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Abstract
A theory for noise-driven subcritical instabilities in spatially extended systems
is put forward. The theory allows one to calculate the critical bifurcation
parameter for a first-order phase transition in such non-equilibrium systems
in the thermodynamic limit and analyse the mechanism of phase transition.
Two examples with distinctive features are studied in detail to demonstrate
the usefulness of the theory and the different scenarios that can occur in the
thermodynamic limit of non-equilibrium systems.
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1. Introduction

Many important physical systems exhibit subcritical bifurcations. One of the best known
examples is laminar flow in a circular pipe, which is linearly stable for all Reynolds number,
yet it undergoes transition to more complicated and eventually turbulent flows when the
Reynolds number is sufficiently large [1, 2]. In contrast to supercritical instabilities which
are local phenomena in the configuration space and can be studied by analysing linearized
models, subcritical instabilities are consequences of the global behaviour of the system under
consideration.

It is clear that finite amplitude perturbations are needed in order to trigger subcritical
instabilities. What is not clear, however, is how to turn this intuition into a set of tools
with which one can analyse subcritical instabilities and make quantitative predictions. In
this paper, we are interested in subcritical instabilities driven by vanishingly small amplitude
noise. In this case, it is well known that if a system has finite degrees of freedom, it will simply
wonder around in the configuration space, moving from one basin of attraction to another over
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exponentially long time scales (in terms of the noise amplitude). Even though the system
will in general spend different amount of time near different stable states, all the stable states
will be visited during the course of the dynamics, assuming that the noise-driven dynamics is
ergodic, a property that generally holds for systems forced by white noise. For this reason,
there are only quantitative differences between different stable states. For spatially extended
systems, however, a simplification might occur, namely all but one stable states are effectively
suppressed for most values of the system parameters. At some particular parameter values,
the selected stable state will change suddenly, and these are the points of phase transition for
the system. We will provide quantitative methods for determining the bifurcation points and
studying the stability properties of the different states under noisy perturbations, and we will
investigate some canonical examples.

It is natural to draw an analogy with phase transition in equilibrium systems: subcritical
bifurcation is a lot like first-order phase transition, whereas supercritical bifurcation is a lot
like second-order phase transition [3]. For thermodynamic phase transition, the system is
described by a free energy, and the stable states are local minima of the free energy. The lower
the free energy, the more stable the state is. In addition, the following statements are generally
true for first-order phase transition [4]:

(i) In noise-induced transition from a less stable state to a more stable state, the size of the
critical nucleus is effectively finite. For a large system with volume V , the probability
for a less stable state to survive in the presence of thermal noise is proportional to αV for
some number α < 1. Therefore only the state with the lowest free energy survives in the
thermodynamic limit.

(ii) If we place two states next to each other, the state with lower free energy will propagate
into the higher energy state. Furthermore, this propagation is described asymptotically
by a travelling wave. The speed of the travelling wave depends on the difference between
the energies of the two states.

(iii) The mechanism of transition from a less stable state to a more stable state is that of
nucleation and propagation: due to the noise, droplets of the new phase are continuously
nucleated. Most of these droplets cannot survive. But if a droplet reaches a critical size,
it will spread out and propagate into the territory occupied by the old phase.

In terms of the stochastic dynamical system:

dXt = b(Xt) dt + σ dWt,

where dWt is the Gaussian white noise, the dynamics of equilibrium systems are represented
by that of gradient systems, i.e. b(x) = −∇V (x) for some energy function V and the noise is
additive (σ is a constant). In this paper we are primarily interested in non-gradient systems,
i.e. b is not the gradient of a function or the noise is multiplicative. A canonical example of
non-gradient systems is the dynamics of viscous fluids. We are interested in the following
question: to what extend the picture described above still holds for non-gradient systems, and
which quantities replace the free energy difference as a criteria for comparing the stability of
two states? These questions will be answered in the context of noise-driven systems with the
help of the large deviation theory.

Below when we mention ‘locally stable states’, we mean linearly stable states (or sets)
of the unperturbed system. We will limit ourselves to the situation when the homogeneous
system has only two locally stable states. We will focus primarily on the competition between
the two locally stable homogeneous states over large (infinite) domains. Extension to more
complex situations will be discussed in future work.

Two ideas have been proposed in the literature to study the relative stability of two states.
One is to look the nucleation process: if critical nucleus of state A is compact within the
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background of state B, then the state A is more stable than state B. The other [3, 5, 6] is to look
at the dynamics of the system when state A and B are placed against each other: if A invades
B asymptotically, then A is more stable than B. While both seem like very natural ideas, we
will show that they are inadequate in general. The right way to handle general situations is to
consider the action, a concept coming from large deviation theory, which, roughly speaking,
measures the amount of noise needed in order to make a transition from one state to another.

Unlike thermodynamic variables for equilibrium systems which depend only on the state
of the system, action depends on the path and is a function of both the initial and final states
of the system. This may very well be a general phenomenon for non-equilibrium systems.

2. Review of the large deviation theory

We start with an introduction of the large deviation theory in a finite-dimensional setting [7].
A more physical presentation of large deviation theory can be found in [8].

We consider a random process Xt = X(t) : R+ → R
d defined by the following (Ito)

stochastic ordinary differential equation (SODE):

dXt = b(Xt) dt +
√

εσ (Xt) dWt, (2.1)

where Wt is a standard Wiener process in R
d . The noise amplitude ε is a small parameter

and we are concerned with the zero noise limit ε ↓ 0. Let ϕ(·) be an absolutely continuous
function defined on [0, T ]. The Freidlin–Wentzell theory [7, 9] tells us that the probability for
X(·) to stay in the δ-tube around ϕ on the time interval [0, T ] is

P(ρ(X, ϕ) < δ) � exp

(
−1

ε
ST (ϕ)

)
, (2.2)

where ρ(ϕ1, ϕ2) = supt∈[0,T ] |ϕ1(t) − ϕ2(t)|, and ST (ϕ) is the Freidlin–Wentzell action
functional of ϕ on the time interval [0, T ], defined as

ST (ϕ) = 1

2

∫ T

0
‖ϕ̇ − b(ϕ)‖2

A(ϕ(t)) dt, (2.3)

if the integral exists, otherwise ST (ϕ) := +∞. Here the matrix-valued function A(·) is defined
by A(x) := σ(x)σ (x)T and for any positive definite matrix A, the norm ‖ · ‖A is defined as
‖z‖A := 〈z, A−1z〉 for any z ∈ R

d .
A key quantity derived from the large deviation principle is the cost function

W(x, y, t) = inf
ϕ∈C([0,t]):ϕ(0)=x,ϕ(t)=y

St (ϕ). (2.4)

Let

W(x, y) = inf
t>0

W(x, y, t). (2.5)

Heuristically, W(x, y) is the minimum cost of forcing system (2.1) to end at the state y if it
is initiated at the state x. One can also define a cost function associated with two sets A, B:
W(A, B) = infx∈A,y∈B W(x, y). For a given stable state x, the function Wx(·) := W(x, ·)
is called the quasi-potential [7] associated with the state x. In gradient systems where
b(x) = −∇V (x) for some function V and σ = 1, Wx(y) = 2(V (y) − V (x)). Here the
factor of 2 is due to the fact that we write the amplitude of noise in (2.1) as

√
ε, instead of

√
2ε

as in the conventional physical literature.
Freidlin–Wentzell theory generalizes naturally to stochastic partial differential equations

(SPDE). This is done for the example of the stochastically perturbed Allen–Cahn equation
in [10] and [11, 12]. Consider a SPDE in the form

∂u

∂t
= δ�u + δ−1f(u) +

√
εη, x ∈ 	 ⊂ R

d , (2.6)
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where u(x, t) ∈ R
n, δ > 0, 0 < ε � 1, f : R

n → R
n is the nonlinear term. We put a small

parameter δ here but keep the domain 	 fixed purely for notational convenience. It is obvious
that after rescaling, small values of δ correspond to large spatial domains. In our numerical
examples presented below, we typically fix the domain size to be 1 and use very small values
of δ. The spatial-temporal noise η in the SPDE (2.6) has zero mean and spatial correlation
given by an operator K,

E[η(x, t)η(y, s)] = K(x, y)δ(t − s).

The action functional for a path u(x, t) : 	 × R+ → R
n in this infinite-dimensional setting

is [13]

ST [u] = 1

2

∫ T

0
dt

∫
	

∫
	

〈
Fu(x, t), K−1Fu(y, t)

〉
dy dx, (2.7)

where 〈 · 〉 is the inner product in Euclidean space R
d and here we define

Fu(x, t) := u̇(x, t) − δ�u(x, t) − δ−1f(u(x, t)), (2.8)

(u̇ is time derivative). If η is the white noise, the action functional is simplified to be

ST [u] = 1

2

∫ T

0
dt

∫
	

‖u̇ − δ�u − δ−1f(u)‖2 dx, (2.9)

where ‖ · ‖ is the standard l2 norm in R
d .

The notion of cost function and quasi-potential can obviously be extended to the above
infinite-dimensional setting:

W(u1, u2, t) = inf
u∈C([0,t]):u(0)=u1,u(t)=u2

St [u]. (2.10)

We should note that the cost function and quasi-potential depend not only on the deterministic
drift terms, but also on the noise, i.e. σ in (2.1) or K in (2.6).

3. Criteria for stability and instability

Given two (homogeneous) states, u1 and u2, both are stable against infinitesimally small
perturbations, which state survives in an spatially extended system in the presence of a very
small noise? Here we give three answers to this question. The first is based on the large
deviation theory, by comparing the action needed to switch from one state to the other. This
one is quite rigorous and is expected to be generally valid. But it depends on the details of the
noise—and this is unpleasant. The second is more heuristic, based on the idea of which state
wins eventually if the two states are placed next to each other in space. The third criterion
is more restrictive but is helpful in cases where transition between the different stable states
proceed via saddle points. It is based on examining the spatial structure of the saddle points.
For gradient systems, all three criteria are equivalent to each other. We will see later that this
is no longer the case for non-gradient systems, and only the first criterion is valid in general
(figure 1).

3.1. The action criterion

For the first criterion, we ask which state has a higher survival probability in the presence
of noise. Such a survival probability can be defined through the escape probability of the
stochastically perturbed system from the basin of attraction of the state under consideration.
This escape probability is proportional to exp(−Q/ε) where Q is a constant associated with
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Figure 1. Illustration of the first two criteria in which we examine the escape action difference
h(u1, u2; µ) := Q(u1)−Q(u2) and the speed of travelling wave going into u2, when the parameter
µ varies. The arrows indicate the direction of the travelling wave connecting the two states.

the locally stable state. The mean exit time from the basin of attraction of the locally stable
state is approximately exp(Q/ε).

According to large deviation theory [7], the quantity Q is the minimum value of the
quasi-potential over the boundary of the basin of attraction of the locally stable state u:

Q(u) := inf
v∈∂D(u)

Wu(v). (3.1)

where ∂D(u) is the boundary of the basin of attraction of the stable state u and W is the
quasi-potential defined in section 2. For this reason, we will call the constant Q(u) the escape
action of the state u. For gradient systems where the nonlinear term in (2.6) is of the form
f = −∇uV (u) for some function V , the total energy of system (2.6) is given by

E(u) = 1

2

∫
	

δ‖∇u(x)‖2 dx +
∫

	

δ−1V (u) dx.

Thus, the escape action is the energy barrier Q(u) = 2(E(us)−E(u)) where us is the lowest
energy saddle point next to u.

The concept of the escape energy is a generalization of the classical notion of activation
energy. It bears some similarity to the work in [14–16] and [17–19].

The action criterion. The stability of a locally stable state depends on its escape action
Q(u). The higher the value of Q(u), the more stable the state u is. For example, the state u1

is more stable than u2 if

h(u1, u2) := Q(u1) − Q(u2) > 0. (3.2)

In the limit of infinite system size, if h approaches either +∞ or −∞, then only the
more stable state with larger escape action survives, since the other states have zero survival
probability. We will see below that for non-gradient systems, h may stay bounded as the
system size goes to infinity. In this case, the two states co-exist.

3.2. The spatial competition criterion

A more heuristic criterion has been suggested in the literature [3, 5, 6]. In this criterion, the two
states are placed next to each other, and one observes the long time behaviour of the system to
see which state wins eventually.
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The spatial competition criterion. We say that u1 is more stable than u2 if, with the initial
condition described above, the state of the system converges to u1 as t → +∞.

For a large class of systems, the state converges to a travelling wave under such initial
conditions. Therefore the relative stability of the two states depends on the direction of the
travelling wave.

This criteria has nothing to do with the noise, so it appears to be more intrinsic to the
dynamics. However, as we will demonstrate below, it might depend on the details of the initial
condition, i.e. how the two states are placed next to each other. In any case, we will see that
this criterion does not necessarily give the right prediction.

It should be noted that for gradient systems, the two criteria are equivalent. In fact, in that
case, c ∝ Q(u1) − Q(u2) = 2(V (u2) − V (u1)), where c is the speed of the travelling wave
going into the u2 state [20].

3.3. The saddle point criterion

In many cases, the system escapes a basin of attraction through saddle points (for detailed
discussion of this problem, refer to [7, 21–23]). If the relevant saddle point is a localized
perturbation of the original state in physical space, then the survival probability of the original
state is exponentially small as a function of the system size. In particular, the original state
cannot survive in the thermodynamic limit. This is because that such a localized perturbation
has a finite probability to occur, even though the probability might be small. In a large system,
the probability that they never occur is exponentially small. Once they occur, they take over
the whole system.

The saddle point criterion. Assume that us is a saddle point on the basins of attraction (in
the phase space) of two neighbouring spatially homogeneous stable states u1 and u2. If the
difference us − u1 decays at infinity in the physical space, then u1 is less stable than u2.

Such a localized saddle point is usually referred to as the critical nucleus. Intuitively, the
saddle point criterion says that if the critical nucleus going from u1 to u2 has finite size, then
the state u1 is less stable than u2. The saddle point criterion is also equivalent to the above
two for gradient systems [20]. However, non-gradient systems does not have to escape a basin
of attraction through saddle points, for example, when the basin boundary has no fixed points.
It is also possible that there exist different nucleus which are localized with respect to the
different homogeneous states u1 and u2. We refer to section 5 for such example. Therefore
this criterion is not universal either.

4. An example of nucleation and propagation

Consider
∂u

∂t
= δ�u + δ−1f (u, v),

∂v

∂t
= δ�v + δ−1g(u, v),

(4.1)

where

f (u, v) = (u − u3 + 6
5 )v + 1

2µu,

g(u, v) = 1
2u2 − v.

(4.2)

Here µ is the bifurcation parameter. The base state 0 = (0, 0) is always a fixed point for all µ.
We will examine the stability of the base solution as µ changes. Linear stability analysis shows
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Figure 2. Bifurcation diagram of system (4.2). Only the graphs of the u-component of the fixed
points are shown. The solid curves are linearly stable solutions, the dashed curves are linearly
unstable solutions. A transcritical bifurcation and a subcritical bifurcation occur at µ0 = 0 and
µ1 ≈ −1.2344, respectively. In the lower figure, the thicker solid curve shows the solution selected
according to the action criterion. A new bifurcation occurs at µ∗ ≈ −1.0454.

that the solution 0 is stable for µ < µ0 = 0 and unstable for µ > µ0. At µ1 ≈ −1.2344, a
subcritical bifurcation occurs and one pair of new steady-state solutions appear. We will call
u+ the upper branch and ul the lower branch. The upper branch u+ is linearly stable and the
lower branch ul is linearly unstable. At µ0, we have a transcritical bifurcation or exchange
of (linear) stability between the lower branch ul and the solution 0. These bifurcations are
summarized in the first subplot of figure 2. Figure 3 shows the phase space of the corresponding
ODE system with µ = −1.

Our primary interest here is to compare which one of the two linearly stable solutions u+

and 0 is more stable if the system is perturbed by noise. We will see that this gives rise to a
point of first-order phase transition.

Let us pick two particular values of µ: µ = −1.1 and −1.0 and integrate system (4.1)
with a step function as the initial condition. As figure 4 shows, in both cases a travelling wave
indeed emerges as the system evolves (further numerical tests do confirm that the system does
evolve to travelling waves). The state 0 eventually wins when µ = −1.1, but u+ takes over at
µ = −1.0.

Next, let us examine the cost of going from one state to the other under the action of
noise. To do this, we apply the minimum action method [24, 25] to calculate the action and
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Figure 3. The phase space of the ODE system for (4.2) with the parameter µ = −1. The solid
curve is the basin boundary which separates the two stable fixed points (marked with big dots).
The broken curve is the unstable manifold of the saddle point (marked with a circle).

Figure 4. Travelling waves at two different values of µ. The initial condition is a step function
with a jump at x = 0.5. The solid curves are for µ = −1.1 and the dashed–dotted curves are for
µ = −1.0. The travelling wave velocities are c = −0.084 and c = 0.061, respectively.

the minimum action paths for transitions between u+ and 0 in a large but finite system with
space-time white noise and periodic boundary condition. Set δ = 0.03 and 	 = [0, 1]. Let
h(µ) = Q(u+; µ) − Q(0; µ). Our calculations show that h(µ = −1.1) = 0.388 − 1.192 =
−0.804 and h(µ = −1.0) = 1.223 − 0.470 = 0.753. As the system size is further increased,
the qualitative picture remains the same.

Both viewpoints suggest that there must be a critical value between µ = −1.1 and
µ = −1.0, where the two locally stable states in the spacial extended system exchange their
stability properties (see the second subplot in figure 2). A priori, the critical values obtained
from the two different criterion need not be the same. We calculated both the travelling velocity
c(µ) and the action difference h(µ) for various values of µ and the results are shown in figure 5.

By examining the point where c(µ) or h(µ) changes sign, we identified that the critical
value µ∗ in both cases is around −1.0454. This value appears to be robust at large system sizes
or small values of δ. The above observation suggests that although a subcritical bifurcation
appears at the point µ1, in a large system and in the presence of a small noise, the trivial
solution 0 continues to prevail until µ reaches µ∗.
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Figure 5. Bifurcation diagram obtained using the 2nd (top) and 1st criteria (bottom). In the first
criterion, bifurcation occurs when the function h changes sign. In the second criterion, bifurcation
occurs when the velocity of the travelling wave changes sign. The roots of c(µ) = 0 and h(µ) = 0
are both around −1.0454. Q(u+) and Q(0) are the escape actions from u+ and 0, respectively.
h = Q(u+) − Q(0).

Figure 6. The minimum action path at different times (µ = −1.0. δ = 0.01, T = 4 in the
minimum action method). Dashed curves show the nucleus, i.e. the saddle point.

We now examine the mechanism of the noise-induced transition from one stable state
to another in some detail. Large deviation theory tells us that the most probable transition
path is the minimum action path, i.e. the minimizer of (2.10). Let us fix µ = −1.0 and
δ = 0.01. We already know that the solution u+ is more stable than the rest state 0.
The path starting from 0 and ending at u+ is plotted in figure 6. The dashed curve in
figure 6 is the profile of the saddle point. We also note that from that point on, going
to the end state u+ does not require the help from the noise—all the cost is associated
with the transition from 0 to the saddle point. A good indicator of the contributions of
the noise during the transition process is the term p(x, t) := Fu(x, t) which is defined in
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Figure 7. The contribution of the noise (|p|2 := |Fu(x, t)|2 in (2.7)) plotted with respect to space
and time. µ = −1.0. δ = 0.01.

(2.7): Fu(x, t) = u̇(x, t) − δ�u(x, t) − δ−1f(u(x, t)). The first plot in figure 7 shows the
spatial-temporal behaviour of the term ‖p(x, t)‖2 for the transition process from 0 to u+. In
this calculation T = 4 but we only show the result in the time interval from 0 to 0.4 to highlight
the localized peak near x = 0.5 and the time interval around (0, 0.2). Such a peak reveals the
contribution of the noise during the nucleation process.

The above picture is the same as what happens in gradient systems. In addition, as we
can clearly see, the saddle point solution is in the form of a critical nucleus. Therefore the
overall transition takes place via nucleation and propagation, which is the classical mechanism
associated with gradient systems. The fact that propagation is a natural consequence of the
deterministic dynamics is also consistent with the result of the second criterion.

Similarly one can examine the minimum action path from u+ to 0 to find that at this
parameter value of µ, it is much harder to destabilize the state u+ by noise, since it has to work
constantly to fight against the tendency for the deterministic dynamics to recover u+. The
snapshots of the transition path in this case look almost the same as figure 6, but in a reversed
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Figure 8. The profiles of the saddle points for the example (4.2) (δ = 0.01). From inside to outside,
the values of µ are −1.000, −1.020, −1.040, −1.045, −1.046, and −1.050, respectively.

order, i.e. the noise ‘bends down’ the solution u+ near two ends at x = 0, 1 and continues to
‘squeeze’ the portion of u+ state from the two ends to the middle in physical space until the
system reaches the critical nucleus (red dashed curve). Contribution from the noise can be
examined more quantitatively from figure 7(b) which shows contour curves of ‖p(x, t)‖2 in
the x–t space.

The first-order phase transition discussed above can be further verified by our third criterion
about the localized saddle points and the direct Monte Carlo simulation. To this end, the gentlest
ascent dynamics (GAD) [26] is used to search for the saddle points. Figure 8 shows the profiles
of the u-component of the saddle points associated with various values of µ from −1.000 to
−1.050, computed using the gentlest ascent dynamics. It is clear to see from this figure that
from −1.045 to −1.046, the profile suddenly changes from a local nucleus in the background
of 0 to being a local nucleus in the background of u+. We have verified that this qualitative
change also occurs in a larger system with L = 4. According to the saddle point criterion, the
trivial state 0 starts to lose as the bifurcation parameter µ increases from −1.046 to −1.045.
This is consistent with the conclusions drawn from the other two criteria. The agreement of
the three criteria for this particular example is due to the fact that the localized saddle point
is exactly the transition state for the noise-induced transition path and the travelling wave
guarantees that such local saddle point is the only relevant unstable structure for the transition
process.

As a way of checking directly these claims, we performed simulation of the noisy system.
Figure 9 presents the scatter plot of a long trajectory (u(·, ·), v(·, ·)) for a value of µ which
is slightly bigger than the subcritical bifurcation point µ∗. One can see that most points are
scattered around the u+ state.

Even though the example considered is a non-gradient system, its dynamics under noisy
perturbations is very much similar to that of the gradient system. The nucleation and
propagation picture applies. There is a critical nucleus. The critical nucleus from the less
stable state to the more stable state is effectively compact.

5. An example illustrating co-existence

The second example we are going to consider is from [27] where it was used to study the pitch-
fork bifurcation of the travelling fronts by the singular perturbation analysis. The nonlinearities
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Figure 9. Scatter plot of the solution (u, v) at all spatial-temporal grid points, t from 0 to 1000,
time increment is 10. The parameters are L = 1, µ = −1.044, δ = 0.01, and noise level ε = 0.28.
Only data points outside the disks with radius 0.2 near two base states are shown.

f and g in this example are

f (u, v) = 1

τ

(
1

2
+ u

) (
1

2
− u

) (
u − 1

2
v

)
,

g(u, v) = u − v + µ.

(5.1)

Figure 10 shows the phase plane of the corresponding ODE system. Here τ > 0 is a small
parameter, hence the reaction rates for the two components are disparate. The introduction of
the additional time scale τ to (5.1) brings in some interesting features; see [27–29] and the
references therein. Note that this example has a symmetry: the system is invariant under the
transformation: (u, v, µ) to (−u, −v, −µ). Therefore a first-order phase transition between
the two homogeneous states, if exists, must occur at µ∗ = 0.

To study the bifurcation for the parameter µ, we fix the small parameter τ = 0.02 in (5.1)
and δ = 0.04 in (4.1) but allow the parameter µ to change between −1/2 and 1/2. For all
µ ∈ (−1/2, 1/2), there are three spatially homogeneous stationary states in this system: two
are stable fixed points u± = (u±, v±) = (±1/2, ±1/2 + µ) and one is a saddle point (µ, 2µ).

We first study the travelling front solutions by picking different initial states to evolve
the deterministic reaction–diffusion system. Fix τ = 0.02 and µ = 0.02, we choose two
different initial conditions (red solid curve and red dash curve as shown in figure 12(a)). It is
found that the ‘solid’ initial condition propagates to the left to form a travelling front solution
with a negative velocity while the ‘dashed’ initial condition propagates to the right to form a
different travelling front solution corresponding to a positive travelling velocity. This situation
is illustrated in figure 11 between −µ† and µ† (µ† to be defined below) where the stable front
solutions with both the positive and negative velocities c exist. Now we increase µ = 0.03 and
keep other parameters and initial conditions fixed. As one can see from figure 12(b), although
the time evolution of the ‘solid’ initial condition remain qualitatively the same, the one for
the ‘dashed’ initial condition cannot propagate to the right forever. Instead after a transient
propagation, the solution stops and then reflects back to converge to a travelling front solution
with a negative velocity. This case corresponds to the region of |µ| > µ† in figure 11.
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Figure 10. The phase space of the ODE system for (5.1) with the parameter µ = −0.03. The
annotation is the same as in figure 3.

Figure 11. Schematic plot of the bifurcation diagram for the speed c of the travelling front solutions
with respect to the parameter µ while the parameter τ is fixed. The solid lines stand for stable
travelling front solutions while the dashed for unstable ones. The existence of the pair of index-1
saddles us± as well as their one-dimensional unstable manifolds (arrow directions) is also illustrated.
The meanings of arrows are explained in text. The bifurcation point µ† depends on τ .

The above numerical observation suggests the existence of a bifurcation point µ†. Indeed,
according to the results of asymptotic analysis in [27] and the above numerical experiments, we
can draw qualitatively a bifurcation diagram in figure 11 for the travelling fronts. By studying
the problem using various different domain size (L = 1, 2, 4), we identified the value of µ†

to be stably around 0.024 when τ = 0.02, δ = 0.04.
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Figure 12. Travelling fronts for two different values of µ (τ = 0.02 and µ† ≈ 0.024.). The
snapshot of solutions at different times are plotted from two different initial conditions (in red),
shown in solid and dashed curves, respectively. The solid curves show a front propagating to the
left and have negative travelling velocity c while the dashed curves show a front propagating to the
right and thus have positive c. Note that at µ = 0.03, the right-travelling front ceases to propagate
at a location near x = 1.6 and eventually reflects back to u−.

Obviously, the co-existence of propagating solutions with u+ invades u− and with u−
invades u+ in this system renders our second criterion—i.e. the space competition criterion—
discussed in the last section inapplicable.

Next, we study the saddle points in this system in an infinitely long channel. Consider the
following system on the semi-infinite line x ∈ (0, +∞):

0 = δ2u′′ +
1

τ

(
u +

1

2

) (
1

2
− u

) (
u − 1

2
v

)
,

0 = δ2v′′ + (u − v + µ),

where ′′ stands for ∂2
x . At +∞ the solution is required to approach one of the base state u±.

We first take u− = (u−, v−), i.e. u(+∞) = u−, v(+∞) = v−. The condition at x = 0 is
u′(0) = v′(0) = 0. After the change of variables u − u− → u, v − v− → v and the
rescaling x/δ → x, the problem becomes

0 = τu′′ + u(1 − u)(β− + u − 1
2v),

0 = v′′ + u − v,
(5.2)

with boundary conditions u′(0) = v′(0) = 0, u(+∞) = v(+∞) = 0, where β− = − 1
4 − 1

2µ.
For small τ , there is a boundary layer for the u-component near x = 0 and it has a width O(

√
τ).
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Figure 13. Index-1 localized saddle points at µ = 0.02 (solid and dotted curves are u- and
v-component, respectively). There is little change in the profiles of these localized solutions when
L = 1, 2, 4, 8.

Letting u(x) = u0(x/
√

τ)+
√

τu1(x/
√

τ)+O(τ), (5.2) gives the leading order problem for u0:

u′′
0 − f ′(u0) = 0,

with the boundary condition u′
0(0) = 0 and u0(+∞) = 0. Here

f (u) = 1

4
u4 +

β− − 1

3
u3 − β−

2
u2

is a double-well potential function: under the condition −1/2 < β− < 0, i.e. −1/2 <

µ < 1/2, f (u) has two local minima u = 0 and u = 1 and f (1) < f (0). Thus, there
exists some point ū between 0 and 1 such that f (ū) = f (0) and u(x) will go to 0 as
x → +∞ if it starts from ū at x = 0 with zero velocity u′(x) = 0. This means that for
all µ ∈ (−1/2, 1/2), asymptotically as τ → 0, there exists a localized saddle point u0 which
converges to u− at infinity. Further asymptotic analysis for the v-component shows that v0

behaves like v0 ∼ O(
√

τ)u0.
For the homogeneous state u+, we can perform the same asymptotic analysis and find

another localized saddle point which converges to u+ at infinity. For nonzero but small τ (i.e.
finite domain size), our numerical results confirmed the co-existence of these localized saddle
points. The numerical results of these localized saddle points us

± at τ = 0.03 and µ = 0.02 are
shown in figure 13. These are index-1 saddle points, i.e. the dynamics has only one unstable
direction at these saddle points. Note that these saddles us

± exist for all µ ∈ (−1/2, 1/2).

The existence of bifurcation point µ† for the travelling fronts, which is illustrated in
figure 12, implies that there is a corresponding bifurcation of the unstable manifold of the
index-1 saddle us

± in the phase space. For |µ| < µ†, the unstable manifolds of us
± can reach
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Table 1. The ‘nucleation action’ in both directions u+ ↔ u− as µ increases from 0 to 0.05.

µ u+ → us
+ u− → us−

0 1.34445e−2 1.34445e−2
0.010 1.28793e−2 1.40301e−2
0.020 1.23239e−2 1.46256e−2
0.030 1.17816e−2 1.52346e−2
0.040 1.12526e−2 1.58571e−2
0.050 1.07367e−2 1.64932e−2

both u+ and u−. For instance, the saddle us
+, which is illustrated in the first row at the bottom

of figure 11, has a heteroclinic orbit connecting u+ in the phase space, which appears in the
physical space as the direct invasion of the homogeneous state u+. The second heteroclinic
orbit is from us

+ to u−, corresponding to the propagation of the solution to generate more
and more of the u− state. Such a propagation corresponds to the arrows straightly pointing
outward in figure 11. Consequently, the noise-driven system can start from u+, grow to a
nucleus us

+ (with help from noise) and then propagate to the whole domain to generate the
homogeneous state u−. In contrast to our first example in section 4, the distinctive feature of
this example here is that the above claim of nucleation and propagation can also be made when
the initial state is u− because of the existence of another localized saddle us

− for the same set
of parameters.

For |µ| > µ†, if one tracks the unstable manifold of the saddle, say us
+, it is found that

infinitesimal linear perturbations in the tangent unstable manifold of us
− all eventually send

the solution back to the homogeneous state u+ following two routes. One is the same as in
the case of |µ| < µ†: the direction invasion of u+ (which is not shown in figure 11) while
another involves a transient propagation initially and then eventually an invasion of u+ (which
is illustrated as the hook arrows in figure 11). Such transient behaviour is already seen in
figure 12(b). In neither route can the saddle us

+ reach u− since the traditional propagation
route to u− is blocked. This means that the localized index-1 saddles us

± are not the only
transition states relevant to the noise-induced transition between u±.

The co-existence of the localized saddles us
+ and us

− renders it impossible to apply the
third criterion—saddle point criterion. This leaves us with only one option, the first criterion.
Table 1 shows the numerical results of the nucleation action—the action required to take the
system from the base state to the nucleus. Note that this is not necessarily the escape action
defined earlier.

For |µ| < µ†, the nucleation action is the true value of the total action between u± (i.e.,
Q defined in (3.1), section 2). Figure 14 shows a nucleation-propagation type of minimum
action path at µ = 0.02. For |µ| > µ†, the nucleation action is only a lower bound of the
escape action between u±, since extra action is needed from the nucleus to the final state.
From table 1, Q(u+; µ) decreases in µ and Q(u−; µ) increases in µ. Therefore, according to
our action criterion, u− is relative more stable than u+ as µ > 0 and u+ is relative more stable
than u− as µ < 0.

However, in contrast to the previous example, in the regime when |µ| < µ†, the escape
actions for both the u+ state and the u− state stay finite as the domain size increases, due
to the presence of effectively finite sized critical nucleus for both states. Even though the
values of the escape actions are different, none of the states will be completely dominant in
the thermodynamic limit, no matter how small the noise is, i.e. the two states must co-exist.
More precisely, in the thermodynamic limit, the volume fraction of states close to u+ and u−
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Figure 14. The transition path from u− to u+ that passes through us−(dashed curve). µ = 0.02,
τ = 0.02.

Figure 15. The scatter plot of (u, v). L = 1, µ = 0.005, τ = 0.02, δ = 0.04.

will both converge to finite values, as ε approaches 0. In fact, suppose this is not the case,
and only one (homogeneous) state survives in the thermodynamic limit. In the presence of
noise, no matter how small, there is always a finite probability of creating a critical nucleus
and these nuclei will survive and propagate out, until critical nuclei in the opposite direction
appear. Therefore one cannot have homogeneous states in this regime. Direct Monte Carlo
simulation (figure 15) of the stochastic PDE with small noise confirms this prediction.

In summary, by comparing the escape action, we can find out which state is more stable.
However, whether the less stable states will be suppressed in the thermodynamic limit depends
on how the escape action changes with system size. We have shown two examples that give rise
to two different situations. In the first example, the difference in the escape action increases,
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presumably linearly, with system size. In this case, only the more stable state survives in the
thermodynamic limit. In the second example, the difference in the escape action stays bounded
as the system size increases. As a result, the two states co-exist.

6. Discussions

We have proposed a theory for noise-driven subcritical instabilities. In a spatially extended
system, the background state becomes unstable to small noisy perturbations when the cost (or
action) for escaping the domain of attraction of the background state is finite, independent of
the system size. Such a system will spontaneously lose its stability. We have also demonstrated
the possible existence of a mixed state in which two (homogeneous) states co-exist in a non-
gradient system.

Noise-driven subcritical instabilities exhibit interesting finite size effects. For supercritical
bifurcations, there is not going to be any significant finite size effects as long as the size of the
system is bigger than the wavelength of the most unstable modes. For noise-driven subcritical
instabilities, however, if the volume of the system is V , then the probability for the base state
to survive is proportional to αV for some number α between 0 and 1. This means that its life
time decreases exponentially as a function of the system size. Finite size systems should also
exhibit interesting hysteresis effects. We will postpone the quantitative discussion of this issue
to a later paper.
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