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Among numerical methods for partial differential equations arising from steepest descent 
dynamics of energy functionals (e.g., Allen–Cahn and Cahn–Hilliard equations), the convex 
splitting method is well-known to maintain unconditional energy stability for a large time 
step size. In this work, we show how to use the convex splitting idea to find transition 
states, i.e., index-1 saddle points of the same energy functionals. Based on the iterative 
minimization formulation (IMF) for saddle points [14], we introduce the convex splitting 
method to minimize the auxiliary functional at each cycle of the IMF. We present a general 
principle of constructing convex splitting forms for these auxiliary functionals and show 
how to avoid solving nonlinear equations. The new numerical scheme based on the convex 
splitting method allows for large time step sizes. The new methods are tested for the one 
dimensional Ginzburg–Landau energy functional in the search of the Allen–Cahn or Cahn–
Hilliard types of transition states. We provide the numerical results of transition states for 
the two dimensional Landau–Brazovskii energy functional for diblock copolymers.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

For an energy functional, both its local minimizers and its unstable saddle points have important physical meanings 
for many problems in physics, chemistry, biology and material sciences. The local minimizers correspond to the stable 
configurations in physical models, and they manifest themselves as steady states of the gradient flow driven by the energy. 
For the spatially extended systems, these flows appear mathematically as the time-dependent partial differential equations 
(PDEs). These PDEs reflect the true physical dynamics of relaxations and they also serve as a convenient computational 
model to calculate the stable steady states. For instance, as the well-known phase separation and transition models, the 
Allen–Cahn (AC) [1] and Cahn–Hilliard (CH) [4] equations are the steepest descent dynamics of the Ginzburg–Landau energy 
functional under L2 and H−1 norms, respectively. Besides the local minima, the other critical points on an energy surface 
also play crucial roles for certain problems, such as the energy-barrier activated processes which escape from local minima 
by crossing saddle points. The infrequent hoppings between neighboring local minima, although randomly, occur in a quite 
certain style of travelling through transition states. These transition states, as the bottlenecks on the pathways of activated 
processes, belong to a class of saddle points with index one, i.e., the unstable critical point whose Hessian has only one 
negative eigenvalue.
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In this paper, we are interested in how to find these index-1 saddle points for a given smooth energy functional. The 
search for transition states, or index-1 saddle points, faces many challenges. A large number of numerical methods have been 
proposed and developed to address these challenges. There are also many applications of these algorithms in computational 
chemistry and material sciences. Refer to [33,41] for review of this topic. One class of numerical methods is to search the 
so-called minimum energy path (MEP). The points along an MEP with locally maximal energy value are then the index-1 
saddle points. These path-finding methods include [8,9] and [23,20]. The other class of methods is to evolve a single state 
on the potential energy surface. The essential question is how to define some dynamics on the energy surface to converge 
to index-1 saddle points without knowing multiple local minima a prior. The intuitive idea of using the softest direction 
(corresponding to the minimal eigenvalue of the Hessian) to invert the force component along this min-mode direction 
proves very useful ([21,32]) and it was proposed probably as early as in 1970s in [7,6]. Many well-known algorithms 
and softwares such as the dimer method ([18,24,40]) or the activation–relaxation techniques ([31,30,5]) are based on this 
min-mode-following idea.

The underlying dynamics of these min-mode-following algorithms has been rigorously formulated and analyzed in [10]. 
This dynamics, with the name “gentlest ascent dynamics” (GAD), simultaneously evolves both a position variable and a 
direction variable. By analyzing the eigenvalue of the GAD, [10] proved the locally linear convergence to saddle point. To 
accelerate the convergence rate, a discrete iterative mapping, named the “iterative minimization formulation” (IMF), has 
been proposed in [14]. IMF has three advantageous features: (1) it has the quadratic convergence rate for non-degenerate 
saddle points; (2) it turns the problem of searching unstable saddle points into a series of minimization subproblems; 
(3) there is no restriction for numerical methods to solve minimization subproblems in the IMF. The only important issue 
in practice for better efficiency is to use the adaptive stopping rule in solving the subproblems. For a thorough discussion 
of the practical algorithms based on the IMF, the readers can refer to [15].

The advantages and flexibilities offered by the IMF immediately provide many new opportunities to explore the existing 
methods which were designed for searching local minima. The convex splitting method, originally proposed in [12], suc-
cessfully gives unconditionally energy stable schemes to ensure a large time step size. The effectiveness of this method in 
resolving gradient dynamics as well as calculating the minimizers has been demonstrated by a vast number of applications, 
for example, the phase field model in [13], the phase field crystal model in [38], the thin film epitaxy model in [34], the 
binary fluid surfactant model in [16], as well as many others ([35,36,39,22]).

In this paper, our motivation is to test the performance of the convex splitting method if this strategy is used to locate 
the saddle point. As we mentioned earlier, the IMF solves the saddle point problem by solving a series of minimization 
subproblems, and these subproblems can be solved by running the steepest decent dynamics. Since the outer iteration 
of the IMF (referred as “cycle” in [14,15]) is of quadratic convergence rate and it usually only takes a few cycles in 
practice to reach the desired accuracy, then one can expect that a better method for the subproblem may gain a better 
speedup in efficiency. The benefit of the convex splitting idea here is that the subproblems can be solved by a large time 
step size. Therefore it takes less steps in each cycle to improve the overall efficiency of locating the saddle point in the 
IMF.

The idea of the convex splitting method is quite simple, but there are two important practical issues when applied to 
specific problems. The first is the construction of a convex splitting form for a given energy functional. In theory ([12]), 
there always exists a convex splitting form for any continuous functional. The explicit decomposition has to be sought for 
specific problems. The second is that one should try best to construct a linear time-implicit term in the convex spitting 
scheme since this can avoid solving a nonlinear system at each time step.

The contributions in our work of applying the convex splitting method to saddle point search problems include the fol-
lowing: (1) for any given convex splitting form of the original energy functional, we show how to obtain the corresponding 
convex splitting form of the auxiliary functional in the IMF. This means that we design an automatic procedure from the 
traditional convex splitting method for local minimizers to the convex splitting method for saddle points; (2) we shall see 
later that the auxiliary functional in the IMF consists of multiple terms involving the original energy functional. By adapting 
different convex splitting forms for different terms in the auxiliary functional, we can ensure the time-explicit discretization 
for nonlinear terms and obtain a linear system. We demonstrate how to achieve this by the examples of Ginzburg–Landau 
energy functional and the Landau–Brazovskii energy functional. The condition is that one need to know at least one convex 
splitting form with the time-explicit nonlinear term for the original energy functional.

The rest of the paper is organized as follows. In Section 2, we review the IMF for the saddle point search problem 
and the convex splitting method. In Section 3, we construct the convex splitting method for saddle point search problems 
and discuss numerical issues. Section 4 presents the detailed numerical schemes and substantial numerical results for the 
Ginzburg–Landau energy functional in the L2 and H−1 metric, respectively, subject to the Neumann or periodic bound-
ary condition and the Landau–Brazovskii energy functional with periodic boundary condition. The conclusion is drawn in 
Section 5.

2. Review

In this section, we review two foundations of our method, which were born apparently from two different areas.
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2.1. The IMF for the saddle point search

We first recall the iteration minimization formulation (IMF) in [14]. Let M be a Hilbert space equipped with the norm 
‖·‖ and the inner product 〈·, ·〉. Suppose that V (x) : M → R is a sufficiently smooth potential function, then the IMF is the 
following iteration for the position variable x and the direction variable v⎧⎪⎪⎨⎪⎪⎩

v(k+1) = argmin
‖u‖=1

〈
u, H(x(k))u

〉
, (a)

x(k+1) = argmin
y

L(y; x(k), v(k+1)), (b)
(2.1)

where

H(x(k)) = ∇2 V (x(k)),

and

L(y; x(k), v(k+1)) = (1 − α)V (y) + αV
(

y − (v(k+1) ⊗ v(k+1))(y − x(k))
)

− βV
(

x(k) + (v(k+1) ⊗ v(k+1))(y − x(k))
)

.
(2.2)

α and β are two parameters and α + β > 1. Two special choices for α and β are: (i) (α, β) = (2, 0), then L(y; x, v) =
−V (y) + 2V (y − (v ⊗ v)(y − x)); (ii) (α, β) = (0, 2), then L(y; x, v) = V (y) − 2V (x + (v ⊗ v)(y − x)). So, the general form of 
L in (2.2) should be a linear combination of three terms involved in these two extreme cases and furthermore the coefficient 
of the first term V (y) is determined to be 1 − α by examining the Hessian ∇2

y L(y = x; x, v). The main properties of the 
auxiliary objective function L(y; x, v) when α + β > 1 are listed here for reference.

Theorem 1 ([14]). Suppose that x∗ is a (non-degenerate) index-1 saddle point of a C4-function V (x), i.e., its all eigenvalues are 
λ1 < 0 < λ2 ≤ · · · , and the auxiliary function L is defined by (2.2) with α + β > 1, then
(1) there exists a neighborhood U of x∗ such that for any x ∈ U , L(y; x, v) is strictly convex in y ∈ U and thus has a unique minimum 
in U ;
(2) define the mapping � : x ∈ U → �(x) ∈ U to be the unique minimizer of L in U for any x ∈ U . Then the mapping � has only one 
fixed point x∗;
(3) the mapping x → �(x) has a quadratic convergence rate.

The IMF includes two-level iterations. The top level is x → �(x), referred as “cycle”. The k-th cycle means the step of 
x(k) → x(k+1) = �(x(k)), which in practice consists of a second-level iterative procedure to solve (2.1)a for the min-mode 
(the so-called “rotation step”) and (2.1)b to update the position (“translation step”). The rotation step is a classical numerical 
eigenvector problem, for which many methods have been constructed such as the power method ([10]), the conjugate 
gradient method ([19,21]), the Lanczos algorithm ([31,30,5]) and the LOR in [26].

We are interested in spatially extended systems, i.e., M is a function space and V is actually a functional on M. As a 
convention, we use F (φ) rather than V (x) below to represent the functional of a spatial function φ.

2.2. Convex splitting method

Let φ(x, t) : [0, 1] ×R
+ →R be the solution of the following PDE driven by the gradient flow

∂φ

∂t
= −δF

δφ
(φ), (2.3)

subject to certain boundary condition at x = 0 and 1. F is a sufficiently smooth free energy functional bounded from below. 
δF
δφ

is the first order variational derivative of F (φ) with respect to φ. A convex splitting form of F (φ) means that two convex 
functionals exist, denoted by Fc and Fe , such that

F (φ) = Fc(φ) − Fe(φ), (2.4)

where “c” (“e”) refers to the contractive (expansive) part of the energy ([12]). Then the convex splitting scheme for (2.3) is

φn+1 − φn

	t
= −

(
δFc

δφ

(
φn+1)− δFe

δφ

(
φn)) , (2.5)

where φn ≈ φ(tn) is the numerical solution at the n-th time level tn = n	t and 	t is the time step size. The time-discrete 
scheme (2.5) has the property of the so-called unconditional energy stability, as stated in the following theorem.
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Theorem 2 ([38]). Suppose the free energy functional F (φ) can be split into two parts F (φ) = Fc(φ) − Fe(φ) as in (2.4). Then the 
time-discrete scheme (2.5) is unconditionally energy stable, meaning that for any time step size 	t > 0,

F (φn+1) ≤ F (φn), n = 0,1,2, · · · .

The convexity of Fc and Fe do not have to be valid in the whole configuration space. In practical applications, it only 
requires the convexity in bounded subsets of the configuration space, where the solution is known to be in.

3. Main method

Consider the 1-D spatial domain (a, b). The high dimensional case follows exactly the same idea. Let M be a function 
space on the interval [a, b]. For example, M is the Hilbert space H1([a, b]) or some other subspaces of L2([a, b]). Our goal 
is to find the transition states of the energy functional F on M.

Assume that the second order variational derivative (Hessian) of F in M, denoted by H(φ) := δ2 F (φ)

δφ2 , exists. We rewrite 
the IMF in Section 2.1:⎧⎪⎪⎨⎪⎪⎩

v(k+1) = argmin
‖v‖=1

〈
v, H(φ(k))v

〉
, (a)

φ(k+1) = argmin
φ

L(φ;φ(k), v(k+1)), (b)
(3.1)

where the auxiliary functional L is

L(φ;φ(k), v(k+1)) = F (φ) − αF (φ) + αF (φ − φ̃) − β F (φ(k) + φ̃), (3.2)

where we define

φ̃ := (v(k+1) ⊗ v(k+1))(φ − φ(k)) (3.3)

to ease the notation. The min-mode v(k+1) belongs to TM , the tangent space of M. u ⊗ v denotes the tensor defined by 
(u ⊗ v)φ = 〈v, φ〉 u for u, v ∈ TM .

3.1. Convex splitting method for minimizing the auxiliary functional L

We shall approximate the solution of the variational subproblem (3.1)b

min
φ

L
(
φ; φ(k), v(k+1)

)
at the k-th IMF cycle by the steady solution of the gradient flow associated with L,

∂φ

∂t
= − δL

δφ
. (3.4)

Note φ(k) and v(k+1) are fixed here. The solution at infinite time is well-defined if the lowest eigenvalue of L at φ = φ(k) is 
negative ([14,15]).

Next, we show how to construct the convex splitting scheme for equation (3.4). Our starting point is that a convex 
splitting form for F (φ) has been given, say,

F (φ) = Fc(φ) − Fe(φ). (3.5)

By substituting (3.5) into (3.2), we find the following convex splitting form for L

L(φ; φ(k), v(k+1)) = Lc(φ; φ(k), v(k+1)) − Le(φ; φ(k), v(k+1)), (3.6)

where

Lc(φ;φ(k), v(k+1)) =⎧⎪⎪⎨⎪⎪⎩
Fc(φ) + αFe(φ) + αFc(φ − φ̃) + β Fe(φ

(k) + φ̃), if α ≥ 0, β ≥ 0;
Fc(φ) + αFe(φ) + αFc(φ − φ̃) − β Fc(φ

(k) + φ̃), if α ≥ 0, β ≤ 0;
Fc(φ) − αFc(φ) − αFe(φ − φ̃) + β Fe(φ

(k) + φ̃), if α ≤ 0, β ≥ 0,

(3.7)

and Le(φ; φ(k), v(k+1)) is defined likewise by exchanging the subindices “e” and “c” in (3.7). Note that φ̃ has been defined 
in (3.3).
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Property 3. Lc(φ; φ(k), v(k+1)) and Le(φ; φ(k), v(k+1)) defined above are all convex with respect to φ for any φ(k) and any v(k+1) .

Proof. We only prove the case when α ≥ 0, β ≥ 0 since the other two cases can be proved similarly. The proofs of the 
convexity for Lc and Le are the same, thus it suffices to only show that two special terms Fc(φ − φ̃) and Fe(φ

(k) + φ̃) in 
(3.7) are both convex in terms of φ. Denote the Hessian of Fc(φ) and Fe(φ) by Hc and He , respectively, then both Hc and 
He are semi-positive definite by the property of convexity. By the definition of φ̃ in (3.3), the second order derivatives of 
Fc(φ − φ̃) and Fe(φ

(k) + φ̃) are [I − (v ⊗ v)]Hc(φ − φ̃)[I − (v ⊗ v)] and (v ⊗ v)He(φ
(k) + φ̃)(v ⊗ v), respectively, where 

v = v(k+1) . Since v is nonzero, these two (projected) Hessians are also semi-positive definite. This completes our proof. �
We now present our time-discrete numerical scheme for (3.4) based on the convex splitting idea in Section 2.2. Here we 

only consider the case α ≥ 0, β ≥ 0. To simplify the notation, we drop out the parameters φ(k) and v(k+1) in the expressions 
of L(φ, φ(k), v(k+1)), Lc(φ, φ(k), v(k+1)) and Le(φ, φ(k), v(k+1)). Let φn be the numerical solution at the time level tn . Our 
scheme is

φn+1 − φn

	t
= −

[
δLc

δφ
(φn+1) − δLe

δφ
(φn)

]
, (3.8)

with initial φ0 = φ(k) . The first order variational derivative of Lc is

δLc

δφ
(φ)=δFc

δφ
(φ)+α

δFe

δφ
(φ)

+ α
(

I − (v(k+1) ⊗ v(k+1))
)δFc

δφ

(
φ − (v(k+1) ⊗ v(k+1))(φ − φ(k))

)
+β(v(k+1) ⊗ v(k+1))

δFe

δφ

(
φ(k)+(v(k+1) ⊗ v(k+1))(φ−φ(k))

)
,

and δLe
δφ

(φ) has the similar form by switching subindices “c” and “e”.
For the same reason in Theorem 2, the following unconditional energy stability holds for the scheme (3.8). The proofs 

are straightforward and skipped.

Lemma 4. Suppose that φ, ψ : [a, b] × R
+ → R are two periodic functions. If L(φ) in (3.2) has the convex splitting form L(φ) =

Lc(φ) − Le(φ) given in (3.6). Then

L(φ) − L(ψ) ≤ 〈δφ Lc(φ) − δφ Le(ψ),φ − ψ
〉
L2 ,

where δφ Lc and δφ Le represent the first order variational derivatives of Lc and Le with respect to φ , respectively.

Theorem 5. If the energy functional F (φ) has the convex splitting form F = Fc − Fe , then the time-discrete scheme (3.8) is uncondi-
tionally energy stable, meaning that for any time step size 	t > 0, we have

L(φn+1) ≤ L(φn), n = 0,1,2, · · · ,

in each k-th cycle.

3.2. Avoid the time-implicit nonlinear term and construct the linear system

In many cases, several convex splitting forms for F may be found. Assume F (φ) has two forms of convex splitting with 
the following properties:

F (φ) = F l
c(φ) − F n

e (φ), (3.9)

and

F (φ) = F̃ n
c (φ) − F̃ l

e(φ), (3.10)

where the superscripts “l” and “n” mean that the first order variational derivative is linear or nonlinear in φ, respectively. 
Accordingly, two convex splitting schemes exist to solve the gradient flow ∂φ

∂t = − δF
δφ

:

φn+1 − φn

	t
= −δF l

c

δφ
(φn+1) + δF n

e

δφ
(φn), (3.11)

and
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φn+1 − φn

	t
= −δ F̃ n

c

δφ
(φn+1) + δ F̃ l

e

δφ
(φn). (3.12)

Both schemes satisfy the unconditional energy stability. The difference is that the nonlinear terms are handled differently. 
The scheme (3.11) is time-explicit in nonlinear term and hence solves a linear system to generate φn+1 at the next time 
level. But the scheme (3.12) requires to solve a nonlinear equation for φn+1. If one has a very efficient nonlinear solver, such 
as the multi-grid method in [25] for vector-valued Allen–Cahn equation, then the scheme (3.12) is also a good choice. In 
other cases, the linear scheme (3.11) is usually preferred.

In the context of the IMF, our proposed convex splitting scheme for the saddle point problem faces the same difficulty of 
possible emergence of nonlinear time-implicit term. If only one convex splitting form is available, then the convex splitting 
form of the auxiliary functional L specified by (3.7) inevitably runs into this trouble. Either Lc or Le includes both Fc and Fe , 
which leads to the appearance of at least one nonlinear term at the implicit time level. However, if one has both (3.9) and 
(3.10), then this difficulty can be circumvented by combining them together. Take α, β ≥ 0 as an example again. Substituting 
(3.9) into the first and the third terms on the right hand side of (3.2) and substituting (3.10) into the second and the fourth 
terms on the right hand side of (3.2), then we have the following decomposition of L:

L(φ) = F l
c(φ) − F n

e (φ) − α
[

F̃ n
c (φ) − F̃ l

e(φ)
]

+ α
[

F l
c(φ − φ̃) − F n

e (φ − φ̃)
]− β

[
F̃ n

c (φ(k) + φ̃) − F̃ l
e(φ

(k) + φ̃)
]

=
[

F l
c(φ) + α F̃ l

e(φ) + αF l
c(φ − φ̃) + β F̃ l

e(φ
(k) + φ̃)

]
−
[

F n
e (φ) + α F̃ n

c (φ) + αF n
e (φ − φ̃) + β F̃ n

c (φ(k) + φ̃)
]

=: Lc(φ) − Le(φ),

where φ̃ = (v(k+1) ⊗ v(k+1))(φ −φ(k)). It is easy to see that both Lc and Le are convex with respect to φ. The proof is exactly 
the same as that for Property 3. Theorem 5 in Section 3.1 also holds true in this case.

In constructing two convex splitting forms satisfying the above conditions, we do not require the convexity holds for the 
whole configuration space. In fact, for many examples, the global convexity for all four functions in (3.9) and (3.10) is not 
possible. We only need the convexity properties valid locally for a certain range of the values of φ in which the solution of 
interest does not violate.

In summary, the semi-discrete scheme for (3.4) by using the two forms of convex splitting of F (φ), (3.9) and (3.10), has 
the following expression:

φn+1 − φn

	t
= −

[
δLc

δφ

]n+1

+
[

δLe

δφ

]n

, (3.13)

where [
δLc

δφ

]n+1

= δF l
c

δφ
(φn+1) + α

δ F̃ l
e

δφ
(φn+1)

+ β(v(k+1) ⊗ v(k+1))
δ F̃ l

e

δφ

(
φ(k) + (v(k+1) ⊗ v(k+1))(φn+1−φ(k))

)
+ α(I − (v(k+1) ⊗ v(k+1)))

δF l
c

δφ

(
φn+1 − (v(k+1) ⊗ v(k+1))(φn+1 − φk)

)
,[

δLe

δφ

]n

= δF n
e

δφ
(φn) + α

δ F̃ n
c

δφ
(φn)

+ β(v(k+1) ⊗ v(k+1))
δ F̃ n

c

δφ

(
φ(k) + (v(k+1) ⊗ v(k+1))(φn − φ(k))

)
+ α(I − (v(k+1) ⊗ v(k+1)))

δF n
e

δφ

(
φn − (v(k+1) ⊗ v(k+1))(φn − φ(k))

)
,

and the initial value φ0 = φ(k) . α ≥ 0, β ≥ 0 and α + β > 1. It is easy to see that 
[

δLc
δφ

]n+1
is linear and 

[
δLe
δφ

]n
is nonlinear. 

So the scheme (3.13) indeed corresponds to a linear system.

4. Applications

4.1. 1D example: Ginzburg–Landau free energy

We apply our method to the Ginzburg–Landau free energy on [0, 1],
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F (φ) =
1∫

0

[κ2

2
(
∂φ

∂x
)2 + f (φ)

]
dx, (4.1)

where φ(x) is an order parameter representing for example the concentration of one of the component in a binary alloy. 
The mobility parameter κ > 0. f (φ) = (φ2 − 1)2/4. If we consider the gradient flow of F in the L2([0, 1]) space with the 
standard L2 inner product 〈· , ·〉L2 , then we obtain the (non-conserved) Allen–Cahn (AC) equation

∂φ

∂t
= −δF

δφ
(φ) = κ2	φ − f ′(φ) = κ2	φ − (φ3 − φ), (4.2)

where 	 = ∂xx . If the gradient flow is defined in the H−1 metric 〈· , ·〉H−1 , then we have the (conserved) Cahn–Hilliard (CH) 
equation

∂φ

∂t
= 	

δF

δφ
= −κ2	2φ + 	(φ3 − φ). (4.3)

We are interested in the unstable index-1 saddle point of the Ginzburg–Landau free energy (4.1). These saddle points 
correspond to the “spike-like” stationary solutions, or “canonical nuclei” discussed in [3]. Similarly to the AC and CH equa-
tions, which arise in L2 metric and H−1 metric, respectively, we search for the saddle points of F both in L2 and in H−1

metrics. The calculations of transition states and transition rates for the CH equation have already been done in [42,28] by 
using the string method ([8]) and the GAD ([10]).

We consider both the Neumann and periodic boundary condition. The Neumann boundary condition is ∂xφ(0) =
∂xφ(1) = 0 for the AC equation and ∂xφ(0) = ∂xφ(1) = ∂3

x φ(0) = ∂3
x φ(1) = 0 for the CH equation. The periodic boundary 

condition simply means that φ(x) = φ(x +1), ∀x ∈ [0, 1], which induces a degeneracy at any stationary solution correspond-
ing to the translation invariance in the spatial variable φ(x) → φ(x + c). This means that the second smallest eigenvalue 
of the index-1 saddle points is zero. The degeneracy from the periodic boundary condition does not affect the quadratic 
convergence rate of the IMF ([17]). It is also noted that the mass 

∫ 1
0 φ(x)dx is conservative in H−1 metric and any stationary 

solution is still stationary if an arbitrary constant is added. This degeneracy can be eliminated by restricting the solutions 
in the space where the mass is chosen beforehand; for the same reason, any eigenvectors or perturbations should be re-
stricted to having zero mass. We refer the reader to [2,3] and references therein on the existence of index-1 saddle point 
for sufficient small κ . We restrict our calculation to the case of not too large domain, i.e., the parameter κ in (4.1) is not 
too small, but small enough to posses saddle points.

Now we discuss some details of our method. In the IMF, the auxiliary functional L given by (3.2) (setting α = 0, β = 2) 
is

L(φ;φ(k), v(k+1)) = F (φ) − 2F (φ̂) (4.4)

with

φ̂ := φ(k) + φ̃ = φ(k) + (v(k+1) ⊗ v(k+1))(φ − φ(k)), (4.5)

where (v ⊗ v)u = 〈v, u〉v, ∀u, v , is associated with either L2 metric or H−1 metric. So the formal notation 〈· , ·〉 means 
either 〈· , ·〉L2 (AC–type) or 〈· , ·〉H−1 (CH–type). Next, we give two convex splitting forms of F (φ) as discussed in (3.9) and 
(3.10). The convex splitting form F (φ) = F l

c − F n
e can be taken as

F l
c(φ) =

1∫
0

[κ2

2
(
∂φ

∂x
)2 + φ2 + 1

4

]
dx, F n

e (φ) =
1∫

0

−1

4
φ4 + 3

2
φ2 dx, (4.6)

and the convex splitting form F (φ) = F̃ n
c − F̃ l

e is chosen as

F̃ n
c (φ) =

1∫
0

[κ2

2
(
∂φ

∂x
)2 + 1

4
φ4 + 1

4

]
dx, F̃ l

e(φ) =
1∫

0

1

2
φ2 dx. (4.7)

Remark 1. The functionals in (4.7) are always convex but the second functional F n
e in (4.6) are convex only in the region 

φ ∈ [−1, 1]. In general, when the global convexity is not available, to obtain the locally contractive Fc and expansive Fe , one 
usually has to introduce a sufficiently large positive constant C . For instance the quadratic term −φ2 in (4.1) can be written 
as Cφ2 − (1/2 + C)φ2, then the convex region of F n

e is φ2 ≤ (2C + 1)/3. The form (4.6) corresponds to C = 1.
The L2 gradient flow of the Ginzburg–Landau functional ensures that the solution φ(t) always remains in [−1, 1] by the 

maximum principle if the initial |φ(0)| ≤ 1; however, the H−1 Cahn–Hilliard flow may not always satisfy this condition. It 
is not a trivial work to obtain such L∞ bounds a prior and to derive an implementable optimal choice of C . Refer to [11] for 



424 S. Gu, X. Zhou / Journal of Computational Physics 353 (2018) 417–434
the theoretic investigation on a convex splitting scheme for a phase field crystal model. In our numerical simulations, we 
choose the minimal C such that the local convexity holds for the initial and it happens that we did not observe unstable 
phenomena from our empirical results of two applications tested here. However, it should be noted that this choice has no 
theoretic foundation and is not guaranteed to work in any situation.

4.1.1. Saddle points in L2 metric
The second-order variational operator H(φ) of the energy functional F , evaluated at φ, is H(φ)ψ = δ2

φ F ψ = −κ2	ψ +
f ′′(φ)ψ, ∀ψ ∈ H2([0, 1]), where H2 is the standard Sobolev space. The eigenvalue problem for this operator is defined by

H(φ)ψ = −κ2	ψ + f ′′(φ)ψ = λψ, (4.8)

subject to boundary conditions, where λ is the eigenvalue. By the result of the Rayleigh quotient, the eigen-pair for the 
min-mode, {λ1, ψ1}, solves the variational problem

min
ψ∈H1([0,1])

R(ψ) := 〈ψ,Hψ〉L2

‖ψ‖2
L2

=
∫ 1

0 κ2 |∇ψ |2 + f ′′(φ)ψ2 dx∫ 1
0 |ψ |2 dx

.

After the min-mode is obtained, the subproblem of minimizing the auxiliary functional (4.4) is then solved by evolving 
the gradient flow

∂φ

∂t
= − δL

δφ
(φ) = −δF

δφ
(φ) + 2(v ⊗ v)

δF

δφ
(φ̂),

= κ2	φ − φ3 + φ − 2(v ⊗ v)(κ2	φ̂ − φ̂3 + φ̂).

(4.9)

v = v(k+1) is the min-mode of H(φ(k)). φ̂ is defined in (4.5).

Convex splitting scheme. We apply (4.6) and (4.7) to the convex splitting of L(φ), then L(φ) =
[

F l
c(φ) + 2 F̃ l

e(φ̂)
]

−[
F n

e (φ) + 2 F̃ n
c (φ̂)

]
=: Lc(φ) − Le(φ), where

Lc(φ) =
1∫

0

[
κ2

2
(φx)

2 + φ2 + 1

4
+ φ̂2

]
dx,

Le(φ) =
1∫

0

[
−1

4
φ4 + 3

2
φ2 + κ2(φ̂x)

2 + 1

2
φ̂4 + 1

2

]
dx.

The first order variational derivatives of Lc(φ) and Le(φ) are, respectively,

δφ Lc(φ) = −κ2	φ + 2φ + 2(v ⊗ v)φ̂,

δφ Le(φ) = −φ3 + 3φ + 2(v ⊗ v)
(
−κ2	φ̂ + φ̂3

)
.

Therefore, the convex splitting scheme for (4.9) is written as

φn+1 − φn

	t
=
[
κ2	φ − 2φ − 2(v ⊗ v)φ

]n+1

+
[
−φ3 + 3φ + 2(v ⊗ v)

(− κ2	φ̂ + φ̂3)]n
,

(4.10)

after using 〈v, v〉L2 = 1 and (v ⊗ v)φ̂ = (v ⊗ v)φ.

Non-convex-splitting scheme. We need a traditional semi-implicit scheme, which is not derived from the convex splitting 
idea, as the benchmark for comparison. The idea is to take out the linearized part of the nonlinear term in f ′ and make it 
implicit together with the Laplace operator. Linearizing the cubic term φ3 in (4.9), (φn+1)3 ≈ (φn)3 + 3(φn)2(φn+1 − φn), we 
then have the following scheme for (4.9)

φn+1 − φn

	t
= κ2	φn+1 −

[
(φn)3 + 3(φn)2(φn+1 − φn)

]
+ φn+1

− 2
[
〈v, κ2	φ̂ − φ̂3 + φ̂〉v

]n
. (4.11)

Set the parameter κ = 0.01. The finite difference method is used for spatial discretization with the mesh grid {xi = ih, i =
0, 1, 2, . . . , N}. h = 1/N . N = 200. A finer mesh with N = 1000 is also used to verify all numerical results. There are only 
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Fig. 1. Profiles of some saddle points (solid lines) of F (φ) in L2 metric computed from various initial states (dashed lines). (a)–(b): the Neumann bound-
ary condition; (c): the periodic boundary condition. The free energy F for these three plotted states from left to right are 0.0094, 0.0188 and 0.0188, 
respectively. κ = 0.01.

Fig. 2. The validation of the quadratic convergence rate of the IMF mapping � by plotting the decay of the error, measured by the force ‖δφ F (φ(k))‖L2 at 
each cycle k.

two locally stable states in L2 metric. They are the two homogeneous constant states: φ+(x) ≡ 1 and φ−(x) ≡ −1. For the 
Neumann boundary condition, Fig. 1a and Fig. 1b show the transition states calculated from the convex splitting scheme 
(4.10) with the initial conditions φ0(x) = cosπx and φ0(x) = cos 2πx, respectively. For the periodic boundary condition, 
Fig. 1c shows the transition state obtained from the initial condition φ0(x) = sin 2πx, which looks almost identical to the 
one in Fig. 1b after a simple spatial translation.

Next we present the numerical evidence on the performance of our numerical method. We first validate the quadratic 
convergence rate of the IMF for both boundary conditions. In this validation, which only cares about the rate of the mapping 
φ → �(φ), we actually solve each subproblem with an extremely high precision. The numerical results are presented in 
Fig. 2 and are consistent with Theorem 1.

Now we compare the performance of the convex splitting (“CS”) scheme (4.10) against the non-convex splitting (“nCS”) 
scheme (4.11). Firstly, we examine their performance for the subproblem, i.e., within a fixed cycle where only the inner 
iteration is running. Take the first cycle for example, which is to solve minφ L(φ; φ(0), v(1)) with the initial φ(t = 0) = φ(0) . 
We measure the error by the gradient force err := ‖δφ L(φn)‖L2 and calculate the iteration number required to attain the 
given error tolerance for the CS scheme (4.10) and the nCS scheme (4.11). The tolerances we tested are the following three 
values: err ≤ 1.0 × 10−4, err ≤ 1.0 × 10−6 and err ≤ 1.0 × 10−8. We can observe from Table 1 for this simple subproblem 
that (1) the CS scheme obviously have much better stability than the nCS scheme when the time step size is large (∞ in 
this table means that the numerical results diverge); (2) For the small 	t such that both schemes converge, both schemes 
have the similar required number of iterations (i.e., the time steps) to decrease δφ L to certain accuracy. This is expected 
since both solves the same steepest descent flow for L with the same step size.

Secondly, we show the comparison of the overall efficiency in locating the saddle point. To be more transparent, we fix 
the number of iterations in each cycle and count the required number of the outer cycles to reach some prescribed tolerance 
for the error which is defined as 

∥∥δφ F (φ(k))
∥∥

L2 . The results are summarized in Table 2. The total iteration number, which is 
the indicator of the total computational cost, is therefore equal to the number of cycles multiplied by the “iter#” specified 
in the corresponding columns of Table 2. The key conclusions from this table, for both Neumann and periodic boundary 
conditions, are the following: (1) for the CS scheme, the larger the time step size is, the smaller the total computational 
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Table 1
The comparison of the CS scheme (4.10) and nCS scheme (4.11) for the sub-
problem within the first cycle φ(0) → φ(1) = �(φ(0)). The integers shown in 
the table are the required number of iterations for the CS scheme (4.10) and 
the nCS (4.11) to achieve the three choices of the prescribed error tolerance 
‖δφ L(φn)‖L2 ≤ 10−4, 10−6 and 10−8.

	t The required number of iterations

err = 10−4 err = 10−6 err = 10−8

(4.10) (4.11) (4.10) (4.11) (4.10) (4.11)

0.01 777 763 1092 1074 1407 1386
0.1 92 78 129 111 166 144
5.0 16 ∞ 23 ∞ 30 ∞
10 14 ∞ 21 ∞ 28 ∞

(a) Neumann boundary condition. The initial state is φ(0) = cosπx.

	t The required number of iterations

err = 10−4 err = 10−6 err = 10−8

(4.10) (4.11) (4.10) (4.11) (4.10) (4.11)

0.01 728 722 1043 1034 1358 1347
0.1 86 74 123 108 160 141
5.0 14 ∞ 22 ∞ 29 ∞
10 13 ∞ 20 ∞ 27 ∞

(b) Periodic boundary condition. The initial state is φ(0) = sin 2πx.

Table 2
The comparison of the required number of outer cycles for the CS scheme 
(4.10) and the nCS scheme (4.11) to attain the given error tolerance 
‖δφ F (φ(k))‖L2 ≤ 10−8 when the inner iteration number is fixed as 50, 80 and 
100, respectively, for different choices of the time step size.

	t The number of cycles

iter# = 50 iter# = 80 iter# = 100

(4.10) (4.11) (4.10) (4.11) (4.10) (4.11)

0.01 29 28 18 18 15 14
0.1 4 3 3 2 2 2
5.0 1 ∞ 1 ∞ 1 ∞

(a) Neumann boundary condition. The initial state is φ(0) = cosπx.

	t The number of cycles

iter# = 50 iter# = 80 iter# = 100

(4.10) (4.11) (4.10) (4.11) (4.10) (4.11)

0.01 28 27 17 17 14 14
0.1 4 3 3 2 2 2
5.0 1 ∞ 1 ∞ 1 ∞

(b) Periodic boundary condition. The initial state is φ(0) = sin 2πx.

cost is; (2) for the nCS scheme, it is divergent when a large time step size is applied; (3) for the very small time step size 
such as 0.01, there is no much difference in the computational cost of the CS and nCS schemes. The last observation is 
consistent with the known empirical experience of the convex splitting schemes: when both the CS and nCS converge, the 
decay rate of the objective function in the CS may not be better.

To better visualize the improvement of the CS scheme over the nCS scheme, we draw the decay of the error ‖δφ F (φ)‖L2

with respect to the total iteration number in Fig. 3. This plot illustrates how much accuracy one can obtain (the vertical 
axis) with the available total computational cost (the horizontal axis), in which the solid lines are from the CS scheme and 
the dashed lines are from the nCS scheme. Note that the step sizes for the CS and nCS are different in order to obtain this 
efficiency gain.

4.1.2. Saddle points in H−1 metric
In this part, we study the transition state of F (φ) in H−1 metric. Note that the inner product and the norm in H−1

metric can be transformed to those in L2 metric as follows

‖φ‖2
H−1 = 〈(−	)−1φ,φ

〉
L2 , 〈φ,ψ〉H−1 = 〈(−	)−1φ,ψ

〉
L2 , (4.12)
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Fig. 3. The decay of the error measured by the gradient ‖δφ F (φ(k))‖L2 with the total iteration number (i.e., the cost) for the CS scheme (4.10) (solid line) 
and the nCS scheme (4.11) (dashed line). The inner iteration number in each cycle is fixed as 100 and the time step sizes are 	t = 5.0 and 0.1 for the CS 
and nCS schemes, respectively.

where (−	)−1, a bounded positive self-adjoint linear operator, is the inverse of −	 subject to certain boundary condition. 
Then the variational derivatives between the L2 metric and the H−1 metric can be linked as follows:

δφ F
∣∣∣

H−1
= −	δφ F , H̃ := δ2

φ F
∣∣∣

H−1
= −	δ2

φ F ,

where δφ F and δ2
φ F represent respectively the first and the second order variational derivatives of F (φ) in L2 metric.

The gradient flow ∂tφ = −(−	δφ F ) = −κ2	2φ +	(φ3 −φ) is the CH equation (4.3). It is known that the solution φ(x, t)
of the CH equation (4.3) satisfies 

∫ 1
0 φ(x, t)dx ≡ ∫ 1

0 φ(x, 0)dx, ∀t > 0. In our problem of finding the saddle point in the H−1

metric, we choose a fixed mass m = 0.6 beforehand and we are interested in the saddle points satisfying 
∫ 1

0 φ(x)dx = m. We 
also require any eigenvectors or perturbations to belong to the subspace 

{
ψ : ∫ 1

0 ψ(x)dx = 0
}

. The eigenvalue problem of H̃
is {

H̃(φ)ψ = −	(−κ2	ψ + f ′′(φ)ψ) = λψ,∫ 1
0 ψ(x)dx = 0,

(4.13)

subject to the Neumann or periodic boundary condition. For nonzero eigenvalue, the eigenvector ψ automatically satisfies ∫ 1
0 ψdx = 0; For zero eigenvalue, the condition 

∫ 1
0 ψdx = 0 needs to be imposed additionally. If we introduce the projection 

Pu := u − ∫ 1
0 u(x) dx, then the eigen-problem (4.13) is equivalent to PH̃Pu = λu for any u without the zero-mass constraint. 

The min-mode is then equal to u if the eigenvalue is nonzero and equal to Pu if the eigenvalue is zero.
For the periodic boundary condition, there exists one degenerate (λ = 0) direction ψ0 for the Hessian H̃(φ), which is the 

spatial derivative of φ, i.e.,

ψ0(x) = φx(x).

To see this, we just need verify (4.13) by using the periodic boundary condition: 
∫ 1

0 φx(x)dx = φ(1) − φ(0) = 0 and

1∫
0

−	(−κ2	φx + f ′′(φ)φx)dx =
1∫

0

κ2∂5
x φ(x) − ∂2

x (∂x( f ′(φ(x)))) dx = 0.

The Rayleigh quotient with respect to H−1 metric is

R̃(ψ) =
〈
ψ, H̃ψ

〉
H−1

‖ψ‖2
H−1

=
∫ 1

0 κ2 |∇ψ |2 + f ′′(φ)ψ2 dx∫ 1
0 ψ	−1ψdx

,

and thus the min-mode is the minimizer of the problem

argmin
ψ

⎧⎨⎩R̃(ψ) :
1∫
ψ dx = 0, ‖ψ‖H−1 = 1

⎫⎬⎭ . (4.14)
0
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For the IMF in this H−1 case, the subproblem of minimizing the auxiliary functional L for a given φ(k) at cycle k is

φ(k+1) = argmin∫ 1
0 φ(x)dx=m

L(φ;φ(k), v(k+1)), (4.15)

where m = ∫ 1
0 φ(k)dx. This means that each IMF cycle φ(k) → φ(k+1) should also conserve the mass. The expression of L(φ)

is defined as (4.4), with the modification of φ̂ as follows

φ̂ := φ(k) +
〈
v, φ − φ(k)

〉
H−1

v = φ(k) +
〈
−	−1 v, φ − φ(k)

〉
L2

v

= φ(k) +
〈
w, φ − φ(k)

〉
L2

v,

(4.16)

where

w := −	−1 v

is the unique solution satisfying the equation −	w = v and 
∫ 1

0 w dx = 0. Then, δφ L(φ) = δφ F (φ) − 2w 
〈
δφ F (φ̂), v

〉
L2

, and 

the H−1 gradient flow of L is

∂φ

∂t
= 	

δL

δφ
(φ) = 	

(
δF

δφ
(φ)

)
+ 2v

〈
δF

δφ
(φ̂), v

〉
L2

,

= −κ2	2φ + 	(φ3 − φ) + 2v
〈
v,−κ2	φ̂ + φ̂3 − φ̂

〉
L2

,

(4.17)

where v = v(k+1) refers to the min-mode of (4.13) at φ(k) (normalized under H−1 metric, i.e., ‖v‖H−1 = 1). Note that the 
scalar in the second line of (4.17) is the L2 inner product due to the cancelation of 	 and 	−1 in the calculation, but the 
variable φ̂ involves the H−1 metric via w . This suggests one more computational cost of solving w = −	−1 v during the 
IMF subproblem than the GAD scheme where φ̂ is actually just φ(k) ([15]). Our result (4.17) is consistent with the equation 
(3.4) in [28] which was written for the GAD in the finite dimension, i.e., φ̂ = φ(k) .

Remark 2. We show that the flow (4.17) conserves the initial mass 
∫ 1

0 φ(x)dx, sharing exactly the same property as the 
CH equation (4.3). So the constraint in (4.15) holds automatically. This result immediately implies that the IMF mapping 
φ(k) → φ(k+1) does not change the mass at each cycle k. To prove our conclusion, after integrating the two sides of (4.17)
and using the boundary conditions (either Neumann or periodic), one remains to show the following condition for the 
eigenvector v: 

∫ 1
0 v(x)dx = 0. This is exactly the condition that the min-mode v satisfies in (4.13).

Convex splitting scheme. We now test the convex splitting form of (4.6), (4.7), which corresponds to L(φ) = Lc(φ) −
Le(φ), where Lc(φ) = F l

c(φ) + 2 F̃ l
e(φ̂), Le(φ) = F n

e (φ) + 2 F̃ n
c (φ̂), and φ̂ is defined in (4.16). Since δφ Lc(φ) = −κ2	φ + 2φ +

2 
〈
v, φ̂

〉
L2

w , and δφ Le(φ) = −φ3 + 3φ + 2 
〈
−κ2	φ̂ + φ̂3, v

〉
L2

w , then the convex splitting scheme for (4.17) is for n ≥ 0

φn+1 − φn

	t
=
[
−κ2	2φn+1 + 2	φn+1 − 2

〈
w, φn+1〉

L2 〈v, v〉L2 v
]

− 2
〈
v, φ(k)

〉
L2

v + 2
〈
w, φ(k)

〉
L2

〈v, v〉L2 v

+
[
	(φn)3 − 3	φn + 2

〈
v,−κ2	φ̂n + (φ̂n)3

〉
L2

v
]
,

(4.18)

where v = v(k+1) , w = −	−1 v(k+1) and φ̂n is from (4.16) by letting φ = φn . On the right hand side of this CS scheme 
(4.18), the first line is linear in the unknown φn+1, the second line is independent of n, the third line is the nonlinear term 
in φn .

Non-convex-splitting scheme. The same linearization trick used in (4.11) for the previous AC type problem is applied here 
again to construct the following non-convex splitting scheme for CH type equation for comparison:

φn+1 − φn

	t
= − κ2	2φn+1 − 	φn+1 + 	

[
(φn)3 + 3(φn)2(φn+1 − φn)

]
− 2

[
〈v, κ2	φ̂ − φ̂3 + φ̂〉v

]n
.

(4.19)
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Fig. 4. (Neumann boundary condition. H−1 metric.) (a): the two stable stationary states of F (φ) with the mass ∫ 1
0 φ dx = 0.6. F = 0.10240 for the trivial 

constant state (the thick line) and F = 0.03772 for the transition layer state (the thin line). (b): one of the transition states (solid line) with the free 
energy 0.10241 whose first 3 eigenvalues are λ = −3.41, 3.91 and 18.14, calculated from the initial condition (dashed line) whose first 3 eigenvalues are 
λ = −10.97, 3.45 and 17.48. Note that the vertical axes in subfigures are in different scales.

Fig. 5. (Periodic boundary condition. H−1 metric.) (a): the two stable stationary states of F (φ) in H−1 metric with the given mass ∫ 1
0 φ dx = 0.6. F = 0.10240

for the constant state and F = 0.07510 for the other non-constant state. (b): one of the transition states (solid line) with the free energy 0.10285 whose 
first three smallest (numerical) eigenvalues are −12.75, −1.86 × 10−7 (corresponding to theoretical zero eigenvalue) and 46.15. The initial state is shown 
as the dashed line in which the first 3 smallest eigenvalues are λ = −27.13, −6.81 and 44.98.

The parameter κ = 0.04. We set the mesh grid {xi = ih, i = 0, 1, 2, . . . , N}. h = 1/N . N = 200. The function φ(x) is 
represented by φ = (φ0, φ1, φ2, · · · , φN )T for the Neumann boundary condition and φ = (φ0, φ1, φ2, · · · , φN−1)

T for the 
periodic boundary condition; φi ≈ φ(xi). The matrix form of the Hessian H̃ at the state φ is H̃(φ) = A∇2 Fh(φ), where 
∇2 Fh(φ) = ∂2 Fn

∂φi∂φ j
. A and Fh(φ) denote the discretized forms of the operator −	 and the potential energy F (φ), respectively. 

The min-mode v of the Hessian matrix H̃ can be calculated according to the Rayleigh quotient (4.14).
Fig. 4 and Fig. 5 show some of the stationary states of F in H−1 metric for the Neumann and periodic boundary condi-

tions, respectively. The stationary points identified by us agree with the result in [42]. Next we compare the performance of 
the CS scheme (4.18) and the nCS scheme (4.19). We also start from their performance for the subproblem in the first cycle 
as before. Table 3 compares the number of inner iterations to attain the three error tolerances: ‖	δφ L‖H−1 ≤ 10−4, 10−5 or 
10−6. Basically we have the same observations as for the L2-metric case. The CS scheme allows the step size as large as 0.1
but the nCS is not able in this example. This table also shows that the nCS scheme, if it converges, requires a less number of 
iterations to reach the tolerance, in particular for the periodic boundary condition. This is possible because a scheme with 
a better stability does not guarantee a faster convergence rate toward the minimum.

Table 4 shows the same quantities of the overall performance of the convex splitting scheme in this H−1 metric as 
measured before in Table 2 in the L2 metric. The conclusions we draw from this table are qualitatively the same as from 
Table 2. In the end, based on the experiments corresponding to Table 4, we plot the evolution of the error measured by 
the force ‖	δφ F (φ(k))‖H−1 against the total iteration number for the CS scheme and the nCS scheme by using their own 
optimal time step sizes respectively. Refer to Fig. 6. Here for the CH-type problem, in order to illustrate that our results 
are robust with respect to the initial guess, we added the random perturbation to generate multiple initial states so that 
multiple lines are plotted for different initial guesses.
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Table 3
The comparison of the CS scheme (4.18) and nCS scheme (4.19) for the 
subproblem φ(0) → φ(1) = �(φ(0)). The integers in the table are the re-
quired number of iterations to achieve the three prescribed tolerances 
‖	δφ L(φn)‖H−1 ≤ 10−4, 10−5 and 10−6.

	t The required number of iterations

err = 10−4 err = 10−5 err = 10−6

(4.18) (4.19) (4.18) (4.19) (4.18) (4.19)

10−3 2956 2647 3332 2993 3709 3339
10−2 550 273 617 308 685 343
10−1 283 ∞ 321 ∞ 360 ∞
1.0 14 ∞ 262 ∞ 298 ∞

(a) Neumann boundary condition.

	t The required number of iterations

err = 10−4 err = 10−5 err = 10−6

(4.18) (4.19) (4.18) (4.19) (4.18) (4.19)

10−3 1022 820 1163 939 1305 1057
10−2 281 77 316 88 351 99
10−1 208 ∞ 233 ∞ 257 ∞

(b) Periodic boundary condition.

Table 4
The comparison of the number of outer cycles required for the CS scheme 
(4.18) and the nCS scheme (4.19) to attain the given error tolerance 
‖	δφ F (φ(k))‖H−1 ≤ 10−8, when the inner iteration number is fixed for the 
different choices of the time step size 	t = 10−3, 10−2 and 10−1. The corre-
sponding initial states are specified in Fig. 4b and Fig. 5b, respectively.

	t The number of cycles

iter# = 40 iter# = 50 iter# = 60

(4.18) (4.19) (4.18) (4.19) (4.18) (4.19)

10−3 118 102 95 82 79 69
10−2 28 ∞ 22 ∞ 16 ∞
10−1 16 ∞ 17 ∞ 16 ∞

(a) Neumann boundary condition.

	t The number of cycles

iter# = 50 iter# = 80 iter# = 100

(4.18) (4.19) (4.18) (4.19) (4.18) (4.19)

10−3 34 25 22 16 18 13
10−2 13 ∞ 7 ∞ 8 ∞
10−1 11 ∞ 8 ∞ 7 ∞

(b) Periodic boundary condition.

4.2. 2D example: Landau–Brazovskii free energy

In this section, we study the nucleation problem of phase transition in diblock copolymers ([29,37]). The model is 
described by the Landau–Brazovskii energy functional of the order parameter φ

F (φ) =
∫


ξ2

2
[(	 + 1)φ(r)]2 + �(φ) d r, (4.20)

where �(φ) = τ
2 φ2 − γ

3!φ
3 + 1

4!φ
4. The parameters are τ = −0.15, ξ = 1.0, γ = 0.25. We compute the transition state of this 

F in H−1 metric.
We consider the two dimensional domain  = [0, Lx] × [0, L y] and the periodic boundary condition. φ satisfies the mass 

conservation 
∫


φ(r)dr = 0. The eigenvalue problem in the IMF for this case then reads{
H̃(φ)ψ = −	

[
ξ2(	 + 1)2 + �′′(φ)

]
ψ = λψ,∫

ψ(r)dr = 0.
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Fig. 6. The evolution of the errors measured by ‖	δφ F (φ)‖H−1 w.r.t. the total iteration number for the CS scheme (4.18) (solid lines) and the nCS scheme 
(4.19) (dashed lines). Different small perturbations around the initial condition used in Table 4 are added as the new initial conditions here to produce 
multiple lines. For the Neumann boundary condition in (a), the inner iteration number is 40 and the time step sizes are 	t = 10−1 and 10−3 for the CS 
and nCS schemes, respectively. For the periodic boundary condition in (b), the inner iteration number is 50 and the time step sizes are the same as in (a). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The min-mode v is the eigenvector of H̃ corresponding to the smallest eigenvalue. The gradient flow associated with the 
minimization subproblem for L(φ; φ(k), v(k+1)) = F (φ) − 2F (φ̂) is

∂φ

∂t
= 	

δL

δφ
= ξ2	(	 + 1)2φ + 	�1(φ) + 2

〈
v, ξ2(	 + 1)2φ̂ + �1(φ̂)

〉
L2

v, (4.21)

where �1(φ) = �′(φ) = τφ − γ φ2/2! + φ3/3! and φ̂ is defined the same as (4.16).

Convex-splitting scheme. We give two convex splitting forms of F as follows

F l
c(φ) =

∫


ξ2

2

[
(	 + 1)φ

]2 + τ + 22.75

2
φ2 dr, (4.22)

F n
e (φ) =

∫


[− 1

4!φ
4 + γ

3!φ
3 + 22.75

2
φ2]dr, (4.23)

and

F̃ n
c (φ) =

∫


ξ2

2
|	φ|2 + (

1

4!φ
4 − γ

3!φ
3 + ξ2 + τ

2
φ2)dr, (4.24)

F̃ l
e(φ) =

∫


ξ2|∇φ|2 dr. (4.25)

By (4.22), (4.23) and (4.25), (4.25), and the convex splitting form of L(φ) = Lc(φ) − Le(φ) with Lc(φ) = F l
c(φ) + 2 F̃ l

e(φ̂)

and Le(φ) = F n
e (φ) + 2 F̃ n

c (φ̂), we have the convex splitting scheme for (4.21) as follows

φn+1 − φn

	t
= 	[δφ Lc(φ)]n+1 − 	[δφ Le(φ)]n,

i.e.,

φn+1 − φn

	t
=
[
ξ2	(	 + 1)2φ + (τ + 22.75)	φ

]n+1 + 4ξ2
[
〈	v, v〉 〈w, φ〉 v

]n+1

+ 4ξ2
[〈

	φ(k), v
〉
−
〈
w, φ(k)

〉
〈	v, v〉

]
v−	

[
− 1

3!φ
3+ γ

2
φ2 + 22.75φ

]n

+ 2

〈
v, ξ2	2φ̂ + (ξ2 + τ )φ̂ − γ

2
φ̂2 + 1

3! φ̂
3
〉

v
]n

, (4.26)

where 〈·, ·〉 means 〈·, ·〉L2 .
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Fig. 7. Two stable stationary states (a) and (c) and the transition state (b) of the 2-D Landau–Brazovskii energy in H−1 metric. Their free energies are 
−16.486, −16.447 and −17.290, from left to right. Their smallest eigenvalues are 3.50 × 10−6, −4.32 × 10−6, and 3.32 × 10−6, respectively.

Remark 3. In (4.23), we choose the constant C = 22.75 in Remark 1, then the convex region for (4.23) is [−6.5, 6.5]. One 
can see later that the local minimum and the saddle point lie between −1.5 and 1.5. But our initial guess spans the interval 
[−6.5, 6.5], so we use a large C = 22.75. Fortunately, we find that φ always locates in [−6.5, 6.5] by tracking the numerical 
value of φ. Note that (4.22), (4.24) and (4.25) are globally convex.

Non-convex-splitting scheme. This scheme is constructed by the same idea as before by applying the Taylor expansion of 
the nonlinear term �1(φ

n+1) around the solution at the old time step φn ,

�1(φ
n+1) ≈ �1(φ

n) + �′
1(φ

n)(φn+1 − φn).

After simplification, we get the non-convex splitting scheme as follows:

φn+1 − φn

	t
= ξ2	(	 + 1)2 φn+1 + 	

(
τ − γ φn + 1

2
[φn]2

)
φn+1

+ 	

(
γ

2
[φn]2 − 1

3
[φn]3

)
+ 2

[
〈v, ξ2(	 + 1)2φ̂ + �1(φ̂)〉v

]n
.

(4.27)

In the numerical simulation, we choose the domain  = [0, 16√
3
π ] × [0, 8π ] and set the mesh gird {xi = ihx, i =

0, 1, 2, . . . , Nx.} and {y j = jhy, j = 0, 1, 2, . . . , N y}. hx = 1/Nx, hy = 1/N y, Nx = N y = 100. We first consider the gradient 
flow ∂tφ = 	δφ F = 	[ξ2(	 + 1)2φ + �1(φ)] to find the steady states of F (φ). The initial conditions are chosen as equation 
(2.21) in [37]. For this steepest descent flow of F , we tested the convex splitting method based on (4.22) (4.23) (obtained 
by setting v = 0 in (4.26)), and the semi-implicit scheme based on the Taylor expansion for the nonlinear term (this scheme 
is obtained by directly setting v = 0 in (4.27)). The numerical results show that all schemes are stable with the time step 
sizes as large as 50.

Fig. 7(a) and Fig. 7(c) are the two metastable states of the lamellar phase and the cylindrical phase respectively. Fig. 7(b) 
is the transition state obtained by the IMF. The initial guess for the IMF in our test has the gradient ‖	δφ F (φ0)‖H−1 = 10−2

and the minimal eigenvalue −2.0 × 10−12.
Table 5 shows the number of inner iterations in the first cycle and the number of outer cycles in the whole process for 

the CS scheme (4.26) and the nCS scheme (4.27). For this particular example, we find that both schemes perform quite well 
for large time step sizes and their performances are almost identically. So, in this 2D example, the both schemes are quite 
successful. However, for the convex splitting scheme, we have offered an automatic procedure from the decomposition of 
F to the decomposition of L, so our CS scheme developed here inherits the advantage of convex splitting method to allow 
large time step sizes. Note that the linearization idea of constructing semi-implicit scheme has shown the unconditionally 
stability in search of local minimizers for this Landau–Brazovskii example. So for other schemes which are not based on the 
convex splitting idea but have proven to work for F with unconditional stability, one may also be able to construct some 
resemblant schemes for L, such as the scheme (4.27) we derived above. Then what is not obvious is the theoretic question 
on the stability of these new schemes for L. This could be left as a future project to generalize our idea of testing the convex 
splitting method in this article.

4.3. Discussion

The choice of the initial guess is an important practical issue for all existing numerical methods of calculating the 
saddle points. The GAD or the IMF only has the local convergence and thus in extreme cases, one can easily construct a 
special initial guess which does not have convergence. In addition, the subproblem of minimizing the auxiliary functional 
is well-defined only when the minimal eigenvalue of the original Hessian is negative; otherwise, it should not be solved 
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Table 5
(a) The comparison of the CS (4.26) and nCS scheme (4.27) for the subprob-
lem of the first cycle. The integers shown are the required number of itera-
tions to achieve the three prescribed tolerances ‖	δφ L(φn)‖H−1 ≤ 10−2, 10−3

and 2 × 10−4; (b) The number of outer cycles required for (4.26) and (4.27)
to attain the given tolerance ‖	δφ F (φ(k))‖H−1 ≤ 10−6.

	t The required number of iterations

err = 10−2 err = 10−3 err = 2 × 10−4

(4.26) (4.27) (4.26) (4.27) (4.26) (4.27)

0.1 127 126 1930 1928 10651 10645
1.0 14 14 192 190 1061 1055
10 3 3 18 16 105 99

(a) Inner iteration comparison.

	t The number of cycles

iter# = 500 iter# = 800 iter# = 1000

(4.26) (4.27) (4.26) (4.27) (4.26) (4.27)

0.1 191 191 381 380 239 238
1.0 40 39 25 25 21 20
10 6 5 4 4 4 3

(b) Outer cycle comparison.

thoroughly, but limited to a fixed few number of iterations, such as in the GAD. For the readers particularly interested in 
the practical convergence issue, refer to the discussion in [15]. Most numerical results we reported here are for one typical 
choice of initial conditions (except for Fig. 6), but our unreported numerical experiments by trying various initial guesses, 
still strongly support our main conclusions.

Finally, we emphasize another critical implementation issue of selecting the correct “min-mode”. In theory, the calcula-
tion of the min-mode is straight forward by minimizing the corresponding Rayleigh quotient. But if one starts from a local 
minimizer of F , say φ̄ , then the eigenvalues at this locally stable state are {0 = λ1 < λ2 < . . .} for the periodic boundary con-
dition and the min-mode is then the zero eigenvector v1 = ∂xφ̄. However, taking ∂xφ̄ as the min-mode is a very bad choice 
since it will not push the state away but only translate the state back and forth in space. This pathological case could also 
appear for some special initial states in the convex region of F , for example, when the minimal eigenvalue λ1 crosses over 
zero from positive to negative (from the convex region to the non-convex region), i.e., near the so-called branching point. 
The remedy to avoid this pathological situation in practice is simple: at a state φ, whenever the angle between v1 and ∂xφ

is close to 0◦ or 180◦ (determined by a prescribed threshold), a constraint is added to make sure that the min-mode v in 
use for the auxiliary functional L must be orthogonal to ∂xφ. In this way, a strictly positive λ2 is selected and accordingly, v2
is selected as the “min-mode”. As long as λ1 starts to take a negative value, the angle defined above automatically becomes 
90◦ and there is no interference between the min-mode v1 and the translation direction ∂xφ. After taking care of this issue, 
we found that for many initial guesses we tried, we did observe the convergence of the algorithm.

5. Conclusion

We have demonstrated how the convex splitting method can improve the efficiency of the transition-state calculation 
by allowing for the preferred large time step size. For the 1-D Ginzburg–Landau energy, this new method has been applied 
to find index-1 saddle points of the Allen–Cahn and Cahn–Hilliard types, i.e., under the L2 and H−1 metrics, respectively. 
Besides, we also test this method for the 2-D Landau–Brazovskii energy functional in H−1 metric. The main advantage of 
using the convex splitting scheme is to avoid the instability when the time step size is large. And it is also very inspiring 
that our extensive numerical studies in this paper have shown the significant improvement of the computational efficiency. 
Therefore, for spatially extended systems driven by an energy functional such as the phase field models or the Kohn–Sham 
density functional ([27]), we have reasons to speculate that many matured and excellent numerical methods for the tra-
ditional gradient dynamics may be able to exhibit their new vitalities for saddle point calculation, if they are correctly 
wrapped by the iterative minimization formulation.
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