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Abstract

This report purports to study transition problem in stochastic dynamical

systems under small noise (rare event), mainly by using transition path the-

ory (TPT). TPT is a recently developed mathematical method to describe the

transition mechanics in stochastic dynamical systems and it has shown to be

an effective tool with wide application in biology, chemical physics and etc: dy-

namical bottleneck, the region that limits the transition rate, could be detected

and studied. Representative dominant transition path, a concept built under the

TPT, will be briefly introduced. In addition, most probable exit path will also be

discussed as comparison, which is proposed and defined under the framework of

large deviation principle (LDP) and which can also be understood by introducing

Lagrange multiplier in stochastic mapping. What is more, numerical results on

classical models by using TPT will be presented with illustration of how TPT

could be applied to shed light on transition mechanics.

Keywords: Stochastic dynamical system, transition path theory, most probable exit

path, representative dominant transition path, diffusion process, Markov chain.



1 Introduction

1.1 Background of transition problem

Transition (reaction) rate problem has always been challenging and important in many

fields such as chemical physics, biology and engineering. Its main task is to calculate

the transition rate for some complex systems and perhaps to understand the mechanics

of chemical reactions, nucleation and et al.

It dated back to Hoff and Arrhenius’s description on escape rate

k = ν exp

(
− 1

kBT
E

)
= ν exp (−βE) (1.1)

where ν is the prefactor, kB is the Boltzmann constant, T is the temperature and E

is the energy barrier, β = 1
kBT

[6]. At low temperature, the transition rate decays

exponentially. The mean transition time

t̄ ∝ 1

k
∝ exp

(
1

kBT
E

)
(1.2)

is exponentially increasing when T → 0. The long separation of time between metastable

states makes the observation of a complete transition almost impossible in real physi-

cal systems and makes the cost of direct numerical simulation (DNS) too expensive to

perform. That is exactly where the term rare event comes from.

Many theories and methods have been developed, intending to compute the transition

rate and to describe the transition mechanics, such as transition state theory (TST),

transition path sampling (TPS). In the framework of large deviation, Freidlin-Wentzell

theory has worked out the most probable exit path (MPEP) in diffusion process, which

minimizes the action functional, in the sense of infinitesimally small noise; additionally,

it has shown the exponentially increasing mean first exit time from the asymptotically

stable position to the boundary of its basin of attraction [5, 12]. Such optimal escape
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path could be computed by string method, if the drift term in the diffusion process is

a conservative vector field [3]. MPEP has also been discussed for both continuous-time

stochastic dynamical systems and random maps in [1].

Another important recently developed theory to deal with transition rate is transition

path theory (TPT). Transition path theory focuses on studying mechanics of stochastic

dynamical systems, such as diffusion process [4, 11], Markov jump processes [8]. Its

main aim is to offer statistical description of transition in stochastic dynamical systems.

Its application varies from protein folding problem [10], complex network [2], data

analysis [8] and etc. Some examples in explaining applications of transition path theory

can be found in, e.g. [9].

1.2 Transition problems in dynamical systems

For a given ergodic stochastic dynamical system {Xt}t∈T defined on probability space

(Ω,F ,P) and with state space S, where T is the parameter set for time (e.g. discrete-

time Markov chain (DTMC) has T = Z, Markov jump process (MJP) T = R and

diffusion process T = R), we prescribe two disjoint subsets A and B of state space

S (A,B ⊂ S, A ∩ B 6= ∅). Normally, set A is chosen to be the position or region

with certain metastability and set B the position or region which is far away from set

A. A could be regarded as the normal state and B the failure state. In the context

of chemical reaction, A could represent the reactant state and B the product state.

We wonder how the system transits from normal state to failure state, or say how the

chemical reaction takes place. To make this problem more realistic, assume A∪B ( S,

which guarantees the existence of transient states in S.

The definition of reactive trajectory is given below:

Definition 1. 1. If T = R, a function ϕ defined on a time interval [a, b] is called a

reactive trajectory of length b − a iff ϕ(a) ∈ A, ϕ(b) ∈ B, and ϕ(t) /∈ A ∪ B for

all a < t < b.
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2. If T = Z, a function ϕ defined on a set of consecutive integers {n, n+1, · · · , n+l}

is called a reactive trajectory of length l iff ϕ(n) ∈ A, ϕ(n+l) ∈ B, and ϕ(n+i) /∈

A ∪B for any integer 0 < i < l.

T might be chosen as other sets in theory, but those cases will not be considered in

this report.

We ask: in the long run,

1. what is the transition rate kAB for transition from set A to set B?

2. which position in set A is the most probable exit point in the transition and

which position in set B is the most probable entering point?

3. how can we get more insight into the transition mechanics?

4. among all reactive trajectories, which one is the most probable one? Or, which

path dominates in the transition?

Let S be the space of all possible reactive trajectories. Consider the case with T = Z

and S = N (e.g. DTMC on countable state space). If there is a measure P defined on

S which gives the time average of occurrence of a set of paths in S , that is, for a set

of paths C ⊂ S ,

P(C) := lim
n→∞

# of complete paths in C within time [−n, n] ∩ T
2n+ 1

, (1.3)

then question 1 is to calculate P(S ). Question 2 is to calculate

arg max
x∈A

Eϕ[1x(ϕ(0))] (1.4)

arg max
y∈B

Eϕ[1y(ϕ(length of ϕ))] (1.5)

where 1x(·) is the indicator function (here and below), ϕ(0) means the starting position

of path ϕ, ϕ(length of ϕ) means the ending point of path ϕ. Question 4 is to optimize
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ϕ on space S ,

max
ϕ
P(ϕ). (1.6)

Question 3 might be more abstract, philosophical and problem-dependent; it depends

on how we interpret the word mechanics.

In general, the above illustration may not be well-defined mathematically; it just gives

the framework and some idea of what are the problems we are dealing with; from my

understanding, it could be adapted to many specific problems with some modification.

In addition, the above definition seems to be straightforward, but it may not be viable

in practice; later on, it will be explained how to calculate these statistical properties

in questions 1-3 by using transition path theory.

In this report, I will review the transition path theory for both diffusion process and

Markov chains in section 2, together with representative dominant transition path,

firstly proposed in [8]. In section 3, it will be demonstrated how transition path theory

works by utilizing some classical models, some of which have been discussed and studied

in [9]. In section 4, a short review on MPEP and its comparison with TPT will be

provided. In the last section, I will summarize the transition problem and, in particular,

transition path theory.
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2 Transition Path Theory

2.1 Preliminary definitions

In this section, we will review the transition path theory (TPT) being applied into

different stochastic dynamical systems; these different versions are basically following

the same idea with slight modification. In the following, some shared concepts are

introduced in a general form to avoid duplicative definition.

Definition 2. Definition of hitting time to set A ∪B:

1. If T = R, hitting times are defined as follow,

tAB,+(t) := inf{s ≥ t : Xs ∈ A ∪B},

tAB,−(t) := sup{s ≤ t : Xs ∈ A ∪B}.

2. If T = Z, hitting times are defined as follow,

tAB,+(n) := inf{m ≥ n : Xm ∈ A ∪B},

tAB,−(n) := sup{m ≤ n : Xm ∈ A ∪B}.

Definition 3. Forward committor function q+(x) : S → [0, 1] is defined as the proba-

bility of reaching set B before hitting set A,

q+(x) := Px[XtAB,+(0) ∈ B].

Backward committor function q−(x) : S → [0, 1] is defined as the probability of coming

from set A instead of set B,

q−(x) := Px[XtAB,−(0) ∈ A].

It could be deduced immediately from definition that q+(x) = 1 if x ∈ B and q+(x) = 0
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if x ∈ A; q−(x) = 0 if x ∈ B and q−(x) = 1 if x ∈ A. For the time-reversible process,

that is to say, we cannot distinguish the forward process and the backward process

based on the statistics that we can obtain,

q+(x) = Px[XtAB,+(0) ∈ B]

= 1− Px[XtAB,+(0) ∈ A]

= 1− Px[XtAB,−(0) ∈ A]

= 1− q−(x).

(2.1)

This is, however, not true in general.

Definition 4. Forward operator L is defined as

(Lf)(x) := lim
s↓0

Ex[f(Xs)]− f(x)

s

for function f . In the discrete-time case, L is defined simply as

L := P − I,

where P is the transition matrix and I is the identity matrix. Backward operator L−

is defined likewise but for the backward process {X−t}t∈T .

2.2 Diffusion process

In this subsection, the following stochastic differential equation is being considered

Ẋt = b(Xt) +
√

2D(Xt)dWt (2.2)

where Xt ∈ Rd, drift term b : Rd → Rd, tensor D : Rd → Rd × Rd, Wt is the

Weiner process (Brownian motion). Define a :=
√
D
√
D
T

, which is a symmetric and

non-negative definite tensor. In the below, it will review transition path theory and
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respond to questions 1 and 2. The main references in this subsection are [11, 4]. A

and B are closed sets in this case.

By transition path theory, many statistical properties could be calculated, such as two

committor functions, q+(x) and q−(x); the density function to describe the frequency

of position x being visited in reactive trajectory, denoted by mR(x); probability density

of position x in S\(A∪B) conditional on it being in the reactive trajectory, denoted by

mAB(x); probability current J(x); probability flux JAB(x); transition rate kAB; mean

transition time t̄AB and so on.

It should be reminded in advance that in diffusion process, infinitesimal generator for

forward process is

Lf(x) = b(x) · ∇f(x) + a(x) : ∇∇f(x), (2.3)

while generator for time-reversed process is

L−f(x) = −b(x) · ∇f(x) +
2

m(x)
div(a(x)m(x)) · ∇f(x) + a(x) : ∇∇f(x). (2.4)

2.2.1 Collection of reactive trajectories

For a path ω in the probability space, we can find a sequence of time (tAn , t
B
n )n∈Z such

that Xt(ω) is a reactive trajectory iff t ∈ [tAn , t
B
n ]. That is, we extract all the reactive

trajectories from the sample path ω. Then define the collection of reactive trajectories

as

R := ∪n∈Z(tAn , t
B
n ). (2.5)

Define

1R(t) := 1A(XtAB,−(t))1B(XtAB,+(t)),

which is an indicator function to specify whether the system is in the progress of

transition from set A to B at time t.
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2.2.2 Probability density at equilibrium and probability current

We know that such system is ergodic, which means it has a unique invariant measure

µ, whose probability density function is denoted by m(x).

Let p(x, t) be the probability density at position x and time t. From Fokker-planck

equation, we have

∂

∂t
p(x, t) = −∇ · (b(x)p(x, t)− div(a(x)p(x, t))). (2.6)

We might as well introduce

J(x, t) := b(x)p(x, t)− div(a(x)p(x, t)), (2.7)

which exactly depicts the probability flux at time t.

When the system is at equilibrium, ∂
∂t
m(x) = 0, which gives

0 = −∇ · (b(x)m(x)− div(a(x)m(x))) (2.8)

and

J(x) = b(x)m(x)− div(a(x)m(x)). (2.9)

When the system is time-reversible, the term J(x) will vanish, that is, J(x) = 0.

2.2.3 Committor functions

Committor functions satisfy the backward Kolmogorov equation, which means,

 Lq+(x) = 0

q+(x) |x∈A= 0 q+(x) |x∈B= 1
(2.10)
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and  L−q−(x) = 0

q−(x) |x∈A= 1 q−(x) |x∈B= 0
(2.11)

Equation (2.1) is derived based on the understanding and intuition in physics, while

equations (2.10) and (2.11) could offer more strict proof of equation (2.1): in time-

reversible system, L = L−, so q+ and q− satisfy the same equation except with different

boundary conditions; therefore, 1 − q+ satisfies exactly the same equation as to q−,

which leads into the relation q+ = 1− q−.

2.2.4 Probability density functions

The density function mR(x) is the density for measure µR which is defined on S\(A∪B)

and satisfies

µR(C) = lim
T→∞

1

2T

∫ T

−T
1C(Xt)1R(t) dt. (2.12)

It should be remarked that ZAB := µR(S \ (A ∪ B)) < 1, since it only includes the

contribution from the reactive trajectories. By ergodicity and strong Markov property,

we can deduce that

µR(C) =

∫
C

q+(x)q−(x)m(x) dx,

for any measurable set C ⊂ S \ (A ∪B), which means

mR(x) = q+(x)q−(x)m(x). (2.13)

Probability density of reactive trajectories mAB(x) is the normalized density of mR(x)

on space S \ (A ∪B),

mAB(x) = mR(x)/ZAB, (2.14)
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where ZAB can be rewritten as

∫
S\(A∪B)

mR(x) dx =

∫
S

mR(x) dx,

since mR(x) = 0 for x ∈ A ∪B.

2.2.5 Probability flux of reactive trajectory

We intend to find a vector filed JAB(x) which describes the probability flow of reactive

trajectories from A to B, since J(x) does not distinguish whether the probability flux

is contributed from the reactive trajectories or not. Specifically, for any surface E (the

space enclosed by E is denoted by Ea),

∫
E

JAB(x) · n̂(x) dσ(x) =

lim
s→0

1

s
lim
T→∞

1

2T

∫ T

−T

[
1Ea(X(t))1S\Ea(X(t+ s))− 1S\Ea(X(t))1Ea(X(t+ s))

]
1R(t) dt

(2.15)

It could be derived that (see [11] for proof)

JAB(x) = q−(x)q+(x)J(x) + q−(x)m(x)a(x)∇q+(x)− q+(x)m(x)a(x)∇q−(x). (2.16)

2.2.6 Transition rate and mean transition time

For any hyperplane E ⊂ S \ (A ∪B),

kAB =

∫
E

JAB(x) · n̂(x) dσ(x). (2.17)

Regardless of the surface chosen, this equation gives the same value for transition rate,

since ∇ · JAB(x) = 0 for x /∈ A ∪ B. This is physically understandable, since the
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transition rate should not depend on the diving surface chosen to observe the system.

The mean transition time

t̄AB := lim
T→∞

1

NT

∫ T

−T
1S\(A∪B)(X(t))1R(t) dt

= lim
T→∞

1
2T

∫ T
−T 1S\(A∪B)(X(t))1R(t) dt

NT/2T

=
ZAB

kAB

(2.18)

where NT means the number of reactive trajectories within time period [−T, T ].

2.2.7 Most probable exit and entrance position

Vector field JAB depicts the flux of reactive trajectories. In analogy, JAB offers the

velocity field of probability flows in space S, in the similar way as to water flow. Thus,

it is reasonable to claim that x∗1 := arg maxx∈A J
AB(x) · n̂(x) is the most probable exit

position from set A and x∗2 := arg maxx∈B J
AB(x) · n̂(x) is the most probable entering

position into set B. Note that n̂(x) points outward of set A if x ∈ ∂A; it points inward

to set B if x ∈ ∂B.

2.3 Markov chains

This subsection will review TPT in the context of discrete-time homogeneous Markov

chain on countable state space, with reference from [7, 8]; TPT for continuous time

Markov chain has similar forms. Without loss of generality, let S = N.

As has been mentioned, the forward operator L = P −I. Then the discrete probability

distribution π = (πi)i∈S satisfies

πL = 0. (2.19)
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The backward operator L− has elements

L−ij =
πj
πi
Lji. (2.20)

2.3.1 Collection of reactive trajectories

Similarly, the collection of reactive trajectories

R := ∪n∈Z[tAn , t
B
n ]

where Xt(ω) is a reactive trajectories iff tAn ≤ t ≤ tBn for some integer n (of course,

t ∈ Z herein). In the same way, define 1R(n) := 1A(XtAB,−(n))1B(XtAB,+(n+1)).

2.3.2 Committor functions

For forward committor function q+, q+i := q+(i) = 1 if i ∈ B; q+i = 0 if i ∈ A. For

i /∈ A ∪B, ∑
j∈S

Lijq+j = 0. (2.21)

As for backward committor function q−, q−i := q−(i) = 1 if i ∈ A; q−i = 0 if i ∈ B. For

i /∈ (A ∪B), ∑
j∈S

L−ijq−j = 0. (2.22)

2.3.3 Probability distribution of reactive trajectory

The measure of reactive trajectories mR(·) : S → [0, 1] is a function which is defined as

mR(i) := lim
T→∞

1

2T + 1

T∑
n=−T

1{i}(Xn)1R(n), ∀i ∈ S \ (A ∪B). (2.23)
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By ergodicity,

mR(i) = q−i πiq
+
i . (2.24)

mR(·) is not a probability distribution, since usually

ZAB :=
∑
i∈S

mR(i) < 1. (2.25)

The normalized probability distribution of reactive trajectories is denoted by mAB(·),

mAB(i) = mR(i)/ZAB, ∀i ∈ S \ (A ∪B). (2.26)

2.3.4 Probability current

The probability current, which intends to sketch the contribution of transition between

any two states to the ensemble behavior of global transition, is denoted by JAB :

S × S → R, which is defined by

JABij = JAB(i, j) := lim
T→∞

1

2T + 1

T∑
n=−T

1{i}(Xn)1{j}(Xn+1)1R(n). (2.27)

With the assumption that the DTMC is ergodic, we can deduce that, for i 6= j,

JABij = q−i πiPijq
+
j = q−i πiLijq

+
j . (2.28)

Since it is of little interest to include the contribution of jump from any state to itself,

we can just set JABii = 0 by default.

The conservation law of probability current holds:

∑
j∈S

JABij = flow out of i = flow into i =
∑
j∈S

JABji ∀i ∈ S \ (A ∪B). (2.29)
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2.3.5 Transition rate and mean transition time

Transition rate is the frequency of transition from A to B, defined by

kAB := lim
T→∞

1

2T + 1

T∑
n=−T

1A(Xn)1S\A(Xn+1)1R(n)

=
∑

i∈A,j /∈A

JABij

=
∑

i∈A,j∈S

JABij ,

(2.30)

since Jij = 0 if j ∈ A.

The mean transition time

t̄AB := lim
T→∞

∑T
n=−T 1R(n)

NT

= lim
T→∞

1
2T+1

∑T
n=−T 1R(n)
1

2T+1
NT

=
ZAB + kAB

kAB

= 1 +
ZAB

kAB
,

(2.31)

where NT means the number of transition within time period [−T, T ].

In lines 2-3 of equation (2.31),

1

2T + 1

T∑
n=−T

1R(n) =
1

2T + 1

T∑
n=−T

(1R(n)1A(Xn) + 1R(n)1S\(A∪B)(Xn)).

The second part gives ZAB by letting T →∞. We know that

1R(n)1A(Xn) =
∑

i∈A,j∈S

1{i}(Xn)1{j}(Xn+1)1R(n),

so

lim
T→∞

1

2T + 1

T∑
n=−T

1R(n)1A(Xn) =
∑

i∈A,j∈S

JABij = kAB.
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Thus, we obtain

t̄AB = 1 +
ZAB

kAB
.

Note that in discrete-time case, some concepts may have different forms, due to the

jumping process.

2.3.6 Most probable exit and entrance point

Equation (1.4) could be rewritten as

i∗ = arg max
i∈A

lim
T→∞

1

2T + 1

T∑
n=−T

1{i}(Xn)1R(n)

= arg max
i∈A

∑
j∈S

JABij .

The term
∑

j∈S J
AB
ij basically measures how much probability leaks from point i ∈ A

to set B. i∗ is the most probable exit point in set A. Similarly, the most probable enter

point into set B is

j∗ = arg max
j∈B

∑
i∈S

JABij .

2.4 Representative dominant transition path

In equation (2.29), {JABij }(i,j)∈S×S generates a network flow, in which we might be

interested in studying the structure of flows, that is, finding the representative path

that describes where the flow is denser. In paper [8], representative dominant transition

path has been proposed and studied for Markov jump process with countable state

space; in this subsection, the main idea of representative dominant transition path will

be reviewed.
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The effective probability current

J+
ij := max(JABij − JABji , 0), (2.32)

which depicts the net probability current from state i to state j. With J+, a directed

graph G(V,E) = G{J+} can be generated: the edges are the pairs which have non-

negative effective probability current, namely, the set of edges E = {(e1, e2) : J+
e1,e2

>

0}; the set of nodes V is a set whose elements appear at least once in any pair (e1, e2)

in E.

Transition path means simple transition path herein without distinguish. The reason

of limiting the objects being studied to the simple path is that path with loops is

more complicated; more importantly it does not represent the real probability flow.

For a transition path, its capacity of carrying flows is confined by the minimal effective

probability current along this path. Based on this observation, for a path ϕ = (ϕi)0≤i≤n,

the min-current c(ϕ) is defined as

c(ϕ) = min
e=(i,j)∈ϕ

J+
ij , (2.33)

and the dynamical bottleneck is the argument which achieves the min-current,

(b1, b2) = arg min
e=(i,j)∈ϕ

J+
ij . (2.34)

Based on our argument before, it is apparent that the most desired path should have

maximal min-current. Let W be the space of all transition paths and define

cmax := max
ϕ∈W

c(ϕ), (2.35)
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then the set of paths which have cmax as min-current is

WD := {ϕ ∈ W : c(ϕ) = cmax}. (2.36)

The element in WD is referred as dominant transition path.

If we assume that we only have one edge which achieves cmax, namely, the global

bottleneck is unique, denoted by (b1, b2), any path ϕ = (ϕi)0≤i≤n in WD can be parti-

tioned into two parts ϕL := (ϕj)0≤j≤n∗ and ϕR := (ϕj)n∗+1≤j≤n if the position of node

b1 is n∗ in this path. Assume we already know the most desired path ϕ∗L in the set

GL := {ϕL : ϕ ∈ WD} and ϕ∗R in the set GR := {ϕR : ϕ ∈ WD}, then easily we might

conclude that the representative dominant transition path

ϕ∗ = (ϕ∗L, ϕ
∗
R). (2.37)

Then the question becomes how to obtain the ϕ∗L and ϕ∗R. Similarly, the new sets of

dominant transition paths for sub-graphs GL and GR can be defined and then ϕ∗L and

ϕ∗R can be defined and obtained in the same way as ϕ∗. The definition of representative

dominant transition path is based on the algorithm paradigm called divide-and-conquer

(D&C). The detailed algorithms and computational cost analysis could be found in [8].

Representative dominant transition path provides another perspective to understand

the mechanics of transition in stochastic dynamical systems with countable state space.

It serves as one possible response to question 3 about transition mechanics. The gen-

eralization of representative dominant transition path is possible but it will not be

discussed here.
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3 Applications

Transition path theory has wide applications as mentioned in the introduction section

and this section serves as a short introduction and review of some classical models

where TPT could be applied. We will focus on (1) time-reversible diffusion process

with gradient drift term and isotropic diffusion tensor and (2) randomly generated

Markov chain. Numerical results, some additional theoretical results and remarks will

been provided in the following.

3.1 Diffusion process

In equation (2.2), let the diffusion tensor
√
D = σI, then tensor a = σ2I; let drift

term b(x) = −∇V (x), where scalar function V is usually known as potential function.

Hence, the general diffusion equation (2.2) is simplified into

Ẋt = −∇V (Xt) +
√

2σdWt. (3.1)

σ is related to the temperature in physical models: for instance, σ2 = kBTr = r/β in

Langevin equation where r is the friction coefficient.1

The invariant measure density m(x) could be solved explicitly and it has the form of

m(x) = Z−1 exp(− 1

σ2
V (x)) (3.2)

where Z =
∫
Rd exp(− 1

σ2V (x)), the factor for normalization. Assume that V (x) under

consideration increases sharply when |x| → ∞ so that Z <∞. Such probability density

function is sometimes known as Boltzmann-Gibbs probability density. It could be easily

verified that −bm + div(am) = 0 for this case, which means such diffusion process is

1In Langevin equation, the diffusion tensor, however, has slight different form, compared with the
assumption here.
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time-reversible. Therefore, q−(x) = 1− q+(x) for x ∈ S.

With the form of invariant measure density m(x), the conclusion could be drawn that

we could limit the numerical methods into certain space S, and the space outside is

negligible in its contribution to the whole system. The diffusion process is well-defined

on the space Rd, but boundary conditions need to be imposed in order to solve it

numerically. Based on the observation on m(x), Dirichlet boundary condition could

be applied without problem if S is reasonably large enough. As for the committor

functions, Neumann (reflective) boundary condition appears to be more natural, that

is, ∂n̂q|∂S = 0 or ∇q · n̂ = 0 where q stands for both forward committor function and

backward committor function, and n̂ is the normal vector at the boundary ∂S.

Focus is put on two classical models for potential V : one is double-well potential

V (x1, x2) =
5

2
(x21 − 1)2 + 5x22

and another is triple-well potential

V (x1, x2) = 3 exp
(
−x21 − (x2 − 1/3)2

)
− 3 exp

(
−x21 − (x2 − 5/3)2

)
− 5 exp

(
−(x1 − 1)2 − x22

)
− 5 exp

(
−(x1 + 1)2 − x22

)
+ 0.2x41 + 0.2(x2 − 1/3)4.

These two examples have been used and illustrated in [9]. I will use them as examples

here for easy illustration and reproduce the numerical results in that paper.

3.1.1 Double-well potential

In double-well potential system, there exists two local minima (±1, 0) separated by

a saddle point (0, 0). The space chosen for numerical approximation S = [−2, 2] ×

[−1.5, 1.5] with grids 501× 501. Set A and B are chosen as the neighborhood around
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(−1, 0) and (1, 0) respectively with potential V (x1, x2) < 0.4. σ is chosen to be 1. The

contour plot of potential V (x1, x2) could be seen in figure 1.
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Figure 1: Potential V (x1, x2).

The probability density at equilibrium m(x) is presented in figure 2 as well as the

Boltzmann-Gibbs probability density. Figure 2 demonstrates in the numerical sense

that equation (3.2) holds. The probability density is higher at around two local min-

ima, which confirms the metastability of these two local minima in diffusion process.

The forward committor function q+ and backward committor function q− have been

visualized in figure 3; to facilitate the visualization of set boundaries, the value of com-

mittor functions at both set A and B is set to be 1. In figure 3a, the value of q+ at

the right half plane is higher than that in the left half plane, which means the particle

at right half plane has higher probability to reach set B than that at the left half

plane, and which is intuitively understandable. As for backward committor function

q−, the situation is totally reversed. By checking the numerical values of q+ and q−,

the equation (2.1) holds with high accuracy.

Probability density of reactive trajectories mAB(x) has been computed and shown in

figure 4. The region around the saddle point (0, 0) has higher value in mAB(x), which

means in the transition, the particle stays at this region more frequently than other

areas; such region is sometimes referred as dynamical bottleneck or transition state

region. In this case, J(x1, x2) should approximately be zero; the result does not change

too much either by using J calculated from equation (2.9) or by simply replacing J
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(a) Invariant measure density m(x)
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(b) Boltzmann-Gibbs probability density

Figure 2: Invariant measure density m(x) and Boltzmann-Gibbs probability density.
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(a) Forward committor function q+.
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(b) Backward committor function q−.

Figure 3: Committor functions

with zero. The vector field JAB(x1, x2) is shown in figure 5. As we might notice,

JAB(x) points outward at the boundary of set A and points inward at the boundary of

set B, since the effective reactive trajectories must start from set A and end at set B.

The transition rate kAB calculated from equation (2.17) with y-axis as diving surface

is approximately 0.07764 and after enlarging space S, transition rate kAB does not

change too much.
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Figure 4: Probability density of reactive trajectories mAB(x).
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Figure 5: The vector field JAB. Set A is colored in gray; set B is colored in black.

3.1.2 Triple-well potential

In double-well potential system, the dynamical bottleneck is trivial since for a particle

from set A to set B, the cheapest way is to cross the saddle point, that is, (0, 0),

and thus the region around that saddle point must be visited more frequently than

other areas. In triple-well potential system, there are three local minima at around

(±1.05,−0.04), (0, 1.54), three saddle points at around (±0.6, 1.1), (0,−0.3) and one

local maximum at round (0, 0.52). Let set A be the circle around the local minimum
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(−1.05,−0.04) with radius 0.2 and set B be the circle around the local minimum

(1.05,−0.04) with radius 0.2.

As we could notice in figure 6 for potential V (x1, x2), there are two possible paths

that particle in set A could choose to reach set B: one is to cross the saddle point

(0,−0.3) to reach set B directly and another is to cross the saddle points (±0.6, 1.1),

between which it has to reach the neighborhood of local minimum (0, 1.54). These

two main pathways are prominent under different conditions. The potential at saddle

point (±0.6, 1.1) is −1.65 and the potential at saddle point (0,−0.3) is −1.38. From

the large deviation principle (LDP), when the noise is infinitesimally small, the optimal

path will be that that minimizes the potential barrier, which means, the most probable

exit path crosses the saddle points (±0.6, 1.1) before it reaches set B.
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Figure 6: Potential V (x1, x2). Set A is colored in light gray, set B in dark gray.

Here we choose σ = 1/
√

1.67 and 1/
√

6.67 following paper [9] to verify this idea. The

probability density of reactive trajectories mAB(x) is given in figure 7: at low noise,

most probably, it will stays near the local minimum (0, 1.54), which demonstrates that

it must cross saddle points (±0.6, 1.1); when it is under higher noise, the probability

density mAB(x) at the region near the saddle point (0,−0.3) increases, compared with
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the case with low noise, and there are two dynamical bottlenecks, one the region near

saddle point (0,−0.3) and another the region near local minimum (0, 1.54).

The probability flux JAB(x) for reactive trajectories in figure 8 further confirms this

finding. When noise is relatively lower, the streamline that passes through saddle

points (±0.6, 1.1) is dominating, while such dominance becomes weaker when noise

increases. This could be explained by using physics: when noise is larger, that is, the

temperature T for such system is larger, the particle has more kinetic energy to cross

the energy barrier at saddle point (0,−0.3) so that the chance for its hopping into set

B through this saddle point contributes more to the whole system.

Transition rates kAB have been computed for the sake of completeness: when σ =

1/
√

1.67, the transition rate is 1.88 × 10−2. When σ = 1/
√

6.67, kAB = 8.81 × 10−8.

The decrement of transition rate when noise decreases is natural and trivial. These

two values are close to the results presented in paper [9].
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Figure 7: Probability density of reactive trajectories mAB(x) under different noise σ.
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Figure 8: Probability flux JAB(x) under different noise σ.

3.2 Markov chain

A random generated Markov chain {Xn}n∈Z with four-state space S = [1, 2, 3, 4], is

used as the simplest example to illustrate how transition path theory works. The

one-step transition matrix for this Markov chain is

P =



0.4539 0.2906 0.1907 0.0648

0.3537 0.4600 0.0362 0.1501

0.5584 0.0211 0.3236 0.0968

0.1737 0.5098 0.1597 0.1568


Let set A = {1} and set B = {4}.

3.2.1 Basic quantities

Many properties have been listed in table 1. Additionally, ZAB = 0.0839 computed

from equation (2.25) and kAB = 0.0723 obtained from equation (2.30). The probability
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current

JAB =



0 0.0341 0.0118 0.0264

0 0 0.0012 0.0337

0 0.0008 0 0.0123

0 0 0 0


property value

probability distribution at equilibrium π(x)

[
0.4075 0.3271 0.1578 0.1076

]
forward committor function q+

[
0 0.2881 0.1522 1

]
backward committor function q−

[
1 0.6856 0.8041 0

]
measure of reactive trajectories mR(·)

[
0 0.0646 0.0193 0

]
probability distribution of reactive trajectories

mAB(·)

[
0 0.7700 0.2300 0

]

Table 1: Properties in Markov chain.

3.2.2 Representative dominant transition path

According to equation (2.32), the effective probability current J+ is

J+ =



0 0.0341 0.0118 0.0264

0 0 0.0005 0.0337

0 0 0 0.0123

0 0 0 0



The diagram for effective probability current J+ is
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1

2 3

4

0.0341 0.0118

0.0264

0.0005

0.0337 0.0123

All the transition paths from 1 to 4 are

• 1 → 2 → 4 with min-current 0.0337;

• 1 → 2 → 3 → 4 with min-current 0.0005;

• 1 → 3 → 4 with min-current 0.0118;

• 1 → 4 with min-current 0.0264.

According to equation (2.35), cmax = 0.0337 and therefore the first dynamical bottle-

neck is the edge (b1, b2) = (2, 4) with weight cmax = 0.0337. Then, let {2} be the new

set B and we need to find the representative dominant transition path in the graph

with nodes {1, 2}, which leads to trivial solution ϕ∗L = (1, 2). Finally, the overall repre-

sentative dominant transition path for this Markov chain is ϕ∗ = (1, 2, 4), which means

in the sense of statistics, most probably, the transition path will start from state 1,

pass through state 2 and finally reach state 4.
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4 Discussion on TPT and MPEP

The main idea of most probable exit path (MPEP) is to maximize the probability of

path, under fixed starting point, ending point and the transition time T . This section

will give a short review of MPEP to response to Question 4. The main reference for

this section is [1].

For the stochastic mapping, Xn+1 = f(Xn) + σηn, where ηn are iid standard normal

random variables. We consider Xn ∈ R for convenience, that is, dim = 1. With fixed

initial position x0 at time 0 and ending position xn at time n, for a particular path ϕ

linking them, its probability

P [ϕ] ∝ exp

(
− 1

σ2
S[x0, x1, · · · , xn]

)
, (4.1)

where cost function

S[x0, x1, · · · , xn] =
1

2

n−1∑
i=0

(xi+1 − f(xi))
2.

The total probability of having a path ϕ connecting these two points is

P (xn | x0) =

∫
ϕ

P [ϕ] d{ϕ} (4.2)

When σ → 0, the asymptotic approximation for P (xn | x0) is

P (xn | x0)→ γ exp

(
− 1

σ2
Smin

)
, (4.3)

where γ is the prefactor for correction. Equation (4.3) is guaranteed by the fact that

when σ approaches 0, the term with S > Smin will vanish somehow.
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Let xi+1 − f(xi) = ξi and if we introduce the Lagrange multiplier

S̄ =
1

2

n−1∑
i=0

ξ2i + λi[xi+1 − f(xi)− ξi]. (4.4)

By taking derivative with respect to ξi and xi+1, we get ξi−λi = 0 and λi−λi+1f
′(xi+1) =

0. Then,  xi+1 = f(xi) + λi

λi+1 = [f ′(xi+1)]
−1λi

(4.5)

For a diffusion process Ẋt = f(Xt) + dWt, it could be approximated by

xn+1 = xn + f(xn)∆t+
√

∆tB(0, 1), (4.6)

where B(0, 1) is the standard Brownian motion. This approximation comes from the

definition of Ito integral. Let λi/∆t→ λ, we could deduce that

 ẋ = f(x) + λ

λ̇ = −f ′(x)λ
(4.7)

Then the analysis of most probable exit path turns into manifold analysis on a higher

dimensional space (x, λ). In addition, if we treat λ as momentum, equation (4.7) forms

the Wentzell-Freidlin Hamiltonian system with H = 1
2
λ2 + λf .

In summary, TPT and MPEP both intend to shed light on transition mechanics of some

stochastic dynamical systems while their approaches are somewhat different. TPT

works with finite noise cases and it takes the time period of observation to be infinity

at first to make use of the ergodicity; MPEP works with zero-temperature cases, that

is, infinitesimally small noise cases, and it makes the noise intensity approach zero

before letting observation period T be infinity.
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5 Conclusion

In summary, this report intends to answer four questions proposed at the beginning

about transition problem under small noise in stochastic dynamical systems. In section

2, we have discussed the transition path theory in detail in both diffusion process and

Markov chains. Many statistical properties have been derived, such as probability

density at equilibrium, probability measure of reactive trajectories, probability flux

of reactive trajectories and transition rate. The related numerical results have been

presented in section 3 by using some classical models such as triple-well potential and

finite state DTMC.

The main idea of TPT is to consider the ensemble behavior of reactive trajectories

rather than focusing on a single reactive trajectory, because in real physical system, it

seems that it is not realistic nor important to study single reactive trajectory. In the

context of Markov chains, the representative dominant transition path is defined to

depict the region where the reactive trajectories are denser. Representative dominant

transition path and most probable exit path are both intending to sketch the transition

mechanics, while they are applicable in different cases, one in the finite noise case, and

another in the infinitesimally small noise case. When noise in TPT approaches zero in

some stochastic dynamical systems, these two concepts are supposed to be consistent,

which is, however, not guaranteed in general, as far as I know.
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