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Abstract. In this paper we study rare events associated to the solutions of an elliptic partial
differential equation with a spatially varying random coefficient. The random coefficient follows the
lognormal distribution, which is determined by a Gaussian process. This model is employed to study
the failure problem of elastic materials in random media in which the failure is characterized by the
criterion that the strain field exceeds a high threshold. We propose an efficient importance sampling
scheme to compute the small failure probability in the high threshold limit. The change of measure
in our scheme is parametrized by two density functions. The efficiency of the importance sampling
scheme is validated by numerical examples.
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1. Introduction. The study and computation of rare events in stochastic sys-
tems have received intensive attention in recent years. Rare events, though they do
not occur often, represent the most severe consequence of uncertainty and random
effects. The study of these rare events hence gives crucial understanding and has
important applications. However, due to the small probabilities of occurrence of such
events, quantification casts a serious challenge for conventional probabilistic meth-
ods. For example, a direct Monte Carlo strategy to estimate the vanishing small
probability will require a huge number of sample points to give estimates with small
relative error; in other words, the huge relative variance of these estimators makes
them incapable of accurate prediction.

In this work, we aim at developing an efficient important sampling strategy to
study the rare events associated with a materials failure problem. The method we
develop in this work applies to the general linear elasticity model. For simplicity, we
will restrict our discussions here to a scalar model in two dimensions, which can be
viewed as a model for out-of-plane deformation of an elastic membrane under exter-
nal forcing. Similar equations also arise from other contexts, such as groundwater
hydraulics and electrostatic response of a planar media. Let D C R? be an open do-
main with smooth boundary, which is the equilibrium configuration of the membrane.
We consider an out-of-plane displacement field u given by the following boundary
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value problem:
(11) -V - (a(z)Vu(z)) = f(x) for xz € D;
' u(z) =0 for z € OD.

Here f is the body force acting on the material and a : D — R gives the stiffness of
the material. We assume that the membrane is attached to a frame at the boundary
0D and hence the Dirichlet boundary condition in (1.1) is used here. We assume that
the external force f is bounded, that is, there exists a constant M € R such that

(1.2) |f(z)] < M, z € D.

We study the behavior of the material under the influence of internal randomness,
which may be a result of manufacture processing or the uncertainty in material prop-
erties at the microscopic level. We adopt a probabilistic viewpoint of the complexity
and heterogeneity inherent in the material and hence view the stiffness coefficient a(x)
as a positive random field. To be more specific, we assume that a(z) is a lognormal
random field, that is,

(1.3) a(z) = exp(—&(x)), €D,

where £ is a stationary Gaussian random field. The lognormal assumption is often
used in failure modeling, as it yields good fittings to data (see, for example, [25]).
It is also quite natural from the mathematical point of view, as the equation is then
almost surely uniformly elliptic. To simplify notation and without loss of generality,
we assume that E{(x) = 0 and Var{(r) = 1. For a general stationary Gaussian
random function, our methodology and algorithm have no big difference and we shall
elaborate this point in a remark later in section 2.

The random field viewpoint is taken in the homogenization theory for random
heterogeneous and composite materials (see, e.g., [22, 30]). However, for the study
of rare material failure events, standard homogenization theory is not enough to cap-
ture rare events, despite the recent advances in the understanding of variance scaling
and the central limit theorem [3, 12, 13, 24]. Here our focus is on developing effi-
cient numerical methods for the computation of the material failure probability via
importance sampling.

We consider the material failure criterion such that under the external force, the
strain of the elastic deformation exceeds a prefixed level at some point. More precisely,
let b > 1 be the given threshold, the failure probability is defined as

(1.4) P{sup|Vu| > b}.

zeD

It is well known that to simulate such small probabilities is a difficult challenge for
the direct Monte Carlo method. Instead, we employ importance sampling techniques
for the computation of the failure probability.

In this paper, we propose an efficient Monte Carlo method via importance sam-
pling to compute the small failure probabilities as in (1.4) when the differential equa-
tion is driven by a Gaussian random field as in (1.3). The change of measure proposed
in this paper is not of the exponential tilting form and therefore is nonstandard. In
the one-dimensional setting, the algorithm can be proved to be asymptotically effi-
cient. For the case in higher dimensions, due to the lack of large deviations results,
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efficiency cannot be rigorously established. However, the algorithm does admit a very
good performance in our numerical studies.

There is a long history of study of material failure and structure safety in the
civil engineering and material sciences from the probabilistic viewpoint or the extreme
value theory. The important role of Weibull distribution [31] for the (idealized) weak-
link principle is well established and applied in numerous engineering applications,
although it faces lots of challenges for modeling real material properties. Making
substantial progress toward this challenge is the well-known work of Bazant on the
statistical size effect [4]. In contrast to these engineering statistical approaches for
material/structure failures, we take the mechanistic approach by using the classical
linear elasticity model, i.e., (1.1). It is admitted that many physical processes such
as the development of fractures and cracks as well as dynamical failure scenarios
are not shown in this model. Yet, it is a good prototype model, in the balance of
tractability and complexity of modeling material failures. Nevertheless, probabilistic
study of this model for high excursion of strain field is helpful to shed light on the
extreme mechanical behaviors of random elastic media. Furthermore, our model is
quite general and is never limited to the application of elastic mechanics. There are
lots of other important physical and engineering problems modeled in exactly the same
form as our elliptic equation (1.1) with random coefficients. For instance, the Darcy
equation with uncertain coefficients is the canonical model for groundwater study
where Vu is an important physical quantity related to the phase speed of pollutants
carried by groundwater.

In view of extremely small failure probabilities of concern here, our work fits into
the general scope of works devoted to rare event simulations. Different approaches
have been proposed in recent years for such problems, in particular in engineering
and industrial applications. For instance, the idea of design point shift has been
used in the framework of polynomial chaos expansion for failure events [27]. The
numerical adaptive strategy is also tested on the PDE with random input data [26].
In terms of Monte Carlo importance sampling method which is free of the “curse of
dimensionality,” the work [14] combines the cross-entropy method and the surrogate
model to efficiently calculate the failure probabilities, which in principle works for very
general problems. The recent work [28] applied the large deviation and importance
sampling method to the calculation of the failure probability of hypersonic engines.
We also mention the study of rare events in optical pulses modeled by the randomly
perturbed one-dimensional nonlinear Schrodinger equation (see, e.g., [9, 23]). We
refer to [10, 8, 2, 11] for general techniques of importance sampling and rare events
simulations.

Our problem is also closely connected to the probabilistic theories for the Gaussian
random field. For stochastic systems driven by light-tailed random variables (such as
Gaussian random variables), it is customary to consider the exponential change of
measure for the design of an efficient importance sampling algorithm. The parame-
ters are usually selected by the minimal cross-entropy method [29] or some control
problems related to the large deviation principle [10]. For heavy-tailed stochastic
systems, some recent works are [7, 5, 6]. In the context of Gaussian processes and
random fields, the most well-studied events are the high-level excursions (tail events
of the supremum) [1]; the tail events of other convex functionals of Gaussian random
fields are also of interest [18, 15, 16, 17]. The method in this paper is in part built on
the results in this literature.

The rest of the paper is organized as follows. The description of the algorithm
is given in section 2. Implementation details and numerical results are discussed in
section 3. Conclusions and discussions are summarized in section 4.
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2. The main method.

2.1. Rare event simulation, variance reduction, and importance
sampling. Let us consider the problem of estimating a small probability w = P(B) <
1 or a family of probabilities w(b) = P(By), where b is the rarity parameter that in-
dicates the difficulty of the problem. In our case, we identify the rarity parameter as
the threshold, and the event is given by By = {supp|Vu| > b}. As b tends to infinity,
the probability of interest w(b) = P(Bs) tends to 0.

As the probabilities to be estimated are very small, the computational error needs
to be quantified relative to the probabilities of interest. Let us consider an unbiased
Monte Carlo estimator Z; for w(b) such that EZ, = w(b). The (squared) relative
error is given by Var(Zy)/w?(b) or E(Z?)/w?(b) = 1 + Var(Zy)/w?(b). Suppose that
n independent and identically distributed replicates of Z; are generated, denoted by
ZM 2t Let

_ 1S~
Zn 22N 20
nESd %
=1
be the averaged estimator, whose variance is

- Var(Z
Var(Z,) = M.

n
Via Chebyshev’s inequality, we obtain that

_ Var(Z,
P (|Z, —w(b)] > ew(b)) < W(Z(bb))

For any § > 0 if we intend to estimate w(b) with at most ¢ relative error with at least
probability 1 — §, then it suffices to generate

_ V&I‘(Zb)

~1_-2
02(0) 0 e

samples. Hence, the necessary sample size is proportional to the relative error Var(Z;)/
w?(b).
Consider the direct Monte Carlo estimator Ip,. Its relative error is
Var(Ip,) 1—w(b)
w2(b)  w(b)

— 00

as w(b) — 0. The necessary sample size is n = w™1(b)d " 1e¢~2 and Ip, is considered
an inefficient estimator for w(b) when w(b) is very small. There are several efficiency
criteria in the literature [8, 2]. The most widely used is weak efficiency, or asymptotic
efficiency, requiring that for all e > 0, E(I3, )/w?(b) = o(w™ (b)) as w(b) — 0. In the
numerical analysis, we will investigate the relative errors of the proposed estimator.
The empirical study shows that our estimator admits reasonably small relative errors
(less then 10) when w(b) is very small (less than 1076), although rigorous efficiency
is difficult to establish and is beyond the scope of this paper.

In the subsequent analysis, we employ importance sampling as the main variance
reduction technique that is based on the following identity:

P(B) = /I(w € B)P(dw) = /I(w € B)%Q(dw) for all measurable set B
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for a measure @ such that Q(- N B) is absolutely continuous with respect to the
measure P(-N B). As a consequence, we have that

dpP
Z(w)=1I(we B)dQ(w)
is an unbiased estimator of P(B) under Q. In other words, E?Z = P(B), where E%
is the expectation with respect to the measure @,

It is easy to verify that if we choose Q@ = P(-|B) = P(-N B)/P(B), then the
corresponding importance sampling estimator admits zero variance. Thus, we often
call Q the zero-variance change of measure. On the other hand, Q is clearly of no
practical value, in that the likelihood ratio is almost surely P(B), which is precisely
the quantity we want to compute. Nevertheless, the measure Q provides a guideline
to construct a change of measure for the efficient computation of P(B). We need to
construct a measure @ that is close to Q such that we are capable of sampling from
and computing the Radon-Nikodym derivative dQ/dP to achieve variance reduction.

2.2. The change of measure. Let us characterize a measure @) for the random
field £ as in (1.3) defined on the continuous sample path space C(D), where £ : D — R
is a realization of the random field and D is the domain of the PDE. Our choice of @
depends on two probability density functions h(-) and g,(-) to be determined later.
Given h and g, the Radon—Nikodym derivative of () with respect to P is given by

2.1) j—g(g) _ /D h(x)% dz.

Here, for each point & € D, ¢, (-) is the marginal density function of £(x) under P,
that is,

/ ¢z(y)dy = P(&(z) € A) for any measurable set A C R.
A

In (2.1), h(-) is a density function over the domain D and g,(-) for each z € D is a
density function on R. We will choose h and g, such that the corresponding measure
Q@ is a good approximation of Q for variance reduction.
Let us first explain how to sample from @ before discussing the choices of i and
gz It consists of three steps.
ALGORITHM 2.1.
1. Sample a random index (position) x € D following the density h(x);
2. Conditional on the realized x, sample a random number &(x) following the
density g.(-);
3. Conditional on the realized x and &(x), sample & on D\{z} from the condi-
tional distribution P{€ € - | {(x)}.
It is easy to verify that the above three-step procedure is consistent with the
Radon-Nikodym derivative (2.1). Let Q(&) be the probability of £ under Q. Noticing
that the third step in Algorithm 1 is done actually under P, we have

Q) /D / Az dov h(2)g, () P (6(2') : 2’ € D\{}] €(x) = a)

/ / deda h(@) 22 p(e(@) = )P (&) : o € D\{a}|€(x) = a)
D JR bz ()
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/ / dz da h(z) 9:(a) P (&(2') : 2’ € D\{z} and &(z) = «)
D JR Pz ()

92(&())
[, e P o,

which validates (2.1) by noting P(§) is independent of the x variable. If g, = ¢, for
all x € D, then we have Q = P. In addition, the above derivation shows that the
distributions of £ under P and @ are different only at one random location that is
labeled by x, whose distribution is given by h. This suggests that if the occurrence
of the rare event {sup,p |Vu(z)| > b} is mostly due to the abnormal behavior of the
random field £ at one location, our Q would be a good candidate of approximating
the zero-variance change of measure Q. In this sense, the distribution of the random
index z (i.e., h(x)) should be approximately the distribution of the location where
¢ deviates mostly from its original law under P, conditioned on the occurrence of
material failure. Furthermore, the distribution g, characterizes how £(z) deviates
from its original law ¢,. In what follows, we will describe in detail the choices of g,
and h.

2.3. The excursion level and the choice of g,. Bearing in mind the above
intuition, we proceed to describing h and g,. Among these two, g, is more important
as it quantifies the deviation of £ from its original law. The basic idea is as follows. If
supp |Vu(z)| admits an excursion over some high level b, then the process supp, £(z)
must also have a high excursion over some level [, depending on b and the precise
location x where the excursion occurs. This observation is due to the connection
between £ and w in the PDE (1.1). Therefore, we expect that, in our important
sampling scheme, £(x) must reach the high level [, quite easily under the distribution
gz- One apparent choice of such a distribution for g, is a Gaussian distribution whose
mean is specified as [, although we do not exclude other possibilities like student
distribution with a similar shifted mean determined by ..

In the analysis of the one-dimensional equation, an explicit formula is available
for the solution to the differential equation,

u'(z) = e£@) {—F(x) + M} ,
fD e&(y)dy

where F(z) = [ f(y)dy. Notice that F(z) is a bounded function and thus log v/(z) =
&(z) + O(1). Hence sup |u/(x)| > b implies sup |£(x)| > logb + O(1). Based on this
closed form solution, it is reasonable to consider that [, is approximately logb. The
optimal choice of I, would be of order logb + O(loglogb). In the high-dimensional
analysis, the PDE does not have a closed form solution. It is generally difficult to
derive an analytic relationship between b and [,. Nevertheless, we conjecture that
the relationship I, ~ logb is generally appropriate. This would be justified in our
numerical examples.

Based on the above discussion, we choose [, such that it is just enough for
supp |Vu(z)| to exceed b. In particular, for each xg € D and [, we define

§io (1) = 1C(x — m0) = E{¢(2) | £(w0) = 1},

where C(-) is the covariance function of &, that is,

C(x) = Cov(&(y), E(y + x)).
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The fact IC(z — x¢) = E{{(x) | £(xo) = I} is due to that £(z) has zero mean and unit
variance. For other cases, the form of conditional expectation can be adapted. Let
1,2, () be the solution to the PDE (1.1) with a(z) = e~¢#0(*). Then, [, is given by

(2.2) lz, = min {l € R : sup |Vuy gz, (x)] > b} .
z€D

We now provide an intuitive explanation for the above choice of [,. The basic
understanding is that the high excursion of |Vu| is caused by the high excursion of
the input process €. In order to determine the necessary excursion level, we perform
the following calculations. Conditional on &(z¢) = I, that is a large number, the
conditional field, denoted by 5 , has the following representation:

E(2) = luy C(x — o) +7(z — o),

where r(z) is a zero-mean Gaussian process whose covariance function can be ob-
tained by conditional Gaussian calculations. The rationale of (2.2) is as follows. The
process r(x) is the remainder process after taking out the conditional mean and r(z)
is of a constant order. If [, is selected to be large, then the variation of r(z) is
negligible compared to the conditional mean. Therefore, the conditional field can be
approximated by

£(2) = Iy Oz — o).

By solving (2.2), I, is the minimum level that £(z) needs to achieve conditioned on
that sup [Vu(z)| just exceeds b.
Having [, defined, we then choose g, to be the Gaussian distribution

(23) 9z NN(lwal;2)

The choice of the variance of g, aims at approximating the conditional variance of
&(z) under P with the condition that {(x) > [, where [, is a large number. Notice
that £(x) is a standard Gaussian random variable for any fixed  under P. Following
the fact that conditional on &(x) > I, &(z) — I, is asymptotically an exponential
random variable with variance ~ [72, the variance in g, is thus also /72 to match the
scale of the variance. In the simulation study, we also vary the choices of this variance
and find that [, 2 yields the best numerical results in terms of variance reduction. For
each g € D, we provide an iterative algorithm to compute I, .

ALGORITHM 2.2. Initialize lg(U?)) =logb and n =10

while “not converge” do

1. Solve the PDE (1.1) for&(x) = lg(EZ)C(x—xo) numerically. Denote the solution

by u(™.
2. Set lg(fg"’l) = lg(fg) — log sup|Vu(™| 4 logb.
(00)

When converged, the above algorithm yields a level Iz, satisfying (2.2). Fur-
thermore, if {(x) = 1,,C(x — x0), then we expect that supp |Vu| and I, have the
following relationship:

(2.4) sup [Vl ~ kg, LS €.
D
This relationship is correct for the one-dimensional case and is conjectured for the

high-dimensional case (we will verify this numerically in section 3). Assuming (2.4),
Algorithm 2.2 is asymptotically the Newton—Raphson algorithm for the equation

o g,
Kaoly, €70 =b.
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Given the initial value lg(g? = logb, it can be shown that |l§%}) — léﬁo)| = o(1/logb),
which is accurate enough for the construction of an efficient importance sampling.
Therefore, in our implementation, we take only very few iterations in Algorithm 2.2.

2.4. The choice of h. We now proceed to the other tuning parameter, the
distribution h. Let the notation x represent the location of the largest deviation from
the original distribution. Such a deviation is quantified by the level [, for each x. For
each x € D, we then choose

h(z) oc P {{(x) >,

sup |Vu| > b} x P{&(x) > 1}
D

The second  is true because the event supp, |Vu| > b does not explicitly depend on
x or I, at all. After normalization, we get

Pl > )
(25) MO =T PEw > Ly

Sampling from h requires the numerical evaluation of I, which induces some compu-
tational overhead. To further reduce the computational complexity, we will evaluate
l; for a finite grid that spreads over the domain D and use an interpolation for the
rest of the domain. Details will be presented in the subsequent section.

2.5. Summary. Based on the above description, we generate the process £(z)
according to Algorithm 2.1. The tuning distributions g, and h are given in (2.3) and
(2.5), where [, is defined through (2.2). Finally the importance sampling estimator is

2y = I(sup|Vu(z)| > b) (/D h(@% da:) o

For the implementation, we discretize the space, the details of which are presented in
the following section.

Remark. If the stationary Gaussian random field £ is not standard, i.e., the mean
E¢ = p and the variance Var &€ = o2, the above calculations need the following slight
modification after transforming ¢ to the standard version £. Write &(z) = o(&(z) — p)
and let C(x) be the covariance function for the standard process €. Then the excursion
function for £, denoted by I, has the same form as (2.2) except that the solution u; 4,
now is associated to the stiffness parameter in the form of a(x) = exp(—o(IC(x —z0) —
1)). The formulas (2.3) and (2.5) are still valid after using the “bar” version: [, and
€. During the importance sampling procedure, the standard ¢ is first sampled from
the @ associated with (2.3) and (2.5), and then a(z) = exp(—o(£(x) — p)) is used to
solve the PDE. The likelihood ratio (2.1) is still valid with the new defined ¢, and h.

3. Numerical details and examples. We will present numerical examples
for one-dimensional and two-dimensional cases. The domain for the one-dimensional
PDE is [0,1] and the domain for the two-dimensional PDE is D = [0, 1] x [0,1]. The
covariance function of the Gaussian field £ in both cases is

(3.1) BE{&(x)é(y)} = C(z — y) = exp(—|z — y|?/R?),

where | - | is the Euclidean distance. The scalar R is known as the correlation length
of the random field. The boundary condition is Dirichlet u|sp = 0 unless specified
otherwise. Our numerical results consist of a verification of the exponential relation-
ship between max{(z) and max |Vu(x)|, visualization of the excursion level I, and
empirical performances of the importance sampling algorithm in estimating the failure
probabilities.
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3.1. Implementation of the algorithm. To sample the random field &, we
first need to discretize the domain D and use the field on the discrete mesh grid as
an approximation Denote a point in R? as x = (2!,22). Choose a discrete mesh
Dy 2 {(z! xi,x3)}, where 0 =z <21 < --- <), =1,0=a2f <ai <---<a}, =1
and ny X ng = N. Then any sample path of the continuous random field £(x) is
approximated by the N-dimensional random vector ({(xll,xj) 1<i<n,1 <5<
nz). The following is the discrete analogue of Algorithm 2.1 on the grid.

ALGORITHM 3.1. R

1. Sample a random index T € Dy following the weight h(T)d, as in (2.5),
where . is the corresponding Lebesgue measure of the cell associated to T in
the mesh Dy.

2. Conditional on the realized 7, sample (1) following the density g-(-) ~
N(lr,17%);

3. Conditional on the realized T and &(7), sample {€(x) : © € Dy} from the
conditional distribution P(§ € -|€(T));

4. Solve PDE (1.1) with a(z) = exp(—§(x)) and calculate sup, ¢ p |[Vu(z)|;

5. Output the estimator

—1

T ale(2)
Zb—I(st|V z)| > b) Zh

IGDN

We now provide further details on steps 3 and 4 in the above algorithm. Step 3
generates a random vector £ on Dy given a realization £(7). Notice that £ on Dy is
a multivariate Gaussian random vector and thus the conditional distribution is still
multivariate Gaussian. The conditional mean is E{f (x) | K3 (r)=y}= yxC (x—7) and
the conditional covariance matrix is C’N 1,N—1 —C’N 1. 1C'N 1.1 Here, C’N is the N by

N unconditional covariance matrix, C N—1,1 is column of C v corresponding to 7 with
row corresponding to 7 deleted, and CA’N_LN_l is hence the (N —1)x (N —1) submatrix
of GN with row and column corresponding to 7 deleted. However, in generating this
conditional sample, we do not need to decompose the conditional covariance matrix.
A simple procedure ¢(x) £ &' (x ) +Clx —7)(&(r) — & (7)) for all z € Dy gives the
conditional sample {¢(x) : © € Dy} with the known (conditional) value of £(7), where
{¢(2) : € Dy} is the N-dim Gaussian vector with covariance matrix Cy. To sample
the multivariate Gaussian random vectors {¢/(z) : © € Dy}, we adopt the Cholesky
decomposition of the covariance matrix that is computed via the pivoted Cholesky
factorization [21] in LAPACK 3.2. Due to stationarity, this decomposition needs to
be computed only once.

Once a realization of £ is generated, the PDE (1.1) is solved by a standard nu-
merical solver. Many traditional advanced numerical strategies such as adaptive mesh
refinement could be used to improve the efficiency and the accuracy of the PDE
solver. For the numerical examples in this paper, we use the finite volume method on
a uniform mesh in D. This simple strategy is adequate in our work to demonstrate
the performance of the variance reduction with a sufficiently high resolution of the
mesh grid.

In summary, our preprocessing includes a Cholesky factorization of the covariance
matrix and solving an inverse problem to obtain the excursion level function [,. In
what follows, we present various numerical results related to our rare event calculation
of the failure probabilities.
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3.2. Verification of exponential relationship. We start from a numerical
verification of our conjecture about the maximums of £ and |Vu|. Our algorithm and
analysis depend on the following scaling relationship between the input field ¢ and
the strain field Vu, whenever either of them has a high excursion,

(3.2) sup & ~ suplog |Vul,
D D

which is to be verified in this subsection.

In the one-dimensional case, the explicit formula of © and Vu renders the veri-
fication of the above relation quite obvious for any bounded external force. For the
problem of higher dimension, as explicit solution is not available, the rigorous justifi-
cation of (3.2) is more challenging. Here, we numerically verify this relationship via
a stochastic approach and a deterministic approach. In the stochastic approach, one
spatial location z* € D is selected and a sequence of the excursion levels [ is selected.
For each [, we generate a random sample path £(z) conditioned on £(z*) = I. We then
calculate the maximum value of the strain max|Vu/| corresponding to the generated
&(x) and we set the homogeneous force f(x) = 1. In the left panel of Figure 1, we plot
log(max |Vu|) versus max¢ for different spatial locations z*. For the deterministic
approach, we observe that for [ sufficiently large, the conditional field is approximately
&(x) = IC(x — z*), as discussed in section 2. Hence, we solve the PDE with simply
setting & = IC'(x —y), where C is the covariance function (3.1). The numerical results
are in the right panel of Figure 1.

The numerical results in Figure 1 confirm that maxlog|Vu| is asymptotically
linearly proportional to max¢ and thus justify (3.2). When the external force f is
inhomogeneous, a similar relationship can be established numerically. Furthermore,
when comparing the results for different correlation lengths, we found that smaller cor-
relation length yields lower max |Vu|. Thus, for smaller correlation length, to ensure
that max |Vu| reaches a level b, the larger values of max ¢ are required, consequently
suggesting a higher excursion level function [,.

12 8
o *.
1ol R=0.2,x=(0.3.0.4) o —R=02,x"=(0.3,0.4) ,e’o
-e- R=0.2, x*=(0.0.0.4) 6f ~©~R=02,x"=(0.0,0.4)
gl R=0.6, x*=(0.3.0.4) = |7R=06x=0304)
= |-¢- R=06,x"=(0.0.0.9) S| *-R=06x=(0.004)
2 Lt
LalPN »
" <
% -
2 =1
E 4 — 2
o0 20
o 2
2
0
. ,
o
B -2
0 5 10 15 2 4 6 8 10
max & max §
stochastic approach of verification deterministic approach of verification

Fic. 1. Numerical verification of max |Vu| ~ exp(max(£)). The domain is D = [0,1]2. The
left panel is the stochastic approach where for each different value of 1, one sample path of &(x)
is generated conditional on &(x*) = l. Due to the randomness, | is not exactly equal to, but very
close to, the sampled mazimum max§. The right panel is the deterministic approach where () =
1C(z — x*) is deterministic and | is precisely the mazimum of &.
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3.3. Excursion level function l,,. The excursion level function [, characterizes
the spatial distribution of the extreme values of £(x) conditional on the failure event.
We have explained how to find this function in section 2.3. The density function A is
determined by I, via (2.5) and the smaller value of I, implies a higher likelihood of
observing an excursion at or around =x.

7.5 R=0.1
7

NS R=02
6.5

R=05
5.5¢ 1

20 0:2 014 0.‘6 0:8 1 50 012 0.‘4 0:6 0‘.8 1
T T
b=4 b=32
Fia. 2. The excursion level functions ly corresponding to b = 4 and b = 32 for different

correlation lengths R. f =1.

We now explore the function [, for different external force functions f. Figure 2
shows the excursion level functions for the one-dimensional problem with D = [0, 1]
and f is set to be a constant. Due to the Dirichlet boundary condition, the excursion
level function [, is not a constant and it has significantly lower values close to the
boundary, especially when the correlation length R is small. Thus, £ has a higher
probability to exhibit high excursions near the boundary than inside the domain, so
it is for Vu. The calculation of [, for the two-dimensional case also confirms this
boundary effect. Refer to Figure 3 for the two choices of external force. In Figure 3,
left, the external force is homogeneous f(x) = 1. In Figure 3, right, the external force
has a discontinuity at z; = 0.5:

1 ifz <05
@)= {—1 if 21> 0.5,

The local dip of the excursion level function [, near this discontinuity is consistent
with the physical heuristics that the material is easy to break down at this disconti-
nuity line.

The dependence of the excursion level function on the correlation length R is
suggested in Figure 2 from which smaller R requires larger [,. However, it should be
noted that this does not imply a smaller failure probability for smaller R, because it
is easier for a Gaussian random function with smaller R to generate high excursions.

We checked the effectiveness of the obtained excursion level function for the im-
portance sampling scheme by investigating the conditional sample of £ given that the
failure event sup |Vu| > b occurs. Using direct Monte Carlo for a moderate b with
f being constant, we generated a few samples (not a large amount) given the failure
events. We observed a common feature of their spatial profiles from these samples:
there admits a unique and very high global maximum for each sample of £ near the
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Fi1c. 3. Contour plot of the excursion level function lz for reaching max |Vu| > b with homoge-
neous external force f =1 (left panel) and the discontinuous external force f = sign(0.5—x1) (right
panel). The correlation length is R = 0.2. The threshold is b = 4.

boundary, where the excursion level function [, has dips. It is worth mentioning
that there are several local maxima in the domain, but these local maxima are sig-
nificantly lower than the global one. Most of the strain fields |Vu| corresponding to
these samples of £ show a global maximum close to the global maximizer of &.

3.4. On the computation of the failure probabilities. Table 1 summa-
rizes the performance of direct Monte Carlo method (MC) and the proposed impor-
tance sampling method (IS) described in Algorithm 3.1 for the failure probabilities
for the one-dimensional differential equation. Table 2 shows the results for the two-
dimensional case with two resolutions of grid mesh, 25 x 25 and 50 x 50. In these
tables, “pp” columns are the estimated probabilities. The “std” columns include the
standard deviation per sample. The “rel. err.” is the ratio of std over p,. For very
large values of b, e.g., b = 16 or 32, the direct Monte Carlo fails to yield reasonable
estimates as the failure event has not been observed in the finite number of samples.
In this case, pp and std are marked as “—” but the relative error, rel. err., is calculated
by the theoretic result 1/1/p — 1 with p being the estimated p, from the importance
sampling method.

The relative error measures the relative efficiency of the Monte Carlo schemes.
The comparison of relative errors in the last columns of Tables 1 and 2 shows that for
all values of the threshold b, the proposed importance sampling scheme substantially
outperforms the direct Monte Carlo method. When the event becomes rarer, its

TABLE 1
The estimated failure probabilities P(max|Vu| > b) for the one-dimensional equation where
f=1, R=0.1, and N = 400 based on 10° independent Monte Carlo samples in both direct Monte
Carlo and the importance sampling. Asterisks indicate that relative error is given by /p~1 —1,
where p is estimated from our proposed method.

Do std rel. err.
b MC IS MC IS MC IS
2 | 2.15e-1  2.15e-1 | 4.12e-1 5.33-1 1.91 2.48
4 | 3.06e-2  3.02e-2 | 1.74e-1  7.78e-2 5.63 2.54
8 | 2.75e-4 3.47e-4 | 1.66e-2  8.29e-4 60.4 2.39
16 - 1.08e-5 - 2.90e-5 302%* 2.69
32 - 1.89e-7 - 5.61e-7 | 2300% 2.97
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TABLE 2
The estimated failure probabilities P(max |Vu| > b) for the two-dimensional equation, where
R=0.6 and f =1. Sample size is 10.

Mesh size 25 X 25

Db std rel. err.

b MC IS MC IS MC IS
1 | 2.70e-1  2.69e-1 | 4.44e-1  2.53e-1 | 1.65 0.94
2 | 5.79e-2  5.78e-2 | 2.34e-1  6.16e-2 | 4.03 1.07
4 | 6.25e-3  6.27e-3 | 7.88e-2 7.53e-3 | 12.6 1.20
8 | 3.52¢e-4 3.57e-4 | 1.88¢-2 5.07e-4 | 53.3 1.42
16 | 8.00e-6 1.11le-5 | 2.83e-3  1.82e-5 | 353.0 1.64
32 - 1.96e-7 - 3.60e-7 | 2253* 1.84

Mesh size 50 x 50

Db std rel. err.

b MC 1S MC IS MC 1S
1 | 2.97e-1 2.97e-1 | 4.57e-1  2.80e-1 1.54 0.94
2 | 6.7le-2  6.73e-2 | 2.50e-1 7.26e-2 | 3.73 1.08
4 | 7.75e-3  T7.72e-3 | 877e-2 9.27e-3 | 11.3 1.20
8 | 4.48e-4 4.66e-4 | 2.12e-2 6.73e-4 | 47.2 1.44
16 | 1.80e-5 1.55e-5 | 4.24e-3  2.56e-5 | 236.0 1.64
32 - 2.93e-7 - 5.20e-7 | 1847* 1.78

TABLE 3

The standard deviation of the importance sampling estimator for difference choices of the vari-

ance 02 = o2 when conditionally sampling &(T).

b 1/l c0=002 | 06=01]|06=02|06=03] c0=05 oc=1 oc=25
4 0.24 ~ 0.30 7.40e-1 8.67e-3 9.43e-3 7.36e-3 8.66e-3 1.21e-2 | 2.81e-2
32 | 0.16 ~ 0.18 1.65e-6 3.07e-7 2.85e-7 3.22e-7 4.05e-7 | 5.61le-7 | 1.40e-6

advantage becomes more significant. The importance sampling scheme maintains a
very mild increment of the relative errors so that it still remains to be single digit
even when the probability is as small as 10~7. Results based on different mesh sizes
in Table 2 shows a relative difference around 10%. This indicates that the spatial
resolution is fine enough to get a reasonably accurate numerically obtained efficiency
of the estimators.

In Algorithm 3.1, the alternative distribution g,(-) of the random variable £(7)
is suggested to the Gaussian N(I.,02) and the variance of this Gaussian is set to be
o, ~ (I;)~1. To justify this choice of the variance, we compare different constant
values of 0, = o and present the effect of 0 on the performance of the resulting
importance sampling scheme. The comparison is presented in Table 3. The (one-
sample) standard deviations of the resulting importance sampling scheme are for
different o values. In addition, the typical values of the reciprocal of the excursion
level I, (z € D) are also calculated for comparison. As clearly seen from the results
in the table, the optimal choice of ¢ is indeed around the reciprocal of the excursion
level, ﬁ

For a smaller correlation length R = 0.2, we test the algorithm with constant
external force f. As the correlation length of the random field is smaller, we use a
finer mesh grid (150 x 150) to resolve. The results obtained are shown in Table 4,
which further confirms the efficiency of the importance sampling scheme.

3.5. On the asymptotics of the failure probabilities. The importance sam-
pling method can be applied to efficiently calculate quantities related to the failure
event. A direct application is that we can numerically characterize the asymptotic
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TABLE 4
Two dimensions. P(max |Vu| > b). Correlation length R = 0.2. Mesh size 150 x 150. Sample
size 106, f=1.

Do std rel. err.

5| MC IS MC IS MC IS

1 3.58e-1 3.58e-1 4.80e-1 4.60e-1 1.34 1.29

2 | 3.02e2 29662 | 1.7le-2  1.67e-2 | 5.67 5.64

4 | 8.65e-4 8.6le-d | 2.94e-2 5.81e-3 | 34.0 6.75

8 | 1.20e-5 1.44e-5 | 3.46e-3  6.28¢-5 | 289 4.36
16 . 1.54e-7 - 6.73¢-7 | 2548*  4.37
32 - 1.06e-9 - 1.29¢-8 | 30715%  12.1
10° ;

[t
R=0.2
10° —— quadratic fitting
O R=0.6

- —— guadratic fittin

10k q 9
pb

10° F -
10° | .

-10 , , PP | , , Ly e a4
10

10° 10’ 10°

Fic. 4. log-log plot of pp versus b from the data in Table 2, bottom, and Table 4. Set logp, =
q(logb) and use the quadratic function for q for least square fitting. For R = 0.6, q(z) = —0.652% —
1.86x — 1.29, and for R = 0.2, q(x) = —0.5922 — 3.77z — 1.10.

behavior of the tail probability p, = P(sup,cp |Vu(z)| > b). For example, the data in
the lower part of Table 2 and in Table 4 allow us to postulate an empirical asymptotics
between p, = P(max |Vu| > b) and b. Figure 4 shows the log-log plot of p, versus
b and the result of least square fitting. The result shows that the tail distribution
satisfies

Py = ed(log b)’

where ¢ is a quadratic function. Refer to Figure 4 for the specific expression for
the examples calculated above. This quadratic dependency is consistent with our
analytical result for the one-dimensional case [19, 20].

Figure 4 also shows an interesting result on the correlation length R. This figure
and Tables 2 and 4 suggest that smaller correlation length leads to larger failure prob-
ability. This observation is consistent with the known effect for a Gaussian random
field which has higher excursion probability for smaller correlation length. However,
this result is not trivial here since here the excursion in failure event is for the random
function |Vu|, which is apparently not Gaussian.
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TABLE 5
One dimension. P(max|Vu| > b). Periodic boundary condition. R = 0.2. Nz = 400. Sample
size 4 x 108, f = 10(z — 0.5)% — 5/6.

Db std rel. err.
MC IS MC IS MC IS
3.77e-2  3.76e-2 | 1.90e-1  2.28e-1 | 5.05 6.06
2.76e-3  2.40e-3 | 5.25-2  8.80e-2 | 19.0 36.7
9.68e-5 7.17e-5 | 9.84-3 3.22-3 102 45.9
1.00e-6  1.51le-6 | 1.00e-3  1.82e-4 | 1000 121

- 1.28e-7 - 1.77e-5 | 2795% 138

N OO N~ o

—_

3.6. Numerical results under periodic boundary condition. We have
demonstrated the efficiency of the variance reduction of our importance sampling
scheme under the assumption of the Dirichlet boundary condition and the constant
external force. Here, we test our method for the periodic boundary condition and
nonhomogeneous body force. We only study a one-dimensional example where the
domain of the elliptic equation is D = [0,1]. To accommodate the periodic bound-
ary condition, we first sample the values of the periodic random field £(x) over the
finite domain [0, 1]. This is done by simply designating a periodic covariance function
Cp(x). The function C, is a period-1 extension of the original covariance function
C(z) = e~ /R where Cp(xz) = C(x) for all z € [-1/2,1/2]. The solvability of the
equation requires that fol f(x) = 0. We consider the following quadratic function
f =10(x—1/2)?-5/6 in our example. The performance of the importance sampling
scheme is shown in Table 5. The variance reduction is not as significant as the Dirich-
let condition case but is still much better than the direct Monte Carlo for large b.

4. Conclusion and discussion. We present in this work an efficient importance
sampling strategy for computing small probabilities associated with a materials failure
problem modeled by a scalar elliptic equation with random log-normal coefficient. The
change of measure used in the importance sampling is suggested by one-dimensional
analysis and further justified numerically for higher dimensions. Our numerical results
verify the superior behavior of the estimator over conventional approaches.

The asymptotic analysis of the failure probability, in particular, rigorously estab-
lishing the relation (3.2) is a very interesting open problem.

In this work, for simplicity, we have used the scalar model; however, there is no
conceptual difficulty in generalizing our method to linear elastic models, which would
be of interest for practical applications.

The efficient sampling technique for the failure event opens the door to many
interesting applications. One particularly interesting application would be the design
of materials in consideration of minimizing the failure probability. This gives rise to
interesting future directions to explore.
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