n = 1 indicates a non-cooperative, while n > 1 represents a multiple-step cooperative feedback process
which may include different independent steps of recruitment, binding and dissociation. In this section,
we will show that our model coupling (28) can achieve Turing instability in some suitable parameter
ranges.

Let (a0, b0) be a homogeneous steady state solution. According to (9), a0 satisfies the following
equation

gon
gon + goff

(k11 + k12a
n
0 )(1− a0)− koffa0 = 0. (29)

Defining k3 = gon
gon+goff

k11 and k4 = gon
gon+goff

k12, we can rewrite (29) in a polynomial form

− k4an+1
0 + k4a

n
0 − (k3 + koff )a0 + k3 = 0. (30)

Now we define the left-hand side as a function

f(a) = −k4an+1 + k4a
n − (k3 + koff )a+ k3. (31)
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According to the intermediate value theorem and the fact that f(0) > 0 and f(1) < 0, at least one
solution a0 of (30) exists between 0 and 1. Since f has only one inflection point a = n−1

n+1 between
0 and 1, and there are at most three positive solutions satisfying (30) for n = 3, one can plot all
the possible profiles of f , as shown in Fig. 2. We recall that (a0, b0) is locally stable for spatially
homogeneous perturbations when it satisfies the inequality (25), which in this case can be rewritten
as

(nk4a
n−1
0 )(1− a0)− koff − (k3 + k4a

n
0 ) < 0. (32)

From (32), we know that (25) is satisfied if and only if the slope of f is negative at a = a0.

If f assumes one of the profiles in Figs. 2A-2E, there is always at least one homogeneous steady
state solution satisfying condition (25). If f is a function as in Fig. 2F, the slope of f is zero at a = a0;
however, by considering higher order terms, it is easy to show that the homogeneous steady state
is locally stable for spatially homogeneous perturbations. Hence, we can conclude that there always
exists at least one homogeneous steady state solution which is locally stable for spatially homogeneous
perturbations.
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cross markers represent homogeneous steady states which are locally unstable for spatially homogeneous perturbation.
In all the plots, we take n = 3 with parameters: A) k3 = 1 min−1, k4 = 50 min−1 and koff = 7 min−1; B)

k3 = 1 min−1, k4 = 47.6837 min−1 and koff = 7.5938 min−1; C) k3 = 1 min−1, k4 = 89.2857 min−1 and koff =

6.8571 min−1; D) k3 = 3 min−1, k4 = 50 min−1 and koff = 3 min−1; E) k3 = 1 min−1, k4 = 25 min−1 and

koff = 7 min−1; F) k3 = 1 min−1, k4 = 16 min−1 and koff = 3 min−1.
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To obtain Turing instability, besides satisfying (25), a homogeneous steady state solution has to be
unstable for a perturbation with some positive wavenumbers k, that is, to satisfy (26). The following
theorem provides a range of parameters in which Turing instability exists, and later another theorem
will be stated, which gives a condition for the existence of locally stable homogeneous steady state
solution. In the following theorem, we define D∗ = σ1Dm+ σ1Dm

σ1Dm+goff
(k11 +k12). The detailed proofs

are presented in Appendix A.2.

Theorem 1 Assume that D∗ < k3 and n > 1. For the system (1)-(2) with the local feedback form
(28), if the condition

1− (n− 1)
n−1
n

n

koff +D∗

k
1
n
4 k

n−1
n

3

>
k3

k3 − 1
nD
∗ + n−1

n koff
(33)

is satisfied, then there exists a homogeneous steady state solution satisfying conditions (25) and (26)
for Turing instability. In addition, the condition (33) also implies that there is no locally stable homo-
geneous steady state solution.

By Theorem 1, we find that Turing instability can be obtained with suitable ranges of parameters.
Now we use a computational simulation for one-dimensional model to verify the result of Theorem 1.
For the simulations in this paper, we apply a second-order central difference approximation for the
diffusion terms, Riemann sum for the definite integrals, and a fourth order Adams-Moulton predictor-
corrector method for the temporal discretization. FORTRAN 77 is used for the simulation and plots
are generated using MATLAB. For one-dimensional simulations, the number of spatial points is 400
and the temporal step ∆t is 1 × 10−3min; for two-dimensional simulations, the number of spatial
points is 1026 and the temporal step ∆t is 6.64 × 10−4min. The initial conditions for all simulations
are defined as

a(x, 0) = 0,

b(x, 0) = 0.3(1 + 0.2η(x)),

where η(x) is a function of uniformly distributed random number from 0 to 1.
The time-dependent simulation shown in Fig. 3A demostrates that localization of active signaling

molecules can be achieved with a set of parameters satisfying (33). The ranges of the parameters we
use here are based on previous works [12, 6, 1].

We are also interested in the range of parameters in which a solution may tend to a homogeneous
steady state, as stated in the following theorem.

Theorem 2 Assume that n > 1. For the system (1)-(2) with the local feedback form (28), if the
condition

1− (n− 1)
n−1
n

n

koff

k
1
n
4 k

n−1
n

3

<
k3

k3 + n−1
n koff

(34)

is satisfied, then there exists a locally stable homogeneous steady state solution. This means that an
evolving solution may stabilize to a homogeneous steady state when the initial condition is sufficiently
close to it.

The simulation displayed in Fig. 3B demonstrates that if the parameters satisfy the inequality (36),
the solution tends to a homogeneous steady state.

As mentioned above, the feedback loop on activation of signaling molecules usually is a multiple
step process involving recruitment and binding of certain feedback molecules, such as Bem1 complex
and Rdi1 protein. A growing Cdc42-GTP cluster on the cell membrane captures free feedback molecules
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Fig. 3 Time-dependent simulations for the one-dimensional model (1)-(2) with the local feedback (28). Left panels
are solutions of a and right panels are solutions of b. In these two simulations, n = 2, D = 0.15 µm2 min−1,
R = 2 µm, koff = 10 min−1, gon = 20 min−1 and goff = 9 min−1. Other parameters are: A) k11 = 20 min−1 and

k12 = 250 min−1; B) k11 = 30 min−1 and k12 = 40 min−1.

in the cytoplasm and then, the membrane-bound feedback molecules promote and maintain the local
clustering of active Cdc42. The limitation of the total amount of feedback molecules implies that the
magnitude of feedback saturates; however, this saturation is not modeled in the current feedback form
(28). Motivated by this, we study a non-local feedback function in the next section.

6 Non-local feedback enhances sharper and faster polarization

If we take into account the molecules which mediate the positive feedback (here we call them feedback
molecules), as shown in Fig. 1B, and assume that these molecules are initially uniformly distributed
in the cytoplasm and later recruited to the cell membrane by the active signaling molecules (variable
a), then the activation rate of the signaling molecules is proportional to the density of the membrane-
bound feedback molecules (denoted by c). Thus, we obtain the following equations for a, b, and c:

∂a

∂t
= Dm∇2a+ koncb− koffa, (35)

∂b

∂t
= Dm∇2b− koncb+ koffa+ gon(1− â− b̂)− goff b, (36)

∂c

∂t
= (h1 + h2a

n)(1− ĉ)− hoffc, (37)
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where (h1 + h2a
n) is the recruitment rate of the feedback molecules c from the cytoplasm to the

membrane, the parameter h1 is the basal recruitment rate of the feedback molecules and he parameter
h2 is the Cdc42-mediated recruitment rate of the feedback molecules; (1 − ĉ) is the fraction of the
cytoplasmic feedback molecules; ĉ represents the average value of c over the membrane; and hoff is
the disassociation rate of the feedback molecules from the membrane to the cytoplasm.

We assume that the dynamics of the feedback molecules is much faster than that of the signaling
molecules, as in [6, 12]. Therefore, particle density of the feedback molecules reaches quasi steady state
of Eq. (39) at the time scale of a and b, that is,

(h1 + h2a
n)(1− ĉ)− hoffc = 0.

By integrating the above equation over the membrane, one can obtain the value of ĉ and substitute
that back into the equation, and then we have

c =
k21 + k22a

n

1 + k21 + k22ân
, (38)

where k21 and k22 equal to h1/hoff and h2/hoff , respectively.
By substituting (40) into Eqs. (37) and (38), we obtain a system with a non-local feedback term:

∂a

∂t
= Dm∇2a+ F (a, ân)b− koffa,

∂b

∂t
= Dm∇2b− F (a, ân)b+ koffa+ gon(1− â− b̂)− goff b,

with

F (a, ân) = kon
k21 + k22a

n

1 + k21 + k22ân
. (39)

Hence, the three-equation system is reduced to a two-equation system, but with the positive feedback
as a non-local function of a, unlike the usual feedback forms.

Now we study the parameter regime for achieving symmetry breaking. First, we start our analysis
by considering the steady state equation (9)

k5 + k6a
n
0

1 + k1 + k2an0
(1− a0)− koffa0 = 0. (40)

By denoting k∗on = gon
gon+goff

kon, k5 = k∗onk21 and k6 = k∗onk22, Eq. (42) can be rewritten as

1

1 + k21 + k22an0

(
(k5 + k6a

n
0 )

(
1− k∗on + koff

k∗on
a0

)
− koffa0

)
= 0. (41)

Let the left-hand side be a function g(a):

g(a) =
1

1 + k21 + k22an
g1(a),

where

g1(a) = (k5 + k6a
n)

(
1− k∗on + koff

k∗on
a

)
− koffa. (42)

It is easy to see that g(a) = 0 if and only if g1(a) = 0. Moreover, for any a0 satisfying g(a0) = 0
(or equivalently g1(a0) = 0), we have g′1(a0) < 0 if and only if g′(a0) < 0. Thus, the stability
analysis reduces to analysis based on g1. Note that the function form of g1 in Eq. (44) is similar
to the polynomial form feedback f in Eq. (31), so the stability analysis for spatially homogeneous
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perturbations we did in Section 5 can be carried out similarly here. After applying the result in
Section 5, we conclude that at least one homogeneous steady state solution is locally stable for spatially
homogeneous perturbations in the system (1)-(2) with the feedback form (41).

Next we want to find a range of parameter in which a steady state solution is unstable for a
perturbation with certain positive wavenumbers k (satisfying (26)) for obtaining Turing instability.
In the following theorem, we define D+ = σ1Dm + σ1Dm

σ1Dm+goff

k21+k22

1+k21+k22
. The proof of the following

theorem can be found in Appendix A.2.

Theorem 3 Assume that D+ < k5 and n > 1. For the system (1)-(2) with the non-local feedback
form (41), if the condition

1− (n− 1)
n−1
n

n

koff +D+

k
1
n
6 k

n−1
n

5

>
k5

k5 − 1
n

k∗
on

k∗
on+koff

D+ + n−1
n

k∗
on

k∗
on+koff

koff
(43)

is satisfied, then there exists a homogeneous steady state solution satisfying conditions (25) and (26)
for Turing instability. In addition, condition (45) also implies that a locally stable homogeneous steady
state solution does not exist.

The time-dependent simulation shown in Fig. 4A demonstrates that one set of parameter that satisfies
the condition (45) gives rise to localization of signaling molecules for the one-dimensional model.
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Fig. 4 Time-dependent simulations for the one-dimensional model (1)-(2) with the non-local feedback (41). Left
panels are solutions of a and right panels are solutions of b. In these two simulations, n = 2, D = 0.15 µm2 min−1,
R = 2 µm, kon = 10 min−1, koff = 10 min−1, gon = 20 min−1 and goff = 9 min−1. Other parameters are: A)
k21 = 2 and k22 = 25; B) k21 = 3 and k22 = 4.
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In the next theorem, we provide conditions for which the homogeneous steady state is locally
stable. The proof of the following theorem can be found in Appendix A.2.

Theorem 4 Assume that n > 1. For the system (1)-(2) with the non-local feedback form (41), if the
condition

1− (n− 1)
n−1
n

n

koff

k
1
n
6 k

n−1
n

5

<
k5

k5 + n−1
n

k∗
on

k∗
on+koff

koff
(44)

is satisfied, then there exists a locally stable homogeneous steady state solution.

In Fig. 4B, we choose one set of parameters that satisfies the the inequality (46), and run a simulation.
The solution indeed approaches a homogeneous steady state.

Comparing the simulations in Figs. 3 and 4, we observe that with the non-local feedback (41),
the polarization is sharper and forms faster than that with the local feedback (28). To test if this
is a general trend, we vary the activation rate and deactivation rate coefficients, while keeping the
diffusion rate Dm, the recruitment rate gon and the extraction rate goff fixed, with their values based
on [1, 12]. Fig. 5 shows that with the local feedback (28), the polarization always reaches steady state
after 60 minutes. On the other hand, the system with the non-local feedback (41) produces a sharper
polarization and the polarity is stabilized around 10 minutes (Fig. 6). If we compare the growth rates,
λ1, of the fastest growing mode, we find that λ1 for the non-local feedback (41), which is between 0.9
and 2.3, is much larger than that for the local feedback (28), which is between 0.05 and 0.4. This result
supports that the non-local feedback (41) enables faster polarization. In yeast budding, the localization
of membrane-bound Cdc42-GTP is usually very sharp and forms rapidly, usually in not more than 60
minutes. We also compare the simulations of the two feedback functions for the two-dimensional model
and the results are consistent with that observed in the one-dimensional simulations. Fig. 7 displays two
examples of the simulations for the two feedback functions on the two-dimensional spherical surface.
With the local feedback (28), the polarization reaches steady state after 50 minutes (Fig. 7A); the
system with the non-local feedback (41) produces a sharper polarization within 10 minutes (Fig. 7B).
Our simulations suggest that, the non-local feedback (41) may play a positive role in the formation of
a narrow polarization and fast dynamics, with diffusion and recruitment rates within some reasonable
ranges.

7 Conclusion

Mathematical modeling is an important tool to understand the mechanisms of cell polarity establish-
ment and maintenance. Numerous models have been proposed for different systems of cell polarization[1,
6, 8, 19]. For budding yeast system, recent studies suggest that spontaneous emergence can be achieved
through cycling of active and inactive Cdc42 molecules and the positive feedback through Bem1 com-
plex [1, 6] or Rdi1 protein [23]. However, detailed mathematical analysis of the models is not well
studied in this system.

In this paper, we have formulated a two-equation model of reaction-diffusion systems for cell
polarization, which encompasses many previous polarization models for yeast and other organisms.
Our model consists of active and inactive forms of the polarization molecules, and involves a general
form of positive feedback, which could be local or non-local. We have used Turing stability analysis to
analyze the conditions and the forms of feedbacks that can give rise to spontaneous cell polarization.
It is shown in this paper that linear positive feedback is not sufficient to achieve cell polarization,
while cooperative feedback or non-local feedback due to mediating feedback molecules are good for
polarization. Moreover, our results reveal that the diffusion rates of active and inactive signaling
molecules do not need to be very different in order to produce cell polarization. Finally, our simulations
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Fig. 5 Time-dependent solutions of a for the one-dimensional model (1)-(2) with the local feedback (28). In all
these simulations, n = 2, D = 0.15 µm2 min−1, R = 2 µm, gon = 20 min−1 and goff = 9 min−1. Other parameters

are: A) k11 = 20 min−1, k12 = 250 min−1 and koff = 10 min−1; B) k11 = 36 min−1, k12 = 450 min−1 and koff =

10 min−1; C) k11 = 50 min−1, k12 = 650 min−1 and koff = 10 min−1; D) k11 = 30 min−1, k12 = 375 min−1 and

koff = 5 min−1; E) k11 = 30 min−1, k12 = 375 min−1 and koff = 13 min−1; F) k11 = 30 min−1, k12 = 375 min−1

and koff = 20 min−1.

suggest that the molecule-mediated feedback, which corresponds to the non-local feedback form, plays
a positive role in narrowing the localization area as well as fast dynamics to achieve robust polarization.
The conclusions in this paper provide parameter conditions that can be checked for the existence of
polarized solutions. Furthermore, the analysis of the feedback provides insights into the mechanisms
through which cell polarity is established.

In this study, we only focus on spontaneous emergence of cell polarization which do not involve
inherited spatial cues, such as the budding landmark cues in the normal budding of yeast cells. Previous
studies have shown that cells also exhibit a characteristic and robust pattern of polarization dependent
on specific type of spatial cues [8, 12, 16, 17]. In the future work, we will extend our study to these
systems (for example, a yeast model with landmark cues in [12]) to get better insights into these
biological processes.
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Fig. 6 Time-dependent solutions of a for the one-dimensional model (1)-(2) with the non-local feedback (41). In all
these simulations, n = 2, D = 0.15µm2 min−1, R = 2µm, k21 = 2, k22 = 25, gon = 20 min−1 and goff = 9 min−1.

Other parameters are: A) kon = 10 min−1 and koff = 10 min−1; B) kon = 18 min−1 and koff = 10 min−1;

C) kon = 25 min−1 and koff = 10 min−1; D) kon = 15 min−1 and koff = 5 min−1; E) kon = 15 min−1 and

koff = 13 min−1; F) kon = 15 min−1 and koff = 18 min−1.

A Appendix

A.1 Proofs of Lemmas

In this section, we will state three lemmas, which will be used in the next section for the proofs of Theorems 1-4.
First, we define a function fy(a) used in the lemmas:

fy(a) = (γ1 + γ2a
n)(1− γ3y)− γ4a−D(a− y). (45)

where n > 1, γ1, γ2, γ4 > 0, γ3 ≥ 1 and 0 ≤ D < γ1γ3.

Lemma 1 The function fy in (47) has the following properties:

1. min
a≥0

fy(a) equals to

γ1 − (γ1γ3 −D)y −
n− 1

n
n

n−1

(γ4 +D)
n

n−1

γ
1

n−1
2

(1− γ3y)
− 1

n−1 ,

which is strictly decreasing with respect to y for y ∈ (0, 1/γ3).
2. For each y, there exist at most two solutions in {a|a ≥ 0} satisfying fy(a) = 0.
3. There exists a number ym in [0, 1/γ3) such that two smooth functions a1(y), a2(y) can be well defined in the

domain [ym, 1/γ3) and the following properties hold:
(a) min

a≥0
fy(a) ≤ 0 for any y ∈ [ym, 1/γ3);
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Fig. 7 Time-dependent solutions of a for the two-dimensional model (1)-(2). A) With the local feedback (28). In
this simulation, n = 2, D = 0.15 µm2 min−1, R = 2 µm, gon = 20 min−1, goff = 9 min−1, k11 = 20 min−1, k12 =

250 min−1 and koff = 10 min−1; B) With the non-local feedback (41). In this simulation, n = 2, D = 0.15µm2 min−1,

R = 2µm, k21 = 2, k22 = 25, gon = 20 min−1, goff = 9 min−1, kon = 10 min−1 and koff = 10 min−1.

(b) fy(a1(y)) = fy(a2(y)) = 0 for any y ∈ [ym, 1/γ3);
(c) a1(y) > a2(y) ≥ 0 for any y ∈ (ym, 1/γ3);
(d) a′1(y) > 0 and a′2(y) < 0 for any y ∈ (ym, 1/γ3);
(e) lim

y→1/γ3
a1(y) =∞ and lim

y→1/γ3
a2(y) = 0;

(f)
dfy
da

∣∣
a=a1(y) > 0 and

dfy
da

∣∣
a=a2(y) < 0 for any y ∈ (ym, 1/γ3);

(g) if there is at least one solution in a ≥ 0 for f0(a) = 0, then ym = 0;

(h) if there is no solution in a ≥ 0 for f0(a) = 0, then a1(ym) = a2(ym),
dfym
da

∣∣
a=a1(ym) =

dfym
da

∣∣
a=a2(ym) = 0

and min
a≥0

fym (a) = 0.

Proof 1. First we consider the first and second derivatives of fy ,

dfy(a)

da
= nγ2a

n−1(1− γ3y)− γ4 −D, (46)

d2fy(a)

da2
= n(n− 1)γ2a

n−2(1− γ3y). (47)

By Eq. (49), we show that the minimum point in {a|a ≥ 0}, with y ∈ (0, 1/γ3), is at

a =

(
γ4 +D

nγ2(1− γ3y)

) 1
n−1

with

min
a≥0

fy(a) = γ1 − (γ1γ3 −D)y −
n− 1

n
n

n−1

(γ4 +D)
n

n−1

γ
1

n−1
2

(1− γ3y)
− 1

n−1 .
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By the given condition D < γ1γ3, it is easy to show that min
a≥0

fy(a) is strictly decreasing with respect to y.

2. Suppose that y is a fixed number. If min
a≥0

fy(a) > 0, there is no solution a ≥ 0 satisfying fy(a) = 0.

If min
a≥0

fy(a) = 0, the minimum point

ā =

(
γ4 +D

nγ2(1− γ3y)

) 1
n−1

is one of the roots for fy(a). As
dfy(a)

da
> 0 for a > ā and

dfy(a)

da
< 0 for 0 ≤ a < ā, fy(a) > fy(ā) for any a 6= ā, and

therefore ā is the only solution of fy(a) = 0.
If min
a≥0

fy(a) < 0, by the fact that fy(0) > 0, lim
a→∞

fy(a) > 0 and the intermediate value theorem, we know

that there are at least two solutions satisfying fy(a) = 0. As
dfy(a)

da
> 0 for a > ā and

dfy(a)

da
< 0 for 0 ≤ a < ā,

fy(a) > fy(ā) for any a 6= ā. So there are only two roots of fy(a): one is in [0, ā), and the other is in (ā,∞).
3. By the result of part 1, min

a≥0
fy(a) tends to −∞ as y is close to 1/γ3. If min

a≥0
fy(a) > 0 for y = 0, according

to the intermediate value theorem, we can find ym such that min
a≥0

fym (a) equals zero; if min
a≥0

fy(a) ≤ 0 for y = 0, we

define ym = 0.
Since min

a≥0
fy(a) is strictly decreasing with respect to y, and according to the results of part 2, fy(a) = 0 has

two solutions a for any y ∈ (ym, 1/γ3), so we can define two functions a1(y) and a2(y) that satisfy fy(a1(y)) =
fy(a2(y)) = 0 and a1(y) > a2(y) for any y ∈ (ym, 1/γ3), that is,

a1(y) = max{a ≥ 0|fy(a) = 0}, a2(y) = min{a ≥ 0|fy(a) = 0}.

The derivative of fy(a) with respect to y is −γ1γ3 + D − γ2γ3an, which is always negative, and fy(a) is a smooth
function with respect to y and a, and therefore we can apply the inverse function theorem to show that a1(y) and
a2(y) are smooth functions. By the definitions and the proof of part 2, it is easy to verify the properties (a,b,c,f,g,h).

By property (b), we have fy(a1(y)) = 0 and fy(a2(y)) = 0. When differentiating these two equations with

respect to y on both sides, we have −γ1γ3 +D− γ2γ3a1(y)n +
dfy
da

(a1(y))a′1(y) = 0 and −γ1γ3 +D− γ2γ3a2(y)n +
dfy
da

(a1(y))a′2(y) = 0. Hence we obtain

a′1(y) = −
−γ1γ3 +D − γ2γ3a1(y)n

dfy
da

(a1(y))
,

a′2(y) = −
−γ1γ3 +D − γ2γ3a2(y)n

dfy
da

(a2(y))
.

By property (f) and γ1γ3 > D, we show that a′1(y) > 0 and a′2(y) < 0, which completes the proof of property (d).

From the proof of part 2, we have a2 ∈
[
0,
(

γ4+D
nγ2(1−γ3y)

) 1
n−1

)
and a1 ∈

((
γ4+D

nγ2(1−γ3y)

) 1
n−1

,∞
)

. So we know

that a1(y) tends to infinity as y goes to 1/γ3. Since a = 0 is the solution for f1/γ3 (a) = 0, we have lim
y→1/γ3

a2(y) = 0,

which completes the proof of property (e).

Lemma 2 If 1−
(n− 1)

n−1
n

n

γ4 +D

γ
1
n
2 γ

n−1
n

1

 >
γ1γ3

γ1γ3 − 1
n
D + n−1

n
γ4

(48)

is satisfied, then
dfa0
da
|a=a0 > 0 holds for any solution a0 satisfying fa0 (a0) = 0.

For the proofs of Lemmas 2 and 3, we define two functions S1, S2 in the domain [ym, 1/γ3):

S1(y) = a1(y)− y,
S2(y) = a2(y)− y,

where a1, a2 and ym are defined in Lemma 1.
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Proof There are two parts in the proof:

1. Prove that if S1(ym) < 0,
dfa0
da
|a=a0 > 0 holds for any solution a0 ≥ 0 satisfying fa0 (a0) = 0.

2. Prove that condition (50) implies S1(ym) < 0.

By combining these two results, we can prove that if the condition (50) is satisfied, then
dfa0
da
|a=a0 > 0 holds for

any solution a0 ≥ 0 satisfying fa0 (a0) = 0.
Proof of part 1: Suppose that S1(ym) < 0. Since a1(y) ≥ a2(y), we get S2(ym) ≤ S1(ym) < 0. By a′2(y) < 0 (Lemma

1(3c)), we have S′2 < 0, which means that S2 is a decreasing function. Since S2(ym) < 0 and S2 is a decreasing
function, S2(y) < 0 for all y ∈ [ym, 1/γ3), and there is no solution to S2(y) = 0.

According to Lemma 1 and the definitions of S1 and S2, all solutions a0 ≥ 0 for fa0 (a0) = 0 have to satisfy
S1(a0) = 0 or S2(a0) = 0. Since S1(ym) < 0 implies that there is no solution satisfying S2(y) = 0, all solutions

a0 ≥ 0 for fa0 (a0) have to satisfy S1(a0) = 0 and therefore
dfa0
da
|a=a0 > 0 according to Lemma 1(3f).

Proof of part 2: Suppose that condition (50) is satisfied, by Lemma 1(1), we have

min
a≥0

fy(a) = γ1 − (γ1γ3 −D)y −
n− 1

n
n

n−1

(γ4 +D)
n

n−1

γ
1

n−1
2

(1− γ3y)
− 1

n−1 .

If 0 < γ3y < 1− (n−1)
n−1
n

n
γ4+D

γ
1
n
2 γ

n−1
n

1

, we have

γ1(1− γ3y)
n

n−1 >
n− 1

n
n

n−1

(γ4 +D)
n

n−1

γ
1

n−1
2

,

and therefore

γ1 − (γ1γ3 −D)y >
n− 1

n
n

n−1

(γ4 +D)
n

n−1

γ
1

n−1
2

(1− γ3y)
− 1

n−1 ,

min
a≥0

fy(a) > 0.

Lemma 1(3a) implies that ym is larger than 1
γ3

1− (n−1)
n−1
n

n
γ4+D

γ
1
n
2 γ

n−1
n

1

, that is,

ym >
1

γ3

1−
(n− 1)

n−1
n

n

γ4 +D

γ
1
n
2 γ

n−1
n

1

 > 0. (49)

Then we apply Lemma 1(3h) to show that there is no solution with a ≥ 0 such that f0(a) = 0.
By Lemma 1(3b, h), we know that (ym, a1(ym)) satisfies the following two equations:

fym (am) = (γ1 + γ2a
n
m)(1− γ3ym)− γ4am −D(am − ym) = 0, (50)

dfym
da
|a=am = nγ2a

n−1
m (1− γ3ym)− γ4 −D = 0, (51)

where am = a1(ym).
After multiplying (52) and (53) by n and am, respectively, we have

nγ1(1− γ3ym) + nγ2a
n
m(1− γ3ym)− nγ4am − nDam + nDym = 0, (52)

nγ2a
n
m(1− γ3ym)− γ4am −Dam = 0. (53)

Substracting (54) by (55), we obtain

nγ1(1− γ3ym)− (n− 1)(γ4 +D)am + nDym = 0,

which leads to

am =
n

n− 1

1

γ4 +D
(γ1 − (γ3γ1 −D)ym). (54)
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By substituting (56) into S1(ym), we obtain

S1(ym) = am − ym =
n

n− 1

1

γ4 +D

(
γ1 −

(
γ1γ3 −

1

n
D +

n− 1

n
γ4

)
ym

)
. (55)

By applying (51) and condition (50),

ym >
1

γ3

1−
(n− 1)

n−1
n

n

γ4 +D

γ
1
n
2 γ

n−1
n

1


>

γ1

γ1γ3 − 1
n
D + n−1

n
γ4
,

which, coupled with (57), implies that S1(ym) < 0.

Lemma 3 Suppose D = 0, and if1−
(n− 1)

n−1
n

n

γ4

γ
1
n
2 γ

n−1
n

1

 <
γ1γ3

γ1γ3 + n−1
n
γ4
. (56)

holds, then there exists a solution a0 satisfying fa0 (a0) = 0 and
dfa0
da
|a=a0 < 0.

Proof There are two parts in the proof:

1. Prove that if S2(ym) ≥ 0, there exists a0 ≥ 0 such that fa0 (a0) = 0 and
dfa0
da
|a=a0 < 0.

2. Prove that condition (58) implies S2(ym) ≥ 0.

By combining these two results, we can prove that if the condition (58) is satisfied, there exists a0 ≥ 0 satisfying

fa0 (a0) = 0 and
dfa0
da
|a=a0 < 0.

Proof of part 1: Suppose S2(ym) > 0, as we know that S2(1/γ3) = −1/γ3 < 0, then by the intermediate value

theorem, there exists a solution a0 satisfying S2(a0) = 0 (fa0 (a0) = 0), and therefore
dfa0
da
|a=a0 < 0, according to

Lemma 1(3f).
Proof of part 2: Suppose that condition (58) is satisfied.

If ym = 0, we have S2(ym) = a2(ym) ≥ 0, which completes the proof of part 2. Otherwise if ym > 0, by Lemma
1(1), we have

min
a≥0

fy(a) = γ1 − γ1γ3y −
n− 1

n
n

n−1

γ
n

n−1
4

γ
1

n−1
2

(1− γ3y)
− 1

n−1 .

If γ3y > 1− (n−1)
n−1
n

n
γ4

γ
1
n
2 γ

n−1
n

1

, we have

γ1(1− γ3y)
n

n−1 <
n− 1

n
n

n−1

γ
n

n−1
4

γ
1

n−1
2

,

and therefore

γ1 − γ1γ3y <
n− 1

n
n

n−1

γ
n

n−1
4

γ
1

n−1
2

(1− γ3y)
− 1

n−1 ,

min
a≥0

fy(a) < 0.

Lemma 1(3h) implies that

ym ≤
1

γ3

1−
(n− 1)

n−1
n

n

γ4

γ
1
n
2 γ

n−1
n

1

 . (57)
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By Lemma 1(3b, h), (ym, a1(ym)) satisfies the following two equations:

fym (am) = (γ1 + γ2a
n
m)(1− γ3ym)− γ4am = 0, (58)

dfym
da
|a=am = nγ2a

n−1
m (1− γ3ym)− γ4 = 0, (59)

where am = a2(ym).
After multiplying (60) and (61) by n and am, respectively, we have

nγ1(1− γ3ym) + nγ2a
n
m(1− γ3ym)− nγ4am = 0, (60)

nγ2a
n
m(1− γ3ym)− γ4am = 0. (61)

Then subtracting (62) by (63), one obtains

nγ1(1− γ3ym)− (n− 1)γ4am = 0,

which leads to

am =
n

n− 1

1

γ4
(γ1 − γ3γ1ym). (62)

After substituting (64) into S2(ym), we get

S2(ym) = am − ym =
n

n− 1

1

γ4 +D

(
γ1 −

(
γ1γ3 +

n− 1

n
γ4

)
ym

)
. (63)

By applying (59) and condition (58),

ym ≤
1

γ3

1−
(n− 1)

n−1
n

n

γ4

γ
1
n
2 γ

n−1
n

1


<

γ1

γ1γ3 + n−1
n
γ4
,

which, coupled with (65), implies that S2(ym) ≥ 0.

A.2 Proofs of Theorems 1 to 4

A.2.1 Theorem 1

Proof First, we set γ1 = k3, γ2 = k4, γ3 = 1, γ4 = koff and D = D∗ in the lemmas. By applying Lemma 2, we
obtain that if

1−
(n− 1)

n−1
n

n

koff +D∗

k
1
n
4 k

n−1
n

3

>
k3

k3 − 1
n
D∗ + n−1

n
koff

(64)

then

nk4a
n−1
0 (1− a0)− koff −D∗ > 0 (65)

holds for any a0 satisfying

(k3 + k4a
n
0 )(1− a0)− koffa0 = 0. (66)

By (30), we know that a0 is a homogeneous steady state solution for a in system (1)-(2) with the cooperative feedback

(28) if and only if a0 satisfies (68). Also, by D∗ > σ1Dm+ σ1Dm
σ1Dm+goff

(k11+k12a0), inequality (67) implies inequality

(26).
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By the result obtained from Lemma 2, we have proved that if (66) is satisfied, then all possible homogeneous
steady state solutions satisfy inequality (26). Since at least one homogeneous steady state solution satisfies inequality
(25), we have proved that if

1−
(n− 1)

n−1
n

n

koff +D∗

k
1
n
4 k

n−1
n

3

>
k3

k3 − 1
n
D∗ + n−1

n
koff

then there exists a homogeneous steady state solution satisfying (25) and (26). In addition, since all possible homo-
geneous steady state solutions satisfy inequality (26) in this case, locally stable homogeneous steady state solution
does not exist.

A.2.2 Theorem 2

Proof Let γ1 = k3, γ2 = k4, γ3 = 1, γ4 = koff and D = 0 in the lemmas. By applying Lemma 3, we obtain that if

1−
(n− 1)

n−1
n

n

koff

k
1
n
4 k

n−1
n

3

<
k3

k3 + n−1
n
koff

,

there exists a solution a0 satisfying

(k3 + k4a
n
0 )(1− a0)− koffa0 = 0

and

nk4a
n−1
0 (1− a0)− koff < 0. (67)

By (30), we know that a0 is a homogeneous steady state solution for a in the system (1)-(2) with the cooperative
feedback (28) if and only if a0 satisfies (68). Also, inequality (69) implies that a homogeneous steady state solution
is locally stable for perturbations with any nonnegative wavenumber (satisfying the condition (25) but not satisfying
(26)). So we have proved that if the condition

1−
(n− 1)

n−1
n

n

koff

k
1
n
4 k

n−1
n

3

<
k3

k3 + n−1
n
koff

is satisfied, there exists a locally stable homogeneous steady state solution.

A.2.3 Theorem 3

Proof First, we set γ1 = k5, γ2 = k6, γ3 =
k∗on+koff

k∗on
, γ4 = koff and D = D+ in the lemmas. By applying Lemma

2, we obtain that if

1−
(n− 1)

n−1
n

n

koff +D∗

k
1
n
6 k

n−1
n

5

>

k∗on+koff

k∗on
k5

k∗on+koff

k∗on
k5 − 1

n
D+ + n−1

n
koff

, (68)

then

nk6a
n−1
0

(
1−

k∗on + koff

k∗on
a0

)
− koff −D+ > 0 (69)

holds for any a0 satisfying

(k5 + k6a
n
0 )

(
1−

k∗on + koff

k∗on
a0

)
− koffa0 = 0. (70)

By (43), we know that a0 is a homogeneous steady state solution for a in the system (1)-(2) with the feedback form
(41) if and only if a0 satisfies (71).
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By equation (72) with k5 = k21k∗on and k6 = k22k∗on, we have

1 + k21 + k22a
n
0 =

1− a0
1− k∗on+koff

k∗on
a0
. (71)

Now we substitute the feedback form (41) into inequality (26), we obtain

− σ1Dm +
nk6a

n−1
0

1 + k21 + k22an0
(1− a0)− koff −

σ1Dm

σ1Dm + goff
kon

k21 + k22an0
1 + k21 + k22an0

> 0,

and by using (73), this inequality can be rewritten as

− σ1Dm + nk6a
n−1
0

(
1−

k∗on + koff

k∗on
a0

)
− koff −

σ1Dm

σ1Dm + goff
kon

k21 + k22an0
1 + k21 + k22an0

> 0.

Since D+ > σ1Dm + σ1Dm
σ1Dm+goff

k21+k22a
n
0

1+k21+k22a
n
0

, inequality (71) implies inequality (26).

By the result obtained from Lemma 2, we have proved that if (70) is satisfied, then all possible homogeneous
steady state solutions satisfy inequality (26). Since at least one homogeneous steady state solution satisfies (25), we
have proved that if

1−
(n− 1)

n−1
n

n

koff +D∗

k
1
n
6 k

n−1
n

5

>
k5

k5 − 1
n

k∗on
k∗on+koff

D+ + n−1
n

k∗on
k∗on+koff

koff
,

there exists a homogeneous steady state solution satisfying (25) and (26). In addition, since all possible homogeneous
steady state solutions satisfy (26) in this case, locally stable homogeneous steady state solution does not exist.

A.2.4 Theorem 4

Proof Let γ1 = k5, γ2 = k6, γ3 =
k∗on+koff

k∗on
, γ4 = koff and D = 0 in the lemmas. By applying Lemma 3, we obtain

that if

1−
(n− 1)

n−1
n

n

koff

k
1
n
6 k

n−1
n

5

<
k5

k5 + n−1
n

k∗on
k∗on+koff

koff
,

then there exists a solution a0 satisfying

(k5 + k6a
n
0 )

(
1−

k∗on + koff

k∗on
a0

)
− koffa0 = 0

and

nk6a
n−1
0

(
1−

k∗on + koff

k∗on
a0

)
− koff < 0. (72)

By (43), we know that a0 is a homogeneous steady state solution for a in the system (1)-(2) with the feedback form
(41) if and only if a0 satisfies (71).

By (73), (74) can be written as

nk6a
n−1
0

1 + k21 + k22an0
(1− a0)− koff < 0,

which implies that a homogeneous steady state solution is locally stable for perturbations with any nonnegative
wavenumber (satisfying the condition (25) but not (26)). Thus, we have proved that if the condition

1−
(n− 1)

n−1
n

n

koff

k
1
n
6 k

n−1
n

5

<
k5

k5 + n−1
n

k∗on
k∗on+koff

koff

is satisfied, there exists a locally stable homogeneous steady state solution.
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