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FINDING TRANSITION PATHWAYS ON MANIFOLDS∗

TIEJUN LI† , XIAOGUANG LI† , AND XIANG ZHOU‡

Abstract. When a randomly perturbed dynamical system is subject to some constraints, the
trajectories of the system and the noise-induced most probable transition pathways are restricted
on the manifold associated with the given constraints. We present a constrained minimum action
method to compute the optimal transition pathways on manifolds. By formulating the constrained
stochastic dynamics in a Stratonovich stochastic differential equation of the projection form, we
consider the system as embedded in the Euclidean space and present the Freidlin–Wentzell action
functional via large deviation theory. We then reformulate it as a minimization problem in the
space of curves through Maupertuis principle. Furthermore we show that the action functionals
are intrinsically defined on the manifold. The constrained minimum action method is proposed to
compute the minimum action path with the assistance of the constrained optimization scheme. The
examples of conformational transition paths for both single and double rod molecules in polymeric
fluid are numerically investigated.

Key words. rare event, large deviation, optimal transition pathways, constrained stochastic
dynamics
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1. Introduction. A large number of interesting behaviors of randomly per-
turbed dynamical systems are closely related to rare but important transition events
between metastable states. Such rare events play a major role in chemical reactions,
conformational changes of biomolecules, nucleation events, and the like. Theoretical
understanding of such transition events and transition paths has attracted a lot of
attentions for many years [13, 9]. The classic model is the following Ito stochastic
differential equation (SDE) in R

n with small noise amplitude:

(1.1) dXt = b(Xt) dt+
√
εσ(Xt) dWt.

In (1.1), the solutionXt is R
n-valued, b is a vector field R

n → R
n, σ is a matrix-valued

function R
n → R

n×m, and W is an m-dimensional standard Brownian motion. The
drift term b(x) could be the gradient of a potential energy function or have a rather
general form. The diffusion matrix σ(x) is assumed uniformly nondegenerate. b and
σ satisfy the regular smoothness conditions such as the global Lipschitz continuity
and boundedness conditions.

According to the large deviation principle (LDP) developed by Freidlin and
Wentzell [9], in the asymptotic regime of vanishing noise ε ↓ 0, the most probable
transition pathway in the time period [0, T ] between metastable states can be de-
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174 TIEJUN LI, XIAOGUANG LI, AND XIANG ZHOU

scribed through the minimizer of the Freidlin–Wentzell action functional,

(1.2) ST [φ] =
1

2

∫ T

0

‖σ−1(φ)(φ̇ − b(φ))‖22 dt,

for a nondegenerate square matrix σ. Based on this principle of least action, some
numerical methods, such as the minimum action method and its adaptive version
[8, 25], have been proposed and developed for a fixed time interval [0, T ] of interest.
Another different formulation of the Freidlin–Wentzell theory, based on the Mauper-
tuis principle [14], is the geometric minimum action method (gMAM) on the space of
curves [10]. The path given by the gMAM can be viewed as the minimum action path
of the original Freidlin–Wentzell action for an optimal T . In the special case that
b(x) = −∇V (x) and σ(x) ≡ I, where V is a potential function and I is the identity
matrix, the minimum action path is a minimum energy path and the string method
[7] is applicable to identify this path.

In practical applications, the dynamics of the system of concern may be subject
to one or more constraints, such as the constant length of rigid molecules [5], the
conservation of mass [24, 15], or more general constraints [4]. These constraints
restrict the system to live in a particular manifold M ⊂ R

n, determined by all the
constraints. Even when the stochastic perturbation is applied, the resulting stochastic
system still has to satisfy these physical constraints. Based upon this consideration, it
is natural and interesting to investigate the rare events occurring on manifolds. The
following problems are fundamental to address in the first step. What is the suitable
mathematical setup for the rare event study on manifolds? How to characterize the
most probable transition path? If one embeds the considered stochastic dynamics
on a manifold in the ambient space, does the resulting formulation depend on the
choice of embedding? How to design the effective path-finding algorithm with the
obtained results? The aim of this paper is to answer these questions and present
some preliminary numerical studies for some simple models.

We first outline our methodology and major points of this paper. There is an in-
trinsic formulation of the SDE on a Riemannian manifold, and one could “translate”
the classic Freidlin–Wentzell LDP in Euclidean space to this manifold case; however,
the abstractness of this formulation hinders its practicability. We actually start from
a stochastic system in R

n with drift b and diffusion σ subject to independent (deter-
ministic) constraints {ck(x) = 0} through Lagrange multipliers. By explicitly solving
these Lagrange multipliers in the stochastic version, we derive an SDE in the ambi-
ent space but in the projection form, which elucidates the connection between the
constrained SDE form and the projection form. This connection is a generalization
of similar results studied in [4], but with a more transparent proof. With this con-
nection, we obtain an SDE described by the projected drift Πb and the degenerate
diffusion Πσ for a projection operator Π from R

n to the tangent bundle. And this
SDE indeed lives on the manifold with the unique drift b̃ = Πb and the diffusion
σ̃ = Πσ. By using the generalization of the Freidlin–Wentzell LDP in the degener-
ated diffusion case, we derive the specific forms of action functionals by introducing
the generalized inverse of the projection operator Π. Moreover, we prove that our
results of the action functionals depend only on Πb and Πσ, not on their extensions
and the embedding in R

n. We also derive the geometric formulation of the action
functional on the space of curves and the Euler–Lagrange equation that the minimiz-
ing path must satisfy. We find that in the gradient case, i.e., b = −∇V and σ = I, the
projection-type string method works [6], while in general cases, the direct application
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of existing pathway finding approaches with projection does not apply. We instead
propose our constrained gMAM in the ambient space. In a nutshell, we present the
basic mathematical setup and investigate some essential ingredients for the study of
rare events on manifolds, and we demonstrate a viable numerical approach to compute
the optimal transition path.

The paper is organized as follows. We first discuss the SDE on manifolds and
the abstract form of the Freidlin–Wentzell action functional in the corresponding
setup in section 2. In section 3, we develop our model and discuss the variational
characterization of transition paths and the issue of embeddings following the idea we
mentioned above. Section 4 is devoted to the discussion of the numerical methods—
the constrained minimum action method. The applications to liquid crystal models
are presented in section 5, where we study the conformational transitions for rod
molecules on S

2 (unit sphere) and S
2 × S

2. In section 6, we show some possible
extensions to general bead-rod chain systems. The summary is in section 7. The
detailed technical proofs and some discussion about the comparison of different action
functionals are in the appendix.

2. SDE and LDP on manifolds. We first give an introduction to the formu-
lation of describing the SDE on a Riemannian manifold and the formal extrapolation
of the classic Freidlin–Wentzell theory for this manifold setting. The SDE on the
manifold is most conveniently written in the Stratonovich sense [12],

(2.1) dXt = b(Xt) dt+
√
ε

L∑
k=1

σk(Xt) ◦ dW k
t ,

on a compact differentiable d-dimensional manifold M without boundary. Here X ∈
M, the drift and diffusion b(x) and σk(x) belong to TxM (the tangent space ofM at x)
and {W k}Lk=1 are independent Wiener processes on R. We assume the nondegenerate
condition for diffusion,

dim span{σk(x)}Lk=1 = d ∀x ∈ M.

For the Brownian motion on Riemannian manifold (b = 0 and σ is the orthogonal
projection operator related to the Laplace–Beltrami operator; see, e.g., [12]), [11]
proved the LDP for the short time limit and gave the rate function. The minimizing
path of this rate function for the Brownian motion is the minimizing geodesics on
the manifold from starting point to ending point. For the SDE case rather than
Brownian motion, we here formally “extrapolate” the existing result on the Freidlin–
Wentzell LDP in Euclidean R

n to the manifold case. It will be shown later that we
eventually work on the SDE in the ambient space and use the corresponding LDP for
the Euclidean case.

Under certain regularity conditions on b and σk, we can write, as least in a formal
way, the rate function (or action functional) for (2.1) when ε ↓ 0 as

(2.2) ST [φ] =

∫ T

0

L(φ, φ̇) dt,

when φ ∈ AC([0, T ];M), AC meaning absolutely continuous functions. Otherwise,
ST [φ] = +∞. Here φ̇ is the time derivative dφ/ dt. The Lagrangian in (2.2) L :
M× TM → R is defined as

(2.3) L(x, y) :=
1

2

〈
a−1(y − b(x)), y − b(x)

〉
,
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where 〈·, ·〉 is the dual product between the cotangent space T ∗M and the tangent
space TM. Equation (2.3) can be treated as 1

2‖y− b(x)‖2M, where the norm in TM,
‖y‖M :=

〈
y, a−1y

〉
, is induced by the inverse of the nondegenerate a(x) = σ(x)⊗σ(x).

Remark 1. Note that the type (0, 2) covariant symmetric tensor field

m∑
k=1

σk ⊗ σk ∈ T 2
0M

can also be viewed as a mapping

a :=

m∑
k=1

σk ⊗ σk : T ∗M −→ TM

by fixing its first or second argument [2]. From the nondegenerate condition, we have
that the mapping a is bijective; thus its inverse a−1 : TM → T ∗M is well-defined.

Remark 2. The classic Freidlin–Wentzell LDP is formulated for the Ito SDE. So,
it appears that the action functional, (2.2) and (2.3), would only correspond to the
SDE (2.1) interpreted in the Ito sense. Indeed, the LDP action functional, (2.2) and
(2.3), still has exactly the same expression no matter whether (2.1) is in the Ito sense
or the Stratonovich sense, because the LDP here is for the limit ε ↓ 0. We use (1.1) in
Euclidean space to elaborate this point. Consider the following SDE with the same
form of drift and diffusion as the Ito (1.1), but in the Stratonovich sense:

(2.4) dXt = b(Xt) dt+
√
εσ(Xt) ◦ dWt.

We know (2.4) is equivalent to the following Ito SDE:

(2.5) dXt = bε(Xt) dt+
√
εσ(Xt) dWt,

where bεi (x) = bi(x) +
ε
2

∑n
j=1

∑m
k=1

∂σik(x)
∂xj

σjk(x). By [9] or [3], if bε → b uniformly

in the maximum norm as ε → 0, for example, when σ and its derivative are uniformly
bounded for the situation here, then the Ito SDE (2.5) (equivalently, the Stratonovich
SDE (2.4)) and the Ito SDE (1.1) share the same large deviation result with the same
rate function (1.2) .

Therefore, under mild conditions, it is valid to take limit ε ↓ 0 for the ε-dependent
drift function first to have an ε-independent drift for the use of the action functional
in the Freidlin–Wentzell LDP.

There is a conjugate relation between the Lagrangian and the Hamiltonian for
the underlying LDP. The Hamiltonian corresponding to (2.3), H : M× T ∗M → R,
has the following form:

H(x, p) := 〈p, b(x)〉+ 1

2

m∑
k=1

〈p, σk(x)〉2 .

We show that (2.3) is indeed the Legendre transformation of the Hamiltonian, i.e.,

(2.6) L(x, y) = sup
p∈T∗M

{〈p, y〉 −H(x, p)} .

To show this, we calculate the critical point of (2.6)

(2.7) y =
∂H

∂p
= b(x) +

m∑
k=1

〈p, σk(x)〉 σk(x)
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FINDING TRANSITION PATHWAYS ON MANIFOLDS 177

to get the optimal p∗(x, y) = a−1(y− b(x)). Plugging this p∗ into the right-hand side
of (2.6), we immediately see that (2.6) holds. In addition, we have that p∗(φ, φ̇) is
equal to the generalized momentum defined as ∂L

∂y (φ, φ̇) = a−1(φ̇ − b(φ)). We also

have that along a path φ, H(φ, p∗(φ, φ̇)) = 1
2‖φ̇‖2M − 1

2‖b(φ)‖2M.

The geometric action functional Ŝ for the SDE (2.1) on the manifold M can also
be formally generalized as for the Euclidean case in [10] by using the Maupertuis prin-
ciple (section 44 in [14]), which says that the geometric action (also called abbreviated
action) is the following line integration of the generalized momentum along a curve
γ = {ϕ(α) : α ∈ [0, 1]} on M:

Ŝ[ϕ] =

∫
γ

〈p∗, dϕ〉

with the constraint H(γ, p∗) ≡ 0. In the case of (2.1) here, p∗ = a−1(φ̇ − b(φ)),
where φ(t) is the t-parametrization of the curve γ. Write ϕ′ = dϕ

dα . Note that

H(γ, p∗) ≡ 0 gives that ‖ϕ′‖M dα
dt = ‖b(ϕ)‖M. Thus, p∗ = a−1

(
ϕ′ dα

dt − b(x)
)
=

a−1( ϕ′
‖ϕ′‖M ‖b(ϕ)‖M − b(x)). Thus, we have the geometric action functional for (2.1)

(2.8) Ŝ[ϕ] =

∫
γ

〈
a−1 (τ(ϕ)‖b(ϕ)‖M − b(x)) , dϕ

〉
,

where τ = ϕ′/‖ϕ′‖M is the normalized tangent. It is clear that (2.8) is invariant for
specific parametrization of the curve γ.

3. Action functional for constrained SDE. The abstract formulation in sec-
tion 2 is intrinsically defined for a Riemannian manifold M. However, for real appli-
cations, the SDE of interest is usually written in an ambient space, say, Rn, subject
to some constraints, such as the example of a polymer chain in section 6. Thus the
resulting trajectories of the SDE lie in the submanifold immersed in R

n. For the
deterministic dynamics subjected to imposed constraints, one of the traditional ap-
proaches is to introduce the Lagrange multipliers. By explicitly solving the Lagrange
multiplier from the constraints, one can obtain a new dynamical flow in ambient space,
but naturally living on the submanifold determined by the constraints. This flow on
the submanifold is equivalent to projecting the original flow onto the tangent space
of the submanifold.

We shall take a similar approach to model the problem of the “constrained SDE”
and show the equivalence of the Lagrange multiplier approach and the projection
approach. The purpose here is to rigorously derive the correct form of the “projected
SDE” embedded in the ambient space. After we derive this SDE in the projection
form, we treat it as an SDE in the ambient space with degenerate diffusion, from
which we carry out the study of the action functional in LDP.

3.1. Constrained SDE in ambient space. Consider a stochastic dynamics
written as an Ito SDE in R

n,

(3.1) dX = b(X) dt+ σ(X) dW

subject to p = n− d independent constraints cj(X) = 0, j = 1, . . . , p.
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To incorporate these constraints, we introduce the Lagrangian multipliers μ =
(μ1, . . . , μp)

T, as well as the Jacobian of the constraint functions

(3.2) G(x) =

⎛⎜⎜⎜⎝
(∇c1(x))

T

(∇c2(x))
T

...
(∇cp(x))

T

⎞⎟⎟⎟⎠ ∈ R
p×n and M(x) = G(x)GT(x) ∈ R

p×p.

The matrix M can be considered as a metric matrix in the normal space spanned
by {∇cj(x)}. The independence of the constraints amounts to the condition that
M−1(x) exists for any x. Now we consider the constrained SDE of the form

dX = b(X) dt+GT(X) dμ+ σ(X) dW,(3.3)

where the Lagrange multiplier μ is described by

dμ = α(X) dt+ β(X) dW.(3.4)

The driving Brownian motion W in (3.3) and W in (3.4) are the same. The functions
α(x) ∈ R

p and β(x) ∈ R
p×n above will be determined by the constraints such that the

solution Xt to (3.3) and (3.4) satisfies cj(Xt) ≡ 0 ∀j, ∀t ≥ 0 as long as cj(X0) = 0.
The calculations by using the Ito lemma show the following result.

Theorem 1. The functions α and β in (3.4) for the Lagrange multipliers have
the form

(3.5) α = −M−1
[
Gb+

1

2
∇2c : (BBT )

]
and

(3.6) β = −M−1Gσ,

where B = GTβ + σ, and (∇2c : (BBT))i :=
∑n

j,k,m=1(∂jkci)BjmBkm.
If the primitive diffusion coefficient σ satisfies the condition that

(3.7) a(x) := σ(x)σ(x)T = θ(x)I,

where θ is a positive scalar, then (3.3) is equivalent to the Stratonovich SDE

(3.8) dX = P (X)
(
b(X) dt+ σ(X) ◦ dW

)
,

where

(3.9) P = I −GTM−1G

is the orthogonal projection onto the tangent space of the manifold arising from the
constraints:

M = {x ∈ R
n : cj(x) = 0, j = 1, . . . , p} .

The action of the projection operator P in (3.8) is understood in the Stratonovich
sense.
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If a = σσT is not a scalar matrix, then the Stratonovich projection form (3.9) is
generally not true. But for the vanishing noise limit, we still have the following result.

Corollary 1. If the term σ(x) in (3.3) is replaced by
√
εσ(x), then the con-

strained SDE (3.3), (3.4) can be transformed to

(3.10) dX = P (X)

((
b(X) + h(X, ε)

)
dt+

√
εσ(X) ◦ dW

)
,

where ‖h(x, ε)‖ ∼ O(ε).
The proof of this corollary is straightforward by direct calculations using (3.5) and

(3.6). The h term above actually comes from the F1 term in the proof of Proposition
1. Since the action functional is unchanged if the term h(x, ε) is taken out in (3.10),
due to the same argument in Remark 2, we can use (3.8) to study the transition path
problem, regardless of the condition (3.7). It should be noted that for finite noise,
(3.8) and (3.10) are different SDEs, although they share the same rate function at the
large deviation level.

3.2. SDE embedded in ambient space. We have shown the transformation
of an Ito SDE in the ambient space subject to constraints into a projection form by
introducing the orthogonal projection operator P . In comparison to the deterministic
case, the Lagrange multiplier μ carries information of both the drift b and the diffusion
σ. Therefore, the drift of the resulting SDE (3.10) has an additional term from the
diffusion σ, except that σσT is a scalar matrix. Since here we are interested only in
the transition pathways of these SDEs and the large deviation rate functions are the
same if the drift terms in these SDEs have only an order O(ε) perturbation, we can
study (3.10) by taking out the extra h term, which is the following projected SDE:

(3.11) dX = P (X)
(
b(X) dt+

√
εσ(X) ◦ dW

)
.

In what follows, we shall view this SDE in projection form as an extension in R
n of

the SDE intrinsically defined on manifold as in section 2.
Assume that a d-dimensional closed Riemannian submanifold M is a submanifold

in the ambient Euclidean space R
n (n > d) by isometric embedding. The Rieman-

nian metric on M is naturally induced by Euclidean metric in R
n. We consider the

following Stratonovich SDE intrinsically defined on M (see (2.4)):

(3.12) dX = b̃(X) dt+
√
ε

n∑
k=1

σ̃k(X) ◦ dW k
t ,

where b̃ and σ̃k, M → TM, are vector fields on M and the driving Brownian motion
{W k : k = 1, . . . , n} is the standard Brownian motion in R

n. σ̃(x) := [σ̃1, . . . , σ̃n] is a
linear mapping R

n → TxM for each x ∈ M and is assumed to be nondegenerate on
M; that is,

span {σ̃k(x) : k = 1, . . . , n} = TxM ∀x ∈ M.

Write ã(x) := σ̃(x)σ̃(x)T. The nondegeneracy of σ̃ implies that ã(x) is positive definite
and invertible as a linear mapping from T ∗

xM to TxM.
A special case of (3.12) is the Brownian motion, in which, by [12, Thm. 3.1.4],

b̃ = 0|M and σ̃k = Pk, the orthogonal projection of the standard orthonormal basis
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on R
n onto the tangent bundle TM. Let P be a corresponding orthogonal projection

matrix from R
n to TM, i.e., P (x) = [P1(x), . . . , Pn(x)]; then the solution of dX =

P (X) ◦ dW :=
∑n

k=1 Pk(X) ◦ dW k is the Brownian motion on M.

Extending b̃(x) and σ̃k(x) in (3.12) arbitrarily to the ambient space x ∈ R
n, we

can identify (3.12) on M as the following extrinsic SDE on R
n:

(3.13) dX = Π

(
b(X) dt+

√
ε

n∑
k=1

σk(X) ◦ dW k
t

)
,

where Π = Πx is a projection matrix (not necessarily orthogonal matrix) from R
n to

TxM. The tangent space TxM is now identified as Img(Πx), a d-dim subspace of Rn.
The subindex of the projection Π is sometimes dropped out henceforth if there is no
ambiguity. With probability 1, if the initial condition X0 = x ∈ M, the solution of
(3.13) Xt is always on the manifold M for any time t > 0.

By identifying b̃ in (3.12) as a vector field on R
n, we require that

Π(b(x)) = b̃(x) ∀x ∈ M.

Let σ := [σ1, . . . , σn]. We assume that σ is nondegenerate in R
n, i.e.,

span {σ1, . . . , σn} = R
n.

Then we further require that

Πσ(x) = σ̃(x)

∀ x on M with the same range space TxM. When σ is the identity matrix in R
n, the

diffusion term is Π ◦ dW , corresponding to the Brownian motion on M.
Equation (3.13) is the same as (3.11) if the manifold M is determined by the

p = n− d independent constraints; however, in (3.13) we do not assume that Π must
be an orthogonal projection, although the results can be further simplified if Π is
indeed orthogonal.

Next, we give some comments to emphasize that ã indeed induces a metric on
Img(Π) = TxM. Since ã(x) = σ̃(x)σ̃(x)T and a(x) = σ(x)σ(x)T , then

(3.14) ã(x) = Πa(x)ΠT ∀x ∈ M.

Note that ã is a linear mapping from R
n to Img(Π) with the same kernel space as σ̃T

and ΠT. Thus, for any v ∈ Img(Π), there is a unique vector ṽ in Img(Π) such that the
linear equation ãṽ = v holds. For such a ṽ, we have vTṽ = ṽTãṽ ≥ 0 and the equality
ṽTãṽ = 0 holds if and only if ṽ = 0. Thus, we can define ã-norm on the subspace
Img(Π) as follows:

(3.15) ‖v‖ã :=
√
〈v, ṽ〉 =

√
vTṽ.

Formally we can write ṽ = ã−1v, then ‖v‖ã =
√〈v, ã−1v〉. Here 〈·, ·〉 is the Euclidean

inner product of Rn. Meanwhile, the ã-inner product is also induced as 〈w, v〉ã =〈
ã−1w, v

〉
=
〈
w, ã−1v

〉
. For the special case that a(x) = I and Π = ΠT (orthogonal

projection), ãv = Πv = v for any v ∈ TxM and thus both ã and ã−1 are I|TxM, the
identity mapping restricted on TxM.

The vector field b̃ and the diffusion tensor ã uniquely define a unique SDE (3.12)

on M. We extended the domains of b̃ and ã to b and a, respectively, by introducing
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FINDING TRANSITION PATHWAYS ON MANIFOLDS 181

the projection Π to have an equivalent SDE (3.13) embedded in the ambient space. By
viewing this projection form SDE (3.13) as an R

n-valued SDE in the ambient space,
we can study its LDP and action functional. Obviously, the extended b, a and the
choice of Π are not unique in the ambient space. Will the LDP result and the action
functional obtained from the ambient space depend on the nonunique extensions of
b(x) and a(x)? We next show that the answer is no and the final result of the action

functional of (3.13) depends only on the intrinsic flow b̃ (i.e., Πb) and the ã-norm
on M.

3.3. Action functional. Equation (3.13) on Euclidean R
n has degenerate diffu-

sion restricted in TxM, a subspace of Rn. The classic Freidlin–Wentzell theory [9] for
the nondegenerate case is not directly applicable. The Freidlin–Wentzell LDP result
has been generalized for the degenerate case. Refer to [3, 1, 20] and the literature
therein. Under certain mild assumptions for Πb and Πσ (sublinear growth, locally Lip-
schitz continuity in R

n, etc.), it follows from [3] that the LDP of the Freidlin–Wentzell
estimate holds with the rate function given by

(3.16) S[φ] =

∫ T

0

L(φ, φ̇) dt = inf
f∈L2([0,T ];Rn)

{
1

2

∫ T

0

‖f‖2 dt : φ̇−Πb(φ) = Πσf

}

if φ ∈ AC([0, T ],Rn) and S[φ] = +∞ otherwise. Here Π = Πφ(t) and φ̇ = dφ/ dt is
the time derivative. The norm ‖f‖ is the 2-norm in R

n. Equation (3.16) implies that
for any path with finite action, its velocity φ̇ must lie in Img(Π), which is just the
tangent bundle TM. Let the two ends of the path be fixed at two given points A and
B on M, i.e., φ(0) = A and φ(T ) = B. Then φ̇ ∈ TM implies that the path with
finite action must be in the admissible set

A = {φ ∈ AC([0, T ];M) : φ(0) = A, φ(T ) = B} ,(3.17)

which is equivalent to

(3.18) A′ =
{
φ ∈ AC([0, T ];Rn) : φ̇ ∈ ImgΠφ, φ(0) = A, φ(T ) = B

}
.

The Lagrangian L(x, y) : M × TM → R in (3.16) has the following form by
introducing u = σf(t) for each t:

(3.19) L(x, y) = min
u∈Rn,Πu=y−Πb(x)

1

2
‖u‖2a.

Recall that a(x) = σ(x)σ(x)T is nondegenerate and positive definite in R
n and

‖u‖a :=
√
uTa−1(x)u for u ∈ R

n. So (3.19) is a quadratic programming and the
solution u is unique in general. The following result relates the above minimization
problem to the ã-norm we defined before.

Proposition 1. For any vector v ∈ TxM, we have that

(3.20) min
u∈Rn,Πu=v

‖u‖2a = ‖v‖2ã,

where ã is defined in (3.14) and ‖ · ‖ã is defined in (3.15). In addition, the optimal
u∗ = aΠTã−1v. Furthermore, if ΠT = Π, then u∗ = aã−1v.
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Proof. Write ṽ := ã−1v. By the definition of ã and ã−1, we have ãṽ = ΠaΠTṽ = v.
Introduce l := u− aΠTṽ, then Πl = 0. We have that

‖u‖2a = uTa−1u = (l + aΠTṽ)T(a−1l +ΠTṽ)

= ‖l‖2a + ṽTΠl + lTΠTṽ + ṽTΠaΠTṽ

= ‖l‖2a + vTṽ = ‖l‖2a + ‖v‖2ã ≤ ‖v‖2ã.

So the conclusion holds and the optimal solution is u∗ = aΠTṽ.

The following theorem is a direct consequence of the above result.

Theorem 2. The Lagrangian (3.19) is equivalent to

(3.21) L(x, y) =
1

2
‖y − b̃(x)‖2ã.

So, the Lagrangian (3.19) and the action functional are independent of the embedding
in the ambient space.

Following section 2, we have that the corresponding Hamiltonian for (3.19) is

(3.22) H(x, p) = 〈Πb(x), p〉+ 1

2

∥∥σ(x)TΠTp
∥∥2 ,

where 〈·, ·〉 and ‖ · ‖ are the inner product and 2-norm of Rn, respectively. To verify
that (3.22) is the Legendre transformed L, we use the duality theory of optimization
and shall show that for any fixed x ∈ M and y ∈ TxM,

L(x, y) = sup
p∈Rn

(
〈y, p〉 −H(x, p)

)
= sup

p∈Rn

(
〈y −Πb(x), p〉 − 1

2
‖σ(x)TΠTp‖2

)
.

(3.23)

The Lagrange function L : Rn×R
n → R associated with the constrained optimization

problem for the variable u in (3.19) is as follows:

L(u, λ) = 1

2
‖u‖2a − 〈λ,Πu− y +Πb(x)〉 ,

where λ ∈ R
n is the Lagrange multiplier. The dual function g(λ) = minu∈Rn L(u, λ).

Straightforward calculation for this minimization shows g(λ) = L(aΠTλ, λ) =
− 1

2‖σTΠTλ‖2 + 〈λ, y −Πb(x)〉. Since the strong duality holds for the quadratic pro-
gramming in (3.19), we have that L(x, y) = supλ∈Rn g(λ), which is exactly (3.23) by
identifying p as λ. It is not difficult to show that for finite L(x, y), the optimal p∗ in
(3.23) is in Img(Π). So, the Hamiltonian H(x, p) in (3.22) is finite for x ∈ M and
p ∈ TxM and is equal to −∞ otherwise.

By the duality theory, we also have that

(3.24)
∂L

∂y
= p∗ and u∗ = aΠTp∗,

where u∗ is the minimizer of (3.19). It is also observed that p∗ is the unique solution
(in Img(Π)) of ãp∗ = y −Πb(x) since ΠaΠTp∗ = Πu.
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3.4. Geometric action functional on M. The geometric formulation of the
action function, developed in [10], does not involve time explicitly but allows the
variation of the time interval. If we consider the original formulation of Freidlin–
Wentzell theory as an analogy of Lagrangian mechanics for the trajectory of a particle,
then the geometric action functional in [10] corresponds to the Maupertuis principle
(section 44 in [14]) for the curve along which the particle travels.

In the following, we consider the geometric action functional Ŝ for the SDE (3.13)
on the manifold M. Suppose that a curve γ on M is parametrized as γ = ϕ(α), with
α ∈ [0, 1], for instance, α being the normalized arc-length parameter. Then the
geometric action functional is the line integration along γ

Ŝ[ϕ] =

∫
γ

〈p, dϕ〉

subject to the constraint H(ϕ, p) = 0, where p = ∂L/∂y(ϕ, ϕ̇) is the generalized
momentum, L is the Lagrangian defined in (3.23), and ϕ̇ is the time derivative. By
(3.24), this generalized momentum satisfies ãp = y −Πb(x), and

(3.25) p = ã−1(ϕ̇−Πb(ϕ)).

So, Ŝ has the following expression:

Ŝ[ϕ] =

∫ 〈
ã−1(ϕ̇−Πb(ϕ)), dϕ

〉
=

∫ 1

0

〈
ã−1(ϕ′λ−Πb(ϕ)), ϕ′〉 dα,

where the scalar-valued function λ := dα/ dt ∈ [0,+∞] is the change of variable
between the physical time t and the arc length α. Here ϕ̇ = dϕ/ dt is the time deriva-
tive and ϕ′ = dϕ(α)/ dα is the tangent vector of the curve for the α-parametrization.
To derive the expression of λ in terms of ϕ and ϕ′, we use the condition that the
Hamiltonian along the path is constant zero [10, 14] as well as the formula for p in
(3.25):

H(ϕ, p) =
1

2
〈ϕ̇+Πb(ϕ), ϕ̇−Πb(ϕ)〉ã =

1

2
‖ϕ̇‖ã − 1

2
‖Πb(ϕ)‖ã = 0.

Since ϕ̇ = ϕ′λ, the above equation gives the important quantity

(3.26)
dα

dt
= λ =

‖b̃‖ã
‖ϕ′‖ã .

Therefore, we obtain the expression of Ŝ for ϕ ∈ A,

Ŝ[ϕ] =

∫ 1

0

〈
ã−1

(
ϕ′ ‖b̃‖ã

‖ϕ′‖ã −Πb(ϕ)

)
, ϕ′

〉
dα

=

∫ 1

0

‖b̃(ϕ)‖ã‖ϕ′‖ã −
〈
b̃(ϕ), ϕ′

〉
ã
dα.

(3.27)

This expression can also be obtained from the time-parametrized SM
T in (C.3) by

using (3.26). Proposition 4 allows us to write (3.27) equivalently in the following
a-norm:

Ŝ[ϕ] =

∫ 1

0

‖Π−1b̃(ϕ)‖a‖Π−1ϕ′‖a −
〈
Π−1b̃(ϕ), ϕ′

〉
a
dα.(3.28)

We recall that Π−1b̃ = Π−1Πb is not equal to b.
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184 TIEJUN LI, XIAOGUANG LI, AND XIANG ZHOU

The Euler–Lagrange equation for the geometric action functional Ŝ can be ob-
tained directly from the variational calculus or by using (3.26) to transform the Euler–
Lagrange equation for SM

T into arc-length parametrized form. For the same curve
γ = {φ(t) : t ∈ [0, T ]} = {ϕ(α) : α ∈ [0, 1]}, where dα/ dt = λ is given by (3.26), the
following general result holds for the Fréchet derivativeof two functionals SM and Ŝ:

δŜ

δϕ
= λ−1 δS

M
T

δφ
.

Thus, by (C.9) and (3.26)

(3.29)
δŜ

δϕ
= λ−1

(
−p̃′λ− J̃Tp̃+

1

2
(ãp̃)⊗ (ãp̃) : ∇(ã−1)

)
,

where p̃ = ã−1(φ′λ− b̃).
We finish this section by presenting a spherical manifold case which will be used

later.
Example 1 (sphere S

d
). Using the result in Example 3, we have the form of the

action functional SM
T in (C.2):

SM
T [φ] =

1

2

∫ T

0

∥∥∥φ̇−Πb(φ)
∥∥∥2
a
−
〈

φ

‖φ‖a , φ̇−Πb(φ)

〉2

a

dt.

Note that the first term is exactly S1
T of (C.5), so SM

T [φ] ≤ S1
T [φ]. Likewise, we have

the expression of the geometric action function (3.28) in this case, which is

Ŝ[ϕ] =

∫ 1

0

√(
‖Πb‖2a − 〈Πb, ϕ〉2a /‖ϕ‖2a

)(
‖ϕ′‖2a − 〈ϕ′, ϕ〉2 /‖ϕ‖2a

)
− 〈Πb, ϕ′〉a + 〈Πb, ϕ〉a 〈ϕ′, ϕ〉a /‖ϕ‖2a dα.

4. Constrained minimum action method. The least action principle is to
solve the constrained minimization problem, (C.2),

inf
φ∈A

SM
T [φ] = inf

φ∈A
1

2

∫ T

0

∥∥∥Π−1(φ̇−Πb)
∥∥∥2
a
dt

and the geometric version, (3.28),

inf
φ∈A

Ŝ[ϕ] = inf
φ∈A

∫ 1

0

‖Π−1Πb‖a‖Π−1ϕ′‖a −
〈
Π−1Πb, ϕ′〉

a
dα.

The Euler–Lagrange equations have been derived in section 3. Thus, in prin-
ciple, the minimum action paths can be calculated by any numerical optimization
solver, such as the steepest descent dynamics. In the following, we briefly discuss
many practical aspects of this computational problem. Many of them have already
been investigated in the context without constraints during the development of the
minimum action method [8, 25, 10, 23, 22, 21]. Some of these techniques are quite
important for large-scale problems. The consideration of the constraints in the con-
strained minimum action method will also be discussed in detail.

First recall that one of our motivations for the manifold case is for the constraints
specified by the nondegenerate constraint functions ck(x) = 0, k = 1, 2, . . . , n − d,

D
ow

nl
oa

de
d 

12
/1

0/
17

 to
 1

44
.2

14
.7

4.
89

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINDING TRANSITION PATHWAYS ON MANIFOLDS 185

as discussed in Proposition 1. Thus the manifold M = {x ∈ R
n : ck(x) = 0, k =

1, 2, . . . , n−d} and the projection Π is the orthogonal projection P = I−GT(GGT)−1G
in (3.9). The inverse of ã appearing in the Euler–Lagrange equation can be calcu-
lated via a−1Π−1 as shown in Proposition 3. The explicit formula for Π−1 is usually
solved from its definition. The basis vector for the space Ker(Πx) is ξk = ∇ck(x).
The explicit formula of Π−1 under a-norm can be expressed in terms of ξk = ∇ck,
following the same procedure as in Proposition 7. We also mention that when the
local coordinate representations for ã−1 are conveniently available for some special
problems, the corresponding local coordinate form for the action functional (C.2) and
(3.28) can be derived and used to have a standard nonlinear optimization problem
without constraints.

The first thing to consider in any numerical scheme for the action functionals
(C.2) and (3.28) and their Euler–Lagrange equations (C.9) and (3.28), respectively, is
the “spatial” discretization for t or α. For Freidlin–Wentzell action functional (C.2),
the path to compute is represented as φ = (φ0, φ1, φ2, . . . , φN ) for a given time mesh
grid 0 = t0 < t1 < t2 . . . < tN = T such that φi ≈ φ(ti). It is important to maintain a
good parametrization for the path in the configuration space to ensure good accuracy;
thus, the idea of the adaptive minimum action method (aMAM) in [25] should also
be applied here. The aMAM uses the moving mesh method to redistribute the time
mesh grid {ti} when the current mesh grid does not meet certain criteria, for instance,
when the ratio maxi ‖φi+1 − φi‖/mini ‖φi+1 − φi‖ exceeds some threshold (1.5 ∼ 5
in practice). The aMAM solves a one-dimensional elliptic equation to obtain the
numerical mapping between the time t ∈ [0, T ] and a new variable α ∈ [0, 1] (a similar
role for the arc-length parameter in some sense, but more flexible). The key element
in this moving mesh strategy is the monitor function w, which is typically chosen
as ‖φ̇‖ to achieve arc-length parametrization for the discrete path. The alternative
choice with a similar effect is to choose w(t) = ‖b(φ)‖ã by noting that the minimum

path satisfies ‖φ̇‖ã = ‖b̃‖ã for the zero-valued Hamiltonian. The flexibility of selecting
other types of the monitor function w caters for other needs, for example, including
the second derivative ‖∂2

αφ‖−1 in w to place more points in regions of high curvature.

Besides the redistribution of the mesh grid, the first and second derivatives of the
path can be calculated by the finite difference method as aMAM [25] did or by the
more advanced spectral element method proposed in [22] to achieve higher accuracy.

For the gMAM to solve (3.28), the curve γ is represented by (ϕ0, ϕ1, . . . , ϕN ),
and the above “spatial” discretization methods are all applicable in this geometric
setting. Likewise, the progress of the path evolution will eventually deteriorate the
mesh quality. Thus it is equally important as in aMAM to check the ratio maxi ‖ϕi+1−
ϕi‖/mini ‖ϕi+1−ϕi‖ and perform reparametrization by interpolation when necessary.

For the calculation of the arc length of the curve ϕ(α), it may be more natural to
use the geodesic distance onM to define the arc length, but it is practically convenient
to just use the Euclidean arc length. If the number of discrete images in representing
the curve is sufficiently large, these two choices of the distance between neighboring
images measured by geodesic or Euclidean metrics would not give much difference.

After the temporal mesh or arc-length mesh is redistributed, the interpolation
can be implemented by the cubic spline interpolation like in [8, 25]. Since for the non-
gradient system, the path usually has a sharp corner on the basin boundary, the high
curvature there would decrease the interpolation accuracy. The well-known WENO
interpolation is quite a feasible and efficient method to handle the discontinuous sec-
ond derivative (w.r.t arc length α or the α variable in aMAM).
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In the end, we discuss the issue of how to take care of the constraints. We select
a numerical scheme for the constrained nonlinear optimization, say, the augmented
Lagrangian method [18], which requires the input of an objective function, constraint
functions, and their gradients. In our constrained minimum action method, the objec-
tive function is the discretized version of the action functional S[φ0, φ1, . . . , φN ], where
φ0 = A, φN = B are given onM. The derivative of the objective function is calculated
by the Fréchet derivative of the action functional, i.e., the Euler–Lagrange equation
(unconstrained version on R

n). The constraints are ck(φi) = 0 ∀ k = 1, . . . , n − d
and i = 1, . . . , N−1, totally (n−d)(N−1) constraints. Their gradients can usually be
derived analytically for specific problems; otherwise, the derivative-free optimization
solvers have to be used. The augmented Lagrangian method solves the constrained
problem by sequentially solving unconstrained problems

min
φ

(
S[φ]−

∑
k,i

λkick(φi) +
μ

2

∑
ki

c2k(φi)

)

and updating the Lagrange multipliers λki and the penalty factor μ. When the path
is parametrized in time, the above S is SM

T . During solving this constrained optimiza-
tion problem for a given mesh grid in [0, T ], the mesh quality will be checked, and
when the adjustment for the mesh is needed, the mesh will be redistributed and the
path after interpolation will be used as the initial guess for the constrained discrete
optimization problem associated with the updated time mesh grid. When using the
geometric action functional Ŝ, the arc-length distribution of the discrete images on
the curve can be achieved in an alternative approach, rather than using interpolation
in the above aMAM idea; we furthermore impose N − 1 constraints for the arc-length
parametrization requirement: ‖ϕi+1−ϕi‖2 = ‖ϕi−ϕi−1‖2 for i = 1, . . . , N−1. In this
way, the initial curve does not have to be exactly on the manifold or even arc-length
parametrized to satisfy all the constraints. The augmented Lagrangian method will
take care of both types of constraints. The calculations in the next section for our
examples of interest in this paper are implemented by calling the MATLAB fmincon

subroutine and incorporating the above two types of constraints.
One can also use the projected steepest descent dynamics to solve the constrained

optimization problem, that is, to solve the Euler–Lagrange equation, i.e.,

∂τφ(τ, t) = −Π
δS

δφ
.

This requires that the initial guess of the path φ(0, ·) should satisfy the constraints
{ck = 0}. The projection Π is explicitly placed on the right-hand side to suppress the
“spatial” discretization error amounting to small deviation from the tangent space.
However, the τ -discretization will also bring a small deviation from the manifold,
even when the force at τn is exactly on the tangent space. Thus, it is favored to
bring φ̃(n+1) = φ(n) − δτ · (Π δS

δφ )
(n) back to the manifold exactly so that the obtained

φ(n+1) is on M. This cannot be done via the projection Π on tangent space and
indeed it may be quite challenging for certain problems. But sometimes, for the
examples in our following section where the manifold is typically a sphere S

d, this
procedure is quite easy and a simple normalization x → x/‖x‖ works well. For general
situations, [6] offered a proposal of using the implicit scheme for τ in developing the
constrained string method. A similar idea is to introduce components in normal
space, span {∇ck}, to correct the error from δτ : to look for γ1, . . . , γn−d such that
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FINDING TRANSITION PATHWAYS ON MANIFOLDS 187

ck(φ
(n+1)) = ck(φ̃

(n+1) + γj∇cj(φ
(n))) = 0 ∀ k. Overall, both of these methods

eventually bring some overhead of solving nonlinear equations for φ(n+1).
The last comment is about the choice of the initial path. Like any optimization

problem, the choice of a good initial path is essential to find the global minimizer
and this is the biggest difficulty for many practical problems with multiple local
minimizers. The general strategy we used for path-finding problems is to explore the
configuration space by using the minimum action method with simple guesses such as
straight lines. With a more clear understanding about the invariant structures such
as saddle points, heteroclinic orbits, etc., some new initial guesses can be proposed
to try in hope of new information about the configuration space. These two tasks
actually benefit each other. Usually, by this recursive procedure, one can both gain
deep insights of the configuration space and obtain the path whose action is as small
as possible. The details for specific examples can be found in the next section or the
previous work [23].

5. Examples. In this section, we apply the constrained minimum action method
to study the transition pathways for the motion of one class of liquid crystal molecules.
These types of macromolecules are usually modeled as rigid rods so the configuration
space for each rod is S2. More realistic models such as general bead-rod-spring models
have more complex intrinsic constraints for the molecular configurations; the details
are well-explained in Chapter 5 of [19]. The rigid rod model we are studying here is
the typical building block for those chain models.

X

rigid rod

shear

Fig. 1. Rigid rod polymeric model in shear flow. The length of the directed vector X is one.

Typically, there are many equilibrium states for the molecular configurations.
Depending on the interaction between molecules, there could be some spontaneously
preferred directions X for the molecules. In many cases where the ensemble statistics
are of interest, the direction X and −X is undistinguished due to symmetry. But at a
microscopical level, each individual configuration does switch between the symmetric
two metastable states X and −X. When these macromolecular polymers are added
into solvent (Figure 1), then the mixed solution has interesting hydrodynamic and
rheological features different from the Newtonian fluid. The study of complex fluid
mainly focuses on macroscopic quantities of polymeric fluid, such as viscoelasticity.
However, the change of macromolecular configurations at the microscopic level due
to thermal fluctuation and fluid shear is of its own interest, in particular when these
macromolecules, for instance, liquid crystals, are directly responsible for some physical
mechanisms in practice, such as color control for display devices.

In the following, we present two examples to understand the transition paths
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in the rigid rod model. In the first example, we study the single rod molecule with
quadratic potential in shear flow. Due to spherical symmetry, any linearly stable state
X has a symmetric stable one −X. The transition from X to −X corresponds to the
flip over process of the rod molecule. How the shear rate impacts this flip over process
is our interest. Our second example includes two rods with interaction between them.
This is the simplest case for the weakly interaction particle system [16]. To see how
the anisotropic diffusion tensor play roles transition path, we artificially assign two
different diffusion coefficients, σ1 and σ2, for the two rods and investigate the effect
of the ratio σ2/σ1 on the transition pathways. Although the diffusion coefficient
(i.e., temperature) of two molecules seem to be the same in physical reality, our
manipulation of anisotropic noise in this model produces some interesting results,
which could be instructive in the general case of the state-dependent noise σ(x) and
may be quite useful when the precise control of noise size for each individual rod (or
two groups of rods) is possible.

Last, we remark that we only report the results from the constrained minimum
action method based on the geometric action formulation. Thus, the objects we
calculated are curves in the phase space. The pathways from the constrained Freidlin–
Wentzell action functional are consistent with these results when the underlying time
interval is sufficiently large.

5.1. Flip over process of one rigid rod. Consider a unit sphere S
2 in R

3.
X = (X1, X2, X3) ∈ R

3. Let V : R3 → R be the potential energy with symmetry
V (x) = V (−x) and Wt be a Brownian motion in R

3. Write the normal vector n(x) =
x/‖x‖ ∈ S

2. The motion of the rod molecule in consideration is described by the
equation

dX = (I − n(X)n(X)T)

(
(−∇V (X) +K0X) dt+

√
ε ◦ dWt

)
,

where K0 is the matrix of the shear rate tensor in the Cartesian coordinate.
Here the noise is isotropic and the manifold M is S

2. The geometric action
functional in (3.28) is reduced to

Ŝ[ϕ] =

∫ 1

0

‖Π−1Πb(ϕ)‖‖Π−1ϕ′‖ − 〈
Π−1Πb(ϕ), ϕ′〉 dα

=

∫ 1

0

‖Πb(ϕ)‖‖ϕ′‖ − 〈Πb(ϕ), ϕ′〉 dα,
(5.1)

where ‖ϕ(α)‖ = 1 ∀ α.
We assume the following quadratic form of the external potential function V :

(5.2) V (x) =
3∑

i=1

1

2
μix

2
i , where μ3 > μ2 > μ1 > 0.

The two local minima of V on S
2 are e(1) = (1, 0, 0) and −e(1) = (−1, 0, 0); the two

local maxima are e(3) = (0, 0, 1) and −e(3) = (0, 0,−1); the saddles are e(2) = (0, 1, 0)
and −e(2) = (0,−1, 0). In the example below, we simply set (μ1, μ2, μ3) = (1, 2, 3).

For the quadratic potential equation (5.2), the SDE then becomes the following
form:

(5.3) dX = (I − n(X)n(X)T)(KX dt+
√
ε ◦ dWt),

where K = diag{μ1, μ2, μ3} + K0. We consider two forms of shear rate matrix K0

corresponding to different directions of the shear flow.
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5.1.1. Shear flow: Example 1. We first consider the following shear flow,
where x1 is the streamwise direction, x2 is the shearwise direction, and x3 is the
spanwise direction. So it is assumed that

(5.4) K0 =

⎡⎣0 γ̇12 0
0 0 0
0 0 0

⎤⎦ .

Here the shear rate γ̇12 is a constant parameter.
The deterministic drift flow on S

2 is Ẋ = (I −nnT)KX . The fixed points of this
flow are the three vectors on S

2,

n(1) = (1, 0, 0)T,

n(2) = (−γ̇12, μ2 − μ1, 0)
T/
√
γ̇2
12 + (μ2 − μ1)2,(5.5)

n(3) = (0, 0, 1)T,

and their symmetric counterparts −n(i), i = 1, 2, 3. In total, there are three pairs
of fixed points. Since μ3 > μ2 > μ1 > 0 in the quadratic potential, (5.2), we can
derive the following linear stability results for infinitesimal perturbations. The pair
±n(1) is linearly stable (classified as sink and denoted as si+ and si−, respectively)
with two stable eigen directions e(2) and e(3). The pair of ±n(3) is linearly unstable
(classified as source and denoted as so+ and so−, respectively). The pair of ±n(2) is
saddle point (denoted as sa+ and sa−, respectively) with one stable eigen direction
e(3) (the unstable eigen direction relies on γ̇12). The separatrix on the unit sphere
between the two sources si+ and si− is the great circle of S2 in the plane spanned by
sa± and so±.

The introduction of the shear rate in form of (5.4) only affects the orientation of
the saddle point, (5.5). The positive value of shear rate γ̇12 has the effect of rotating
the saddle direction n(2) counterclockwise (looking down from the x3-direction, i.e.,
vertical direction). The negative γ̇12 gives the opposite rotation direction.

We are concerned with the flip over process of the rigid rod, i.e., the transition
between two symmetric stable fixed points si+ = n(1) and si− = −n(1). The minimal
action for this transition is related to the frequency of this process ( ∝ exp(− inf S/ε)
[9]). The smaller the minimal action, the more frequently the rod flips between two
stable states.

To resolve all possible minimizers of the variational problem infϕ∈S2 Ŝ[ϕ], the
initial guesses of the path should be carefully constructed. The idea of setting the
initial guess is as follows. Since on the separatrix between si+ and si− there are
four fixed points, so± and sa±, we then construct the different initial paths passing
through these points, respectively. In consideration of the symmetry for the case of
so±, we only need to test three different initial guesses, which give three different local
minima of the action functional Ŝ. As a result, the obtained three minima correspond
to the minimal actions from si+ to saddles sa−, sa+, and so− (or so+), respectively.
The minimum among these three minimized actions gives the global optimum and
thus corresponds to the correct transition path between si− and si+. Refer to Figure
2 for the plot of these three actions when the shear rate is varied. This evidence
shows that the shear of the flow field lowers the global minimum of the action and
hence increases the flip over frequency. At a high shear rate, the frequency could be
so large that the rod molecule would oscillate between the directions si− = −n(1) and
si+ = n(1).
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Fig. 2. The minimum actions (vertical axis) for three paths from si+ to sa−, sa+ and so±,
respectively.

Among the obtained three paths from different initial guesses, the global minimum
is the one passing the saddle sa− or sa+, depending on the direction of the shear, i.e.,
the sign of γ̇12. These paths are one of semi great circles entirely in the x1-x2 plane.
Figure 3 shows the global minimum action path starting from si+ for γ̇12 = 0, 1,−1.
For instance, when γ̇12 > 0, the saddle sa− (the solid black line) is shifted closer to
si+ so that it takes less action for the system to escape from si− to the separatrix by
selecting this saddle sa−. A similar picture holds for negative γ̇12, where the saddle
sa+ (the dashed black line) is shifted closer to si+.

5.1.2. Shear flow: Example 2. Next we study the transitions with the follow-
ing shear rate tensor:

K0 =

⎡⎣ 0 0 γ̇13
0 0 0
0 0 0

⎤⎦ .

The fixed points for this K0 become

n(1) = (1, 0, 0)T,

n(2) = (0, 1, 0)T,

n(3) = (−γ̇13, 0, μ3 − μ1)
T/
√
γ̇2
13 + (μ3 − μ1)2,

and si− = −n(1) and si+ = n(1) are sinks, sa− = −n(2) and sa+ = n(2) are saddles,
so− = −n(3) and so+ = n(3) are sources. The heteroclinic orbits among these fixed
points are similar to the previous example in section 5.1.1: They are the great circles
connecting the neighboring fixed points. The separatrix between si+ and si− is also
the great circle in the plane of sa and so. The difference from the example in section
5.1.1 is that now the shear rate affects the location of the sources so±, while the
saddles sa± are unchanged.
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FINDING TRANSITION PATHWAYS ON MANIFOLDS 191

(a) shear rate γ̇12 = 0.

(b) shear rate γ̇12 = 1.0 (c) shear rate γ̇12 = −1.0

Fig. 3. Global minimum action paths for different shear rates. The two symmetric flip over
paths passing sa− are shown in white and black, respectively.

Again, we are interested in the transition from si+ to si− and shall examine
the minimum action paths with different initial guesses which pass through the fixed
points so−, so+, and sa±, respectively. Figure 4 shows the minimum actions for these
three paths. From this figure, we can observe that a larger shear rate deceases the
actions both to the saddle and to the source. However, there is a competition between
these two local minima of the action. When the shear rate is small, the path passing
the saddle is the global solution. But when the shear rate is very large, the calculation
shows that the action to the source can be slightly smaller than the one to the saddle
so that the transition state changes from the saddle to the source. This suggests that
there is a bifurcation point of the parameter γ̇∗

13 (around 1.9 for this example in our
calculation) for the patterns of the global minimum action path.

The above conclusion can be better understood if we plot the global minimum
action path for γ̇13 = 1 and 2 in Figure 5. The positive value of shear rate γ̇13 has
the effect of tilting the unstable fixed point so+ = n(3) (the solid red line) counter-
clockwisely in the x1-x3 plane (looking from the −x2-direction). Such tilts will pull
so− (the dashed red line) toward si+ (the solid blue line) and push so+ away from
si+. However, when the shear rate is not strong, this push is not significant enough to
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Fig. 4. The minimum actions for three paths from si+ to so−, so+, and sa± (either sa− or
sa+ since the minimal actions are the same due to symmetry), respectively. When γ̇13 passes the
critical value γ̇∗

13 ≈ 1.9, the global minimum path changes from passing o sa to passing so−, i.e., the
transition state changes from sa to so−. The right panel is the zoom of the left panel for a window
near γ̇13 = 2.

(a) shear rate γ̇13 = 1.0. (b) shear rate γ̇13 = 2.0.

Fig. 5. Global minimum action paths for different shear rates. (a) The transition path from
si+ to si− through sa− and its symmetric mirror are both shown. (b) The path is the semicircle in
the plan spanned by so and si (x1-x3 plane). The initial guess of the path in the minimum action
method is the path in (a).

beat the action of the path through the saddle sa± (the pair of curves shown in Figure
5(a)). When γ̇13 continues to increase by passing the critical value γ̇∗

13, the shear-
induced tilt will become strong enough to lower the action to reach so− significantly
so as to become a global solution.

In summary, when the shear of the fluid affects the unstable fixed points so± of the
molecular configuration on S

2, the competition of the minimum action paths passing
through the saddle sa± or through the source so± would generate a bifurcation of
the patterns of the global path. The same phenomena have been observed before,
for instance, in some planer (nongradient) system [17]. For real problems, the shear
rate tensor K0 may be the combination of the above two examples we have studied;
from the analysis above, we expect that the similar bifurcation of the pathways could
happen for a different size of the shear rate. It is also generally believed that the shear
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would lower the global minimum action and thus increase the flip over frequency.

5.2. Flip over of two rigid rods. Here, we study a slight generalization of
the previously studied single rod case, a toy model of two interactive rigid rods. Let
X1,X2 be the directed unit vector of two rods. We consider the following stochastic
dynamics on S

2 × S
2:

(5.6)

{
dX1 = (I − n1n

T
1 )(−∇V (X1) dt−∇x1

U(X1,X2) dt+ σ1

√
ε ◦ dW 1),

dX2 = (I − n2n
T
2 )(−∇V (X2) dt−∇x2

U(X1,X2) dt+ σ2

√
ε ◦ dW 2),

where ni = X i/‖Xi‖, i = 1, 2; σ1 and σ2 are two positive constants. Here U(x1,x2) :
S
2 × S

2 → R describes the interactions of these two rods. One common choice of this
potential U is the Maier–Saupe potential

(5.7) U(x1,x2) = A sin2(θ − θ0),

where θ is the angle between x1 and x2 (Figure 6), A is a positive number, and θ0 is
the preferred angle. We assume θ0 = 0 without loss of generality.

X1

X2

U(X1, X2)

θ

Fig. 6. Two rigid rods with interaction potential U .

The model we are studying in (5.6) has no effect of shear flow and is a reversible
system when σ1 = σ2. In the following, we are interested in how different values of
the ratio σ2/σ1 affect the transition paths. First we give the action functional form
for this example. We write the path as a pair ϕ = [ϕ1, ϕ2] ∈ R

3 × R
3. Denote

b(ϕ) = [b1(ϕ), b2(ϕ)] ∈ R
3×R

3, where bi(ϕ) = −∇V (ϕi)−∇xi
U(ϕ1, ϕ2) corresponds

to the rod i. The geometric action functional (3.28) for (5.6) thus has the following
form:

(5.8) Ŝ[ϕ] =

∫ 1

0

√
‖b1‖2
σ2
1

+
‖b2‖2
σ2
2

√
ϕ′2
1

σ2
1

+
ϕ′2
2

σ2
2

− 〈b1, ϕ′
1〉

σ2
1

− 〈b2, ϕ′
2〉

σ2
2

dα.

The constraint is ‖ϕ1‖ = ‖ϕ2‖ = 1.

We choose the quadratic potential as in the previous example of one rod. V (x) =
xTKx/2. Here K = diag{μ1, μ2, μ3}, where μ1 < μ2 < μ3. Next, we show the
following property of the drift flow of (5.6) on S

2 × S
2 for the weak strength of the

interaction.

Proposition 2. If the coupling constant A in the potential equation (5.7) satisfies

(5.9) A <
1

4
min
i�=j

|μi − μj | ,
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then all fixed points of the deterministic drift flow of (5.6) are the 36 points

(±ei,±ej), i, j = 1, 2, 3,

where ei is the unit eigenvector of K for eigenvalue μi, for instance, e1 = (1, 0, 0).
Moreover, the four points (±e1,±e1) are stable (classified as sink), the four points
(±e3,±e3) are unstable (classified as source), and other fixed points are all saddles.

Proof. It can be verified that any fixed point (x1,x2) must satisfy the following
equations:

−Kx1 + 2A 〈x1,x2〉x2 − 2A 〈x1,x2〉2 x1 + (xT
1 Kx1)x1 = 0,(5.10)

−Kx2 + 2A 〈x1,x2〉x1 − 2A 〈x1,x2〉2 x2 + (xT
2 Kx2)x2 = 0,(5.11)

‖x1‖ = ‖x2‖ = 1.(5.12)

If 〈x1,x2〉 = 0, (5.10) and (5.11) suggest x1 and x2 must be unit eigenvectors
of K corresponding to distinctive eigenvalues, respectively. It gives 24 fixed points
(±ei,±ej) for i �= j in this case.

If 〈x1,x2〉 �= 0, (5.10) and (5.11) together imply that 〈x1,x2〉 (xT
1 Kx1−xT

2 Kx2)
= 0, or, xT

1 Kx1 = xT
2 Kx2 = λ. Furthermore, by considering (5.10) ± (5.11), we

have x1 ± x2 are either zero vector or an eigenvector of K. The former case gives
the other 12 fixed points (±ei,±ei). The latter case that x1 ± x2 is an eigenvector
of K will eventually lead to an equality μi − μj = 4A 〈x1, x2〉. But since it follows
|μi − μj | = |4A 〈x1, x2〉| ≤ 4A‖x1‖‖x2‖ = 4A, which contradicts condition (5.9), there
are no other solutions.

The conclusions of the linear stability are based on the calculation of the Jacobian
matrices at these fixed points. We neglect the details.

In all, there are 36 different fixed points. From the above proof we know that
(ei, ej) is a fixed point even without the condition (5.9). If the condition (5.9) does
not hold, there may be other fixed points and it can be shown that there are at most
60 fixed points. In our numerical calculations, we choose K = diag{1, 3, 5}, A = 0.4
to satisfy the condition (5.9). In addition, we always let σ1 = 1 but allow σ2 to vary.

The transition path we will study is from the initial state (e1,−e1) to the final
state (−e1, e1), in which both rods flip over their initial directions. Since the initial
and final states both lie in the e1-e2 plane for each rod, then by symmetry consid-
eration, the transition paths, i.e., the minimizers of the action functional (5.8), must
also lie in this plane. Our numerical calculations based on S

2 × S
2 indeed verify this

fact. Therefore, we can visualize the obtained paths and interpret our results on a
lower-dimensional product space S

1 × S
1. It is convenient to use local coordinates

(θ1, θ2) ∈ [0, 2π)× [0, 2π) to denote a point of the path (φ1, φ2):

φ1 = [cos θ1, sin θ1, 0], φ2 = [cos θ2, sin θ2, 0].

In this local coordinates representation, the initial and final states (e1,−e1) and
(−e1, e1) can be written as (θ1, θ2) = (0, π) and (π, 0), respectively. There are 16
fixed points on S

1×S
1 in total. Further taking into account the spatial symmetry, we

only need to focus on four sinks and five saddles for (θ1, θ2) ∈ [0, π]× [0, π], as shown
in Table 1 and Figure 7. In the figure, the heteroclinic orbits between these fixed
points are shown in arrowed lines. The saddle point sa5, at the center of the figure,
is on the separatrix of all four sinks in the phase space and its unstable manifold has
dimension 2. All four other saddle points have one dimensional unstable manifold for
each, i.e., they are index-1 saddles.
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Table 1

Four sinks and five saddles for (θ1, θ2) ∈ [0, π]× [0, π].

Stable points S
2 × S

2 (θ1, θ2) Saddle points S
2 × S

2 (θ1, θ2)
si1 (e1,e1) (0, 0) sa1 (e2,e1) (π/2, 0)
si2 (e1,−e1) (0, π) sa2 (e1,e2) (0, π/2)
si3 (−e1,e1) (π, 0) sa3 (e2,−e1) (π/2, π/2)
si4 (−e1,−e1) (π, π) sa4 (−e1,e2) (π, π/2)

sa5 (e2,e2) (π/2, π/2)

sa
3

sa
5

sa
2

si
2 si

4

sa
1si

1

θ
1

θ
2

si
3

sa
4

Fig. 7. Fixed points in θ1-θ2 plane. Sinks are denoted by solid dots (•), saddles are denoted
by circles (◦). The arrows shows the heteroclinic orbits of the deterministic drift flow. All saddles
have index 1, except sa5 has index 2.

The transition path we studied is from si2 to si3, two diagonal nodes in Figure
7. In solving minimization problem infφ Ŝ[φ], one critical issue is how to locate the
global solution rather than being trapped by the local ones. Since there is no efficient
global minimization solvers (we used the MATLAB subroutine fmincon for nonlinear
optimization), the selection of initial guess of path is crucial. We utilize the informa-
tion of the heteroclinic orbits in Figure 7 and propose the following five routes as our
initial guesses by choosing different fixed points as intermediate states:

A. si2 → sa5 → si3,
B. si2 → sa2 → sa5 → si3,
C. si2 → sa2 → si1 → sa1 → si3,
D. si2 → sa3 → sa5 → si3,
E. si2 → sa3 → si4 → sa4 → si3.

Then, each choice of initial guess gives a local minimum action path and the obtained
minimized actions for the five solutions are plotted in Figure 8. The lowest value of
these five curves gives the global minimum action.

When σ1 = σ2, the same global solution can be achieved from initial guesses A,
B, and D. This global minimum action path is the diagonal line (si2 → sa5 → si3)
in the θ1-θ2 visualization (Figure 9(a)). However, when σ2 �= σ1, the symmetric path
(si2 → sa5 → si3) is not the global minimal solution; in fact, the path for the global
solution will pass through index-1 saddle point sa2 (if σ2 > σ1) or sa3 (if σ2 < σ1).

Take σ2 = 1.2 > σ1 = 1 as an example. The transition path corresponding to
the global minimizer of the action functional is shown in the right panel of Figure
9(b). The symmetry of the transition path is broken for this case of unequal diffusion
coefficients. This asymmetric path has three segments and accordingly the transition
process can be understood via three stages. The first stage is from si2 = (e1,−e1)
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2
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si
2
−−sa

5
−−si

3

si
2
−−sa

2
−−sa

5
−−si

3

si
2
−−sa

2
−−si

1
−−sa

1
−−si

3

si
2
−−sa

3
−−sa

5
−−si

3

si
2
−−sa

3
−−si

4
−−sa

4
−−si

3

Fig. 8. Numerical values of the minimal actions corresponding to five different initial guess
paths by varying the diffusion coefficient σ2.

to sa2 = (e1, e2), where the first rod does not move much and only the second rod,
which has the larger diffusion coefficient, rotates clockwise to the vertical position e2;
then, at the second stage, which is from sa2 to sa5 = (e2, e2), the second rod is almost
still and “waits” in the state e2 for the first rod to move from e1 to e2. Once both
rods reach the saddle state sa5, the last state starts and both rods directly approach
the final state si3 following the heteroclinic orbit in Figure 7 without any aid from
noise.

The above numerical results demonstrate a selection mechanism: the rod with a
larger diffusion coefficient σ is subject to large random perturbations with the same
white noise realizations, and thus it is easier to make transition movements first. We
may call this rod as an “active” rod. After this rod actively approaches a critical
state (e2 here), it rests there, and the interaction U(x1,x2) starts to be the main
contributor to influence the system and the previously still rod (“passive” one) is
attracted by U from the active rod to the critical state, from where the entire system
has crossed all the barriers on the route of the transition. What is unexpected here
is that the two rods move in tandem during the first and second transition stages.
Taking an analogy of the so-called reaction coordinate in chemical reactions, we can
think of θ2 as an excellent candidate for reaction coordinate at the first transition
stage and θ1 at the second stage. When we varied σ2 from 1 to 2 (σ1 = 1 is fixed), the
numerical result shows the robustness of this set of reaction coordinates especially
at the first stage from si2 to sa2. Refer to Figure 9(c) for the plots of 40 (global
minimum action) paths for various values of σ2 by equally dividing the σ2

2 from 1
to 4.

In all, when the diffusion coefficients for the two rigid rods are identical, the
transition path is symmetric and both rods move simultaneously in the transitions.
If one of the diffusion coefficients is adjusted, then the rod molecule with the larger
diffusion amplitude will initiatively move into some intermediate state. Only after this
step will the other rod follow the movement in a similar fashion. The unbalance of
the noise amplitudes triggers an ordered process for each rod to make the transitions.D
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(a) σ2 = 1.
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(b) σ2 = 1.2.
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(c) σ2 ∈ (1, 2).

Fig. 9. Global minimum action path(s) from si2 to si3.

6. General bead-rod systems. We have studied the most probable transition
pathway for the stochastic dynamics with explicitly known projection operators. In
the theory of polymeric fluids, people are also interested in the stochastic conforma-
tional dynamics of the bead-rod system [5] with Lagrange multipliers as we discussed
in section 3.1. All of our derivations before can be applied in this special case. Let us
illustrate this point concretely as below.

X2

X1

bead 1

bead 2

bead K

XK

Fig. 10. The schematics of the bead-rod polymer chain with K beads.

Consider a bead-rod polymer chain with K-beads (Figure 10), being described,
for instance, by the following over-damped stochastic dynamics:

(6.1) dXi =
(
u(X i) + (Tini − Ti−1ni−1)

)
dt+

√
ε dW i, i = 1, 2, . . . ,K,

where Xi is the R
3 coordinate of the ith bead, u(X) is the drift part which includes

the effect of fluid velocity and driving potential atX , ni = (X i+1−Xi)/‖Xi+1−Xi‖
for i = 1, 2, . . . ,K − 1, and Ti is the tension between the beads i and i+ 1 such that
the constraints

(6.2) ‖Xi+1 −Xi‖ = 1, i = 1, 2, . . . ,K − 1,

are satisfied. We take the convention that T0 = 0 and nK = 0. It is obvious that the
tension {Ti} plays the role of the Lagrange multipliers which will be determined by
the constraints (6.2).

Mathematically, (6.1) in engineering literature is not well-defined since the tension
force Ti will involve the white noise Ẇ i as singular forces. Indeed, it can be perfectly
put into the framework shown in Proposition 1 with the constraints

cj(x) :=
1

2

(‖xj+1 − xj‖2 − 1
)
, j = 1, . . . ,K − 1,
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and the relation between Lagrange multipliers:

dμj = −Tjdt, j = 1, . . . ,K,

where x = (x1, . . . ,xK) ∈ R
3K . With this connection, (6.1) is transformed to

(6.3) dX = Π
(
u(X)dt+ ◦√ε dW

)
,

where X = (X1, . . . ,XK), W = (W 1, . . . ,WK), and the matrix Π = I −GTM−1G
is an orthogonal projection as defined in Proposition 1. This formulation will be
particularly useful to design the projection type methods for the SDE (6.1). It is also
interesting to observe that the SDE (6.3) has an equivalent form

(6.4) dX =
(
u(X) +

K−1∑
j=1

μr
j∇cj(X)

)
dt+Π ◦ √ε dW

or

(6.5) dX = Π

[(
u(X) +

K−1∑
j=1

μr
j∇cj(X)

)
dt+ ◦√ε dW

]
,

where μr(x) = −M−1Gu(x) is the “regular” part of the Lagrange multipliers includ-
ing only the drift.

Thanks to the result (C.5) in Appendix C, we have the Freidlin–Wentzell action
functional to the SDE (6.3) as

(6.6) ST [φ] =
1

2

∫ T

0

‖φ̇−Πu(φ)‖2 dt

subject to the constraints

φ ∈ M =
{
φ|cj(φ) = 0, j = 1, . . . ,K − 1

}
and φ̇ ∈ TφM.

Its geometric action functional has the form based on the result (3.27)

Ŝ[ϕ] =

∫ 1

0

‖ϕ′‖‖Πu‖ − 〈ϕ′,Πu〉 dα

subject to the constraints ϕ′ ∈ TϕM.
Based on the obtained optimization problem with constraints or its relaxation

form, we can compute the transition pathways correspondingly. We shall not develop
the study on this point here since it is beyond the main goal of this paper. Further
research on this topic will be a future study.

7. Summary. In this summary, we want to reiterate the mathematical impor-
tance of specifying how the constrained dynamical system is perturbed by noise when
one intends to investigate the transition paths in these constrained systems. Here we
considered the SDE whose solution satisfies constraints, i.e., stays on M, for any ε,
rather than accommodates for constraints in the asymptotic sense. The asymptotic
limit ε ↓ 0 is only applied in the large deviation result. In formulating the action
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functional, we took the approach of using the local projection Π to describe the con-
straints and solved the issue of degeneracy brought by this projection operator in the
augmented Euclidean space R

n.
In the reversible case where the drift term is of gradient type and the diffusion

coefficient is an isotropic constant, we proved that the constraints actually do not
bring significant numerical difficulties and the original string method still works by
using the projected gradient force for each image on string: It is essentially the same
as solving the deterministic gradient flow on the manifold.

In the irreversible case, one needs to pay attention to the generalized inverse of
the projection operator in the calculation of constrained minimum action. The state-
dependent Π−1

x term appears in the action functional and the path calculation. In our
current version of the constrained minimum action method and for all examples in
this paper, we assume that Π and Π−1 as well as their derivatives are all analytically
available. It may be rewarding to explore the numerically convenient extension of b̃
and ã on M to the nonunique Π, a and b in R

n in order to achieve a new form of
Π−1 that is easier to compute. We leave this idea to a future study. Additionally,
the resulting constrained optimization problem needs to be solved by good initial
guesses to find the global solution. The initial guesses in our example of rigid rod
models are built on some prior understanding of the phase spaces. For the numerical
results, when the liquid crystal molecules are influenced by macroscopic fluid or un-
equal diffusion coefficients, the global minimum action pathway we found here reveals
very interesting nonequilibrium phenomena, and these phenomena are believed to be
generic in irreversible systems and deserve further investigation.

Appendix A.
Proof of Theorem 1. By Ito’s formula and the constraint conditions, we have

0 = dcj(X) =(∇cj(X))T dX +
1

2
∇2cj(X) : ( dX dXT).

Comparing the terms involving Brownian motion, we get

GGTβ +Gσ = 0,

which implies (3.6). The terms involving dt yield to

G(b +GTα) +
1

2
∇2c : (BBT) = 0,

which gives (3.5).
Substituting β into (3.3) and (3.4), we obtain

(A.1) dX =
(
b(X) +GTα(X)

)
dt+ Pσ(X) dW.

Notice that PT = P and GP = 0, then

P 2 = I − 2GTM−1G+GTM−1GGTM−1G = P.

This implies that P is the orthogonal projection to TM.
To prove (3.8), from (A.1) we note

(A.2) dX =
(
b(X) +GTα(X)

)
dt+

(
Pσ(X) dW − Pσ(X) ◦ dW

)
+ Pσ(X) ◦ dW.
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From the relation between Ito and Stratonovich integrals, we have(
Pσ(X) ◦ dW − Pσ(X) dW

)
i
=

1

2

∑
j,k

∂k(Pσ)ij(Pσ)kj dt

=
1

2

∑
j,k

∂k

(
eTi Pσej

)
eTkPσej dt = −1

2
eTi
∑
j,k

∂k

(
GTM−1Gσej

)
eTkPσej dt

=− 1

2
eTi
∑
j,k

(∂kG
T)M−1Gσeje

T
kPσej dt− 1

2
eTi G

T
∑
j,k

∂k

(
M−1Gσ

)
eje

T
kPσej dt

=:
(
F1

)
i
dt+

(
F2

)
i
dt,

where ei, ej, and ek are canonical basis vectors in the corresponding Euclidean space,
and the partial derivative of a matrix is defined to take the differential to each com-
ponent. F1 actually vanishes if we assume σσT is a scalar matrix:

F1 = −1

2

∑
j,k

(∂kG
T)M−1Gσeje

T
kPσej = −1

2

∑
j,k

(∂kG
T)M−1Gσeje

T
j σ

TPek

= −1

2

∑
k

(∂kG
T)M−1GσσTPek = −1

2
θ
∑
k

(∂kG
T)M−1GPek = 0,

where the last equality comes from GP = 0. The expression for F2 can be denoted as
F2 = GTγ for some vector γ. Substituting this form into (A.2), we get

dX =
(
b(X) +GT(α(X)− γ(X))

)
dt+ Pσ(X) ◦ dW.

From dcj(X) = (∇cj(X))T ◦ dX = 0, i.e., G ◦ dX = 0, we obtain

Gb(X) +GGT(α(X)− γ(X)) = 0.

This means that α(X)− γ(X) = −M−1Gb(X). So (3.8) holds.

Appendix B. Projection operator and its inverse. From the constraint
Πu = y − Πb(x) for the minimization problem (3.19), one may formally view u as
an element in the set Π−1(y − Πb(x)) which has the minimal a-norm. To ease the
presentation, we redefine Π−1 as follows.

Definition 1. Let Π be an orthogonal projection matrix in R
n and the diffusion

matrix a be a positive definite matrix. For any v ∈ Img(Π), we define Π−1v as the
vector u∗ ∈ R

n such that u∗ solves minΠu=v ‖u‖a.
The above defined Π−1v for a given v ∈ Img(Π) is unique since a is not singular.

Π−1 is a linear transformation defined on Img(Π). We point out that Π−1 is not an
inverse of Π in the usual sense because although Π ◦ Π−1 is identity restricted on
the space Img(Π), it is generally invalid that Π−1(Πv) = v. This generalized inverse
Π−1 : Img(Π) → R

n depends on the metric induced by a. If a(x) is a scalar matrix
and Π is orthogonal projections, then Definition 1 directly shows that Π−1 is identity
restricted on Img(Π).

We next point out some useful properties of Π−1 and the connection to ã-norm.
Two examples of the manifold cases are also shown for illustration.

Proposition 3. Π−1 = aΠTã−1. If Π = ΠT, then Π−1 = aã−1 and ã−1 =
a−1Π−1.
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Proof. The proof is straightforward from the proof of Proposition 1.
Proposition 4. If v ∈ Img(Π), then

(B.1) ‖v‖ã = ‖Π−1v‖a.
In addition, for v1, v2 both in Img(Π),

(B.2) 〈v1, v2〉ã =
〈
v1,Π

−1v2
〉
a
=
〈
v1,Π

−1v2
〉
a
.

Proof. (B.1) is Proposition 1. For the second part, 〈v1, v2〉ã = 〈v1, ṽ2〉 =
〈Πv1, ṽ2〉 =

〈
v1,Π

Tṽ2
〉
=
〈
v1, a

−1ΠTṽ2
〉
a
=
〈
v1,Π

−1v2
〉
a
.

Proposition 5. For every w ∈ Ker(Π) and v ∈ Img(Π), we have〈
Π−1v, w

〉
a
= 0.

Proof. Let u∗ = Π−1v. Define uθ = u∗ + θw ∀θ ∈ R. Then Πuθ = Πu∗ = v ∀ θ.
So, the function f(θ) := ‖uθ‖2a has a minimal value ‖u∗‖2a at θ0 = 0. Consequently,
f ′(θ0) = 0 and 〈u∗, w〉 = 0 follows.

Proposition 6. For any vector v ∈ Img(Π), it is true that

‖Π−1v‖2a =
〈
v,Π−1v

〉
a
,

‖v‖2a = ‖Π−1v‖2a + ‖v −Π−1v‖2a.
Proof. The first equality is due to the fact v−Π−1v ∈ Ker(Π) and Proposition 5.

Then it follows that ‖v‖2a =
〈
v,Π−1v

〉
a
+
〈
v, v −Π−1v

〉
a
= ‖Π−1v‖2a+

〈
v, v −Π−1v

〉
a
.

Since
〈
Π−1v, v −Π−1v

〉
a
= 0 due to Proposition 5, then ‖v‖2a = ‖Π−1v‖2a + ‖v −

Π−1v‖2a.
Proposition 7. If dimKer(Π) = K, and Ker(Π) = span{ξk : k = 1, . . . ,K},

then for any v ∈ Img(Π),

‖v‖2a = ‖Π−1v‖2a + ‖v̂‖2M = ‖v‖2ã + ‖v̂‖2M ,

where M = (Mij) = 〈ξi, ξj〉a, i, j = 1, 2, . . . ,K, and v̂ = (v̂k) = 〈v, ξk〉a, k = 1, . . . ,K.
When a is a scalar matrix, i.e., the condition (3.7) holds, and Π = ΠT, then

‖v‖2a = ‖v‖2ã, i.e., a-norm and ã-norm are identical.
Proof. Write v − Π−1v =

∑
k λkξk; then these λk minimize ‖v −∑

k λkξk‖2a. So,
λ = (λ1, λ2, . . . , λK)T satisfy Mλ = v̂. Note that ‖v − Π−1v‖2a = ‖∑k λkξk‖2a =
λTMλ = v̂TM−1v̂ = ‖v̂‖2M . The conclusion is then immediate from Proposition 6.

When Π = ΠT, ker(Π) is orthogonal to Img(Π) in R
n. If furthermore a(x) is

scalar, then by (3.7), 〈v, ξk〉a = 〈v, ξk〉 /θ(x) = 0.
When Π is the orthogonal projection induced by the constraints {ck(x) = 0 : k =

1, 2, . . . , n− d}, then the basis of Ker(Π) above can be chosen as ξk = ∇ck(x). In the
following, we show calculations of ã−1 and Π−1 for two simple examples.

Example 2 (planar projection). Consider a hyperplane in R
n, M = {x =

(x1, x2, . . . , xn) : xn = 0}, corresponding to the unique constraint c(x) = xn = 0.

Then the (orthogonal) projection Π =
[
In−1 0

0 0

]
. Write a =

[
A11 A12
AT

12 A22

]
, where A11

has size (n− 1)× (n− 1). Then v ∈ Img(Π) has the form v = (v1, 0)
T, where v1 has

size n− 1. It is easy to calculate that

ã = ΠaΠT =

[
A11 0
0 0

]
,
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ã−1v =

[
A−1

11 v1
0

]
=

[
A−1

11 ∗
0 ∗

]
v,

and

Π−1v = aã−1v =

[
A11 A12

AT
12 A22

] [
A−1

11 v1
0

]
=

[
A−1

11 v1
AT

12A
−1
11 v1

]
=

[
A−1

11 ∗
AT

12A
−1
11 ∗

]
v.

Example 3 (spherical projection). Consider the spherical case M = S
d, where

d = n − 1. The constraint function is c(x) = ‖x‖2 − 1 = 0. The projection onto the
tangent space is Πx = I − n(x) ⊗ n(x), where n(x) = x/‖x‖ is the unit (L2-norm)
normal. The kernel space Ker(Πx) = span {n(x)}. The calculation shows that for
any v ∈ Img(Π)

Π−1v = v − 〈v,n〉a
〈n,n〉a

n = v − 〈v,na〉ana

and

ã−1v = a−1v − 〈v,na〉a a−1na,

where na = n/‖n‖a is the unit vector in sense of a-norm.

Appendix C. Euler–Lagrange equations and related discussions. In sum-
mary, the action functional for the SDE (3.13) is

(C.1) SM
T [φ] =

⎧⎨⎩inf
u

{
1
2

∫ T

0 ‖u‖2a dt : φ̇− Πb(φ) = Πu,

}
if φ ∈ A,

+∞ otherwise.

In (C.1), u is a function of t and is equal to Π−1(φ̇−Πb(φ)) for t ∈ [0, T ] by Definition
1. Then the action functional (C.1) (for finite value) is written in terms of Π−1 as

(C.2) SM
T [φ] =

1

2

∫ T

0

∥∥∥Π−1(φ̇−Πb(φ))
∥∥∥2
a
dt,

which is defined over the admissible set A or the equivalent A′. By Proposition 2,
(C.2) is also equivalent to

(C.3) SM
T [φ] =

1

2

∫ T

0

∥∥∥φ̇− b̃(φ)
∥∥∥2
ã
dt.

In other words, (C.1), (C.2), and (C.3), are three equivalent forms of the action
functional.

In the following, we want to compare the action (C.2) or (C.3) to the action for
the following SDE in the ambient space without the projection of the random forcing
term, i.e.,

(C.4) dX = (Πb(X)) dt+
√
εσ(X) dW,

whose solution Xt is not exactly on M. The action for (C.4) is

(C.5) S1
T [φ] :=

1

2

∫ T

0

∥∥∥φ̇−Πb(φ)
∥∥∥2
a
dt ∀φ ∈ AC([0, T ],Rn).
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Another case we want to compare with is the action for the SDE dX = b(X) dt +√
εσ(X) dW in R

n,

(C.6) S0
T [φ] :=

1

2

∫ T

0

‖φ̇− b(φ)‖2a dt ∀φ ∈ AC([0, T ],Rn).

This action functional (C.6) probably looks far from a constrained problem. But is it
possible that only in the last stage imposing the constraints for the action functional,
S0
T and S1

T give the same minimizing path, as the constrained string method [6] works
for gradient systems? We shall offer counterexamples to show that all three functionals
in general have different minimizers by analyzing the Euler–Lagrange equations for
these functionals. We also give Remark 4 below to justify the constrained string
method proposed in [6].

To be specific, we consider the following three constrained optimization problems:

inf
φ∈A

S0[φ] = inf
φ∈A

1

2

∫ T

0

‖φ̇− b(φ)‖2a dt,(P0)

inf
φ∈A

S1[φ] = inf
φ∈A

1

2

∫ T

0

∥∥∥φ̇−Πb(φ)
∥∥∥2
a
dt,(P1)

inf
φ∈A

SM[φ] = inf
φ∈A

1

2

∫ T

0

∥∥∥φ̇− b̃(φ)
∥∥∥2
ã
dt.(P∗)

For (P0) and (P1), the constraint φ ∈ A, i.e., φ(t) ∈ M is the forced constraint. But
for (P∗), A is the domain for SM. We shall prove that the minimizing paths for these
three problems (P0), (P1), (P∗), are generally not the same. The approach is to study
their Euler–Lagrange equations.

With the assumption for the state-independent diffusion a, we have for (P0),

− δS0

δφ [φ] = ṗ + JT(φ)p in L2([0, T ],Rn) space, where p(t) = a−1(φ̇ − b(φ)), J(x) =

∇b(x), Jij =
∂bi
∂xj

. Thus the Euler–Lagrange equation in the constraint space L2([0, T ],

M), which the minimizer path for (P0) must satisfy, is

(C.7) ΠT
(
ṗ+ JT(φ)p

)
= 0.

Similarly, the Euler–Lagrange equation for (P1) is

(C.8) ΠT
(
ṗ+ J̃T(φ)p

)
= 0,

where p(t) := a−1(φ̇− b̃(φ), J̃(x) := ∇b̃(x) = ∇(Πxb(x)).
For (P∗), the Euler–Lagrange equation is

(C.9) −δSM

δφ
= ˙̃p+ J̃Tp̃− 1

2
(ãp̃)⊗ (ãp̃) : ∇(ã−1)

for φ ∈ A, where p̃ := ã−1(φ̇− b̃), the tensor contraction (y⊗y : D)k :=
∑

ijk yiyjDijk

with D = ∇(ã−1), Dijk = ∂
∂xk

(ã−1)ij .

Proposition 8. In general, the solution of the Euler–Lagrange equation for (P0)
is not equivalent to the solution of the Euler–Lagrange equation for (P1). Therefore,
the minimizing paths for (P0) and (P1) are different.

Proof. We consider a simple case that Πx ≡ Π ∀ x ∈ M and Π = ΠT (for
instance, Example 2). Assume a(x) ≡ I and b(x) = −∇V (x) (gradient system).
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Thus, J(x) = J(x)T = −∇2V (x), J̃ = ΠJ , J̃T = JΠ. Let φ0 and φ1 satisfy the
Euler–Lagrange equation for (P0) and (P1), respectively. Then

Π
(
φ̈0 − J(φ0)b(φ0)

)
= 0

and

Π
(
φ̈1 − J(φ1)Πb(φ1)

)
= 0.

In general, ΠJb is not equal ΠJΠb. For instance, consider Example 2,

ΠJ =

[
J11 J12
0 0

]
, ΠJΠ =

[
J11 0
0 0

]
.

The Euler–Lagrange equation for (P0) has an extra term J12b2 if writing b = (b1, b2).
This extra term comes from the normal space since only b1 is used in defining the
SDE on the manifold.

Proposition 9. If a(x) = σ2(x)I (scalar matrix) and Πx is an orthogonal
projection ∀ x ∈ M, then (P1) is equivalent to (P∗). If a(x) is not a scalar matrix,
then (P1) is not equivalent to (P∗) in general.

Proof. If a is a scalar matrix, then Π−1 is identity, and ‖·‖a = ‖·‖ã by Proposition
7, so (P1) is equivalent to (P∗).

When a is not a scalar matrix, then in general ‖ · ‖a > ‖ · ‖ã by Proposition 7.
So, S1 is larger than SM. We shall see that the (constrained) minimizers of these
two functionals are also different, i.e., (P1) is not equivalent to (P∗). To show this,
we continue to consider Example 2 with a state-independent a(x) ≡ a ∀ x. Since
here Π is independent of x, then the Euler–Lagrange equations for (P1) and (P∗) are,
respectively,

Π
(
a−1φ̈1 − (a−1ΠJ − JTΠa−1)φ̇1 − JTΠa−1Πb(φ1)

)
= 0 (P1),

ã−1φ̈∗ − (ã−1ΠJ − JTΠã−1)φ̇∗ − JTΠã−1Πb(φ∗) = 0 (P∗),

Using the notation in Example 2 where a =
[
A11 A12
AT

12 A22

]
, and writing a−1 =

[
B11 B12
BT

12 B22

]
and J =

[
J11 J12
JT
12 J22

]
, where B11, J11 are both of size (n− 1)× (n− 1), and b = (b1, b2),

φ1 = (φ11, φ12), φ∗ = (φ∗1, φ∗2), we can further calculate the above Euler–Lagrange
equations for (P1) and (P∗) as

B11φ̈11 − (B11J11 − JT
11B11)φ̇11 − JT

11B11b1(φ) = 0 (P1),

A−1
11 φ̈∗1 − (A−1

11 J11 − JT
11A

−1
11 )φ̇∗1 − JT

11A
−1
11 b1(φ∗) = 0 (P∗).

The Euler–Lagrange equation for (P∗) only involves A−1
11 , i.e., ã; thus it defines a

boundary value problem of the second-order differential equation intrinsically on the
plane M. The Euler–Lagrange equation for (P1) involves a−1, which includes A12

and A22. It is only when A12 = 0 can we have A−1
11 = B11, and it follows that (P∗) is

equivalent to (P1). However, in general, the diffusion tensor a cannot guarantee A−1
11

is equal to B11; therefore (P∗) is not equivalent to (P1).
Remark 3. Given ã(x), there are various ways to design an augmented a(x) to

satisfy the consistence condition ã = ΠaΠT. By Proposition 7, the condition such that

D
ow

nl
oa

de
d 

12
/1

0/
17

 to
 1

44
.2

14
.7

4.
89

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINDING TRANSITION PATHWAYS ON MANIFOLDS 205

(P1) ⇐⇒ (P∗) for a general Riemannian manifold M is the following orthogonality
condition under the a-metric:

(C.10) 〈v, ξ〉a = 0 ∀v ∈ Img(Π), ξ ∈ Ker(Π).

When Π = ΠT, this condition means that Img(Π) or Ker(Π) is an invariant subspace
of the matrix a−1.

Remark 4. If we consider the following gradient system on a manifold in which
a(x) ≡ I, b(x) = −∇V (x), b̃ = −Πx∇V (x), and assume that Π = ΠT, then we can
simplify the Euler–Lagrange equation for (P∗) (or equivalently (P1) since a(x) = I

here) by noting the fact that 〈wJ̃v〉 = 〈vJ̃w〉 holds for any v, w ∈ Img(Π) (note

J̃ = ∇b̃), i.e., Π(J̃T − J̃)v = 0. The resulting Euler–Lagrange equation is as follows:

Π
(
φ̈+ (J̃T − J̃)φ̇− J̃TΠb(φ)

)
= Π

(
φ̈− J̃TΠb(φ)

)
= 0.

It is easy to verify that if φ̇ = ±Πb(φ), then φ̈ = ±J̃(φ)φ̇ = J̃(φ)Πb(φ), and the
above Euler–Lagrange equation holds. This justifies, from the large deviation for
this special gradient system, the constrained string method in [6] which geometrically
solves φ̇ = ±Πb(φ).

Acknowledgments. We thank the anonymous referees for valuable suggestion.
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