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An adaptive minimum action method is proposed for computing the most probable transition paths
between stable equilibria in metastable systems that do not necessarily have an underlying energy
function, by minimizing the action functional associated with such transition paths. This new
algorithm uses the moving mesh strategy to adaptively adjust the grid points over the time interval
of transition. Numerical examples are presented to demonstrate the efficiency of the adaptive
minimum action method. © 2008 American Institute of Physics. �DOI: 10.1063/1.2830717�

I. INTRODUCTION

The behavior of stochastically perturbed dynamical sys-
tems is dominated by rare but important transition events
between stable states. Such rare events play a major role in
chemical reactions, conformational change of biomolecules,
nucleation events, and the like.1–4 Recently their relevance
has also been realized in many new applications, such as
species competition models in ecology and evolution,5 ge-
netic toggle switch in molecular biology,6 stochastic catastro-
phe in electric, and computer networks.7,8

Theoretical understanding of such transition events and
transition paths has attracted a lot of attention for many
years. The theory of large deviations was developed for this
purpose.9 Most relevant to the discussion of this paper is the
Freidlin–Wentzell theory,10 which gives an estimate of the
probability of the paths in terms of an action functional over
the paths. One of the key conclusions of this theory is that
the most probable path is the minimizer of the action func-
tional associated with the random dynamical system, i.e., the
most probable path is the minimum action path �MAP�. For
gradient systems for which the system is characterized by an
underlying energy landscape, in the high friction limit, the
minimum action path is simply the minimum energy path
�MEP� which minimizes the energy barrier along the path.
The minimum energy path can be characterized as the het-
eroclinic orbit connecting the two given equilibria. It is easy
to show that such MEPs have to go through saddle points,
and these saddle points define the barrier of the transition.11

For nongradient systems, there is no such a clean character-
ization of the MAPs, and they may behave in a much more
complex way.10,12

From a numerical viewpoint, one difficulty in finding
such transition path is the disparity of the time scales asso-
ciated with the frequency of the transition and the time that
the transition event actually takes. This is partly reflected in

the fact that the transition path spends most of its time at the
equilibria with fast transition between the equilibria. There-
fore a key issue for computing such transition path is the
numerical parametrization. For gradient systems, the string
method13 uses the arc length parametrization to compute the
MEPs. This intrinsic parametrization is very effective, the
problem associated with the time scale separation is elimi-
nated.

For nongradient systems, the algorithm14 proposed by
E et al. is to minimize the action functional with respect to
all possible paths connecting initial and final states of the
system over a specified time interval of transition, using the
physical time as parametrization of the paths. This type of
algorithm is called the minimum action method �MAM�.
However, this original minimum action method uses a rather
inefficient numerical parametrization of the paths, the physi-
cal time. Olender and Elber15 were the first to realize that it
is better to use the arc length parametrization. For gradient
systems, they modified the energy functional by adding a
penalty term that favors equal arc length parametrization.
This strategy was adopted by the well-known nudged elastic
band method.16 These penalty-based approaches do not en-
force strictly the equal arc length parametrization. The string
method, on the other hand, is based on the philosophy that
the minimum action path is a geometric curve and therefore
one should view it as such and parametrize it using any in-
trinsic parametrization such as the arc length.13 The string
method is quite successful in that sense. However, it is
limited to gradient systems with an underlying energy func-
tion. For general nongradient systems, Heymann and
Vanden–Eijnden17 proposed to reformulate the action func-
tional in the space of geometric curves parametrized by arc
length. One can then find the minimum action path using
standard optimization techniques. Following them, we will
call their modified new action the geometric action and their
new method as the geometric minimum action method, or
“gMAM.” The efficiency of the minimum action method is
improved significantly as a consequence of this intrinsic pa-
rametrization.
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In this paper, we take a different viewpoint. We will
devise a very simple numerical strategy in which one still
uses the Wentzell–Freidlin action and hence the physical
time parameter as the variable but adaptively chooses the
mesh using a moving mesh strategy. We call this method the
adaptive minimum action method, or “aMAM.” The advan-
tage of this approach is that one does not need to reformulate
the original action functional and one can adjust the effi-
ciency using the monitor function. In particular, in the limit
as the parameter C→ +� in the monitor function �Eq. �11��
�see Sec. III�, one recovers the arc length parametrization.

This paper is organized as follows. In the next section,
we give a brief review of the Freidlin–Wentzell theory and
the original minimum action method.14 Then we present the
application of the moving mesh method to the minimum ac-
tion method and introduce the adaptive minimum action
method in Sec. III. Numerical results from three examples
are presented for discussions in Sec. IV. Some conclusions
are drawn in the last section. We focus on the case when the
transition time interval is finite, leaving the case of infinite
transition time interval to the appendix.

II. THE LEAST ACTION PRINCIPLE
AND THE MINIMUM ACTION METHOD

Consider the following stochastic differential equation in
Rd with a small positive parameter �:

dXt = b�Xt�dt + ��dWt, �1�

where Wt is a Wiener process on Rd. The Wentzell–Freidlin
theory10 gives an estimate of the probability distribution of
the solutions X of Eq. �1� over any fixed time interval
�T1 ,T2�: For any small parameter � and a smooth path � on
�T1 ,T2�,

P���X,�� � �� � exp	−
1

�
ST1,T2

���
 , �2�

where � is the distance in the space of continuous functions.
The action functional S at a given path ��t� �t� �T1 ,T2�� is
given by

ST1,T2
��� =

1

2
�

T1

T2

��̇�t� − b���t���2dt . �3�

Given two states a1 and a2, the most probable path that
connects a1 and a2 over the time interval �T1 ,T2� is the mini-
mizer of ST1,T2

��� with the constraint that ��T1�=a1 and
��T2�=a2. Such a path is called a minimum action path or
MAP. In practice, it is of particular interest to study such
MAPs for the situation when a1 and a2 are stable stationary
points of the dynamical system without noise. To find the
average transition time from a1 to a2, we should in addition
minimize over T1 and T2. This leads to the study of MAP
over the infinite time interval,

S��� =
1

2
�

−�

+�

��̇�t� − b���t���2dt , �4�

subject to ��−��=a1 and ��+��=a2.

It is well known11 that if the system �Eq. �1�� happens to
be a gradient system and if a1 and a2 are two local minima of
the underlying potential function V�x�, then the MAP � is
also the MEP.

Efficient numerical methods such as the nudged elastic
band method16 and the zero-temperature string method11,13,18

have been developed for finding the MEPs. The most recent
development of the string method18 presents a new version
of the string method that is not only simpler and easier to
implement but also circumvents the need of the projection of
the potential force.

For general nongradient systems, E et al. proposed the
minimum action method.14 To illustrate the MAM, we con-
sider the following example for which the MAP can be found
explicitly:18

 dx = − �xV�x,y�dt + ��dWt
x

dy = − �yV�x,y�dt + ��dWt
y ,
� �5�

with the potential

V�x,y� = �1 − x2 − y2�2 + y2/�x2 + y2� . �6�

The contour lines of V are shown in the Fig. 1. The potential
V has two minima at a1= �−1,0� and a2= �1,0�, respectively.
The saddle point in the upper half-plane is c= �0,1�. The
exact value of the corresponding minimum action functional
is 2� �V�c�−V�a1��=2. The MAPs connecting the two
minima are the upper and lower branches of the unit circle:
x2+y2=1. For convenience we will call Eq. �5� the “semi-
circle” example.

It is useful to recall the original MAM.14 It starts from
the action functional �Eq. �3��. Given a finite interval
�T1 ,T2�, we divide it into m subintervals to form a mesh,

T1 = t0 � t1 � ¯ � tm = T1.

A path ��t� is approximated by its values, �n, at t= tn for n
=0, . . . ,m. The action S of this path is approximated accord-
ing to the midpoint rule,

FIG. 1. �Color� The exact MAP in the upper half-plane �thicker solid curve�
and initial path �dash-dotted curve� used in the minimum action method.
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St0,. . .,tm
��1, . . . ,�m−1�

=
1

2�
n=1

m ��n − �n−1

	tn
− b��n−1/2��2

	tn, �7�

where 	tn= tn− tn−1 and �n−1/2= ��n+�n−1� /2. The two end-
points �0 and �m are known to be a1 and a2, respectively. In
the original MAM, the mesh �tn� does not change and thus
the expression of the objective function �Eq. �7�� does not
change either.

Steepest descent or other optimization methods can be
applied to minimize the objective function �Eq. �7��. The
optimization algorithm used in Ref. 14 is the limited memory
BFGS method �L-BFGS�,19 one of the most successful quasi-
Newton methods. It requires the evaluation of the gradient of
the objective function and achieves superlinear convergence.
L-BFGS stores the M most recent updates �M levels of
memory� of displacements and values of the objective func-
tion to construct an approximation of the Hessian. L-BFGS
is used in this paper with M =5.

To get a feeling about the performance of MAM, we
calculated the MAPs of Eq. �5� using a uniform mesh with
100 points over two time intervals �−15,15� and �−0.5,0.5�.
The results are presented in Fig. 2. The first observation is
that the MAP calculated over the time interval �−0.5,0.5� is
far away from the exact MAP. The MAP calculated over the
time interval �−15,15� is much closer to the exact MAP. This
shows the importance of choosing a large enough time inter-
val in order to capture the correct optimal transition path.
Another notable observation in Fig. 2 is that the path spends
most of its time waiting in the vicinity of the three fixed
points; while during two small time subintervals around
t= 
8, it hops rapidly from �−1,0� to �0,1� and then from
�0,1� to �1,0�. The geometric shape of the MAP is determined
mainly by the behavior over these two small time intervals,
where, unfortunately, very few mesh points are allocated.
The situation is even worse when the time interval �T1 ,T2�
becomes larger. To see this, we take �T1 ,T2�= �−T /2,T /2�
for different values of T and plot the corresponding MAPs in
terms of the scaled time t /T in Fig. 3. We find that the larger
T, the less portion of the time is spent for the transition.

III. THE ADAPTIVE MINIMUM ACTION METHOD

To resolve the fast yet very important time scale in the
transition, we use the moving mesh technique20 to adaptively
allocate the grid points. By now, the moving mesh technique
is fairly well known and quite widely used.21–23 Compared
with adaptive mesh refinement,24–26 the moving mesh tech-
nique has the advantage that the mesh is regular in the com-
putational domain and smooth in the physical domain. For
this reason, it should have better accuracy. The adaptive
minimum action method is based on this idea. The goal is
still to minimize the action functional �Eq. �3��,

ST1,T2
��� =

1

2
�

T1

T2

��̇�t� − b���t���2dt ,

but with a mesh that is changing. We seek a mapping from
the physical domain t� �T1 ,T2� to the computational domain

�� �0,1� such that in the new variable �, the large variation
of the path � at fast transitions between long-lived states is
reduced and the uniform mesh can be used in the variable �.
The commonly used mesh generation techniques are based
on a variational approach. Winslow23 suggested a functional
of the form

E��� = �
T1

T2 1

w
	d�

dt

2

dt , �8�

whose Euler–Lagrange equation is

� d

dt
	 1

w�t�
d�

dt

 = 0, t � �T1,T2�

��T1� = 0, ��T2� = 1.
� �9�

The coefficient w�t� is the monitor function which controls
the distribution of image points along the path. To see how
Winslow’s equation works, we integrate Eq. �9� and get

FIG. 2. The calculated MAPs with the uniform mesh �m=100� over the time
interval �T1 ,T2�= �−15,15� �marked with “�”� and �T1 ,T2�= �−0.5,0.5�
�solid line�. The top panel is the geometric curve of the calculated MAP �the
exact MAP is also shown as the dotted curve�. The bottom two panels show
x and y components of ��t� as a function of t. Almost 85% of points are
wasted near three fixed points: �
1,0� and �0,1�. Only about 15% of them
contribute to the geometric shape of MAP.
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1

w�t�
d�

dt
= C0

or

w�t�
dt

d�
=

1

C0
,

where the constant C0= ��T1

T2w�t�dt�−1. We integrate the above
again from �n−1 to �n and get

	�n�
T1

T2

w�t�dt = �
tn−1

tn

w�t�dt � w�tn−1/2�	tn. �10�

In computations, a uniform mesh in � is used, thus 	�n

�1 /m. Equation �10� indicates that the node distance 	tn is
smaller in the region where w�t� is larger. As a result, w can

control the allocation of the mesh points for the time
variable t.

The key ingredient in the moving mesh method is a good
monitor function w�t� in Eq. �9�. Since the disparity of time
scales leads to large variation of ��t� in small effective tran-
sition time regions �see Fig. 2�, the time derivative of the
path ��t� is a good candidate of the monitor function. How-
ever, this function is a bit singular. Therefore, we use the
following monitor function:

w�t� = �1 + C��t�2, �11�

where C is a positive constant which controls the maximum
time steps �Eq. �10� implies that the maximum time step is
	��T1

T2w�t�dt�. When C goes to infinity, w�t����t�, thus the
new mesh essentially generates the equal arc length param-

FIG. 4. The MAPs computed with different constants C in the monitor function �Eq. �11��. C=8 in the left panel, and C=8000 in the right panel. For larger
C, the points along the path tend to be evenly distributed.

FIG. 3. The MAPs in terms of the
scaled time t /T for different values of
the truncated transition time T: 2 �dot-
ted�, 10 �dash-dotted�, 30 �dashed�,
and 100 �solid�.
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etrization of the path. Figure 4 presents numerical results for
C=8 and C=8000 when the adaptive minimum action
method is applied to the semicircle example �Eq. �5��.

The mesh equation �Eq. �9�� is solved together with an
optimization algorithm. We summarize the complete proce-
dure of the aMAM over the finite time interval �T1 ,T2� in
Algorithm 1. In this algorithm, the path is characterized by
the mesh �tn� and the corresponding image points ��n� in the
configuration space, n=0, . . . ,m where m is the total number
of grid points.
Algorithm 1 �“aMAM”�
step 0. Set k=0. Set the uniform mesh ��n�
over the interval �0, 1�.

Choose an initial (uniform) mesh �tn��k�

over �T1 ,T2� and the initial path ��n��k,0�.
Step 1. do i=1, ¯ ,R

��n��k,i�= ��n��k,i−1�+i−1
�k� pi−1

�k�

enddo
where  and p are, respectively, the
search steps and directions in the
optimization
algorithm for minimizing Eq. �7�.

Step 2. Calculate the discrete monitor function
�wn��k� by Eq. �11� using
��n��k,R�. Compute the
quantity

Q=
maxn wn

�k�	tn

minn wn
�k�	tnif Q�Q�

��n��k,0�= ��n��k,R�; go to step 1.
else

go to step 3.
endif

Step 3. Solve the mesh equation �Eq. �9�� us-
ing �wn��k� on the mesh �tn��k� to obtain ��n��k�.
Interpolate the mapping between ��n��k� and
�tn��k� to get the new mesh �tn��k+1� corre-
sponding to ��n�. Interpolate the path
���n��k,R� , �tn��k�� on the new mesh �tn��k+1� to
get ��n��k+1,0�. k=k+1; go to step 1.

In this algorithm, Step 1 is the traditional optimization
program. The parameter R is the iteration number. R should
be larger than M for M-level L-BFGS solver since all levels
of memory have to be discarded after each mesh adjustment.
Step 2 is to check the mesh quality by looking at Q. Since
��n� is uniform, Q should be close to 1 by Eq. �10� if the grid
points in the time variable are allocated in the desired way.
The threshold Q� is typically chosen to be 2–5 in practice.
Step 3 is the mesh moving procedure. After the mesh equa-
tion is solved, two interpolations are needed. The first one
must conserve the monotonicity of the mapping between �
and t. We use the piecewise linear interpolation for this pur-
pose. The second interpolation of the path on the new mesh
requires sufficient high order of accuracy to match the accu-
racy of the optimization algorithm. We use the cubic spline
interpolation in this work.

The moving mesh strategy can be extended to deal with
the infinite time interval where T1→−� and T2→ +�. One

strategy is to introduce a mapping between the infinite time
interval and the region �0,1� of a new variable s such that the
action functional is well defined in terms of new variable s.
See Appendix for details.

IV. NUMERICAL EXAMPLES

We demonstrate the adaptive minimum action method
using three examples. The first one is the semicircle example
�Eq. �5��, and the second is a gradient system with Mueller
potential27 whose MAP has more than two stable equilibria.
The last is a simple nongradient system. We use five level
limited memory BFGS as the optimization algorithm with
the preconditioner �−�tt�−1.

A. Semicircle example

The initial path is located in the upper half-plane as
shown in Fig. 1. The termination criteria in L-BFGS is that
the relative error between two successively calculated ac-
tions is less than 10−4�m−2. The error of calculated MAP is
defined to be

e�m� = max
n

��xn
2 + yn

2�1/2 − 1� .

The monitor function is w�t�= �1+8000� ��t�2�1/2. Three fi-
nite time intervals �−T /2,T /2� with T=1,2 ,10 are chosen
and the number of points m=50. The numerical results of the
MAPs are shown in Fig. 5. The comparison between the
original minimum action method and the adaptive minimum
action is illustrated in Fig. 6 for different time intervals.

Figure 5 confirms that the adaptive minimum action
method can distribute grid points much more evenly along
the MAP than the original minimum action method. The ef-
fect of the monitor function has been discussed in Fig. 4,
Sec. III. As far as the accuracy is concerned, Fig. 6 shows
that the adaptive minimum method lowers the errors both in
the action and in the MAP, especially for large time intervals.
When the time interval T is reasonably small �e.g., T�10 in
this case�, the uniform time step T /m is small and the mov-
ing mesh strategy does not take much effect; the main part of
the error is due to the finite time interval truncation. For
example, in Fig. 5, the numerical MAP with T=1 deviates a
lot from the correct MAP, and the calculated minimal action
with T=1 is 3.92, while the exact value is 2.00. When T
increase to 10, the error in the action and the path in the
adaptive minimum action method decrease to the orders of
10−3 and 10−4, respectively, even though the number of grid
points m=50 does not change. To illustrate how the finite
time interval truncation affects the numerical results, we use
different T from 2 to 120 for a very large m=5000 in the
adaptive minimum action method. The error is shown in Fig.
7. In the fast decay part of the plotted figure �T�20 roughly
saying�, the error is dominated by the finite size effect of the
time interval. When T is larger than 10, the error due to finite
time interval truncation is smaller compared with the errors
in Fig. 6 and the error due to time step discretization begins
to be the main source of the total error. Indeed, the adaptive
minimum action method decreases this type of error due to
discrete time step by properly adjusting time mesh. Thus,
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when T continues to increase, the adaptive minimum action
can keep the error nearly unchanged, compared with the
original minimum action method �see the very slight increas-
ing part of the solid and broken lines marked with “�” in
Fig. 6�.

The numerical scheme �Eq. �7�� and the L-BFGS give a
convergence rate O�	t2�, i.e., O�m−2�, for a fixed time inter-
val. It can be demonstrated numerically that the moving
mesh strategy in the adaptive minimum action method does
not lower the order of accuracy. We choose two time inter-
vals �T1 ,T2�= �−5,5� and �T1 ,T2�= �−50,50� to study the rate

FIG. 5. Numerical results of Eq. �5� calculated by the
adaptive minimum action method in three finite time
intervals with different values of T �the number of dis-
crete points is m=50�. Top panel: the initial path �dash-
dotted line�, the exact path �thick solid line� and the
calculated MAPs with T=10 ���, 2 ���, and 1 �*�.
Bottom two panels: the x and y components of the cal-
culated MAP with T=10 in terms of the time t.

FIG. 6. The errors of the calculated actions and MAPs of Eq. �5� with
different transition time intervals �−T /2,T /2� �dotted line: the error of ac-
tion, solid line: the error of MAP� for fixed number of points m=200. The
errors of the original minimum action method �uniform mesh� are marked
with �, and the errors of moving mesh method are marked with *.

FIG. 7. The error for finite transition time �−T /2,T /2� for different values
of T from 2 to 120. m=5000.
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of convergence as m increases. See Fig. 8. The orders of the
original minimum action method are 1.92 and 2.05 for the
action and the MAP, respectively; the orders of the moving
mesh method are 2.08 and 2.03 for the action and the MAP,
respectively �based on the data from �T1 ,T2�= �−50,50��.

If we allow the finite time interval �T1 ,T2�
= �−�m /2,�m /2� to depend on the number of points, m, in
order to diminish the error of finite time truncation, the con-
vergence rate of the original minimum action method be-
comes O�	t2�=O�1 /m� since the uniform time step size 	t
=�m /m=1 /�m. While in the adaptive minimum action
method, this convergence rate can be improved to nearly
O�1 /m2� because in the dense region of the time mesh which
mainly decides the accuracy, the time step size is approxi-
mately of the order of 1 /m, thanks to the moving mesh strat-
egy. The numerical result in Fig. 9 confirms this.

To quantitatively compare the computational efficiency
of the uniform mesh method and the moving mesh method,
we let �T1 ,T2�= �−15,15� and compute the errors of the

MAP and the action for different m and the necessary num-
ber of evaluations of the objective function and its gradient,
nev�m�, in the iterations of the optimization algorithm. Since
each evaluation of the objective function �Eq. �7�� and its
gradient requires summation of m terms, we use m�nev�m�
as the measurement of the computational cost for the original
minimum action method, and m� �nev�m�+K� for the adap-
tive minimum action method, where K is the number of mesh
adjustments. Then we plot the costs versus the error in Fig.
10. It is clear that the adaptive minimum action method out-
performs the original minimum action method.

FIG. 8. The error of the action �dotted line� and MAP �solid line� for
�T1 ,T2�= �−5,5� �top� and �T1 ,T2�= �−50,50� �bottom�. The results marked
with � are from the original minimum action method and the results marked
with * are from the adaptive minimum action method.

FIG. 9. The error of the action ��� and MAP ��� for �T1 ,T2�
= �−�m /2,�m /2�. The dotted lines �the slopes are 1.02 and 0.99, respec-
tively� are results from the original minimum action method and the solid
lines �the slopes are 1.97 and 1.77, respectively� are from the adaptive
minimum action method.

FIG. 10. The computational cost of the uniform mesh method ��, fitted by
the solid line� and the moving mesh method ��, fitted the dotted line� in
order to reach the prescribed precisions �in the horizontal axis�.
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B. Case 2: Mueller potential system

The Mueller potential is of the form

V�x,y� = �
i=1

4

Di exp�Ai�x − xi��
2 + Bi�x − xi���y − yi��

+ Ci�y − yi��
2� , �12�

where the parameters are �D= �D1 ,D2 ,D3 ,D4�, etc.�:
D= �−2,−1,−1.7,0.15�, A= �−1,−1,−6.5,0.7�, B
= �0,0 ,11,0.6�, C= �−10,−10,−6.5,0.7�, x�
= �1,0 ,−0.5,−1�, and y�= �0,0.5,1.5,1�.

Figure 11 shows the MAPs obtained using the adaptive
minimum action method and the original minimum action
method with m=50. The original minimum action method
cannot resolve the exit path from the first equilibrium with
50 points. The moving mesh method not only produces the
good approximation of the exact MAP with 50 points, but

also parametrizes the path in nearly equal arc length distri-
bution: see Fig. 12 for the arc length parametrization of the
points along the numerical MAP.

C. A simple nongradient system

We consider the following simple model:

 ẋ = x�3 − x − 2y� + ��Ẇ1

ẏ = y�3 − y − 2x� + ��Ẇ2.
� �13�

The stable steady states are �0,3� and �3,0� and the saddle
point is �1,1�. The separatrix is the line y=x which is shown
in Fig. 13 in solid lines with the heteroclinic orbits connect-
ing the two equilibria. The calculated MAP from �0,3� to
�3,0� is presented as circles in Fig. 13 using the adaptive
minimum action method over the infinite time interval.
When m=100 is used, the actions from the original and
adaptive minimum action methods for different T are shown
in Fig. 14.

V. CONCLUDING REMARKS

In this paper, we presented an adaptive minimum action
method by adopting the moving mesh strategy to the original
minimum action method. Compared with the original mini-
mum action method, the adaptive minimum action method
distributes the grid points more evenly along the geometric
path. Thus it requires much few grid points to represent the
minimum action path. Compared with the geometric mini-
mum action method of Heymann and Vanden–Eijnden, the
adaptive minimum action method has the feature that it
works with the original action functional, but its numerical
representation is very close to one that uses the arclength
parametrization.

FIG. 12. The arc length �normalized� ln as a function of the nth grid point
for C=4000 in the monitor function �Eq. �11��. ln is defined to be �i=1

n ��i

−�i−1� /�i=1
m ��i−�i−1� for n=1, . . . ,m. FIG. 13. Numerical MAP �circles� with m=50.

FIG. 11. �Color� Calculated MAPs �� from moving mesh, � from uniform
mesh� with m=50 and T=12. The contour lines of the Mueller potential
�Eq. �12�� are shown and the three solid dots are its stable equilibria.

104111-8 Zhou, Ren, and E J. Chem. Phys. 128, 104111 �2008�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  144.214.101.1 On: Thu, 20 Oct 2016

10:16:20



ACKNOWLEDGMENTS

We are grateful for valuable discussion with Tiejun Li.
The work of W.E and X.Z. is supported in part by ONR
Grant No. N00014-01-1-0674. The work of W.R. is partially
supported by NSF Grant No. DMS-0604382.

APPENDIX: THE MINIMUM ACTION METHOD
OVER THE INFINITE TIME INTERVAL

We look at the action functional in time �−� , +��,

S��� =
1

2
�

−�

+�

��̇ − b����2dt , �A1�

subject to the constraints ��−��=a1 and ��+��=a2. Our
strategy is to change the physical time t into a new variable
s by constructing a one-to-one mapping between �−� , +��
and �0,1�, and then expressing Eq. �A1� in terms of s. Such a
mapping can be defined to be a solution of the following
ODE:

ds

dt
= g�s�, t � �− �, + �� �A2�

where g is a non-negative function defined over �0,1� with
two roots 0 and 1.

For simplicity, we take g�s�=�s�1−s�, where � is a posi-
tive constant. Then,

s�t� =
1

1 + e−�t

or

t�s� =
1

�
ln

s

1 − s
. �A3�

Thus, the action functional �Eq. �A1�� can be rewritten in s,

S��� =
1

2
�

0

1

��s�2g�s� − 2�s · b��� +
�b����2

g�s�
ds , �A4�

where �s is the derivative of � with respect to s. The con-
straints for the two endpoints become ��s=0�=a1 and ��s
=1�=a2.

The parameter � should be carefully chosen to guarantee
that each term in the integrand of Eq. �A4� goes to zero when
s→0 or s→1. The analysis of the asymptotic behavior of the
MAP � is necessary near fixed points. An ordinary differen-
tial equation can be derived to characterize the MAP. For Eq.
�A1�, the corresponding Euler–Lagrange equation is

�tt − J����t = − JT�����t − b���� .

Define p�t�=�t�t�−b���t��, then the above is transformed to
a Hamiltonian system with Wentzell–Freidlin Hamiltonian
H�� , p�= 1

2 �p�2+b��� · p �see Ref. 10�,

 �̇ = b��� + p

ṗ = − J���Tp ,
� �A5�

where the Jacobian J is Jij =�bi /�xj. The asymptotic behavior
of the MAP near the initial and final stable equilibria is gov-
erned by the linearization of Eq. �A5� at these two states. Let
�i

�1� be the eigenvalues of the initial stable equilibrium a1 in
the original deterministic system �̇=b��� and �i

�2� be the
eigenvalues of the final stable equilibrium a2, for i
=1, . . . ,d. It is easy to check that the linearization of �A5� at
fixed points �a1 ,0� and �a2 ,0� has the eigenvalues 
�i

�1� and

�i

�2�, respectively. The path escaping from a1 lies on the
unstable manifold of Eq. �A5� with nonzero p; the path at-
tracted to a2 lies in the stable manifold of �a2 ,0� of Eq. �A5�
with zero p. Therefore, the linearized dynamics of the MAP
� near a1 and a2 is

� � e−�i
�1�t, t → − �

� � e�i
�2�t, t → + � .

� �A6�

So, by the change of the variable �Eq. �A3��, we can have

�s =
�t

g�s�
� −

�i
�1�e−�i

�1�t

�s�1 − s�

= −
�i

�1��s/�1 − s����i
�1��/�

�s�1 − s�
, s → 0,

FIG. 14. Numerical results for the actions for m=100. The results marked
with � are from original minimum action method and the results marked
with � are from the adaptive minimum action method. Both methods are
used over the finite time interval �−T /2,T /2�. The flat dotted line, from the
adaptive minimum action method over the infinite interval �see Appendix,
�=0.5�, is plotted for comparison. �The value of 1.5768 is the numerical
minimal action when m=3000 is used; this value is used as a benchmark.�
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and

�s =
�t

g�s�
�

�i
�2�e�i

�2�t

�s�1 − s�

=
�i

�2���1 − s�/s���i
�2��/�

�s�1 − s�
, s → 1.

These analyses show that � should be less than �min

=min
i

���i
�1�� , ��i

�2��� so that �s→0 as s→0 and 1 each term of

the integrand of Eq. �A4� goes to zero at s=0,1 and thus Eq.
�A4� is well defined in terms of new variable s� �0,1�.

After choosing the parameter �, we can extend the nu-
merical scheme and moving mesh method in Sec. II B to Eq.
�A4� by reformulating the action functional in s. Given a
mesh of �sn� in �0,1�, 0=s0�s1� ¯ �sm−1�sm=1, the dis-
crete sum of Eq. �A4� is

Ss0,. . .,sm
��1, . . . ,�m−1� =

1

2�
n=1

m ��n − �n−1�2

	sn
g�sn−1/2�

+
1

2�
n=1

m

��n − �n−1� · b��n−1/2�

+
1

2�
n=1

m �b��n−1/2��2

g�sn−1/2�
	tn, �A7�

where 	sn=sn−sn−1 and �n−1/2= ��n+�n−1� /2. The two end-
points �0 and �m are known.

The moving mesh strategy is used for the variable s be-
cause the change of the variable �Eq. �A3�� does not help
reducing the singularity in s due to the time scale separa-
tions. As before, the mesh equation for moving the mesh is

d

ds
	 1

w�s�
d�

ds

 = 0, s � �0,1� , �A8�

where w�s�=�1+C��s�2.
In Fig. 15, we present the numerical results for the

“semi-circle” example for three choices of � and give errors
for different m, compared with the results for the adaptive
minimum action method over the finite �but sufficient large�
time interval �−15,15�.
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