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Abstract In this paper, we shall introduce and study a family of multivariate interpolating
refinable function vectors with some prescribed interpolation property. Such interpolating
refinable function vectors are of interest in approximation theory, sampling theorems, and
wavelet analysis. In this paper, we characterize a multivariate interpolating refinable func-
tion vector in terms of its mask and analyze the underlying sum rule structure of its gen-
eralized interpolatory matrix mask. We also discuss the symmetry property of multivariate
interpolating refinable function vectors. Based on these results, we construct a family of
univariate generalized interpolatory matrix masks with increasing orders of sum rules and
with symmetry for interpolating refinable function vectors. Such a family includes several
known important families of univariate refinable function vectors as special cases. Several
examples of bivariate interpolating refinable function vectors with symmetry will also be
presented.

Keywords Interpolating refinable function vectors · Interpolatory masks · Interpolation
property · Sum rules · Smoothness · Symmetry · Symmetry groups · Orthogonality
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1 Introduction and Motivation

Refinable functions and refinable function vectors play a fundamental role in wavelet analy-
sis and its applications such as signal processing, sampling theorems, numerical algorithms,
and computer graphics. Let us recall the definition of a refinable function vector first.
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We say that a d × d integer matrix M is a dilation matrix if limn→∞ M−n = 0, that
is, all the eigenvalues of M are greater than 1 in modulus. An M-refinable function (or
distribution) vector φ = (φ1, . . . , φL)T satisfies the vector refinement equation

φ = |detM|
∑

k∈Zd

a(k)φ(M · −k), (1.1)

where a : Z
d → C

L×L is called a (matrix) mask with multiplicity L for φ. When the multi-
plicity L = 1, φ and a are called a (scalar) refinable function and a scalar mask, respectively.

The refinement equation in (1.1) can be also stated in the frequency domain. For a se-
quence u : Z

d → C
m×n, its (formal) Fourier series û is defined to be

û(ξ) :=
∑

k∈Zd

u(k)e−ik·ξ , ξ ∈ R
d , (1.2)

where k · ξ denotes the inner product of the vectors k and ξ in R
d . For a finitely supported

sequence u, û is a matrix of 2π -periodic trigonometric polynomials in d-variables. Now the
refinement equation in (1.1) can be rewritten in the frequency domain as

φ̂(MT ξ) = â(ξ)φ̂(ξ), a.e. ξ ∈ R
d , (1.3)

where MT denotes the transpose of the matrix M and for f ∈ L1(R
d), its Fourier transform

f̂ is defined to be f̂ (ξ) := ∫
Rd f (x)e−ix·ξ dx, ξ ∈ R

d , which can be naturally extended to
tempered distributions and L2(R

d).
Refinable function vectors with some interpolation property are of particular interest in

wavelet analysis [1, 3, 5, 6, 10, 11, 15, 17, 22, 25, 26]. In the following, let us mention some
known examples that motivate this paper.

Throughout this paper, δ denotes the Dirac sequence such that δ(0) = 1 and δ(k) = 0 for
all k �= 0. The sinc function is defined to be sinc(x) := sin(πx)

πx
for x ∈ R\{0} and sinc(0) = 1.

The sinc function is continuous and symmetric about the origin. Moreover, sinc is interpo-
lating: sinc|Z = δ. The sinc function is used in the Shannon sampling theorem saying that
for f ∈ C(R)∩L1(R) such that f̂ is supported inside [−π,π] (that is, f is bandlimited with
band π ), f (x) = limn→∞

∑n

k=−n f (k)sinc(x − k), where the series converges uniformly for
any x ∈ R. The Shannon sampling theorem can be restated using shift-invariant spaces. For
a function vector f = (f1, . . . , fL)T in L2(R

d), we denote by V (f ) the smallest closed sub-
space in L2(R

d) containing f1(· − k), . . . , fL(· − k) for all k ∈ Z
d . Due to the interpolation

property of the sinc function, for any continuous function f ∈ V (sinc)∩L1(R
d), one always

has f = ∑
k∈Z

f (k)sinc(· − k). Note that ŝinc = χ(−π,π ] is the characteristic function of the
interval (−π,π]. It is well known in the literature ([1, 25, 26] and references therein) that
sinc is a 2-refinable function satisfying ŝinc(2ξ) = â(ξ)ŝinc(ξ), where â is a 2π -periodic
function defined by â(ξ) := χ(−π/2,π/2](ξ) for all ξ ∈ (−π,π]. So, sinc is an interpolating
2-refinable function. For a function f that is not bandlimited with band π , one often consid-
ers its projection onto V (sinc), for example, f ≈ f̃ = ∑

k∈Z
〈f, sinc(·− k)〉sinc(·− k). Note

that 〈sinc, sinc(· − k)〉 = δ(k) for all k ∈ Z and f̃ is the orthogonal projection of f onto
V (sinc). However, sinc is not compactly supported and has a slow decay rate near ∞. In the
literature, shift-invariant spaces generated by compactly supported (interpolating) refinable
function vectors are often useful in sampling theorems in signal processing, see [1, 25, 26]
and many references therein on applications of (interpolating) refinable function vectors in
sampling theorems.
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Fig. 1 The two components φ0 (left) and φ1 (right) of the M√
2-refinable function vector in [8]

However, there is no compactly supported 2-refinable function that is both interpolating
and orthogonal [23, 26, 27]. In order to achieve both interpolation and orthogonality, Se-
lesnick [23] and Zhou [27] presented several examples of compactly supported 2-refinable
function vectors φ = (φ0, φ1)

T such that φ is orthogonal: 〈φ�,φn(· − k)〉 = 1
2δ(k)δ(� − n)

for all k ∈ Z and �,n ∈ {0,1}, and φ is a continuous function vector satisfying the following
interpolation property:

φ0(k/2) = δ(k) and φ1(1/2 + k/2) = δ(k) ∀k ∈ Z. (1.4)

Unfortunately, as showed in [23, 27], such 2-refinable function vectors cannot have symme-
try. Refinable function vectors with the interpolation property in (1.4) and with symmetry
have been further developed in [16] for dimension one which extends [23, 27] to any dila-
tion factor and any refinable function vector φ = (φ1, . . . , φL)T with L ≥ 1. In this paper,
we shall generalize [16] from the univariate case to the multivariate case in a more general
setting. This paper is greatly motivated by the following interesting bivariate example of
Goodman [8], which obtains an M√

2-refinable function vector φ = (φ0, φ1)
T (see Fig. 1),

where

M√
2 :=

(
1 1
1 −1

)
. (1.5)

From Fig. 1, it is evident that φ is a piecewise linear function vector satisfying the fol-
lowing interpolation property:

φ0(k) = δ(k) and φ1((1/2,1/2)T + k) = δ(k), k ∈ M−1√
2
Z

2. (1.6)

But φ in Fig. 1 is not a function vector in C1(R2). It is of interest to have compactly sup-
ported M√

2-refinable function vectors satisfying the interpolation property in (1.6) and hav-
ing higher order of smoothness, such as C1 smoothness.

Motivated by the above examples, now we introduce the concept of interpolating re-
finable function vectors. Let N be a d × d invertible integer matrix. Noting that Z

d ⊆
N−1

Z
d , we denote by �N an ordered complete set of representatives of the cosets of

[N−1
Z

d ]/Z
d with the first element of �N being 0; in dimension one, we simply take �N =

{0, 1
N

, . . . , N−1
N

}. Note that �N + Z
d = N−1

Z
d . We say that a column vector φ = (φγ )γ∈�N

of functions on R
d is an interpolating function vector of type (�N,0) if φ is continuous and
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satisfies the following interpolation property:

φγ (β + k) = δ(k)δ(β − γ ), ∀β,γ ∈ �N, k ∈ Z
d . (1.7)

Now for any continuous function f ∈ C(Rd), defining

f̃ (x) :=
∑

γ∈�N

∑

k∈Zd

f (k + γ )φγ (x − k), x ∈ R
d , (1.8)

we see that f (x) = f̃ (x) for all x ∈ N−1
Z

d . That is, the function value of f̃ agrees with that
of f on the lattice N−1

Z
d .

Obviously, the sinc function is an interpolating 2-refinable function of type (�1,0). More
generally, a continuous function φ satisfying φ|Zd = δ is simply an interpolating function
of type (�Id ,0), where Id is the d × d identity matrix. The examples in [23, 27] are just
interpolating 2-refinable function vectors of type (�2,0) and the one-dimensional examples
in [16] correspond to interpolating M-refinable function vectors of type (�N,0) for any
positive integers M (M > 1) and N . The example in [8] shown in Fig. 1 is an example of
interpolating M√

2-refinable function vectors of type (�M√
2
,0).

Denote N0 := N ∪ {0}. An interpolating function vector of type (�N,0) is a special case
of interpolating function vectors of type (�N,h) for h ∈ N0 that we will introduce in Sect. 3.
For the more general interpolating refinable function vectors of type (�N,h), all the deriv-
atives up to degree h of f and f̃ (see (3.3)) agree on the lattice N−1

Z
d . To improve the

readability of this paper and to avoid introducing complicated notions at the very beginning,
in this paper we shall breifly discuss interpolating refinable function vectors of type (�N,0)

first in Sect. 2, and deal with the more general case in Sect. 3.
The structure of this paper is as follows. In Sect. 2, we present a criterion for an interpolat-

ing M-refinable function vector of type (�N,0) in terms of its interpolatory mask, as well as
a criterion for an orthogonal and interpolating M-refinable function vector of type (�N,0).
Several examples will be presented to illustrate the results. In Sect. 3, we shall introduce a
more general notion of an interpolating function vector of type (�N,h) for h ∈ N0 by inter-
polating all derivatives up to degree h of a function as well as a notion of an interpolatory
mask of type (M,�N,h). The Hermite interpolatory masks considered in [10, 12] corre-
spond to interpolatory masks of type (M,�Id , h). A d ×d dilation matrix M is isotropic if it
is similar to a diagonal matrix diag(σ1, . . . , σd) such that |σ1| = · · · = |σd | = |detM|1/d .
In Sect. 3, for an isotropic dilation matrix M , we shall characterize an interpolating
M-refinable function vector of type (�N,h) in terms of its mask and study the underly-
ing sum rule structure of its interpolatory mask of type (M,�N,h). Due to the importance
of the symmetry property in applications, we shall also discuss the symmetry property of
an interpolating M-refinable function vector and its interpolatory mask. For the design of
interpolatory masks of type (M,�N,h) with any preassigned orders of sum rules, these re-
sults will reduce the problem of solving a system of nonlinear equations into a problem of
solving a system of linear equations. In Sect. 4, using the results in Sect. 3, for any dilation
factor M and integers N ∈ N and h ∈ N0, we construct a family of univariate interpolatory
masks of type (M,�N,h) with increasing orders of sum rules. Such a family includes the
family of the famous Deslauriers-Dubuc interpolatory masks in [5] and the family of Her-
mite interpolatory masks in [10] as special cases. The proofs to the main results in Sect. 3
will be given in Sect. 5.
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2 Interpolating M-Refinable Function Vectors of Type (�N,0)

Before introducing interpolating M-refinable function vectors of type (�N,h), in this sec-
tion, we briefly study interpolating M-refinable function vectors of type (�N,0) and present
several examples to illustrate the results.

Before proceeding further, we recall a quantity νp(a,M), which plays an important
role in wavelet analysis. Let ∂j denote the differentiation operator with respect to the
j -th coordinate. For μ = (μ1, . . . ,μd) ∈ N

d
0 , ∂μ is the differentiation operator ∂

μ1
1 · · · ∂μd

d .
By (�0(Z

d))m×n we denote the linear space of all finitely supported sequences of m × n

matrices on Z
d . Similarly, u ∈ (�p(Zd))m×n for 1 ≤ p ≤ ∞ means that u is a sequence of

m × n matrices on Z
d and ‖u‖(�p(Zd ))m×n := (

∑
k∈Zd ‖u(k)‖p)1/p < ∞ for 1 ≤ p < ∞ and

‖u‖(�∞(Zd ))m×n := supk∈Zd ‖u(k)‖, where ‖ · ‖ denotes a matrix norm on m × n matrices.
Throughout this paper, the notation f (ξ) = g(ξ)+O(‖ξ‖κ ) as ξ → 0 just means ∂μf (0) =
∂μg(0) for all |μ| < κ and μ ∈ N

d
0 , where |μ| := |μ1| + · · · + |μd | and N

d
0 := (N ∪ {0})d .

For a matrix mask a with multiplicity L, we say that a satisfies the sum rules of order κ

with a dilation matrix M if there exists a sequence y ∈ (�0(Z
d))1×L such that ŷ(0) �= 0 and

∂μ[ŷ(MT ·)â(·)](0) = ∂μŷ(0) ∀|μ| < κ, μ ∈ N
d
0 ,

∂μ[ŷ(MT ·)â(·)](2πγ ) = 0 ∀|μ| < κ, γ ∈ [(MT )−1
Z

d ] \ Z
d .

(2.1)

Let �MT be a complete set of representatives of the cosets Z
d/[MT

Z
d ] such that 0 ∈

�MT . Then, similar to [16], one can show that (2.1) is equivalent to

ŷ(MT ξ)âω(ξ) = |detM|−1ŷ(ξ) + O(‖ξ‖κ ), ξ → 0, ω ∈ �MT , (2.2)

where âω(ξ) := ∑
k∈Zd a(ω + Mk)e−iξ ·(ω+Mk) is called the coset of â(ξ).

The convolution of two sequences u and v is defined to be

[u ∗ v](j) :=
∑

k∈Zd

u(k)v(j − k), u ∈ (�0(Z
d))r×m, v ∈ (�0(Z

d))m×n.

Clearly, û ∗ v = ûv̂. For y ∈ (�0(Z
d))1×L and a positive integer κ , as in [12], we define the

space Vκ,y by

Vκ,y := {v ∈ (�0(Z
d))L×1 : ∂μ[ŷ(·)v̂(·)](0) = 0 ∀|μ| < κ, μ ∈ N

d
0}. (2.3)

By convention, V0,y := (�0(Z
d))L×1. Note that the above equations in (2.1), (2.2), and (2.3)

depend only on the values ∂μŷ(0), |μ| < κ . For a mask a with multiplicity L, a sequence
y ∈ (�0(Z

d))1×L and a dilation matrix M , we define

ρκ(a,M,y,p) := sup
{

lim sup
n→∞

‖an ∗ v‖1/n

(�p(Zd ))L×1 : v ∈ Vκ,y

}
, κ ∈ N0, (2.4)

where ân(ξ) := â((MT )n−1ξ) · · · â(MT ξ)â(ξ). For 1 ≤ p ≤ ∞, define

ρ(a,M,p) := inf{ρκ(a,M,y,p) : (2.1) holds for some κ ∈ N0

and some y ∈ (�0(Z
d))1×L with ŷ(0) �= 0}. (2.5)

As in [12, p. 61], we define the following quantity:

νp(a,M) := − logρ(M)

[|detM|1−1/pρ(a,M,p)
]
, 1 ≤ p ≤ ∞, (2.6)
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where ρ(M) denotes the spectral radius of the matrix M . In the above definition of
ρ(a,M,p), it seems that the sequences y (more precisely, the vectors ∂μŷ(0), |μ| < κ)
are not uniquely determined. Up to a scalar multiplicative constant, we point out that the
vectors ∂μŷ(0), μ ∈ N

d
0 are quite often uniquely determined ([12] and Theorem 3.2 of this

paper).
The above quantity νp(a,M) plays a very important role in characterizing the con-

vergence of a vector cascade algorithm in a Sobolev space and in characterizing the Lp

smoothness of a refinable function vector. It was showed in [12, Theorem 4.3] that the
vector cascade algorithm associated with mask a and an isotropic dilation matrix M con-
verges in the Sobolev space Wh

p (Rd) := {f ∈ Lp(Rd) : ∂μf ∈ Lp(Rd) ∀|μ| ≤ h} if and
only if νp(a,M) > h. In general, νp(a,M) provides a lower bound for the Lp smooth-
ness exponent of a refinable function vector φ with a mask a and a dilation matrix M , that
is, νp(a,M) ≤ νp(φ) always holds, where νp((f1, . . . , fL)T ) := min1≤�≤L νp(f�) and for
f ∈ Lp(Rd),

νp(f ) := sup{n + ν : ‖∂μf − ∂μf (· − t)‖Lp(Rd ) ≤ Cf |t |ν ∀|μ| = n; t ∈ R
d}. (2.7)

Moreover, if the shifts of the refinable function vector φ associated with a mask a and
an isotropic dilation matrix M are stable in Lp(Rd) (see (5.1)), then νp(φ) = νp(a,M).
That is, νp(a,M) indeed characterizes the Lp smoothness exponent of a refinable func-
tion vector φ with a mask a and an isotropic dilation matrix M . Furthermore, we also have
νp(a,M) ≥ νq(a,M) ≥ νp(a,M)+ (1/q −1/p) logρ(M) |detM| for 1 ≤ p ≤ q ≤ ∞. In par-
ticular, we have ν2(a,M) ≥ ν∞(a,M) ≥ ν2(a,M) − s/2 when M is isotropic. For a finitely
supported matrix mask a, the quantity ν2(a,M) can be numerically computed by finding
the spectral radius of certain finite matrix using an interesting algorithm in [20] (also see
[13] for computing ν2(a,M) using the symmetry of the mask a). Interested readers should
consult [2, 6, 9, 10, 12, 14, 15, 18, 24, 28] and many references therein for more details on
the convergence of vector cascade algorithms and smoothness of refinable function vectors.

For an ordered set �, we denote by #� the cardinality of �. For a (#�) × (#�) matrix A

and α,β ∈ �, we use [A]α,β to denote the (α,β)-entry of A.
The following result generalizes [16, Theorem 2.1] from dimension one to high dimen-

sions for interpolating M-refinable function vectors of type (�N,0) and is a special case of
Theorem 3.1 in Sect 3.

Theorem 2.1 Let M be a d × d dilation matrix and N be a d × d integer matrix such that

N is invertible and NMN−1 is an integer matrix. (2.8)

Let �N be a given ordered complete set of representatives of [N−1
Z

d ]/Z
d with the first ele-

ment of �N being 0. Let φ = (φγ )γ∈�N
be a (#�N)×1 column vector of compactly supported

distributions such that φ̂(MT ξ) = â(ξ)φ̂(ξ), where a : Z
d �→ C

(#�N )×(#�N ) is a finitely sup-
ported matrix mask for φ. Then φ is an interpolating M-refinable function vector of type
(�N,0) (that is, φ is continuous and (1.7) holds) if and only if the following statements
hold:

(i) (1,1, . . . ,1)φ̂(0) = 1 (this is a normalization condition on φ);
(ii) ν∞(a,M) > 0;

(iii) The mask a is an interpolatory mask of type (M,�N,0); that is, the mask a satisfies

(1,1, . . . ,1)â(0) = (1,1, . . . ,1), (2.9)
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[a(Mk + [Mα]�N
)]γ,〈Mα〉�N

= |detM|−1δ(k)δ(α − γ ),

∀α,γ ∈ �N, k ∈ Z
d , (2.10)

where [Mα]�N
∈ Z

d and 〈Mα〉�N
∈ �N are uniquely determined by the relation Mα =

[Mα]�N
+ 〈Mα〉�N

.

The condition in (2.8) is quite natural since it is equivalent to the requirement that
MN−1

Z
d ⊆ N−1

Z
d . As proved in [12, Theorem 4.3], a mask a must satisfy the sum rules

of order κ , where κ is the largest integer such that κ < νp(a,M). In order to have a smooth
refinable function vector, one often needs to design a mask a with a large quantity νp(a,M).
Therefore, it is of practical interest to have matrix masks with high orders of sum rules. In
order to obtain an interpolatory mask a of type (M,�N,0), though the equations induced
by (2.9) and (2.10) are indeed linear equations, the equations induced by the sum rule con-
dition in (2.1) are nonlinear equations, since the values ∂μŷ(0), |μ| < κ are not known in
advance in (2.1). We shall discuss the sum rule structure of an interpolatory mask in Sect. 3
and we shall see in Theorem 3.2 that under a mild condition, (2.9) and (2.10) together with
(2.1) will uniquely determine the values ∂μŷ(0), |μ| < κ . Consequently, to design an inter-
polatory mask with any preassigned order of sum rules, one only needs to solve a system of
linear equations. For more details, see Sect. 3.

The example in Goodman [8] (also cf. [4]) is an interpolating M√
2-refinable function

vector of type (�M√
2
,0), but it is not in C1(R2). In the following, we present a C1 interpo-

lating M√
2-refinable function vector of type (�M√

2
,0).

Example 2.2 Let M = N = M√
2, where M√

2 is defined in (1.5). Let a be an interpolatory
mask of type (M,�N,0) with support [−2,1] × [−2,1] and of D4-symmetry (see (3.9) in
Sect. 3). Solving a system of linear equations, we obtain a parametric expression of the mask
a which satisfies the sum rules of order 2 and is given by:

a(−2,−2) =
[

0 t3
0 0

]
, a(−2,−1) =

[
0 t5
0 0

]
,

a(−2,0) =
[

0 t5
0 0

]
, a(−2,1) =

[
0 t3
0 0

]
,

a(−1,−2) =
[

0 t5
0 t4

]
, a(−1,1) =

[
0 t5
0 t4

]
,

a(1,−2) =
[

0 t3
0 t2

]
, a(1,−1) =

[
0 t5
0 t1

]
,

a(1,0) =
[

0 t5
1
2 t1

]
, a(1,1) =

[
0 t3
0 t2

]
,

a(0,−2) =
[

0 t5
0 t2

]
, a(0,1) =

[
0 t5
0 t2

]
,

a(−1,0) =
[

0 1
4 − t3 − 2t5 − 2t2 − t4 − t1

0 t2

]
,

a(−1,−1) =
[

0 1
4 − t3 − 2t5 − 2t2 − t4 − t1

0 t2

]
,
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Fig. 2 The graphs of φ(0,0) (left) and φ
( 1

2 , 1
2 )

(right) of the D4-symmetric interpolating M√
2-refinable

function vector of type (�M√
2
,0) in Example 2.2 for t1 = 3

32 , t2 = t4 = 0, t3 = − 5
256 , and t5 = − 3

256

a(0,−1) =
[

0 1
4 − t3 − 2t5 − 2t2 − t4 − t1

0 t1

]
,

a(0,0) =
[

1
2

1
4 − t3 − 2t5 − 2t2 − t4 − t1

0 t1

]
,

where t1, t2, t3, t4, t5 ∈ R are free parameters. When t2 = t3 = t4 = t5 = 0, the mask a is
supported inside [−1,1] × [−1,0]. If in addition t1 = 0, then we have ν2(a,M) = 1.5 (and
therefore, ν∞(a,M) ≥ ν2(a,M) − 1 ≥ 0.5) and this is the mask for the interpolating M√

2-
refinable function vector given in Goodman [8] (see Fig. 1).

When t1 = 1
4 + 8t3, t2 = t4 = 0, t5 = − 1

32 − t3, the mask a satisfies the sum rules of
order 4. If in addition t3 = − 5

256 , we have ν2(a,M√
2) ≈ 2.535219. Therefore, ν∞(a,M√

2) ≥
ν2(a,M√

2) − 1 = 1.535219 > 1. By Theorem 2.1, its associated M√
2-refinable function

vector φ = (φ(0,0), φ( 1
2 , 1

2 ))
T is an interpolating M√

2-refinable function vector in (C1(R2))2×1

of type (�M√
2
,0) (see Fig. 2).

By Theorem 2.1, using the same proof of [16, Corollary 2.2], we have the following
result on orthogonal and interpolating M-refinable function vectors of type (�N,0).

Corollary 2.3 Let M,N,�N,φ, a be as in Theorem 2.1. Then φ is an interpolating
M-refinable function vector of type (�N,0) and satisfies the following orthogonality con-
dition:

∫

Rd

φ(x − j)φ(x)
T
dx = 1

#�N

δ(j)I#�N
, ∀j ∈ Z

d , (2.11)

if and only if, (i)–(iii) of Theorem 2.1 hold and a is an orthogonal mask:

∑

k∈Zd

a(k)a(Mj + k)
T = 1

|detM|δ(j)I#�N
, ∀j ∈ Z

d . (2.12)

As shown in [23, 27] for dimension one, one cannot obtain symmetric, orthogonal and
interpolating 2-refinable function vectors of type (�2,0). Some orthogonal and interpolating
M-refinable function vectors of type (�N,0) have been given in [16] but without symmetry.
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Fig. 3 The graphs of φ0 and φ 1
2

of the symmetric, orthogonal, and interpolating 3-refinable function vector

φ of type (�2,0) in Example 2.4. ν2(φ) ≈ 0.976503. φ0(−x) = φ0(x) and φ 1
2
(1 − x) = φ 1

2
(x)

Here, we provide a symmetric, orthogonal and interpolating 3-refinable function vector of
type (�2,0).

Example 2.4 Let M = 3 and N = 2. An orthogonal and interpolatory mask a of type
(3,�2,0) satisfying the sum rules of order 2 is supported inside [−4,4] and is given by

a(0) =
[ 1

3
29

108 +
√

41
108

0 7
60 −

√
41

180

]
, a(1) =

[ 11
108 −

√
41

108 0
37

180 +
√

41
60

1
3

]
,

a(2) =
[− 2

135 −
√

41
270

1
540 −

√
41

540
37

180 +
√

41
60

7
60 −

√
41

180

]
, a(3) =

[
0 17

270 −
√

41
135

0 − 7
60 +

√
41

180

]
,

a(4) =
[− 47

540 + 7
√

41
540 0

23
180 −

√
41

60 0

]
,

while a(−4), a(−3), a(−2), a(−1) can be obtained by the symmetry condition in (3.12).
Then we have ν2(a,2) ≈ 0.976503. Therefore, ν∞(a,2) ≥ ν2(a,2) − 1/2 ≈ 0.476503 > 0.
By Corollary 2.3 and Theorem 3.3, its associated 3-refinable function vector φ = (φ0, φ 1

2
)T

is a symmetric, orthogonal and interpolating 3-refinable function vector of type (�2,0).
Moreover, φ0(−x) = φ0(x) and φ 1

2
(1 − x) = φ 1

2
(x). See Fig. 3 for the graphs of φ0 and φ 1

2
.

3 Interpolating Refinable Function Vectors of Type (�N,h)

In this section, we shall introduce a more general class of interpolating function vectors by
interpolating not only the function values at the lattice N−1

Z
d but also all its derivatives up

to degree h on N−1
Z

d . This includes interpolating function vectors discussed in Sect. 2 as
a special case with h = 0 and the Hermite interpolants in [10, 12, 18, 28] as a special case
with N = Id .

To introduce the notion of interpolating function vectors of type (�N,h), we need a little
bit more complicated notations. For x = (x1, . . . , xd) ∈ R

d and μ = (μ1, . . . ,μd) ∈ N
d
0 , we

denote μ! := μ1! · · ·μd !, |x| := |x1| + · · · + |xd | and xμ := x
μ1
1 · · ·xμd

d . For a given order of
derivative h ∈ N0, we denote Oh := {μ : |μ| = h,μ ∈ N

d
0} and �h := {μ : |μ| ≤ h,μ ∈ N

d
0}.

It is easy to see that #�h = (
h+d

d

)
. Throughout this paper, the elements in Oh and �h will
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be always ordered in such a way that ν = (ν1, . . . , νd) is less than μ = (μ1, . . . ,μd) if either
|ν| < |μ| or if |ν| = |μ|, νj = μj for j = 1, . . . , � − 1 and ν� < μ� for some 1 ≤ � ≤ d .

For simplicity, we denote D�h := (∂μ)μ∈�h
which is a 1 × (#�h) row vector of differ-

entiation. For a d × d matrix N , S(N,Oh) is defined to be the following (#Oh) × (#Oh)

matrix [10, 13], uniquely determined by

(Nx)μ

μ! =
∑

ν∈Oh

S(N,Oh)μ,ν

xν

ν! , μ ∈ Oh. (3.1)

Clearly, S(N,�h) := diag(S(N,O0), S(N,O1), . . . , S(N,Oh)), which is a (#�h) × (#�h)

matrix. It is obvious that S(A,Oh)S(B,Oh) = S(AB,Oh).
For matrices A = (ai,j )1≤i≤I,1≤j≤J and B = (b�,k)1≤�≤L,1≤k≤K , the (right) Kronecker

product A⊗B is defined to be A⊗B := (ai,jB)1≤i≤I,1≤j≤J ; its ((i −1)L+�, (j −1)K +k)-
entry is ai,j b�,k and can be conveniently denoted by [A ⊗ B]i,j ;�,k . Throughout this paper,
for an I × J block matrix A with each block of size L × K , we will use [A]i,j to denote
the (i, j)-block of A and [A]i,j ;�,k to denote the (�, k)-entry of the block [A]i,j . It is well
known that (A + B) ⊗ C = (A ⊗ C) + (B ⊗ C), C ⊗ (A + B) = (C ⊗ A) + (C ⊗ B),
(A ⊗ B)(C ⊗ E) = (AC) ⊗ (BE) and (A ⊗ B)T = AT ⊗ BT .

Now we are ready to introduce an interpolating function vector of type (�N,h). Let N

and �N be defined as before. Let φ = (φγ )γ∈�N
be a (#�N)(#�h) × 1 column vector of

compactly supported distributions with each φγ = (φγ,μ)μ∈�h
being a (#�h) × 1 column

vector. For h ∈ N0, we say that φ is an interpolating function vector of type (�N,h) if
φ ∈ (Ch(Rd))(#�N )(#�h)×1 and satisfies the following interpolation property:

[D�h ⊗ φγ ](β + k) = δ(k)δ(β − γ )I#�h
, ∀β,γ ∈ �N, k ∈ Z

d . (3.2)

The above notation seems a little bit complicated, but it essentially says that the com-
ponents of the function vector φ interpolate all the derivatives up to degree h on the lat-
tice N−1

Z
d . Let φ be an interpolating function vector of type (�N,h). For a function

f ∈ Ch(Rd), defining

f̃ (x) :=
∑

γ∈�N

∑

μ∈�h

∑

k∈Zd

[∂μf ](k + γ )φγ,μ(x − k), x ∈ R
d , (3.3)

then ∂μf̃ (x) = ∂μf (x) for all μ ∈ �h and x ∈ N−1
Z

d ; that is, f̃ agrees with f on the
lattice N−1

Z
d with all derivatives up to degree h. When h = 0, the above definition reduces

to interpolating function vectors of type (�N,0). When N = Id and �N = {0}, it is called
the Hermite interpolants of order h in [10, 12, 18, 28].

As a generalization of [12, Corollary 5.2] on refinable Hermite interpolants (also cf.
[6, 21, 28]) and [16, Theorem 2.1] on generalized interpolating refinable function vectors,
the following result characterizes a compactly supported interpolating M-refinable function
vector of type (�N,h) in terms of its mask.

Theorem 3.1 Let h ∈ N0 and M be a d ×d dilation matrix. When h > 0, we further assume
that M is isotropic. Let N be a d × d integer matrix such that (2.8) holds. Let �N be a given
ordered complete set of representatives of [N−1

Z
d ]/Z

d with the first element of �N being 0.
Let φ = (φγ )γ∈�N

be a (#�N)(#�h)× 1 column vector of compactly supported distributions
such that φ̂(MT ξ) = â(ξ)φ̂(ξ), where a : Z

d �→ C
(#�N )(#�h)×(#�N )(#�h) is a (#�N) × (#�N)

block matrix mask for φ. Then φ is an interpolating M-refinable function vector of type
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(�N,h) (that is, φ is a vector of functions in Ch(Rd) and (3.2) holds) if and only if the
following statements hold:

(1) [(1,1, . . . ,1) ⊗ (1,0, . . . ,0)]φ̂(0) = 1 (this is a normalization condition on φ);
(2) ν∞(a,M) > h;
(3) The mask a is an interpolatory mask of type (M,�N,h); that is,

(i) The mask a satisfies the following condition:

[a(Mk + [Mα]�N
)]γ,〈Mα〉�N

= |detM|−1S(M−1,�h)δ(k)δ(α − γ ),

∀α,γ ∈ �N, k ∈ Z
d , (3.4)

where [Mα]�N
∈ Z

d and 〈Mα〉�N
∈ �N are uniquely determined by the relation

Mα = [Mα]�N
+ 〈Mα〉�N

.
(ii) The mask a satisfies the sum rules of order h+1 with a 1× (#�N)(#�h) row vector

y = (yγ )γ∈�N
in (�0(Z

d))1×(#�N )(#�h) such that

ŷγ (ξ) = eiγ ·ξ ((iξ)ν)ν∈�h
+ O(‖ξ‖h+1), ξ → 0, γ ∈ �N, (3.5)

or equivalently,

ŷ(ξ) = (eiγ ·ξ )γ∈�N
⊗ ((iξ)ν)ν∈�h

+ O(‖ξ‖h+1), ξ → 0. (3.6)

To improve the readability of the paper, we shall present the proof of Theorem 3.1 in
Sect 5. We mention that the sufficiency part of Theorem 3.1 still holds without assuming
that M is isotropic. In general, the conditions in (3.4) and (2.1) with κ = h + 1 cannot
guarantee that up to a scalar multiplicative constant, the vector ŷ in (2.1) must satisfy (3.6).
However, if in addition ν∞(a,M) > h, then up to a scalar multiplicative constant, the vector
ŷ in (2.1) must be unique and satisfy (3.6).

As we discussed before, to design an interpolatory mask of type (M,�N,h) with a pre-
assigned order of sum rules, it is of importance to investigate its sum rule structure; in par-
ticular, it is of interest to know the values ∂μŷ(0), |μ| < κ in advance so that the nonlinear
equations in (2.1) will become linear equations. We have the following result, whose proof
will also be given in Sect. 5.

Theorem 3.2 Let M be a d × d dilation matrix and N,�N,h as in Theorem 3.1. Sup-
pose that a is an interpolatory mask of type (M,�N,h) satisfying the sum rules of or-
der κ with κ > h in (2.1) with a sequence y ∈ (�0(Z

d))1×(#�N )(#�h) satisfying (3.6). Let
σ = (σ1, . . . , σd)

T , where σ1, . . . , σd are all the eigenvalues of M . If

σμ /∈ {σ ν : ν ∈ �h}, ∀h < |μ| < κ (3.7)

((3.7) clearly holds when M is an isotropic dilation matrix), then we must have

ŷ(ξ) = (
eiγ ·ξ )

γ∈�N
⊗ (

(iξ)ν
)
ν∈�h

+ O(‖ξ‖κ ), ξ → 0. (3.8)

The above result reveals the structure of the vector ŷ in the definition of sum rules in (2.1)
for interpolatory masks of type (M,�N,h). This result is very important for the construction
of interpolatory masks since it allows us to reduce the system of nonlinear equations in (2.1),
in terms of free parameters in the mask a and the unknown values ∂μŷ(0), |μ| < κ , into a
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system of linear equations by knowing the values ∂μŷ(0), |μ| < κ in advance. For a related
result on Hermite interpolatory masks, see [12, Proposition 5.2].

In high dimensions, symmetry becomes important for at least two reasons. First of all,
wavelets and refinable function vectors with symmetry generally provide better results in
applications. Secondly, when designing a matrix mask, symmetry significantly reduces the
number of free parameters in the system of linear equations. In the following, we will discuss
symmetry in high dimensions and characterize an interpolating refinable function vectors
with symmetry in terms of its mask. With the symmetry condition on the masks and the
vector y determined in Theorem 3.2, obtaining interpolatory masks of type (M,�N,h) with
high orders of sum rules becomes far more easy (see examples in Sects. 2 and 4).

Let G be a finite set of d × d integer matrices. We say that G is a symmetry group with
respect to a dilation matrix M [13] if G forms a group under matrix multiplication and

|detE| = 1 and MEM−1 ∈ G ∀E ∈ G.

For dimension d = 1, there is only one nontrivial symmetry group G = {−1,1} with
respect to any dilation factor M > 1. In dimension two, two commonly used symmetry
groups are D4 and D6 for the quadrilateral and triangular meshes, respectively:

D4 :=
{
±

[
1 0
0 1

]
,±

[
1 0
0 −1

]
,±

[
0 1
1 0

]
,±

[
0 1

−1 0

]}
,

D6 :=
{
±

[
1 0
0 1

]
,±

[
0 −1
1 −1

]
,±

[−1 1
−1 0

]
,±

[
0 1
1 0

]
,±

[
1 −1
0 −1

]
,±

[−1 0
−1 1

]}
.

(3.9)

Let G be a symmetry group with respect to a dilation matrix M . Let φ = (φγ )γ∈�N
be an

interpolating M-refinable function vector of type (�N,h). We say that φ is G-symmetric if

φβ(E(· − β) + β) = S(E,�h)φβ ∀E ∈ G, β ∈ �N. (3.10)

For a G-symmetric interpolating M-refinable function vector of type (�N,h), we have
the following result, whose proof will be given in Sect. 5 as well.

Theorem 3.3 Let M,N,�N,h and �h be as in Theorem 3.1. Let φ = (φγ )γ∈�N
be an

interpolating M-refinable function vector of type (�N,h) with a matrix mask a. Let G be a
symmetry group with respect to M . If

E�N ⊂ �N + Z
d ∀E ∈ G (3.11)

and φ is G-symmetric, then the mask a is (G,M)-symmetric:

[a(j)]β,α = S(E−1,�h)[a(MEM−1j + [JE,α,β ]�N
)]β,〈JE,α,β 〉�N

S(MEM−1,�h),

∀j ∈ Z
d , α,β ∈ �N ;E ∈ G, (3.12)

where

JE,α,β := MEM−1α + M(Id − E)β. (3.13)

Conversely, if (3.12) holds and

(Id − E)�N ⊂ Z
d ∀E ∈ G, (3.14)

then φ is G-symmetric.
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Note that (3.14) implies (3.11). So, if (3.14) is satisfied, then an interpolating M-refinable
function vector φ of type (�N,h) with a mask a and a dilation matrix M is G-symmetric if
and only if the mask a is (G,M)-symmetric. In dimension one, it is evident that (3.14) is
satisfied if N = 2 and G = {−1,1} (see Example 2.4 and Corollary 4.3).

To illustrate the results of this section, we present an example. Note that D4 is a symmetry
group with respect to M√

2 and (3.14) is satisfied for G = D4 and N = M√
2.

Example 3.4 Let M = N = M√
2 and h = 1. Then �h = {(0,0), (0,1), (1,0)}, �N =

{(0,0)T , ( 1
2 , 1

2 )T }. Let a (with multiplicity 6) be an interpolatory mask of type (M√
2,�N,h).

Suppose that a is (M√
2,D4)-symmetric and supported inside [−1,1] × [−1,0]. We obtain

an (M√
2,D4)-symmetric interpolatory mask a of type (M√

2,�N,h) which satisfies the sum
rules of order 4 and is given by:

a(−1,−1) = 1

16

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 64t 6 6
0 0 0 0 0 0
0 0 0 −16t −1 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
,

a(−1,0) = 1

16

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 64t −6 6
0 0 0 −16t 1 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
,

a(0,−1) = 1

16

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 64t 6 −6
0 0 0 16t 1 −1
0 0 0 0 0 0
0 0 0 4 − 64t 6 6
0 0 0 0 0 0
0 0 0 16t − 1 −1 −1

⎤

⎥⎥⎥⎥⎥⎦
,

a(0,0) = 1

16

⎡

⎢⎢⎢⎢⎢⎣

8 0 0 64t −6 −6
0 −4 4 0 0 0
0 4 4 16t −1 −1
0 0 0 4 − 64t −6 6
0 0 0 16t − 1 1 −1
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
,

a(1,−1) = 1

16

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 4 − 64t 6 −6
0 0 0 1 − 16t 1 −1
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
,

a(1,0) = 1

16

⎡

⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
8 0 0 4 − 64t −6 −6
0 −4 4 0 0 0
0 4 4 1 − 16t −1 −1

⎤

⎥⎥⎥⎥⎥⎦
,
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Fig. 4 The graphs of φ(0,0),μ (left) and φ
( 1

2 , 1
2 ),μ

(right), μ ∈ �h in the D4-symmetric interpolating

M√
2-refinable function vector of type (�M√

2
,1) in Example 3.4 with t = 3

128

where t ∈ R is a free parameter. For t = 3
128 , we have ν2(a,M√

2) = 2.5. Therefore,
ν∞(a,M√

2) ≥ ν2(a,M√
2) − 1 = 1.5 > 1. By Theorem 3.1, its associated M√

2-refinable
function vector φ is an interpolating function vector of type (�M√

2
,1). See Fig. 4 for the

graph of φ with t = 3
128 .

4 Construction of Univariate Interpolatory Masks of Type (M,�N,h)

Based on the results in Sect. 3, in this section we shall present a family of interpolatory
masks of type (M,�N,h) (more precisely, of type (M, {0, 1

N
, . . . , N−1

N
}, h) with increasing

orders of sum rules in dimension one. Here M > 1 is the dilation factor and h ∈ N0 is the
degree of derivative and N ≥ 1 is an integer.

Before we present the construction of interpolatory masks of type (M,�N,h) in this sec-
tion, let us lay out the whole picture of our construction and the idea of the proof first. Our
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construction in this section largely follows the key idea of the CBC (coset by coset) algo-
rithm in [9, 10]. Roughly speaking, a mask a : Z �→ C

L×L can be regarded as a disjoint union
of its cosets: {a(k)}k∈Z = ⋃M−1

m=0 {a(m+Mk)}k∈Z. So, in order to obtain a mask a with multi-
plicity L with some desirable properties, it suffices to design its M cosets {a(m + Mk)}k∈Z,
or equivalently, âm(ξ) := ∑

k∈Z
a(m+Mk)e−iξ(m+Mk), for m = 0, . . . ,M −1 separately and

appropriately. That is, a desired mask can be constructed coset by coset.
Recall that [A]i,j is the (i, j)-block of a block matrix A and [A]i,j ;�,k is the (�, k)-entry

of the block [A]i,j . Let a be an interpolatory mask of type (M,�N,h) in dimension one.
a can be viewed as an N × N block matrix with each block of size (h + 1) × (h + 1). For
� = 0,1, . . . ,N − 1, let E�+1 := [0, . . . ,0, Ih+1,0, . . . ,0]T be an N × 1 block matrix with
each block of size (h+1)×(h+1) and its nonzero block is located at the (�+1)-th position.
Then (3.4) and (3.6) in dimension one become

(1) a satisfies the following condition:

[a(Mk + R�)]:,Q�+1 = M−1δkE�+1D, (4.1)

where D := diag(1,M−1, . . . ,M−h), R� := �M�
N

� and Q� := N(M�
N

− R�) = M�modN

for � = 0, . . . ,N − 1;
(2) a satisfies the sum rules of order h + 1 with a vector y such that

ŷ(ξ) = (1, ei 1
N

ξ , . . . , ei N−1
N

ξ ) ⊗ (1, iξ, . . . , (iξ)h) + O(|ξ |h+1), ξ → 0. (4.2)

In other words, the (j,Q� + 1)-block of the mask a for all j = 1, . . . ,N on the coset R� +
MZ, that is, {[a(R� + Mk)]:,Q�+1}k∈Z, � = 0, . . . ,N − 1, are completely determined by the
condition (4.1) for an interpolatory mask of type (M,�N,h). Denote

�M,N := {(m,n) : m = 0, . . . ,M − 1, n = 1, . . . ,N}\{(R�,Q� + 1) : � = 0, . . . ,N − 1}.
(4.3)

Then, in order to construct an interpolatory mask a of type (M,�N,h) with sum rules of
order κ , it suffices to construct {[a(m + Mk)]:,n}k∈Z for every (m,n) ∈ �M,N such that the
sum rule conditions in (2.2) are satisfied.

We have the following result on interpolatory masks of type (M,�N,h) with increasing
orders of sum rules, which generalizes [10, Theorem 4.3] and [16, Theorem 3.1].

Theorem 4.1 Let M,N,K be positive integers with M > 1. Let h be a nonnegative integer
and L = N(h + 1). Suppose that for every (m,n) ∈ �M,N , Sm,n is a subset of Z such that
#Sm,n = K . Then there exists a unique finitely supported mask a : Z → C

L×L satisfying the
following conditions:

(1) a is an interpolatory mask of type (M,�N,h);
(2) For every (m,n) ∈ �M,N, [a(m + Mk)]:,n = 0 for all k ∈ Z\Sm,n;
(3) a satisfies the sum rules of order LK.

In fact, the unique mask a must be real-valued, that is, a : Z → R
L×L.

Proof Note that (4.1) is equivalent to

[âR� (ξ)]:,Q�+1 = M−1e−iR�ξE�+1D, � = 0, . . . ,N − 1.
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Let ŷ(ξ) = (1, ei 1
N

ξ , . . . , ei N−1
N

ξ ) ⊗ (1, iξ, . . . , (iξ)h). It is easy to see that

ŷ(Mξ)[âR� (ξ)]:,Q�+1 = M−1ŷ(Mξ)e−iR�ξE�+1D

= M−1ei( M�
N

−R�)ξ (1, iMξ, . . . , (iMξ)h)D

= M−1ei
Q�
N

ξ (1, iξ, . . . , (iξ)h)

= M−1ŷQ�+1(ξ), ξ → 0, � = 0, . . . ,N − 1,

where ŷn(ξ) = ei n−1
N

ξ (1, iξ, . . . , (iξ)h), n = 1,2, . . . ,N and âm(ξ) := ∑
k∈Z

a(m+
Mk)e−i(m+Mk)ξ , m = 0, . . . ,M − 1 are the cosets of a. To require that a should satisfy
the sum rules of order LK, by Theorem 3.2 and (2.2), it is necessary and sufficient to require

ŷ(Mξ)[âm(ξ)]:,n = M−1ŷn(ξ) + O(|ξ |LK), ξ → 0, ∀(m,n) ∈ �M,N .

That is, as ξ → 0,

N−1∑

�=0

∑

k∈Sm,n

ŷ�+1(Mξ)[a(m + Mk)]�+1,ne
−i(m+Mk)ξ

= 1

M
ei n−1

N
ξ (1, iξ, . . . , (iξ)h) + O(|ξ |LK). (4.4)

Now we need to show that for every (m,n) ∈ �M,N the above system of linear equations on
{[a(m + Mk)]�+1,n : � = 0, . . . ,N − 1, k ∈ Sm,n} has a unique solution. The case for h = 0
has been proved in [16]. Here we will prove the general case for any h ∈ N0.

For x ∈ R and j, s ∈ N0, denote

vj,s(x) =
{

0, j < s;
j !

(j−s)!x
j−s , j ≥ s.

Note that (4.4) is equivalent to: for t = 0,1, . . . , h,

N−1∑

�=0

∑

k∈Sm,n

h∑

s=0

[a(m + Mk)]�+1,n; s+1,t+1e
i(M�/N−m−Mk)ξ (iMξ)s

= M−1ei n−1
N

ξ (iξ)t + O(|ξ |LK), ξ → 0. (4.5)

For each t = 0,1, . . . , h, taking j -th derivative on both side of (4.5) and evaluating them at
ξ = 0, we obtain

N−1∑

�=0

∑

k∈Sm,n

h∑

s=0

[a(m + Mk)]�+1,n; s+1,t+1M
svj,s(M�/N − m − Mk)

= M−1vj,t

(n − 1

N

)
, j = 0,1, . . . ,LK − 1. (4.6)

Since #Sm,n = K for all (m,n) ∈ �M,N , we see that for each (m,n) ∈ �M,N , the set {M�/N −
m − Mk : k ∈ Sm,n, � = 0,1, . . . ,N − 1} consists of NK distinct points in R. The coefficient
matrix of the above linear system (4.6) is

C = (Ms vj,s(M�/N − m − Mk))j=0,1,...,LN−1; s=0,1,...,h, k∈Sm,n, �=0,1,...,N−1,
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which is an LK × LK matrix. Notice that

V := (vj,s(M�/N − m − Mk))j=0,1,...,LK−1; s=0,1,...,h, k∈Sm,n, �=0,1,...,N−1

is a confluent Vandermonde matrix [7] of size LK × LK, which is invertible, and

C = V · diag(1,1, . . . ,1︸ ︷︷ ︸
NK times

,M,M, . . . ,M︸ ︷︷ ︸
NK times

, . . . ,Mh,Mh, . . . ,Mh

︸ ︷︷ ︸
NK times

).

Hence C is an invertible matrix of size LK × LK. Moreover, the number of unknowns
{[a(m + Mk)]�+1,n; s+1,t+1 : s = 0,1, . . . , h, k ∈ Sm,n, � = 0,1, . . . ,N − 1} in (4.6) is also
LK. Consequently, the solution to the system of linear equations in (4.6) is unique. Further-
more, it is evident that the solution is real-valued. �

The following result is a direct consequence of Theorem 4.1.

Corollary 4.2 Let M,N,K be positive integers such that M > 1. Let h be a nonnegative
integer and L = N(h+ 1). Let S be any subset of Z such that #(S ∩ (m+MZ)) = K for all
m ∈ Z and {R�}N−1

�=0 ⊂ S, where R� := �M�
N

�. Then there exists a unique finitely supported
mask a : Z → R

L×L satisfying the following conditions:

(1) a is an interpolatory mask of type (M,�N,h);
(2) a is supported inside S;
(3) a satisfies the sum rules of order LK.

In particular, if S = [−N0,MK − N0 − 1] ∩ Z for N0 ∈ Z, then #(S ∩ (m + MZ)) = K for
all m ∈ Z.

For the case M = Nr ′ for some r ′ ∈ N, we have Q� = 0, R� = r ′� for all � = 0, . . . ,

N − 1. Equation (4.1) is equivalent to

[âr ′�(ξ)]:,1 = M−1e−ir ′�·ξE�+1D, � = 0, . . . ,N − 1. (4.7)

In particular, if M = N , i.e., r ′ = 1, then an interpolatory mask of type (M,�M,h) is of
the form

â(ξ) = 1

M

⎡

⎢⎢⎣

D ∗ · · · ∗
De−iξ ∗ · · · ∗

...
...

. . .
...

De−i(M−1)ξ ∗ · · · ∗

⎤

⎥⎥⎦ , (4.8)

where D = diag(1,M−1, . . . ,M−h).
For the case M = N = 2, we have the following result on interpolatory masks of type

(2, {0, 1
2 }, h) with symmetry.

Corollary 4.3 For any positive integer K and any nonnegative integer h, there exists a
unique interpolatory mask a of type (2, {0, 1

2 }, h) such that

(1) a is supported inside [1 − K,K];
(2) a is real-valued and satisfies the sum rules of order (h + 1)(2K − 1);
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Table 1 These two rows list the quantities ν2(a
(3,{0, 1

2 },1)
,3) and ν2(a

(3,{0, 1
2 },2)

,3), respectively, for the

interpolatory masks a(M,�N ,h) constructed in Corollary 4.2 with M = 3,N = 2 and h = 1 for the first row,
h = 2 for the second row. Here S := [−N0,3K − N0 − 1] with N0 := �3(K − 1)/2�

K 1 2 3 4 5 6

a
(3,{0, 1

2 },1)
0.5 2.557920 2.952713 3.223482 3.425445 3.583893

a
(3,{0, 1

2 },2)
0.5 3.286249 3.767089 4.065856 4.234592 4.311367

Table 2 These three rows list the quantities ν2(a
sym

(2,{0, 1
2 },h)

,2) for the symmetric interpolatory masks

a
sym

(2,{0, 1
2 },h)

constructed in Corollary 4.3 for h = 1,2,3, respectively

K 1 2 3 4 5 6

a
sym

(2,{0, 1
2 },1)

0.5 2.494509 3.051766 3.646481 3.791163 4.000000

a
sym

(2,{0, 1
2 },2)

0.5 2.958569 3.931713 4.471009 4.421853 4.999996

a
sym

(2,{0, 1
2 },3)

0.5 3.351721 4.343120 4.650265 4.890424 5.498152

(3) The mask a is ({−1,1},2)-symmetric:

â(ξ) = diag(P,P e2iξ )â(ξ)diag(P,P e−iξ ), (4.9)

where P := diag((−1)0, (−1)1, . . . , (−1)h) is a diagonal matrix of size (h+1)×(h+1).

Moreover, if ν∞(a,2) > h, then φ = (φ0,0, . . . , φ0,h, φ 1
2 ,0, . . . , φ 1

2 ,h)
T is {1,−1}-symmetric,

where φ is the 2-refinable function vector associated with mask a. More precisely,
φ0,j (−·) = (−1)jφ0,j and φ 1

2 ,j (1 − ·) = (−1)jφ 1
2 ,j for j = 0,1, . . . , h.

Proof Since M = N = 2, we see that {[a(k)]:,1}k∈Z are completely determined by (4.8).
By the symmetry condition (4.9), {[a(2k + 1)]:,2}k∈Z are completely determined by
{[a(2k)]:,2}k∈Z. Moreover, [a(k)]1,2 = 0 if k is even, or [a(1 − k)]2,2 = 0 if k is odd due
to the symmetry condition (4.9). Now the proof is completed by a similar proof of Theo-
rem 4.1. �

In the rest of this section, let us present in Tables 1 and 2 the smoothness exponents of
some families of the interpolatory masks constructed in Corollaries 4.2 and 4.3. An example
of an interpolatory mask of type (2, {0, 1

2 },1) will also be given.

Example 4.4 Let M = N = 2, h = 1 and K = 2 in Corollary 4.3. Then we have a symmetric
interpolatory mask a of type (2, {0, 1

2 },1) satisfying the sum rules of order 6. The mask a is
supported inside [−1,2] and a(0), a(2) are given by

a(0) =

⎡

⎢⎢⎣

1
2 0 9

32
−3
4

0 1
4

9
128

−3
64

0 0 45
256

93
128

0 0 −9
512

−15
256

⎤

⎥⎥⎦ , a(2) =
⎡

⎢⎣

0 0 0 0
0 0 0 0
0 0 11

256
3

128

0 0 3
512

1
256

⎤

⎥⎦ ,

while a(−1), a(1) can be obtained by symmetry in (4.9). Then we have ν2(a,2) ≈
2.494509. Therefore, ν∞(a,2) ≥ ν2(a,2) − 1/2 ≈ 1.994509 > 1. By Theorem 3.1, its as-
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Fig. 5 The graphs of φ0,j , j = 0,1 (top) and φ 1
2 ,j

, j = 0,1 (bottom) of the symmetric interpo-

lating 2-refinable function vector φ in Example 4.4. ν2(φ) ≈ 2.494509. φ0,j (−·) = (−1)j φ0,j and

φ 1
2 ,j

(1 − ·) = (−1)j φ 1
2 ,j

for all j = 0,1

sociated 2-refinable function vector φ = (φ0,0, φ0,1, φ 1
2 ,0, φ 1

2 ,1)
T is a symmetric C1 interpo-

lating function vector of type (�2,1). Moreover, φ0,j (−·) = (−1)jφ0,j and φ 1
2 ,j (1 − ·) =

(−1)jφ 1
2 ,j for all j = 0,1. See Fig. 5 for the graph of φ.

5 Proofs of Theorems 3.1, 3.2, and 3.3

In this section, we prove Theorems 3.1, 3.2, and 3.3 in Sect. 3. Since stability and linear
independence of a refinable function vector will be needed in our proofs, let us recall their
definitions here. For an L × 1 vector φ = (φ1, . . . , φL)T of compactly supported functions
in Lp(Rd) for 1 ≤ p ≤ ∞, we say that the shifts of φ are stable in Lp(Rd) if there exist two
positive constants C1 and C2 such that

C1

L∑

�=1

∑

k∈Zd

|c�(k)|p ≤
∥∥∥∥∥∥

L∑

�=1

∑

k∈Zd

c�(k)φ�(· − k)

∥∥∥∥∥∥

p

Lp(Rd )

≤ C2

L∑

�=1

∑

k∈Zd

|c�(k)|p (5.1)

for all finitely supported sequences c1, . . . , cL in �0(Z
d). For a compactly supported function

vector φ = (φ1, . . . , φL)T , we say that the shifts of φ are linearly independent if for any
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sequences c1, . . . , cL : Z
d �→ C such that

L∑

�=1

∑

k∈Zd

c�(k)φ�(x − k) = 0, a.e. x ∈ R
d , (5.2)

then one must have c�(k) = 0 for all � = 1, . . . ,L and k ∈ Z
d . Note that since φ is compactly

supported, for any fixed x ∈ R
d , the summation in

∑L

�=1

∑
k∈Zd c�(k)φ�(x − k) is in fact

finite. For a compactly supported function vector φ = (φ1, . . . , φL)T in Lp(Rd), it is known
in [19] that the shifts of φ are stable in Lp(Rd) (or linearly independent) if and only if
span{φ̂(ξ + 2πk) : k ∈ Z

d} = C
L×1 for all ξ ∈ R

d (or for all ξ ∈ C
d ). Therefore, if the shifts

of a compactly supported function vector φ in Lp(Rd) are linearly independent, then the
shifts of φ must be stable in Lp(Rd).

The following lemma is needed in our proof of Theorem 3.1.

Lemma 5.1 Let N be a d × d matrix. Then

μ!S(N,�h)μ,ν = ν!S(NT ,�h)ν,μ ∀μ, ν ∈ �h,h ∈ N0. (5.3)

Consequently, for a row vector ((iξ)ν)ν∈�h
, we have

((iξ)ν)ν∈�h
S(N,�h) = ((iNT ξ)ν)ν∈�h

. (5.4)

Proof Let x, y ∈ R
d . Note that (x · y)h = ∑

μ∈Oh

h!
μ!x

μyμ. Expanding ex·(Ny) at the origin,
we deduce that

ex·(Ny) =
∞∑

h=0

(x · (Ny))h

h! =
∞∑

h=0

∑

μ∈Oh

xμ (Ny)μ

μ!

=
∞∑

h=0

∑

μ∈Oh

∑

ν∈Oh

1

ν!S(N,Oh)μ,νx
μyν.

Similarly, we have

ey·(NT x) =
∞∑

h=0

∑

ν∈Oh

∑

μ∈Oh

1

μ!S(NT ,Oh)ν,μxμyν.

Since ex·(Ny) = ey·(NT x), comparing the coefficients of xμyν in both expressions, we con-
clude that 1

ν!S(N,Oh)μ,ν = 1
μ!S(NT ,Oh)ν,μ for all μ,ν ∈ Oh. That is, (5.3) holds.

To prove (5.4), we have

((iξ)ν)ν∈�h
S(N,�h) =

(∑

ν∈�h

(iξ)νS(N,�h)ν,μ

)

μ∈�h

.

By (5.3), we deduce that
∑

ν∈�h

(iξ)νS(N,�h)ν,μ =
∑

ν∈�h

ν!S(N,�h)ν,μ

(iξ)ν

ν! = μ!
∑

ν∈�h

S(NT ,�h)μ,ν

(iξ)ν

ν!

= μ! (iN
T ξ)μ

μ! = (iNT ξ)μ.

So, (5.4) is verified. �
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Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 Necessity. By φ(M−1·) = |detM|∑k∈Zd a(k)φ(·−k) and [12, Propo-
sition 2.1], we have

[D�h ⊗ φ](M−1·)S(M−1,�h) = D�h ⊗ [φ(M−1·)] = |detM|
∑

j∈Zd

a(j)[D�h ⊗ φ](· − j).

Hence,

[D�h ⊗ φγ ](·)S(M−1,�h) = |detM|
∑

j∈Zd

∑

β∈�N

[a(j)]γ,β[D�h ⊗ φβ ](M · −j).

That is, for α ∈ �N and k ∈ Z
d , we have

[D�h ⊗ φγ ](α + k)S(M−1,�h) = |detM|
∑

j∈Zd

∑

β∈�N

[a(j)]γ,β[D�h ⊗ φβ ](Mα + Mk − j).

Since NMN−1 is an integer matrix, we have MN−1
Z

d ⊆ N−1
Z

d , that is, M[�N + Z
d ] ⊆

�N + Z
d . Thus, for each α ∈ �N , we can uniquely write Mα = [Mα]�N

+ 〈Mα〉�N
with

[Mα]�N
∈ Z

d and 〈Mα〉�N
∈ �N . Since φ is an interpolating function vector of type (�N,h),

applying (3.2) to the above equation, we obtain

δ(k)δ(α − γ )S(M−1,�h)

= |detM|
∑

j∈Zd

∑

β∈�N

[a(j)]γ,β[D�h ⊗ φβ ](〈Mα〉�N
+ [Mα]�N

+ Mk − j)

= |detM|
∑

β∈�N

[a(Mk + [Mα]�N
)]γ,βδ(β − 〈Mα〉�N

)

= |detM|[a(Mk + [Mα]�N
)]γ,〈Mα〉�N

.

That is, [a(Mk +[Mα]�N
)]γ,〈Mα〉�N

= |detM|−1S(M−1,�h)δ(k)δ(α − γ ) for all α,γ ∈ �N

and k ∈ Z
d . So, (3.4) holds.

By the interpolation property of φ in (3.2), it is easy to see that the shifts of φ are linearly
independent. In fact, suppose

0 =
∑

γ∈�N

∑

μ∈�h

∑

k∈Zd

cγ,μ(k)φγ,μ(x − k), a.e. x ∈ R
d .

Taking the differentiation operator ∂ν on both sides and setting x = β + j , we obtain
cβ,ν(j) = 0 for all β ∈ �N,ν ∈ �h and j ∈ Z

d . So the shifts of φ are linearly independent
and therefore stable. Consequently, by [12, Corollary 5.1] and φ ∈ (Ch(Rd))(#�N )(#�h)×1, we
must have ν∞(a,M) > h. That is, Item (2) holds.

Since ν∞(a,M) > h, by [12, Theorem 4.3], the mask a must satisfy the sum rules of
order h + 1 with a vector y ∈ (�0(Z

d))1×(#�N )(#�h) and ŷ(0)φ̂(0) = 1. But this implies [12]
that ∂μ[ŷ(·)φ̂(·)](0) = δ(μ) and ∂μ[ŷ(·)φ̂(·)](2πk) = 0 for all |μ| ≤ h and k ∈ Z

d\{0}. By
the remark after [12, Proposition 3.2], this is equivalent to (p ∗ y) ∗ φ = p for all p ∈ �h,
where �h denotes the linear space of all polynomials with total degree no greater than h.
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More precisely, by [12, (2.13)], we have

∑

j∈Zd

∑

μ∈�h

∂μp(j)
(−i∂)μ

μ! ŷ(0)φ(· − j) = p, p ∈ �h.

That is,

∑

j∈Zd

∑

μ∈�h

∑

γ∈�N

∂μp(j)
(−i∂)μ

μ! ŷγ (0)φγ (· − j) = p, p ∈ �h.

Hence, we have

∑

j∈Zd

∑

μ∈�h

∑

γ∈�N

∂μp(j)
(−i∂)μ

μ! ŷγ (0)[D�h ⊗ φγ ](· − j) = D�h ⊗ p, p ∈ �h.

So, for x = β + k, β ∈ �N and k ∈ Z
d , for any p ∈ �h, we have

∑

j∈Zd

∑

μ∈�h

∑

γ∈�N

∂μp(j)
(−i∂)μ

μ! ŷγ (0)[D�h ⊗ φγ ](β + k − j) = [D�h ⊗ p](β + k).

By (3.2) and the above identity, we obtain

∑

μ∈�h

∂μp(k)
(−i∂)μ

μ! ŷβ(0) = [D�h ⊗ p](β + k), p ∈ �h,k ∈ Z
d , β ∈ �N.

Set pν(x) := xν

ν! . Taking k = 0 in the above identity, we get

(−i∂)ν

ν! ŷβ(0) = [D�h ⊗ pν](β) = ([∂μpν](β))μ∈�h
. (5.5)

For μ = (μ1, . . . ,μd) and ν = (ν1, . . . , νd), we say that ν ≤ μ if νj ≤ μj for all j = 1, . . . , d .
Denote sgn(μ) = 1 if μ ≥ 0 and 0, otherwise. Now it is easy to see that (5.5) is equivalent
to

(−i∂)μ

μ! ŷβ(0) =
(

βμ−ν

(μ − ν)! sgn(μ − ν)

)

ν∈�h

. (5.6)

The relation in (5.6) is satisfied by the choice ŷβ(ξ) := eiβ·ξ [(iξ)η]η∈�h
, since

(−i∂)μ

μ! ŷβ(0) =
∑

o≤ν≤μ

(−i∂)μ−ν

(μ − ν)! eiβ·ξ
∣∣∣∣
ξ=0

(−i∂)ν

ν! [(iξ)η]η∈�h

∣∣∣∣
ξ=0

=
∑

0≤ν≤μ

βμ−ν

(μ − ν)! [δη−ν]η∈�h
=

(
βμ−ν

(μ − ν)! sgn(μ − ν)

)

ν∈�h

.

Hence, a is an interpolatory mask of type (M,�N,h). So, Item (3) holds.
Since Item (3) holds, by (3.6), we have ŷ(0) = (1,1, . . . ,1) ⊗ (1,0, . . . ,0). By (p ∗ y) ∗

φ = p with p = 1, we must have ŷ(0) ∗ φ = 1. Consequently, we have ŷ(0)φ̂(0) = 1. Thus,
Item (1) holds.
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Sufficiency. Let g ∈ (Ch(Rd))(#�h)×1) be an interpolating function vector of type (�Id , h)

(see [10] and [12, Corollary 5.2] for the construction of such function vectors) such that

(1,0, . . . ,0)ĝ(0) = 1 and ((iξ)ν)ν∈�h
ĝ(ξ + 2πk) = O(‖ξ‖h+1), ξ → 0, k ∈ Z

d\{0}.
(5.7)

Define a (#�N)(#�h) × 1 column vector by

f := (
S(N−1,�h)g(N(· − γ ))

)
γ∈�N

. (5.8)

Then we have

f̂ (ξ) = (|detN |−1e−iγ ·ξS(N−1,�h)ĝ((NT )−1ξ)
)
γ∈�N

.

This can be rewritten as

f̂ (ξ) = |detN |−1[(e−iγ ·ξ )γ∈�N
]T ⊗ [S(N−1,�h)ĝ((NT )−1ξ)]. (5.9)

Note that by (5.7), the first component of ĝ(0) is 1. Also, we observe that the first row
of S(N−1,�h) is (1,0, . . . ,0). Consequently, the first component of S(N−1,�h)ĝ(0) is 1.
Now by ŷ(0) = (1,1, . . . ,1) ⊗ (1,0, . . . ,0), we conclude from (5.9) that

ŷ(0)f̂ (0) = |detN |−1[(1,1, . . . ,1) ⊗ (1,0, . . . ,0)] × [(1,1, . . . ,1)T ⊗ (S(N−1,�h)ĝ(0))]
= |detN |−1[(1,1, . . . ,1) × (1,1, . . . ,1)T ] ⊗ [(1,0, . . . ,0) × (1,∗, . . . ,∗)T ]
= 1,

where ∗ denotes some number and we used the fact S(N−1,�h)ĝ(0) = (1,∗, . . . ,∗)T in the
last second identity.

On the other hand, we deduce from (5.9) that as ξ → 0,

|detN |ŷ(ξ)f̂ (ξ + 2πk)

= (
(eiβ·ξ )β∈�N

⊗ ((iξ)ν)ν∈�h

)

×([(e−iγ ·(ξ+2πk))γ∈�N
]T ⊗ [S(N−1,�h)ĝ((NT )−1(ξ + 2πk))]) + O(‖ξ‖h+1)

=
( ∑

γ∈�N

e−i2πk·γ
)(

((iξ)ν)ν∈�h
S(N−1,�h)ĝ((NT )−1ξ + 2π(NT )−1k)

) + O(‖ξ‖h+1).

By Lemma 5.1, we see that ((iξ)ν)ν∈�h
S(N−1,�h) = ((i(NT )−1ξ)ν)ν∈�h

. Consequently,
we have

|detN |ŷ(ξ)f̂ (ξ + 2πk)

=
( ∑

γ∈�N

e−i2πk·γ
)(

((i(NT )−1ξ)ν)ν∈�h
ĝ((NT )−1ξ + 2π(NT )−1k)

)

+O(‖ξ‖h+1), ξ → 0. (5.10)

For k ∈ Z
d\[NT

Z
d ], we have

∑
γ∈�N

e−i2πk·γ = 0 and consequently it follows from the

above identity that ŷ(ξ)f̂ (ξ + 2πk) = O(‖ξ‖h+1) as ξ → 0 for all k ∈ Z
d\[NT

Z
d ]. For

k ∈ [NT
Z

d ]\{0}, we have k = NT k′ for some k′ ∈ Z
d\{0}. Therefore, by (5.7), we have

((i(NT )−1ξ)ν)ν∈�h
ĝ((NT )−1ξ + 2π(NT )−1k) + O(‖ξ‖h+1) = O(‖ξ‖h+1),
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as ξ → 0. Therefore, we conclude that ŷ(ξ)f̂ (ξ + 2πk) = O(‖ξ‖h+1), ξ → 0 for all k ∈
Z

d\{0}. So, f is a suitable initial function vector (see [12]) with respect to y.
Let f0 := f . Define Qa,Mf := |detM|∑k∈Zd a(k)f (M · −k) and fn := Qa,Mfn−1,

n ∈ N. Now we prove by induction that all fn are interpolating function vectors of type
(�N,h). When n = 0, we have f0 = f . By the choice of the initial function f in (5.8) and
by [12, Proposition 2.1], for γ ∈ �N , we have

D�h ⊗ fγ = D�h ⊗ [S(N−1,�h)g(N(· − γ ))]
= S(N−1,�h)[D�h ⊗ g](N(· − γ ))S(N,�h).

Since g is an interpolating function vector of type (�Id , h), we deduce that for all β ∈ �N

and k ∈ Z
d ,

[D�h ⊗ fγ ](β + k) = S(N−1,�h)[D�h ⊗ g](Nk + N(β − γ ))S(N,�h)

= S(N−1,�h)δ(k)δ(β − γ )I#�h
S(N,�h)

= δ(k)δ(β − γ )I#�h
.

So, f is an interpolating function vector of type (�N,h). Suppose that fn−1 is an interpolat-
ing function vector of type (�N,h). Then by

fn = Qa,Mfn−1 = |detM|
∑

j∈Zd

a(j)fn−1(M · −j),

for γ ∈ �N , we have

[fn]γ = |detM|
∑

j∈Zd

∑

α∈�N

[a(j)]γ,α[fn−1(M · −j)]α.

Hence, by [12, Proposition 2.1], we have

D�h ⊗ [fn]γ = |detM|
∑

j∈Zd

∑

α∈�N

[a(j)]γ,αD
�h ⊗ [fn−1(M · −j)]α

= |detM|
∑

j∈Zd

∑

α∈�N

[a(j)]γ,α[D�h ⊗ [fn−1]α](M · −j)S(M,�h).

So, for β ∈ �N and k ∈ Z
d , we deduce that

[D�h ⊗ [fn]γ ](β + k) = |detM|
∑

j∈Zd

∑

α∈�N

[a(j)]γ,α[D�h

⊗[fn−1]α](Mβ + Mk − j)S(M,�h).

Now by induction hypothesis, we have

[D�h ⊗ [fn−1]α](Mβ + Mk − j) = [D�h ⊗ [fn−1]α](〈Mβ〉�N
+ [Mβ]�N

+ Mk − j)

= δ(〈Mβ〉�N
− α)δ([Mβ]�N

+ Mk − j)I#�h
.
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Therefore, by (3.4), we get

[D�h ⊗ [fn]γ ](β + k)

= |detM|
∑

j∈Zd

∑

α∈�N

δ(〈Mβ〉�N
− α)δ([Mβ]�N

+ Mk − j)[a(j)]γ,αS(M,�h)

= |detM|[a(Mk + [Mβ]�N
)]γ,〈Mβ〉�N

S(M,�h)

= δ(k)δ(β − γ )S(M−1,�h)S(M,�h)

= δ(k)δ(β − γ )I#�h
.

Hence, fn is an interpolating function vector of type (�N,h). Now by induction, all fn,
n = 0,1, . . . , are interpolating function vectors of type (�N,h).

Since ν∞(a,M) > h, the cascade algorithm fn converges in (Ch(Rd))(#�N )(#�h)×1 [12,
Theorem 4.3]. By (ii) of Item (3), we have ŷ(0) = (1,1, . . . ,1) ⊗ (1,0, . . . ,0). Now by
Item (1), we see that ŷ(0)φ̂(0) = 1. Since ŷ(0)φ̂(0) = ŷ(0)f̂ (0) = 1, we see that fn → φ

in (Ch(Rd))(#�N )(#�h)×1 as n → ∞. Consequently, since all fn are interpolating function
vectors of type (�N,h), φ is also an interpolating function vector of type (�N,h). �

Next, we prove Theorem 3.2.

Proof of Theorem 3.2 For simplicity, let us define two operators R : �N + Z
d →

Z
d and Q : �N + Z

d → �N by R(α) := [Mα]�N
and Q(α) = 〈Mα〉�N

. Let Eα :=
[0, . . . ,0, I#�h

,0, . . . ,0]T , α ∈ �N , be a (#�N) × 1 block matrix with each block of size
(#�h) × (#�h), whose nonzero block is located at the α-th position.

Using the cosets of the mask a, we see that (3.4) can be equivalently rewritten as

âR(α)(ξ)EQ(α) = |detM|−1e−iR(α)·ξEαS(M−1,�h) ∀α ∈ �N. (5.11)

Since a satisfies the sum rules of order κ with the vector ŷ, we have (2.2). In particular,
using (2.2) with ω = R(α), we deduce from (5.11) that as ξ → 0,

|detM|−1ŷ(ξ)EQ(α) = ŷ(MT ξ)âR(α)(ξ)EQ(α) + O(‖ξ‖κ )

= |detM|−1e−iR(α)·ξ ŷ(MT ξ)EαS(M−1,�h) + O(‖ξ‖κ ).

Denote ŷ(ξ) := (ŷα(ξ))α∈�N
with each ŷα being a 1 × (#�h) row vector. Then the above

identity can be rewritten as

ŷQ(α)(ξ) = e−iR(α)·ξ ŷα(M
T ξ)S(M−1,�h) + O(‖ξ‖κ ), ξ → 0.

That is, since (3.5) is satisfied, we must have

ŷα(ξ) = eiα·ξ ((iξ)ν)ν∈�h
+ O(‖ξ‖h+1),

ŷα(M
T ξ) = eiR(α)·ξ ŷQ(α)(ξ)S(M,�h) + O(‖ξ‖κ ), ξ → 0, ∀α ∈ �N.

(5.12)

Note that the above relation is just a system of linear equations on the unknowns {∂μŷ(0) :
h < |μ| < κ}. In the following, we shall argue that the above system of linear equations in
(5.12) has a unique solution for the unknowns {∂μŷ(0) : h < |μ| < κ}. Moreover, we shall
prove that the unique solution to (5.12) must be given in (3.8).
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For all α ∈ �N and n ∈ N, employing (5.12) iteratively, as ξ → 0, we have

ŷα(ξ) = eiξ ·M−1R(α)ŷQ(α)((M
T )−1ξ)S(M,�h) + O(‖ξ‖κ )

= eiξ ·(M−2R(Q(α))+M−1R(α))ŷQ2(α)((M
T )

−2
ξ)S(M2,�h) + O(‖ξ‖κ )

...

= eiξ ·(∑n
k=1 M−kR(Qk−1(α)))ŷQn(α)((M

T )
−n

ξ)S(Mn,�h) + O(‖ξ‖κ ).

That is, as ξ → 0, we have

ŷα(ξ) = eiξ ·(∑n
k=1 M−kR(Qk−1(α))ŷQn(α)((M

T )−nξ)S(Mn,�h) + O(‖ξ‖κ ) ∀α ∈ �N. (5.13)

Let S denote the set of all α ∈ �N such that α ∈ S means that there exists nα ∈ N satisfying
Qnα (α) = α. For every α ∈ S, since {∂μŷα(0) : |μ| ≤ h} is uniquely determined by (3.5), by
[12, Lemma 2.2], (5.13) with n = nα has a unique solution {∂μŷα(0) : h < |μ| < κ}, which
can be obtained recursively. More precisely, since for α ∈ S, we have Qnα (α) = α for some
nα ∈ N. Therefore, (5.13) becomes

ŷα(ξ) = Xα((M
T )−nα ξ)ŷα((M

T )−nα ξ)S(Mnα ,�h) + O(‖ξ‖κ ), ξ → 0,

where Xα((M
T )−nα ξ) := eiξ ·(∑nα

k=1 M−kR(Qk−1(α))), or equivalently,

ŷα((M
T )nα ξ)I#�h

= Xα(ξ)ŷα(ξ)S(Mnα ,�h) + O(‖ξ‖κ ), ξ → 0.

Note that σnαν, ν ∈ Oj and σ−nαμ,μ ∈ �h are all the eigenvalues of S(Mnα ,Oj ) and
S(M−nα ,�h), respectively. By our assumption on M , we see that

S(Mnα ,Oj ) ⊗ I#�h
− I#Oj

⊗ S(Mnα ,�h)
T

= [S(Mnα ,Oj ) ⊗ S(M−nα ,�h)
T − I#Oj

⊗ I#�h
][I#Oj

⊗ S(Mnα ,�h)
T ]

is invertible for all j = h + 1, . . . , κ − 1. Therefore, by [12, Lemma 2.2],

∂μ[ŷα((M
T )nα ξ)I#�h

](0) = ∂μ[Xα(ξ)ŷα(ξ)S(Mnα ,�h)](0), h < |μ| < κ

has a unique solution {∂μŷα(0) : h < |μ| < κ} for every α ∈ S. Consequently, for every
α ∈ S, {∂μŷα(0) : |μ| < κ} is completely determined by the relation (5.12).

For α ∈ �N\S, since Qn(α) ∈ �N for all n ∈ N, there must exist Nα ∈ N such that
QNα(α) ∈ S. Hence, by (5.13) with n = Nα , we have

ŷα(ξ) = eiξ ·(∑Nα
k=1 M−kR(Qk−1(α))ŷQNα (α)((M

T )−Nα ξ)S(MNα ,�h) + O(‖ξ‖κ ), ξ → 0.

(5.14)
By what has been proved, all {∂μŷQNα (α)(0) : |μ| < κ} is completely determined by (5.12).
Thus, it follows from (5.14) that for every α ∈ �N\S, the values {∂μŷα(0) : |μ| < κ} is
completely determined by (5.14) and therefore, is uniquely determined by the system of
linear equations in (5.12).

That is, we proved that if (5.12) holds, then all ∂μŷα(0), h < |μ| < κ,α ∈ �N are uniquely
determined by (5.12). Therefore, if there is a solution to the system of linear equations in
(5.12), then the solution must be unique according to the above argument.
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In the following, let us show that the system of linear equations in (5.12) indeed has a
solution. Let Y (ξ) := (Yα(ξ))α∈�N

with Yα(ξ) := eiα·ξ ((iξ)ν)ν∈�h
. Since

Mα = [Mα]�N
+ 〈Mα〉�N

= R(α) + Q(α),

we have Yα(ξ) = eiα·ξ ((iξ)ν)ν∈�h
+ O(‖ξ‖h+1) as ξ → 0 and α ∈ �N , and by Lemma 5.1,

Yα(M
T ξ) = eiMα·ξ ((iMT ξ)ν

)
ν∈�h

= eiR(α)·ξ [eiQ(α)·ξ ((iξ)ν
)
ν∈�h

]
S(M,�h)

= eiR(α)·ξ YQ(α)(ξ)S(M,�h).

Therefore, if we take ∂μŷα(0) = ∂μYα(0) for all α ∈ �N and |μ| < κ , then it is a solution
to the system of linear equations in (5.12). By the uniqueness of the solution to (5.12), we
must have (3.8), which completes the proof. �

Finally, we prove Theorem 3.3.

Proof of Theorem 3.3 Suppose that φ is G-symmetric and (3.11) holds. By (3.10) and the
refinement equation (1.1), for β ∈ �N , we deduce that

∑

k∈Zd

∑

γ∈�N

[a(k)]β,γ φγ (x − k)

= |detM|−1φβ(M−1x)

= |detM|−1S(E−1,�h)φβ(E(M−1x − β) + β)

= S(E−1,�h)
∑

k∈Zd

∑

γ∈�N

[a(k)]β,γ φγ (MEM−1x − M(E − Id)β − k)

=
∑

k∈Zd

∑

γ∈�N

S(E−1,�h)[a(k)]β,γ S(MEM−1,�h)φγ (x −ME−1M−1k −JE−1,γ,β +γ ).

Therefore, for x = α + j with α ∈ �N and j ∈ Z
d , we deduce that

∑

k∈Zd

∑

γ∈�N

[a(k)]β,γ [D�h ⊗ φγ ](α + j − k)

=
∑

k∈Zd

∑

γ∈�N

S(E−1,�h)[a(k)]β,γ S(MEM−1,�h)

×[D�h ⊗ φγ ](α + j − ME−1M−1k − JE−1,γ,β + γ ). (5.15)

By (3.11) and the interpolation property of φ in (3.2), it is easy to verify that (5.15) im-
plies (3.12).

Conversely, suppose that (3.12) and (3.14) are satisfied. By induction on n, we first prove
that

φβ(E(x − β) + β) = S(E,�h)φβ(x) ∀x ∈ M−n(Zd + �N),n ∈ N0,E ∈ G,β ∈ �N.

(5.16)
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By φγ (α + j) = δ(α − γ )δ(j)(1,0, . . . ,0)T for all α,γ ∈ �N and j ∈ Z
d , it is evident that

(5.16) holds for n = 0.
Suppose that (5.16) holds for n−1. Then for any x ∈ M−n(Zd +�N), we have x = M−1y

with y := Mx ∈ M−(n−1)(Zd + �N). Therefore,

|detM|−1S(E,�h)φβ(x) = S(E,�h)
∑

k∈Zd

∑

γ∈�N

[a(k)]β,γ φγ (Mx − k)

=
∑

k∈Zd

∑

γ∈�N

S(E,�h)[a(k)]β,γ φγ (y − k).

Since y − k ∈ M−(n−1)(Zd + �N), by our induction hypothesis in (5.16), we have

S(MEM−1,�h)φγ (y − k) = φγ (MEM−1(y − k − γ ) + γ )

= φγ (MEx − MEM−1(k + γ ) + γ ).

Note that

JE,γ,β = MEM−1γ + M(Id − E)β = γ − (Id − MEM−1)γ + M(Id − E)β.

By our assumption in (3.14), it is not difficult to verify that 〈JE,γ,β〉�N
= γ for all γ,β ∈ �N .

Now by (3.12) and the above identities, we deduce that for any x ∈ M−n(Zd + �N),

|detM|−1S(E,�h)φβ(x)

=
∑

k∈Zd

∑

β∈�N

S(E,�h)[a(k)]β,γ φγ (y − k)

=
∑

k∈Zd

∑

γ∈�N

S(E,�h)[a(k)]β,γ S(ME−1M−1,�h)φγ (MEx − MEM−1(k + γ ) + γ )

=
∑

k∈Zd

∑

γ∈�N

[a(MEM−1k + [JE,γ,β]�N
)]β,〈JE,γ,β 〉�N

φγ (MEx − MEM−1(k + γ ) + γ )

=
∑

k∈Zd

∑

γ∈�N

[a(MEM−1k + [JE,γ,β]�N
)]β,γ φγ (MEx − MEM−1(k + γ ) + γ )

=
∑

k∈Zd

∑

γ∈�N

[a(k)]β,γ φγ (MEx − k + γ − MEM−1γ + [JE,γ,β]�N
)

=
∑

k∈Zd

∑

γ∈�N

[a(k)]β,γ φγ (MEx + M(Id − E)β − k)

= |detM|−1φβ(Ex + β − Eβ) = |detM|−1φβ(E(x − β) + β).

Hence, (5.16) holds for n. By induction, (5.16) holds for all n ∈ N0.
Since φ is continuous and {M−n(Zd + �N) : n ∈ N0} is dense in R

d , we conclude that
(3.10) holds. So, φ is G-symmetric. �
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