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Abstract. This paper proposes and analyzes an iterative minimization formulation for searching
index-1 saddle points of an energy function. We give a general and rigorous description of eigenvector-
following methodology in this iterative scheme by considering an auxiliary optimization problem at
each iteration in which the new objective function is locally defined near the current guess. We
prove that this scheme has a quadratic local convergence rate in terms of number of iterations, in
comparison to the linear rate of the gentlest ascent dynamics [W. E and X. Zhou, Nonlinearity, 24
(2011), pp. 1831-1842] and many other existing methods. We also propose the generalization of
the new methodology for saddle points of higher index and for constrained energy functions on the
manifold. Preliminary numerical results on the nature of this iterative minimization formulation are
presented.
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1. Introduction. For some time considerable attention has been given to nu-
merical methods of searching local minima of a continuous nonlinear function. The
widespread availability of the efficient optimization algorithms for large scale prob-
lems has greatly assisted the numerical studies of theoretical physics, chemistry, and
biology. In computational chemistry, for example, it is of great interest to look for
metastable states of molecular configurations, which correspond to local minima of an
energy function. Normally, the traditional optimization procedures are very successful
at locating a nearby metastable state. However, of more interest are the transition
states in these molecular systems, which are the saddle points of the energy func-
tion. When it comes to the location of the transition states, there is much room for
improvement in the minimization approach.

Transition states are characterized as stationary points having one, and only one,
negative Hessian eigenvalues (e.g., see [25]). Saddle points of this type are usually
referred to as index-1 saddle points. There have already been various advanced algo-
rithms during the past decades that have proved to be efficient in searching saddles
for many practical problems in chemistry and material sciences. The contributions
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include, but are not limited to, the following list: the activation-relaxation tech-
niques [20], the dimer method [13], the nudged elastic band method [15], and the
string method [9, 10, 23]. Interested readers can also refer to [12]. The first two meth-
ods in the list are examples of “single-state” (or “surface walker”) algorithms, and the
last two are, roughly speaking, examples of “chain-of-state” algorithms. The single-
state algorithms mainly adopt the “eigenvector-following” methodology [7, 6, 25]—
the system is moved uphill along the eigenvector (“min-mode”) corresponding to the
smallest eigenvalue of the Hessian matrix. Therefore, these methods drive the sys-
tem away from the local minimum and push it to some index-1 saddle point if the
convergence is achieved. Numerous applications to practical problems have shown
that these eigenvector-following—type (or min-mode) methods generally have a much
larger attraction domain for convergence to index-1 saddle points than the traditional
Newton-type root-finding methods. In addition, the specificity of selecting index-1
saddles renders these methods more favorable than the root-finding methods. One
more benefit of using eigenvector-following ideas over the Newton root-finding method
is that the explicit information of Hessian matrix is usually not required in numer-
ical implementation. Lastly, when the Hessian is quite close to a singular matrix,
the Newton-type method will have difficulty, but the eigenvector-following method-
ology which needs only the minimal mode of the Hessian does not suffer from this
singularity; see details of these methods in section 3.1.

Recently, there has been increasing mathematical interest in writing the eigenvector-
following methodology in the form of a dynamical system. For instance, one of the au-
thors of the current paper has proposed the gentlest ascent dynamics (GAD) [11, 24],
which is a coupled dynamical system of both a position variable and a direction
variable. A different but quite similar dynamical system is also pursued in [27] to
implement the finite differencing by introducing one more dimer length variable.

In GAD, the dynamics flow is defined on the product space of the position in
the configuration space and the direction in its tangent space. The position variable
describes the escape trajectory from the basins of attraction of the local minima. The
direction variable in GAD simultaneously evolves to try to follow the min-mode of the
Hessian matrix, although it does not have to be exactly the min-mode at any time. It
is proved that the stable equilibrium points of this dynamical system are the index-1
saddle points of the energy function, while the local minima of the energy function
are turned into the index-1 saddle points of GAD. This interesting property invites
one to attempt to think of GAD as a counterpart of the very basic steepest descent
dynamics (SDD), which converges to a local minimum as time goes to infinity. GAD
and SDD are both the simplest flow based on the gradient of the energy function in
the configuration space, and the convergence rates are both linear.

SDD is closely related to the steepest descent method, the simplest gradient
method for unconstrained optimization, which can be traced back to Cauchy [5]. The
analogy between SDD and GAD is a tentative attempt to compare the framework
of various optimization algorithms and that of the saddle search algorithms. It is
well known that the steepest descent method is ineffective for unconstrained opti-
mization because of its slow convergence rate. Historically, many better alternative
optimization techniques have been developed to achieve a superlinear or quadratic
convergence rate, for instance, the Newton method, L-BFGS, the nonlinear conju-
gate gradient method, and so on [21]. We are interested in asking what could be the
possible analogues of these advanced optimization methods in the context of saddle
search problems and how to improve the linear convergence of the GAD as well as
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other popular saddle search algorithms.

Our motivation is thus to address the above questions and includes the following
twofold tasks. First, we want to present a new mathematical framework with connec-
tion to some optimization problem, rather than in the form of a dynamical system,
with the hope that the GAD is a natural “gradient flow” of the associated optimiza-
tion problem. Second, the new formulation should be able to provide a superlinear or
quadratic convergence rate and carry more flexibility in designing faster algorithms.
This paper focuses on the first goal in a theoretical aspect and offers a partial discus-
sion of the second goal with preliminary numerical experiments. The full discussion
of developing faster numerical methods and applying them to real problems will be
presented in a separate paper.

The formulation we propose in this note is an iterative minimization scheme.
At each iteration, a new objective function is constructed based on the given energy
function by using the information of the current values of the position and the minimal
mode of the Hessian. Then a local minimizer of this objective function is assigned
to the new value of the position at the next iteration. This iterative scheme can be
completely described by a continuously differentiable mapping. We discover that the
index-1 saddle point is a fixed point of this mapping, and the Jacobian matrix of this
mapping vanishes at the saddle point, suggesting that the convergence rate of the
iterative minimization scheme is quadratic.

We note that a few variant techniques have been proposed in an effort to improve
the efficiency of the single-state-type algorithms for saddle search, such as those in
[14, 16, 4, 17]. However, all of these methods either improve the rotation step of solving
the eigenvector or improve the translation step of moving the position restricted in the
dimension along the obtained direction. The resulting overall effect on the accuracy
of these methods is of only the linear convergence rate in the full configuration space.

The rest of this paper is organized as follows. First we briefly review the gentlest
ascent dynamics in section 2. In section 3, we formulate our iterative minimization
scheme for index-1 saddles and analyze the convergence rate. We also discuss the
situation with constraints for saddle points in section 4. The generalization for index-
m (m > 1) saddles is discussed in section 5. Several numerical examples are presented
in section 6 to illustrate our theory. Section 7 offers concluding remarks.

2. Review of gentlest ascent dynamics (GAD). The GAD is a mathemat-
ical model in the form of a dynamical system to describe the escape of the basin of
attractions (in the gentlest way) and the convergence to a saddle. Given a smooth
energy function V on the configuration space, say R?, the GAD is the following dy-
namical system defined on the phase space R x R%:

(VV(@)v)

(v,0)

(v, V2V (z)v)
(v, v)

Here (-,-) is the dot product in the Euclidean space R? (there is no difficulty in gen-
eralizing to any Hilbert space), and the relaxation constant v can be any positive real
number. The second equation (2.1b) attempts to find the direction that corresponds
to the smallest eigenvalue of the Hessian matrix V2V (z). The second term in (2.1b)
imposes the normalization condition that ||v|| = /{v,v) = 1. The last term in the
first equation (2.1a) reverses the component of the gradient force in the direction v
to drive the system uphill in the direction of v.

(2.1a) i=—VV(z)+2

(2.1b) 0 = V2V (2)v +
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It is shown in [11] that the saddle point of the original function V is the stable
equilibrium point of the GAD. For the reader’s convenience, we recall this result in
the following proposition.

PROPOSITION 2.1. Assume that the energy function V is C*(R% R).

(a) If (z«,vs) 1s an equilibrium point of the GAD (2.1) and |jv.| =1, then v, is

an eigenvector of V2V (z,) corresponding to some eigenvalue M., and x, is a
stationary point of the steepest descent dynamics of V', i.e., VV (x,) = 0.

(b) Suppose that x4 is a stationary point of V', i.e., VV (zs) = 0. Let vy, va,...,0q
be the normalized eigenvectors of the Hessian V2V (z5), and let the associated
eigenvalues be A1, A2, ..., A, respectively. Then for all i =1,...,d, (x5,v;)
is an equilibrium point of the GAD (2.1). Furthermore, among these d equi-
librium points, there exists one pair (xs,v;) which is linearly stable for the
GAD (2.1) if and only if x5 is an index-1 saddle point of the function V
or, equivalently, the eigenvalue Ny corresponding to vy is the only negative
eigenvalue of V2V ().

For notational convenience, we denote the Hessian as H(z) = V2V (x). When
the GAD converges, the limit of v corresponds to the eigenvector of the Hessian H ()
at the saddle point for the smallest eigenvalue. Actually, for any frozen x in (2.1b),
the steady state of the solution v(t) solves the minimization problem for the Rayleigh
quotient,

(2.2) ||Hhin1 u'H(x)u,

and (2.1b) is just a steepest descent dynamics (rescaled in time by ) for the mini-
mization problem (2.2). In the limit of v — 0, v(t) approaches the eigenvector of the
smallest eigenvalue instantly, and the GAD is reduced to the traditional eigenvector-
following methodology. In this case, v can be viewed as a function v(z). For finite ~,
(2.1) couples the dynamics of  and v simultaneously and still preserves the conver-
gence to saddle points.

In contrast to the flow for v, the dynamics equation (2.1a) for the position x,
however, is not in the form of the steepest descent dynamics of any scalar function.
To see this, denote the GAD force as F'(x):

Fi(2) £ i) — 23 vifilwyog,
k

where f(z) & —VV(z). It is easy to see that gf; =—H;; +2v; >, Hyju, = —H +

2vvT H, while its transpose % = —H + 2Hvv". The necessary condition for the
dynamics of x being of a gradieﬁt type is that the Hessian H commutes with the rank-
1 matrix voT, which generally does not hold since v may not be the exact eigenvector
of H in the GAD. Even in the v — 0 limit where v = v(x) is indeed the eigenvector
of H(z), the Jacobian matrix for F(z) = fi(x) — 2)_, vi(z) fx(z)vk(x) is still not
symmetric.

Therefore, the GAD is not as simple as a steepest descent flow, and no underlying
energy function seems to exist to drive this dynamics. In the next section, we shall
show that the GAD can be approximated by a steepest descent flow of a new objective
function which is locally constructed. This is our iterative minimization formulation.

3. The iterative minimization formulation. In this section, we discuss how
to define a new objective function to drive the system toward an index-1 saddle point
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of the original energy function. The intuitive idea is to change the sign of the energy
function V' along some direction, rather than reversing the direction of the force as
in the GAD. The resulting Hessian then changes the sign of the smallest eigenvalue
while keeping the other eigenvalues the same.

3.1. The iterative scheme. The framework we start with is the following it-
erative expression for £k =0,1,2,...:

(3.1a) v* D) = argmin uTH(x(k))u,
llull=1

(3.1b) 2D = argmin (V(y) + WH(y)),
yeU(z )

where W) is an unknown function to be determined. We need to construct W)
such that =(®) converges to a saddle point of V. In (3.1b), U(z®) means a local
neighborhood at z(®) (we refer the reader to Theorem 3.1(iii) next for a description of
such a neighbourhood). We add this particular neighbor to highlight that the solution
of the optimization (3.1b) we want is a local one. More specifically, (3.1b) has to be
solved by using the special initial guess yini = ).

The following two choices of the function W*) serve our purpose:

32) W) = Wily;a®, o), W () = Wa(y; 2P, 0 EHD),
where, with the abuse of notation, we define

(3.3) Wi(y;z,v) £ =2V (y) +2V (y — o' (y — 2)),
Wa(y;z,v) £ =2V (z 4+ w0’ (y — 2)),

which are two R? — R functions parametrized by the position z and the normalized
direction v. Therefore, the new objective function V + W depends on the current
position z and the direction v. In (3.2) for the choice of W), the direction v(**1)
is computed from the given z(*) by (3.1a). Therefore, (3.1) is actually an iterative
scheme mapping z*) to 2(*+1) via a direction v#+1),

Given a position x and a direction v, we then have an affine hyperplane, denoted as
Py.v, Passing through the position z with the normal v, i.e., Py, = {y : (y—z)Tv = 0}.
Introduce the projection matrix II, and II;}- = I — II,,, where

II,u = volu.

Then, the argument in the second term of Wy is the point
y—w'(y—z) =z +1,(y - ),

which is the projection of the point y on the affine hyperplane P, ,. The position
in Wo, x +vv"(y — ) = o + II,(y — z), is the projection on the ray at = with the
direction v.

The intuition of the definitions of W7 and W5 is the following: If y lies on the ray
along v, then Wy = —2V (y). Consequently, the new energy function V (y)+Wa(y; x, v)
is to modify the potential V' (y) by reversing the sign of V' in the direction v. The choice
of V(y) + Wi (y; x,v), which is equal to —V (y) +2V (z + II* (y — x)), can be viewed as
the reverse of the sign of —V (instead of V') on the (d — 1)-dimensional affine plane

1

Pz Let us take a simple example of the quadratic function V(y) = 3 Zle wiy?,
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where p1 < 0 < pg < --+- < pg. The zero vector is the index-1 saddle point of V.
v =(1,0,...,0) is the eigenvector corresponding to the smallest eigenvalue p1. Then,

d
1 1
V(y) + Wi(y;z,v) = paat — §u1yf +3 > pivi,
=2

d

d
1 1
V() + Walysw,v) = = Y il = syf + 5 ) iy
=2 =2

The difference of these two functions of y is just a constant 2V (z). Both are the convex
quadratic functions of y, and they share the same Hessian diag{—pu1, u2,...,pqd} as
well as the same minimizer 0, which is exactly the saddle point of V. So for any initial
position z(©), the next iteration (1) is the true solution. For the general function V,
neither V+W7; nor V+W; would be globally quadratic, and there are possibly multiple
(local) minimizers. However, in the following, we show that it is always possible to
define a meaningful local minimizer when the initial z(©) is sufficiently close to the
saddle point.

3.2. Convergence result. We can formulate the saddle search problem as a
fixed point problem in the iterative scheme (3.1) together with the defined W; and
Ws in (3.3) and (3.4). In fact, the function W) in the iterative scheme (3.1) can
be some linear combination of Wi, and W5 to achieve our purpose, too. In addition,
the constant 2 showing in W7 and W5 can be relaxed. In the next theorem, we shall
consider this general case to define the mapping from z®) to z(**1. Denote this
mapping for the iteration as ®(x). We shall show that the Jacobian matrix of ®
vanishes at the index-1 saddle point. This implies that the iterative scheme is of
quadratic convergence.

THEOREM 3.1. Assume that V(x) € C3(R%R). For each w, let v(z) be the
normalized eigenvector corresponding to the smallest eigenvalue of the Hessian matriz
H(z) = V?V(z), i.e.,

v(z) = argmin u'H(zx)u.
weRd, [[u]=1

Given two real numbers o and B satisfying a+ B > 1, we define the following function
of the variable y:

Liyiz.0.8) = (1 — o)V (y) + aV’ <y ~oa)ela) Ty a:>)
(3.5)

-8V (x +v(z)v(z) (y — x)) .

Suppose that ©* is an index-1 saddle point of the function V(x), i.e, VV (x*) has only
one negative eigenvalue A(z*). Then the following statements are true.
(i) x* is a local minimizer of L(y;x*, o, B).

(ii) There exists a neighborhood U of x* such that for any x € U, L(y;x,a, ) is
strictly convex iny € U and thus has a unique minimum in U.

(iii) Define the mapping ® : x € U — ®(x) € U, where ®(x) is the unique local
minimizer of L in U for any x € U. Further assume that U contains no
other stationary point of V except x*. Then the mapping ® has only one fized
point x*.
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(iv) ®(x) is differentiable in U. The derivative of ® vanishes at x*, i.e., the
Jacobian matrix

(3.6) O, (z*) = 0.

Proof. Part (i): We calculate the first and second derivatives of L(y;z, «, §) with
respect to y. The first order derivative is

VyL=(1-a)VV(y) +al - w")VV (y — vl (y — x))

(3.7) BTV (z+ w0 (y - z)).

So, it is clear that V, L(z*; 2*, , ) = 0 for any constants o and /3 since VV (z*) = 0.
The Hessian matrix of L is

ViL(y;z, ) =(1 = a)V?V(y) + all —w)V2V(y — v (y — 2))(I —wvo')
— BTV (z +ovT (y — 2))vo’,

(3.8)

which is simplified at y = z* and x = z* as follows:
2 *, ok _ * * * *\ T
VyL(z®; 2%, o, B) =H(z") — (a + B)A(z")v(z")v(z") ",

where the fact H(z*)v(z*) = A(z*)v(z*) is applied. Since A(z*) < 0, it follows that
V2 L(x*;x*, o, B) is (strictly) positive definite if o + 3 > 1.

Part (ii): The assumption that V € C3 and z* is the index-1 saddle point of V
implies that the eigendirection v(z) is continuously differentiable at x*. Then (3.8),
together with the continuity of V2V (x) and v(x) at z*, implies that the Hessian,
V2 L(y; x,v(x)), which is now treated as a function of two variables y and z, is con-
tinuously differentiable at (y,z) = (z*,z*). In Part (i), we proved that at the point
(z*,z*), the Hessian is positive-definite as o + § > 1. Thus, there exists a neighbor-
hood of (z*,z*), denoted as N, such that the Hessian V2 L(y; x) at each (y,z) € N is
still positive-definite. Select a neighborhood in the form of the product of two convex
sets U x U inside the 2d-dimensional set N; then the set I/ is the desired one.

Part (iii): Suppose that there is a second fixed point & € U such that ®(Z) = Z.
Then V,L(#;&) = 0. From (3.7),

V,L(2;2) = VV(2) — (a4 B)v(@)v(2)TVV (&) = 0.

Since a + 3 # 1, then VV () = 0. But there is only one stationary point z* in U, so
Z has to be the point z*.

Part (iv): For each g € U, (®(xg), zo) is the solution of the first order equation
VyL(®(x0);x0) = 0. It is clear that V,L(y;x) is continuously differentiable at all
(y,2) inU x U. In addition, V3 L(y; ) is strictly positive-definite from Part (ii), thus
nondegenerate in U x U. Therefore, the implicit function theorem implies that ®(x)
is Lipschitz continuous and differentiable near xg.

Next, we calculate the derivative of the mapping ®, denoted as ®,(x). For each
x €U, ®(x) is a solution of the first order equation (3.7). Thus the following equation
holds:

(3.9)
(1= a)VV (®(2)) + a (I —v(@)v(z)") VV (p1(2) = Bo(@)v(z) VV (pa(x)) =0,

where
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Now we take the derivative with respect to # on both sides of (3.9); then

(1-a)H(®)®, +a (I — U’UT) H(p1)p1.0 —av'VV(p1)J —avVV (p1)TJ

3.10
(310) = BT H(p2)pae + BoTVV (p2)J + BuVV (p2) T,

where the derivatives J = ag—(f) and ¢, = g—‘f are the Jacobian matrix of v(z) and

®(x), respectively. The derivatives o1 4, 2., are defined similarly.
Note that ®(z*) = 2*; thus ¢1(z*) = @2(2*) = 2*. Consequently VV (1) and
VV (p2) both vanish at z* since VV (z*) = 0. Meanwhile, since

Oro=0, —v0" (O —I) =0 (& —2)] —v(® —2)"J,
op =T+ 00" (Bp — 1)+ 0" (& — )] +v(®—x)"J,

then in particular at x = z*, we have

01,2(2%) = (I — v(a:*)v(x*)T) o (x*) +v(@)o(z™)T,
2,5 (z") =1 — U(x*)v(x*)T + v(x)v(gc)TCPm(x*).

Therefore, by noting VV (z*) = 0 again, (3.10) at z = * becomes
(3.11)

As v(x) is the eigenvector of the Hessian V2V (z), i.e., H(x)v(z) = A(x)v(z), it is
easy to verify that for each z, (I —v(x)v(z)")V2V (z)v(x)v(z)T = 0 holds. Thus, any
term in (3.11) without the Jacobian matrix ®, vanishes. So, (3.11) gives the following
linear equation:

(3.12) (H(a:*) — (a+ B))\(x*)v(x*)v(x*)T) D, (x*) =0,

which implies that ®,(z*) = 0 if and only if o + 8 # 1. O

The above theorem implies the important property of the proposed iterative min-
imizing formulation in section 3.1 if the energy function V has a higher regularity C.

COROLLARY 3.2. Under the assumptions of Theorem 3.1, assume that V(z) €
C*H(R%;R); then the iterative scheme x*t1) = ®(x(¥)) has ezactly the second order
(local) convergence rate.

Proof. Since V is C%, it follows that V,L has the regularity C? and is in the
neighborhood Y. It follows that ®(x) is continuously differentiable at z* based on the
second order pseudoexpansion [2] for the first order equation VL = 0.

Since @, (z*) = 0, there is a neighborhood of z* such that ||®,(x)]| is strictly less
than 1 in this neighborhood. Thus, the local convergence comes from the contraction
mapping principle.

The second order convergence rate is due to the fact that the Jacobian matrix
&, (x*) vanishes. One can carry out further calculations and observe that the second
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derivative of ®(z) at * does not trivially vanish. So, the iteration x — ®(z) locally
converges to x* exactly at the quadratic rate. O

For the quadratic example in section 3.1, we have the following trivial result.

COROLLARY 3.3. If V(z) = %xTHx, where H is a constant symmetric matrix
and has only one negative eigenvalue, then ®(x) = 0 for all x when «, 5 in Theorem 3.1
satisfy o + 5 > 1.

We remark that the ®(x) is well defined in a local neighborhood of z*. In im-
plementations, the local solution of the new objective function L(y;z®)) in (3.5) is
pursued with the initial guess yo = x(®). This choice of the initial guess is not only
very simple to pick up but also excludes the possibilities of overshooting to other local
solutions which are not relevant to the saddle point of interest.

3.3. Solve subproblem of minimization. The iterative minimization formu-
lation (3.1) consists of solving a subproblem of minimization at each iteration. Corol-
lary 3.2 suggests that the quadratic convergence rate is achieved when the subproblem
is solved exactly and the correct local minimizer is found. In practice, one may not
need to solve the subproblem of the minimization exactly or with high accuracy, and
the superlinear convergence might be achieved in certain circumstances. Many ex-
isting eigenvector-following methods like the dimer method could be viewed as some
special discretization for the subproblem. We just present a result about the connec-
tion of the GAD and the iterative minimization formulation.

THEOREM 3.4. Assume z®) is near the index-1 saddle point x*. Suppose that
one solves the subproblem min, L(y; =™ a, B) in Theorem 3.1 by only one single steep
descent method with the step size dt,

(3.13) g5 = o) _ 517, L(a®; 2™ o, B).

Then the sequence {x®)} is the discrete solution of the Euler method with the time
step t for the following version of the GAD:

(3.14) &= -VV(z)+ (a+ B)l VV(z).
Proof. The conclusion is obvious by noting the following and the fact in (3.7):

Th1 = T — 0t VyL(zk; 2k, @, B)
=z — 6t((1 — ) VV (k) + a(l — v(zp)v(zk) TVV (21))
— Bv(a:k)v(a:k)TVV(a:k)). O

Remark 1. If the subproblem for the direction v is also solved by the steepest
descent method, then (z(®), v(*)) corresponds to the original version of the GAD (2.1).

The subproblem at each iteration consists of the minimization for the position and
the direction. Some fast algorithms have been developed for solving the min-mode
direction, in particular, where the Hessian is not explicitly available and the force is
calculated from the first principle [17]. The new numerical challenge in implementing
the iterative minimization formulation efficiently is the minimization of L for the
position to get new z(*+t1). Of course, one is not limited to using the steepest descent
method to solve this subproblem as in Theorem 3.4. For example, the conjugate
gradient (CG) method can be applied with a certain level of tolerance. Details about
these accelerating techniques will be postponed to a separate paper.

We now discuss the choice of two parameters a and S in our formulation. Theo-
retically by Theorem 3.1, the condition that a4+ 5 > 1 is sufficient for the algorithm
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to achieve the local quadratic convergence. In practice, a better choice of a and g
may help reduce the condition number of the subproblem, which is the ratio of the
maximum eigenvalue and the smallest eigenvalue of the Hessian VgL. The calculation
in the proof of Theorem 3.1 has shown that at the saddle point x*, the eigenvalues of
VjL are (1 —a — B)A1, A2, Az, ..., Ag where A} < 0 < Ay < -+ < )\q are eigenvalues
of V2V (z*). Hence, to minimize the condition number of V2L, the optimal choice of
« and B needs to satisfy l

A
22 i1t oL
A1

1+ :
|A1]

and the resulting optimal condition number is A;/A2. In practice, a rough estimate
of Ay may be used to select the parameter o 4+ 3 at each iteration.

When the initial guess of the iterative method is in the convex region of the
original energy function, for example, a local minimum, the function L will have
no lower bound locally and the minimization subproblem does not have a solution.
One can handle this situation using the traditional techniques implemented in many
eigenvector-following—type methods. One simple remedy is to seek the solution only
within a ball or hypercube of a proper size near the current z(*). Such remedies are
not necessarily needed when \; is negative.

4. Saddle points on manifold. In some applications, the configuration of the
system may be subject to one or more constraints, for instance, the conservation laws
of some physical quantities. Suppose that these constraints realize a Riemann mani-
fold M embedded in R?. The index-1 saddle point of the energy function restricted
on M is still the transition state of interest. The calculation of the saddle point on
the manifold calls for the attention to the constraints associated with the manifold. In
this section, we want to extend the GAD and iterative minimization formulation onto
the manifold M. This goal can be easily achieved for the GAD by a simple projec-
tion procedure, as in [8, 26], but it requires extra work for the iterative minimization
formulation.

We assume that the manifold M is characterized by p (independent) equality
constraints: ¢;(x) =0 for i = 1,2,...,p, where ¢; are R? — R smooth functions. To
maintain the right mix of abstraction and concreteness, we use the extrinsic variables
2 in R? for M. The tangent space T, at each point z of the manifold M is thus the
orthogonal complement in R¢ to the normal space spanned by the gradients of the
p constraints, span{Ve¢;(z),i = 1,2,...,p}. The concepts of the local minimum and
the index-1 saddle point of the smooth energy function V(z) can be extended to the
manifold case without any difficulty [1]. We skip the rigorous math definitions since
these concepts are quite intuitive.

We start with the calculation of the eigenvector v in the tangent space 7T, corre-
sponding to the smallest eigenvalue of the (projected) Hessian matrix of the energy
function V. This direction v minimizes the Rayleigh quotient among all possible
vectors in Ty:

v=argmin u'V2V(z)u,
|ul|l=1,u€T,
or, equivalently,
(4.1) v = argmin {uTVQV(a:)u‘ (Vei(z),u) =0Vi=1,2,... ,p}.

[|[u||=1,ucR
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The steepest descent flow of this constrained minimization problem is
yo = Iz, [VZV(x)v] + n,

where L7, is the orthogonal projection of R? to the vector space 7, and the scalar n =
<1'[Tz [VZV(x)v] ) v> is to enforce the unit length of v. Many existing fast algorithms for
the original rotation step to solve v in R? can be readily modified for the constrained
problem (4.1).

Next, we discuss the dynamics or the iterations for the position variable x. For
the dynamics of x in GAD, we can simply project the GAD force (—I 4 2vvT)VV (2)
onto the tangent space 7T, i.e.,

@ =17, [(-1+ ZUUT)VV(QJ)];

then the trajectory of the GAD stays on the manifold M all the time. However, for
the iterative minimization formulation (3.1), the need of projection on M complicates
our discussion. Specifically, for a given x € M and v € T, one must find a geodesic
curve on M by following the geodesic flow which can be described in terms of these
constraints functions ¢;(z) [3]. Let £(s) (s € R) be the geodesic curve satistying £(0) =
x and &'(0) = v. For each point y € M near z, under some mild condition, we can
define the projection of y onto the geodesic € as £(s,), where s, £ argmin, dist(£(s), ).
Here “dist” is the distance between two points of the manifold M: the infimum of the
lengths of all continuously differentiable curves on M joining these two points. The
argument of the Wy function is then the point which has minimal distance on M to
the curve £(s), i.e., the “projection” of y to {. Therefore, the formula of Wy on M is

(4.2) Wa(y) = =2V(£(sy))-

In principle, the same strategy can be applied for the W; function where one should
use the minimal distance to the set of geodesic curves whose tangents are in 7, but
orthogonal to v.

In a nutshell, the iterative minimization scheme on the manifold M specified by
the p constraints ¢;(x) = 0 can be written as follows:

(4.3a) v*+Y) = argmin {uTVZV(x(kH))u | <Vci(x(k)),u> =0 Vi},
llull=1,ucRd

4.3b) | 2%+Y = argmin {V(y) +WE () [ eily) =0Vi=1,2,. ..,p},
yeU (z (k)

where W *) (which depends on z(¥) and v(*+1)) is defined through the above-mentioned
W1, Wy, or their linear combination in the same way as in Theorem 3.1. To illus-
trate the above idea, the example of the sphere S? in R? is presented in section 6.3.
The numerical result for a quadratic energy function on this manifold shows that the
iterative scheme (4.3) also has the quadratic convergence rate.

5. Saddle with higher index. Reference [11] about the GAD has extended
from the index-1 saddle point to saddle points of index m for the m > 1 case with the
help of a dilation technique. Our new iterative minimization formulation proposed
above for the index-1 saddle can also be extended to the case of saddles with index
greater than 1. Suppose that one has found m eigenvectors of the Hessian matrix
V2V (x), v1,v2, ..., Um, corresponding to the m smallest eigenvalues, respectively. We
denote S as the set of all subsets of {1,...,m} except the empty set. For every s € S,
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we have s = {iy,...,ix} C{l,...,m} withk<mand 1 <i; <--- <ir <m . The
projection onto the plane spanned by k column vectors {v;, , vs,, . .., v;, } is associated
with the following matrix:

T
i1
ol

Mo=VoVI = [ v, v - vy || O
-
v,
Let I+ = I—1II,. The objective function for the subproblem, which is a generalization
to (3.5), is now given by

L(y;z,a, B) = (1 -3 as> V(y) + Y asV(z+11; (y — )

(51) ses sesS

- ZBSV(CC +1s(y — 2)),

seS

where oo = (a5)ses and B = (8s)ses. For example, the function (5.1) in the index-2
case is

Ly;z,,8) = (1 — a1 —az — a12)V(y)
+oqV (z+1{(y — 7)) + @V (z+ Hy (y — 2)) + a1V (z + I (y — 2))
- 61‘/ (ZIJ + H1 (y — $)) — ﬁQV (33 + Hz(y — 33)) — ﬁl)zv (ZIJ + Hl)z(y — 3})) .

In parallel to Theorem 3.1, we have the following theorem for the index-m case. Its
proof is similar to the proof of Theorem 3.1 but technically lengthier and thus is
skipped.

THEOREM 5.1. Assume that V(x) € C*(R%;R). For each x, let vi(x),. .., vm(z)
be m normalized eigenvectors corresponding to the smallest eigenvalues of the Hessian
matriz H(z) = V2V (x), i.e.,

[vi(x),...,vm(x)] = argmin trace U V2V (z)U.
U=[u1,...,um ), UTU=I

The function L(y;z,«,3) of the variable y is defined as in (5.1), and it is assumed
that

Z(ozs—FBS) > 1.

ses

Suppose that x* is an index-m saddle point of the function V(z). Then the fol-
lowing statements are true.

(i) z* is a local minimizer of L(y;x*, a, B).

(ii) There exists a neighborhood U of x* such that for any x € U, L(y;z, o, B) is
strictly conver in y € U and thus has a unique minimum in U. We define
®(x) to be this minimizer for the given x.

(ili) The mapping ® has only one unique fized point x* in U.

(iv) The mapping ® is differential in U. The Jacobian matriz of ® vanishes at
T*; e,

O, (x*) =0.
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As a consequence of the above theorem, the iterative scheme

y
D D] = argmin trace UTV2V (MU
U=[u1,...,um),UTU=I

converges to the index-m saddle point z* quadratically if the starting point z(9) is
close enough to x*.
6. Examples.

6.1. A simple two-dimensional example. First, we review a two-dimensional
example from [11]:

1 1
Viz,y) = 7(* = 1%+ Sy,

where p is a positive parameter. For this system, x+ = (41,0) are two local minima,
and (0, 0) is the index-1 saddle point. The eigenvalues and eigenvectors of the Hessian
matrix at a point (z,y) are

M =322—-1 and v, = (1,0),
A2 =p and vy = (0,1).

Note that when |z| < v/ H'T”, A1 <0 < Ag. The min-mode is vy if |z] < V/ H'T” and is

vg if |z| > \/HT”.

Suppose that at iteration k, the position is (zx, yx). Then, the modified objective
functions V 4+ W7 and V + Wy in the iterative minimization formulation are defined
as follows:

VAW = —1@? — 12 + Suy® + (2 — 1) if [zf < /152

k . /1+
‘/ Mll( ) — 1(1;2 ])2 % y2 yi 1f |ZII| > 13;1’
k . /1+
‘/ ”72( ) — l($2 1)2 ; yQ yl% 1f |$| < 13;1’

k .
VW = 4@ = 1)2 = duy? — S - 1) if | > (/42

These are piecewise continuous functions, and the difference between W; and Ws is

only a constant. In the domain where |z| < min(1, HT“), the original saddle (0,0)
is the unique interior minimal point. Outside of this domain, the modified function
V + Wy or V 4+ W5 has no lower bound. So, the iterative minimizing formulation

works only when the initial guess satisfies 2| < v/ 2.

6.2. The three-hole example. In this example, we study a two-dimensional
energy function from [22, 19], where there are three local minima. The formula of
this energy function is

V(z,y) = 3o @~ (W=3)" _ 3,727~ (w=5)" _ 5oa-1?—y® _ g (z+1)?—y?

4
1
+0.22* 4+0.2 (y — g) .
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Fic. 1.  The three-hole potential: Three minima (black dots) approximately at (£1,0)
and (0,1.5), a mazimum (x) at (0,0.5), and three saddle points (x) at (0,—0.31582) and
(£0.61727, 1.10273).

We refer the reader to Figure 1 for its contour plot.

SP1 = (0,—0.31582) and SP2 = (—0.61727,1.10273) are the two saddles of inter-
est. We first demonstrate the quadratic convergence when the initial guess is near the
saddle points. Table 1 shows the errors at each iteration, from which it is observed
that the iterative scheme has the quadratic convergence rate.

TABLE 1
Errors of six runs with random initial guesses on the circle of radius 0.2 with the center at the
target saddle point. Different values of (a, 8) for the modified objective functions in the subproblem
are shown in parentheses in the first row of the table. The three runs on the left converge to SP1,
and the three runs on the right converge to SP2.

Tter (2,0) (0,2) 1,1 (2,0) (0,2) 1,1
1 5.042e-002 | 2.979e-002 | 2.924e-002 1.672e-002 | 3.024e-002 | 4.342e-002
2 1.376e-005 | 5.470e-004 | 1.671e-004 || 9.327e-006 | 3.445e-004 | 3.194e-004
3 7.245e-011 | 2.573e-008 | 2.434e-008 || 2.527e-011 | 1.116e-008 | 1.233e-008
4 5.023e-016 | 5.551e-016 | 3.951e-016 || 2.482e-016 | 3.886e-016 | 4.965e-016

If the initial guess is close to the local minima of V', then the Hessian of V at
the initial point is positive-definite, while the modified objective function L has one
negative eigenvalue and has no lower bound. As discussed in section 3.3, we set a
maximum step size 0.25 in both the z- and the y-direction at each iteration to maintain
the stability at this initial stage. Table 2 shows the result for initial points which are
0.1 away from (—1,0), one of the two deep minima. Some runs converge to SP2,
and others converge to SP1. It is observed that at the first few steps, the decreasing
of the errors is slow, but when it approaches the saddle, the smallest eigenvalue of
the Hessian becomes negative, and it follows that the iterative minimization method
starts to show quadratic convergence.

We also test the effects of the inexact solution of the subproblem. In solving the
subproblem by the CG method, we perform only three steps of the CG iteration. The
initial guesses are chosen on the circle centered at the saddle points with 0.2 radius.
The results are shown in Table 3 with two different parameter sets (o« = 2,3 = 0 and
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TABLE 2
Errors of six random runs with initial guesses on the circle of radius 0.1 with the center at the
local minimum (—1,0). The three runs on the left converge to SP1, and the three runs on the right
converge to SP2.

[ter (2,0) (0,2) (1,1 (2,0) (0,2) (1,1

1 8.434e-001 | 8.568e-001 | 8.496e-001 1.160e+4-000 | 1.170e+000 | 1.262e+4-000
2 6.891e-001 | 7.026e-001 | 6.954e-001 9.922e-001 9.970e-001 1.077e+-000
3 5.731e-001 | 5.858e-001 | 5.790e-001 8.512e-001 8.537e-001 9.464e-001
4 5.216e-001 | 5.317e-001 | 5.263e-001 6.983e-001 6.939e-001 8.020e-001
5 3.862e-001 | 3.848e-001 | 3.841e-001 5.273e-001 5.028e-001 6.397e-001
6 1.776e-001 | 1.740e-001 | 1.742e-001 3.391e-001 3.030e-001 4.542e-001
7 1.983e-002 | 4.266e-002 | 1.987e-002 1.511e-001 1.291e-001 2.569e-001
8 7.314e-007 | 3.343e-004 | 2.834e-004 2.975e-002 1.207e-002 8.031e-002
9 3.756e-012 | 9.654e-009 | 4.088e-008 2.093e-006 2.879e-005 3.919e-003
10 6.810e-016 | 7.773e-015 1.734e-015 1.912e-011 7.345e-006
11 3.140e-016 2.745e-011

TABLE 3
Errors of four runs with random initial guesses on the circle of radius 0.2 with the center at the
target saddle points. Use a three-step nonlinear CG method to solve the subproblem of minimization
inezactly. The two runs on the left converge to SP1, and the two runs on the right converge to SP2.

Tter | (2,0) ©.2) 2.0) ©.2)

1 4.476e-02 | 2.723e-02 5.096e-02 1.877e-02
1.262e-04 | 3.256e-04 7.756e-05 8.386e-04
2.863e-08 | 6.047e-06 1.270e-09 4.176e-05
5.317e-13 | 3.316e-10 7.830e-13 1.8827e-09
7.325e-13 4.3853e-11

T W N

a = 0,5 = 2). In comparison to the case of an exact solution for the subproblem in
Table 1, the efficiency of the algorithm is not affected much, and the local convergence
rate is still quite close to the second order.

In the end, for this two-dimensional example, we plot the domain of attraction
for our algorithm to compare with the performance of the Newton method. Note that
our purpose here is to look for index-1 saddle points. We choose initial guesses from
50 x 50 grid points uniformly in the rectangular region [—1.5,1.5] x [—1.5,2.0]. These
points are labelled in Figure 2 by three different marks in three colors, according to
which saddle point (shown by a cross symbol in the same color as that of its initial
guesses) they converge to, respectively. The grid point is left blank in the case of
no convergence. The figure demonstrates that our iterative minimization formulation
(IMF) scheme has a larger (and continuous) domain of attraction for each saddle point
than the Newton method.

6.3. A quadratic function on the sphere S§2. We illustrate the proposal in
section 4 for the constrained problem by considering a simple example of M = $§2
embedded in R? on which a quadratic energy function V (z1, 22, v3) = 2 + 223 + 322
is defined. The constraint is that =} + 23 + 23 = 1. It is easy to verify that saddle
points (0,+1,0), minimizers (£1,0,0), and maximizers (0,0,+1) of V are generated
due to this constraint.

As mentioned in section 4, for a given x € S% and v € T,(S?), the projection
of a point y on S? is associated with a geodesic curve £(s). Here the geodesic &
is simply the great circle passing the point = along the direction v. Thus £ can
be written in the parametrized form £(0) = zcosf + vsinf. It follows that the
geodesic distance dist(£(6),y) = arccos(£(0),y) achieves the minimum at 6§ = 6,,
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Fic. 2. Comparison of domains of attractions of saddle points for our IMF and the Newton
method.

where 6, is equal to arctan é z; or arctan é ; + 7, depending on which value gives

smaller distance. Then the projection pomt of y is xcosf, + vsinb,. So we have
Wa(y) = —2V (z cos by, + vsinb,) for this S? example.

Next we also derive the W, expression for this S? case. Since the tangent space
T.(S?) is two-dimensional, the orthogonal complement of v in this space is spanned by
just a single vector, denoted as . It follows then that Wy (y) = —2V (y)+2V (x cos 6, +
vsin 9‘ ), where 91, is defined similarly to 6, by replacing v by .

The numerical results based on the constructlon of the above Wy and Wy are
presented in Table 4. The initial guess is 0.1 distance to the minimum point (1,0, 0).
The numerical data of the errors between the solution and the true saddle point in this
table again confirm the quadratic convergence rate. We remark that it is important to
use the projection associated with the geodesic curve in the above construction of Wy
and Wj. One alternative idea might be to use the projection in the Euclidean space
R? as if there were no constraints, and then pull back to S2. For instance, one may use
the following: Wa(y) = —2V(R,(v" (y — x)v)), where R, (u) = H;i—ZH is a retraction
mapping the tangent space 7, to the sphere S?. However, our numerical result for
the same example here shows that this choice gives only a linear convergence rate.
The missing curvature information of the manifold in this naive orthogonal projection
approach seems to be the reason for lowering the convergence order.

TABLE 4
Errors of S? example.

Iter 1 2 3 4 5
V 4+ Wi | 1.3900e+00 | 2.3217e-01 | 1.4234e-03 | 2.0994e-08 | 1.7684e-15
V + Wsa | 1.2902e400 | 5.6506e-01 | 6.5923e-02 | 8.7484e-06 | 1.2433e-16

6.4. An atomic model system. This is an application of our method to the
celebrated test problem of a 7-atom island on the (111) surface of an FCC metal [12].
In this example the structure has a 6-layer slab, each layer of which contains 56 atoms,
and 7 atoms at the top of the slabs. The bottom three layers in the slab are frozen.
There are in total 56 x 3 + 7 = 175 atoms that are free to move. All of the atoms in

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/26/17 to 144.214.109.171. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1802 WEIGUO GAO, JING LENG, AND XIANG ZHOU

t?k?&?k’&,&’&:
?L?L?L’L?k'&.l
V@@ .
BB~ A AT —
'.I. i

AAT

'.“ y ‘0.0.‘
'&.:".:.:.k'.
:.:.k.&'k.l.L‘
‘L‘&:k:&:&:&:l

Fi1a. 3. The 7-atom island model. Two local minima and two saddle points are shown, denoted
as MIN1, SP1, MIN2, SP2, respectively.

this simulation are identical.
The interaction between the atoms is the simple pairwise additive Morse potential

V(R) — A[e—2a(R—R0) _ Qe—a(R—Ro)]

with parameters chosen to reproduce diffusion barriers on platinum surfaces (A =

0.7102¢V, a = 1.60474 ', Ry = 2.89704). This potential is cut and shifted by V(Rc¢),
where Rc = 9.5A4 is the cut-off distance. The minimum energy lattice constant
2.74412A is used.

In Figure 3 we show two local minima as well as two saddle points. All saddle
points lead from the close packed heptamer (shown in red) to some adjacent state.
We applied our iterative minimization method to this large-scale system. The initial
guess of position is chosen near the minima, and the initial direction is randomly
selected. The eigenvector corresponding to the minimum eigenvalue is solved by an
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efficient method proposed in [17]. The maximum step size in the subproblem for the
position is set as 0.2. In this implementation, we used the nonlinear CG method with
the tolerance set to 1076 so that the subproblem is solved accurately enough. The
accuracy of each entry in the force at the numerical saddle points we found is between
10719 and 107!, The error is then defined as the Euclidean distance from the current
position to the saddle points.

The numerical results are presented in Table 5. Since our initial guess is very close
to the local minimum, it is not surprising that the first several iteration steps have
a slow decay of the errors since the effect of following the eigenvector of the smallest
eigenvalue has not kicked in. The fast convergence rate is observed as expected at the
subsequent stage. In this example, the exact solver for each subproblem was used in
Table 5; thus the computational overhead is large, compared with other algorithms
requiring no subproblems to solve. We also introduced a simple inexact solver by lim-
iting only two iterations of CG for the subproblem. The resulting convergence rate
deteriorates due to inexact solver and linear convergence is observed. The right bal-
ance between the fast convergence rate and the large computational overhead requires
a careful design of the tolerance in the inexact solver.

TABLE 5
Errors of six runs with random initial guesses near the local minima as well as with different
auziliary potentials. The three runs on the left start from the initial guesses near MIN1 and converge
to SP1. The three runs on the right start from the initial guesses near MIN2 and converge to SP2.

Iter | V4 Wy VW, | 2T V + W V4 W AW+ Wo

1 2.014e+000 | 1.832e+4-000 | 1.803e+-000 1.633e+-000 | 1.695e+000 1.521e+4-000
2 1.837e+000 | 1.695e+000 | 1.760e+000 1.599e+4-000 | 1.575e+000 1.488e+-000
3 1.729e+4-000 | 1.575e+4000 | 1.693e+4-000 1.535e4-000 | 1.314e+000 1.433e+4-000
4 1.621e+000 | 1.315e+000 | 1.603e+000 1.446e+-000 8.668e-001 1.336e+-000
5 1.454e+4-000 | 8.668e-001 1.536e+4-000 1.312e+4-000 4.061e-001 1.167e+4-000
6
7
8
9

1.345e+000 | 4.496e-001 1.420e+-000 1.114e+-000 2.897e-001 9.808e-001
1.129e+4-000 1.605e-001 1.205e+4-000 9.250e-001 1.875e-001 7.974e-001
6.903e-001 3.335e-001 1.009e+-000 7.405e-001 1.072e-001 6.113e-001
3.189e-001 8.653e-002 8.068e-001 5.605e-001 5.076e-002 4.407e-001
10 2.552e-001 9.040e-003 6.063e-001 3.855e-001 5.951e-003 2.679e-001
11 1.297e-001 3.398e-005 4.252e-001 2.016e-001 8.782e-006 1.058e-001
12 1.170e-002 6.333e-008 2.526e-001 3.005e-002 1.132e-007 1.903e-002
13 1.536e-004 2.641e-010 1.011e-001 5.290e-004 1.579e-009 5.277e-004

14 9.017e-008 1.141e-002 1.367e-008 8.758e-007
15 3.907e-010 1.487e-004 1.135e-009 3.347e-008
16 7.792e-008

7. Concluding remarks. This paper presents a new formulation of iterative
minimization to the saddle search problem. In this formulation, the problem is solved
by iteratively solving a sequence of minimization subproblems. At each iteration,
the rotation step of determining the softest eigenvector v is followed by a nonlinear
optimization for the subproblem to update the z variable. We have proved the local
quadratic convergence rate of the new scheme. This scheme is closely connected to
the gentlest ascent dynamics (GAD) and other eigenvector-following algorithms such
as the dimer method. However, our subproblem is not limited only on the direction v,
but includes the information of the original energy function in all directions to update
the x variable in configuration space. The quadratic convergence rate theoretically
established here is promising for further numerical improvement in practice and indi-
cates that this would be the best rate for eigenvector-following—class algorithms. In a
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forthcoming paper, we shall address the implementation of efficient algorithms based
on this formulation. We are also interested in the saddle points of the free energy
landscape in collective variables, where the free energy function V is not known, but
the force, the Hessian, and even the third order perturbation can be simultaneously
computed from one single, but expensive, run of constrained molecular dynamics [18].
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