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In this paper, we investigate the biorthogonal matrix extension problem with symmetry
and its application to construction of biorthogonal multiwavelets. Given a pair of
biorthogonal matrices (P, P̃), the biorthogonal matrix extension problem is to find a
pair of extension matrices (Pe, P̃e) of Laurent polynomials with symmetry such that the
submatrix of the first r rows of Pe, P̃e is the given matrix P, P̃, respectively; Pe and P̃e are
biorthogonal satisfying PeP̃�

e = Is; and Pe and P̃e have the same compatible symmetry. We
satisfactorily solve the biorthogonal matrix extension problem with symmetry and provide
a step-by-step algorithm for constructing the desired pair of extension matrices (Pe, P̃e)

from the given pair of matrices (P, P̃). Moreover, our results cover the case for paraunitary
matrix extension with symmetry (i.e., the given pair satisfies P = P̃). Matrix extension
plays an important role in many areas such as wavelet analysis, electronic engineering,
system sciences, and so on. As an application of our general results on biorthogonal matrix
extension with symmetry, we obtain a satisfactory algorithm for constructing univariate
biorthogonal multiwavelets with symmetry for any dilation factor d from a given pair of
biorthogonal d-refinable function vectors with symmetry. Correspondingly, pairs of d-dual
filter banks with the perfect reconstruction property and with symmetry can be derived
by applying our algorithm to a given pair of d-dual low-pass filters with symmetry. Several
examples of symmetric biorthogonal multiwavelets are provided to illustrate our results in
this paper.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The multiresolution analysis (MRA) plays a fundamental role in wavelet analysis, which provides not only a frame-
work unifying both the continuous and digital realms, but also a systematic approach of constructing wavelets in terms of
wavelet masks. Under the framework of MRA, the construction of multiwavelet systems having some desirable properties –
say, (bi)orthogonality, symmetry, regularity, and so on – can be reduced to two main parts. One part is on the construction
of refinable function vectors that satisfy certain desired properties. Another part is on the derivation of multiwavelet gener-
ators, which should be able to inherit certain properties similar to those of their refinable function vectors. From the point
of view of electronic engineering, such multiwavelet systems are associated with filter banks with the perfect reconstruc-
tion property. The first part corresponds to the design of low-pass filters (scaling masks), while the second part is to derive
high-pass filters (wavelet masks) so that together they form filter banks with the perfect reconstruction property. It is well
known that the second part can be formulated as a matrix extension problem, see [31,35].
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Since the introduction of biorthogonal wavelets by Cohen et al. in [4], biorthogonal wavelets have been widely used in
many applications, especially in signal/image processing. For example, the famous (9,7)-biorthogonal wavelet system has
been shown to be a very effective system for image compression and is now implemented in part of the standard JPEG
2000. On the other hand, among many desirable properties, symmetry property is one of the most desirable properties
for multiwavelet systems in wavelet analysis or filter banks in electronic engineering. Symmetry plays a very important
and sometimes crucial role in applications. The ‘linear phase’ property and the opportunity not to increase the dimension
of data for encoding finite data vectors with symmetric wavelets cannot be compensated by any other properties, not to
mention the reduction of the computational cost using a symmetric system. In this paper, we are interested in the matrix
extension problem associated with the construction of univariate biorthogonal multiwavelets with symmetry for any dilation
factor d. More precisely, in terms of filter banks, we are interested in deriving high-pass filters from low-pass filters so that
together they form filter banks with the perfect reconstruction property and with the symmetry property simultaneously.
For the case d = 2, it is well known that the construction of biorthogonal wavelets is trivial once a pair of biorthogonal
2-refinable functions (scaling functions) is given, see [4,7]. However, how to construct biorthogonal multiwavelets with
symmetry from a pair of biorthogonal d-refinable function vectors satisfying certain symmetry pattern for any dilation
factor d > 2 remains open. One of the main reasons is because its associated matrix extension problem becomes far more
complicated when integrated with symmetry. Extra effort is needed to guarantee symmetry property of extension matrices
from which multiwavelets can posses the symmetry property as well. The objective of this paper is to present a systematic
approach along with a step-by-step algorithm for this problem, which gives an affirmative answer to the matrix extension
problem with symmetry for the construction of biorthogonal multiwavelets with symmetry.

1.1. The matrix extension problem

To facilitate and simplify our presentation of the matrix extension problem, let us introduce some notation and defini-
tions. In short, we are going to investigate how to extend vectors or submatrices of Laurent polynomials with coefficients in
a field to square matrices of Laurent polynomials with some desirable properties.

In the biorthogonal setting, the most interesting coefficient field is of course the rational number field Q. Our results in
this paper apply not only for the rational number field Q but also for any subfield F of the complex number field C that is
close under complex conjugate; that is, x̄ ∈ F provided x ∈ F. Several particular examples of such subfields F are F = Q(

√
t )

(the field of algebraic numbers), F = R (the field of real numbers), and F = C (the field of complex numbers). Throughout
the paper, F denotes any such a subfield of C.

Let p(z) = ∑
k∈Z pk zk , z ∈ C\{0} be a Laurent polynomial with coefficients pk ∈ F for all k ∈ Z. We say that p(z) has

symmetry if its coefficient sequence {pk}k∈Z has symmetry; more precisely, there exist ε ∈ {−1,1} and c ∈ Z such that

pc−k = εpk ∀k ∈ Z. (1.1)

If ε = 1, then p(z) is symmetric about the point c/2; if ε = −1, then p(z) is antisymmetric about the point c/2. Symmetry of
a Laurent polynomial can be conveniently expressed using a symmetry operator S defined by

Sp(z) := p(z)

p(z−1)
, z ∈ C\{0}. (1.2)

When p(z) is not identically zero, it is evident that (1.1) holds if and only if Sp = εzc , i.e., Sp is a monomial. For the
zero polynomial, it is very natural that S0 can be assigned any symmetry pattern. By shifting the symmetry center so
that c ∈ {0,−1}, there are at most four basic symmetry types for a Laurent polynomial p(z) having symmetry in terms of
S: Sp ∈ {1,−1, z−1,−z−1}. The prototype polynomials for these four symmetry types are: z + z−1, z − z−1, 1 + z−1, and
1 − z−1.

For an r × s matrix P(z) = ∑
k∈Z Pk zk with Pk ∈ Fr×s for all k ∈ Z, we denote

P�(z) :=
∑
k∈Z

P �
k z−k with P �

k := Pk
T , k ∈ Z, (1.3)

where Pk
T denotes the transpose of the complex conjugate of the constant matrix Pk in Fr×s . Note that with the � notation,

we are actually considering z in the unit circle |z| = 1, z ∈ C. If P(z) is an r ×s matrix of Laurent polynomials with symmetry,
then we can apply the operator S to each entry of P(z); that is, SP is an r × s matrix such that [SP] j,k := S([P] j,k), where
[P] j,k is the ( j,k)-entry of the matrix P(z).

For a matrix of Laurent polynomials, another important property is the support of its coefficient sequence. For P(z) =∑
k∈Z Pk zk such that Pk = 0 for all k ∈ Z\[m,n] with Pm �= 0 and Pn �= 0, we define its coefficient support to be csupp(P) :=

[m,n] and the length of its coefficient support to be | csupp(P)| := n − m. In particular, we define csupp(0) := ∅, the empty
set, and | csupp(0)| := −∞. Also, we use coeff(P,k) := Pk to denote the coefficient matrix (vector) Pk of zk in P(z).

Throughout this paper, 0 always denotes a general zero matrix whose size can be determined in the context. r and s
denote two positive integers such that 1 � r � s. In is the identity matrix of size n × n. Now the matrix extension problem
we consider in this paper can be stated as follows.
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Problem (Biorthogonal matrix extension problem). Let (P(z), P̃(z)) be a pair of r × s matrices of Laurent polynomials with
coefficients in a subfield F of C such that P(z)P̃�(z) = Ir for all z ∈ C\{0}. Find a pair (Pe(z), P̃e(z)) of s × s extension
matrices of Laurent polynomials with coefficients in F as well and with the following desiderata.

(D1) Extension: [Ir,0]Pe(z) = P(z) and [Ir,0]P̃e(z) = P̃(z); that is, the submatrices of the first r rows of Pe(z) and P̃e(z) are
the given matrices P(z) and P̃(z), respectively.

(D2) Biorthogonality property: Pe(z)P̃�
e(z) = Is for all z ∈ C\{0}; that is, Pe(z) and P̃e(z) are biorthogonal.

(D3) Compatible symmetry: when P(z) and P̃(z) have compatible symmetry , i.e., SP and SP̃ have certain symmetry pattern,
the extension matrices Pe(z) and P̃e(z) also have compatible symmetry.

(D4) Support control: the lengths of coefficient supports of Pe(z) and P̃e(z) are controlled by those of P(z) and P̃(z) in
some way.

When the given pair (P(z), P̃(z)) satisfies P(z) = P̃(z), the above biorthogonal matrix extension problem becomes the
paraunitary matrix extension problem, which requires the extension pair (Pe(z), P̃e(z)) satisfies Pe(z) = P̃e(z). In Section 2,
we shall give a precise definition of compatible symmetry using the symmetry operator S. The connection of the biorthogonal
matrix extension problem to biorthogonal multiwavelets is discussed in Section 3.

1.2. Related work

The matrix extension problem plays a fundamental role in many areas such as electronic engineering, system sciences,
mathematics, etc. We mention only a few references here on this topic, see [1–3,5,7,16,19,22,25,29,31–33,35,36]. For exam-
ple, matrix extension is an indispensable tool in the design of filter banks in electronic engineering [29,35,36] and in the
construction of multiwavelets in wavelet analysis [3,5,7,8,16,19,22,28,30,31,34,32].

For the construction of orthonormal multiwavelets, the biorthogonal matrix extension problem is reduced to the parauni-
tary matrix extension problem, i.e., P(z) = P̃(z) and the extension matrices Pe(z) = P̃e(z). The paraunitary matrix extension
problem is thus a special case of the biorthogonal matrix extension problem. It has been studied in [35] in electronic en-
gineering and in [31] in wavelet analysis without consider any symmetry issue. In [32,22], this problem is solved with
symmetry constrain for the special case r = 1. For general case r > 1 with symmetry constrain, this problem has been
completely solved by Han and Zhuang in [26,27].

For r = 1, that is, the extension of a pair of vectors of Laurent polynomials to a pair of matrices of Laurent polynomials,
Goh and Yap in [18] studied the biorthogonal matrix extension problem and presented a step-by-step algorithm for deriving
the extension matrices. Yet neither did they concern about the lengths of the coefficient supports of the extension matrices,
nor they considered any symmetry constrain on the extension matrices. In [2], Chui, Han, and Zhuang proposed a dual-
chain approach for this problem, which first constructs a top-down dual-chain that essentially reduces the lengths of the
coefficient supports of the given pair of vectors to zero and then derives a bottom-up dual-chain that produces the desired
pair of extension matrices. Using this approach, symmetry can be easily adapted in the top-down and bottom-up dual-chain
so that the extension matrices do have desired symmetry pattern.

Without symmetry constrain, Goh and Yap’s algorithm works for a more general situation r > 1, i.e., the extension of
a pair of submatrices to a pair of square matrices, while at this point, the dual-chain approach in [2] does not apply to
this situation even without symmetry constrain. When consider symmetry for the general case r > 1, there are only a few
results in the literature (e.g. [1,6]) and most of them concern only about some very special cases, for example r = 2 or
d = 2.

In higher dimensions, the biorthogonal matrix extension problem is closely related to the famous Serre conjecture saying
that a unimodular line of algebraic polynomials can be extended to a unimodular matrix. The Serre conjecture was solved
by Quillen and Suslin independently, see [36]. Though the problem is solved theoretically, implementable algorithms are not
known in general. Using results on syzygy modules over a multivariate polynomial ring, the biorthogonal matrix extension
problem can be partially solved for some special cases, for example, see [14,17,30,34]. But in high dimensions, when comes
to symmetry, it is not even clear what appropriate symmetry patterns should one consider for the given pair of vectors or
submatrices. No general algorithm is available for this problem as far as we concern.

1.3. Our contributions

Due to the flexibility of the biorthogonality relation P(z)P̃�(z) = Ir for all z ∈ C\{0}, the biorthogonal matrix extension
problem is more complicated than that for the paraunitary matrix extension problem considered in [26], which shows that
an r × s paraunitary matrix P(z) (i.e., P(z)P�(z) = Ir for all z ∈ C\{0}) with compatible symmetry if and only if the extension
matrix Pe(z) has the following properties.

(P1) Extension: [Ir,0]Pe(z) = P(z), the submatrix of the first r rows of Pe(z) is P(z).
(P2) Paraunitary property: Pe(z)P�

e(z) = Is for all z ∈ C\{0}.
(P3) Compatible symmetry: Pe(z) has compatible symmetry.
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(P4) Support control: | csupp([Pe] j,k)| � max1�n�r | csupp([P]n,k)| for 1 � j � s, i.e., the length of the coefficient support of
Pe(z) never exceeds that of P(z).

For the biorthogonal matrix extension problem, we certainly expect that the pair of the extension matrices should have
properties similar to above properties (P1)–(P4); that is, (D1)–(D4) as we stated in the biorthogonal matrix extension problem.
Moreover, when designing the algorithm for this biorthogonal matrix extension problem, it should be able to recover (P1)–
(P4) when the algorithm is applied to a pair of matrices (P(z), P̃(z)) s.t. P(z) = P̃(z). In other words, the biorthogonal results
should be able to generalize the results of paraunitary matrix extension. To this end, we need to face two difficulties. One
is to provide suitable characterizations for the symmetry pattern of the given pair (P(z), P̃(z)). Another is to design an
algorithm that gives appropriate support control of the extension matrices.

For the symmetry pattern of the given pair, as in [26], compatible symmetry (see Section 2.1 for the definition) char-
acterized by the symmetry operator S plays an important role in our study of the biorthogonal matrix extension problem.
Compatible symmetry characterizes the condition on how and when multiplication of two matrices of Laurent polynomials
results in a matrix of Laurent polynomials having compatible symmetry. For the support control, one might expect the
coefficient support lengths of the extension matrices Pe(z) and P̃e(z) being controlled by the maximal length of coefficient
supports of P(z) and P̃(z) similar to (P4) for the paraunitary case. It turns out that this is not true. There are counter-
examples (see Example 1 in Section 2) showing that we can no longer expect such a nice result as property (P4) for the
biorthogonal situation. That is, in this case, the length of the coefficient supports of the extension matrices might not be
controlled by one of the given matrices. Instead, our results show that it is possible to control the lengths of the coefficient
supports of the extension matrices Pe(z) and P̃e(z) by the sum of those of two submatrices P(z) and P̃(z). In summary, our
main result (also see Theorem 1 in Section 2.1) reads:

Solution (to the biorthogonal matrix extension problem). Let (P(z), P̃(z)) be a pair of r × s matrices of Laurent polynomials
with coefficients in a subfield F of C. Then, P(z)P̃�(z) = Ir for all z ∈ C\{0} and P(z), P̃(z) have compatible symmetry if and
only if there exists a pair (Pe(z), P̃e(z)) of extension matrices of Laurent polynomials with coefficients in F as well such
that desiderata (D1)–(D4) hold. In particular, when P(z) = P̃(z), properties (P1)–(P4) hold.

The contributions of this paper lie in the following aspects. First, we satisfactorily solve the biorthogonal matrix extension
problem with symmetry for any integers r and s such that 1 � r � s. More importantly, we obtain a complete representation
of any pair of r × s matrices (P(z), P̃(z)) having compatible symmetry with 1 � r � s. This representation leads to a step-by-
step algorithm for deriving a pair of desired extension matrices (Pe(z), P̃e(z)) from a given pair of submatrices (P(z), P̃(z)).
Second, our characterizations of matrices of Laurent polynomials with symmetry in terms of compatibility symmetry plays
a critical role in the study of the biorthogonal matrix extension problem. Third, we provide a result on controlling the
coefficient support of the desired matrices, which is optimal in view of the counter-example in Example 1. Support control
is of importance in both theory and application, since short support of a filter or a multiwavelet is a highly desirable
property and short support usually means a fast algorithm and simple implementation in practice. Fourth, we provide a
complete analysis and a systematic construction algorithm for symmetric biorthogonal multiwavelets. Fifth, our algorithm
extends the results in [26] in the sense that when setting P(z) = P̃(z), our results recover results in [26]. Finally, most of
the literature on the matrix extension problem considers only Laurent polynomials with coefficients in the special field C
or R. In this paper, our setting is under a general field F, which can be any subfield of C.

1.4. Contents

Here is the structure of this paper. In Section 2, we shall introduce our main theorem on biorthogonal matrix extension
with symmetry, prove it based on a key lemma, and provide a step-by-step algorithm for the construction of the extension
matrices. In Section 3, we shall discuss the applications of our results to the construction of symmetric biorthogonal mul-
tiwavelets in wavelet analysis. Examples will be provided to illustrate our results and algorithms in Section 4. Proof of the
key lemma is postponed to Section 5. Remarks shall be given in the last section.

2. Main theorem and algorithm

In this section, we first introduce the notion of compatible symmetry, then present our main theorem of this paper,
and finally provide a step-by-step algorithm for constructing a pair of extension matrices (Pe(z), P̃e(z)) having compatible
symmetry from a given pair of submatrices (P(z), P̃(z)).

2.1. Compatible symmetry and our main theorem

Recall that the symmetry operator S is given by Sp(z) := p(z)
p(z−1)

for z ∈ C\{0} and for an r × s matrix P(z) = ∑
k∈Z Pkzk ,

SP is an r × s matrix such that [SP] j,k := S([P] j,k). For two matrices P(z) and Q(z) of Laurent polynomials with symmetry,
even though all the entries in P(z) and Q(z) have symmetry, their sum P(z) + Q(z), difference P(z) − Q(z), or product
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P(z)Q(z), if well defined, generally may not have symmetry any more. This is one of the difficulties for matrix extension
with symmetry. In order for P(z) ± Q(z) or P(z)Q(z) to possess some symmetry, the symmetry patterns of P(z) and Q(z)
should be compatible. For example, if SP = SQ, that is, both P(z) and Q(z) have the same symmetry pattern, then indeed
P(z) ± Q(z) has symmetry and S(P ± Q) = SP = SQ. But how to make sure the multiplication of two matrices P(z) and
Q(z) possesses certain symmetry pattern is not that obvious since not only do we need to guarantee that the product of
each row of P(z) and each column of Q(z) has symmetry, but also the product matrix itself has certain symmetry pattern
as well. For this, we need the concept of compatible symmetry. We say that the symmetry of P(z) is compatible or P(z) has
compatible symmetry, if

SP(z) = (Sθ1)
�(z)Sθ2(z), (2.1)

for some 1 × r and 1 × s row vectors θ1(z) and θ2(z) of Laurent polynomials with symmetry. Using the concept of compat-
ible symmetry, we can define mutually compatible symmetry for two matrices having compatible symmetry so that their
product matrix has compatible symmetry as well. For an r × s matrix P(z) and an s × t matrix Q(z) of Laurent polynomials,
we say that (P(z),Q(z)) has mutually compatible symmetry if

SP(z) = (Sθ1)
�(z)Sθ(z) and SQ(z) = (Sθ)�(z)Sθ2(z) (2.2)

for some 1 × r, 1 × s, 1 × t row vectors θ1(z), θ(z), θ2(z) of Laurent polynomials with symmetry. If (P(z),Q(z)) has mutually
compatible symmetry as in (2.2), then it is easy to check that their product P(z)Q(z) has compatible symmetry. In fact, not-
ing that [PQ] j,k = ∑s

�=1[P] j,�[Q]�,k and S([P] j,�[Q]�,k) = [Sθ1]�j[Sθ]�[Sθ]��[Sθ2]k = [Sθ1]�j[Sθ2]k , we have S(PQ) = (Sθ1)
�Sθ2.

Thanks to the compatible symmetry, we can state our main theorem on biorthogonal matrix extension with symmetry
as follows, which shows that for a pair (P(z), P̃(z)) of r × s biorthogonal matrices having compatible symmetry, we can
extend them to a pair (Pe(z), P̃e(z)) of s × s biorthogonal matrices having compatible symmetry as well.

Theorem 1. Let F be a subfield of C. Let (P(z), P̃(z)) be a pair of r × s matrices of Laurent polynomials with coefficients in F. Then
P(z)P̃�(z) = Ir for all z ∈ C\{0} and SP = SP̃ = (Sθ1)

�Sθ2 for some 1×r, 1× s vectors θ1(z), θ2(z) of Laurent polynomials with sym-
metry, i.e., P(z) and P̃(z) are biorthogonal and both have the same compatible symmetry, if and only if, there exists a pair (Pe(z), P̃e(z))
of s × s square matrices of Laurent polynomials with coefficients in F such that

(i) [Ir,0]Pe(z) = P(z) and [Ir,0]P̃e(z) = P̃(z); that is, the submatrices of the first r rows of Pe(z) and P̃e(z) are P(z) and P̃(z),
respectively.

(ii) Pe(z) and P̃e(z) are biorthogonal: Pe(z)P̃�
e(z) = Is for all z ∈ C\{0}.

(iii) Both Pe(z) and P̃e(z) have compatible symmetry: SPe = SP̃e = (Sθ)�Sθ2 for some 1 × s vector θ(z) of Laurent polynomials with
symmetry.

(iv) Pe(z) and P̃e(z) can be represented as products of matrices:

Pe(z) = P J (z) · · ·P1(z), P̃e(z) = P̃ J (z) · · · P̃1(z), (2.3)

where (P j(z), P̃ j(z)), j = 1, . . . , J are pairs of biorthogonal matrices of Laurent polynomials with symmetry. Moreover, each pair
of (P j+1(z),P j(z)) and (P̃ j+1(z), P̃ j(z)) has mutually compatible symmetry for all j = 1, . . . , J − 1.

(v) The coefficient supports of Pe(z) and P̃e(z) are controlled by those of P(z) and P̃(z) in the following sense:

max
{∣∣csupp(Pe)

∣∣, ∣∣csupp(P̃e)
∣∣} � r · (∣∣csupp(P)

∣∣ + ∣∣csupp(P̃)
∣∣). (2.4)

In particular, when P(z) = P̃(z), items (i)–(iv) hold with Pe(z) = P̃e(z) and item (v) is replaced by∣∣csupp
([Pe] j,k

)∣∣ � max
1�n�r

∣∣csupp
([P]n,k

)∣∣, 1 � j � s; (2.5)

that is, the length of the coefficient support of Pe(z) never exceeds that of P(z).

The representation in (2.3) (without symmetry) is often called the cascade structure in engineering literature, see [35].
Comparing (2.4) and (2.5), one may wonder why the support control for biorthogonal matrix extension with symmetry is
worse than and not as subtle as that for the paraunitary matrix extension problem. We would like to point out that (2.4) is
the worst case support control estimate. In practice, the situation is not as bad as (2.4) (see Examples 2–4). But in general,
as shown by the following example for r = 1, (2.4) is optimal in the sense that one cannot expect support control better
than (2.4).

Example 1. Consider two 1 × 3 vectors of Laurent polynomials p(z) = [1,0,a(z)] and p̃(z) = [1, ã(z),0] with a(z) and ã(z)
being two Laurent polynomials with symmetry satisfying | csupp(a(z))| > 0 and | csupp(ã(z))| > 0, for instance, a(z) = z +
1 + z−1 and ã(z) = z − z−1. It is obvious that p(z)p̃�(z) = 1 for all z ∈ C\{0} and the coefficient supports of p(z) and p̃(z)
are completely determined by those of a(z) and ã(z).
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Let Pe(z) and P̃e(z) be their extension matrices of Laurent polynomials with symmetry such that Pe(z)P̃�
e(z) = I3 for all

z ∈ C\{0} (the existence of such extension matrices is guaranteed by the Quillen–Suslin theorem). Then Pe(z) and P̃e(z)
must take the following form:

Pe(z) =
⎡
⎣ 1 0 a(z)

−b1(z)ã�(z) b1(z) c1(z)

−b2(z)ã�(z) b2(z) c2(z)

⎤
⎦ , P̃e(z) =

⎡
⎣ 1 ã(z) 0

−c̃1(z)a�(z) b̃1(z) c̃1(z)

−c̃2(z)a�(z) b̃2(z) c̃2(z)

⎤
⎦ ,

where b1(z), b̃1(z),b2(z), b̃2(z), c1(z), c̃1(z), c2(z), c̃2(z) are Laurent polynomials with symmetry. Both Pe(z) and P̃e(z) are
unimodular and hence the determinant det(Pe) of Pe(z) must be a monomial. Note that det(Pe) = b1(z)c2(z) − b2(z)c1(z).
Without loss of generality, we can assume b1(z)c2(z) − b2(z)c1(z) = 1. Using cofactors of Pe(z), it is easy to show that
P̃e(z) = (Pe(z)−1)� must take the following form:

P̃e(z) =
⎡
⎣ 1 ã(z) 0

b�
2(z)a�(z) c�

2(z) + ã(z)a�(z)b�
2(z) −b�

2(z)

−b�
1(z)a�(z) −c�

1(z) − ã(z)a�(z)b�
1(z) b�

1(z)

⎤
⎦ .

On one hand, if | csupp(b1(z))| > 0 or | csupp(b2(z))| > 0, then from the first columns of Pe(z) and P̃e(z), we see that
one of the extension matrices Pe(z) and P̃e(z) already has support length exceeding the maximal length of coefficient
supports of the given columns p(z) and p̃(z). On the other hand, if both | csupp(b1(z))| = 0 and | csupp(b2(z))| = 0 (in this
case, both b1(z) and b2(z) are monomials), then since b̃1(z) = c�

2(z) + ã(z)a�(z)b�
2(z) and b̃2(z) = −c�

1(z) − ã(z)a�(z)b�
1(z),

either we choose c1(z), c2(z) with coefficient supports comparable to ã(z)a�(z) to make the lengths of coefficient supports
of b̃1(z) and b̃2(z) small, in which case will result in long coefficient support of Pe(z); or we choose c1(z), c2(z) with
coefficient supports comparable to a(z) or ã(z) to make the coefficient support of Pe(z) short, in which case will result in
long coefficient support of P̃e(z).

In any case, the coefficient supports of Pe(z) and P̃e(z) cannot be controlled by one of P(z) and P̃(z). For example, if
a(z) = z + 1 + z−1 and ã(z) = z − z−1, then ã(z)a�(z) = z2 + z − z−1 − z−2. No matter how we choose b1(z),b2(z), c1(z), c2(z)
in Pe(z), one of Pe(z) and P̃e(z) will have support length no less than 4, which is the sum of | csupp(p)| and | csupp(p̃)|. �

It is possible to control the coefficient supports of Pe(z) and P̃e(z) by both p(z) and p̃(z). In Example 1, by properly
choosing b1(z),b2(z), c1(z), c2(z), we indeed have max{| csupp(Pe)|, | csupp(P̃e)|} � | csupp(p)| + | csupp(p̃)|.

2.2. Proof of Theorem 1

In this subsection, we shall prove our main result, Theorem 1, and based on the proof, we shall provide a step-by-step
extension algorithm for deriving the desired pair of extension matrices in the next subsection.

Before we continue to the proof, let us lay out the main idea: given a pair of 1 × s vectors (p(z), p̃(z)) satisfying
p(z)p̃�(z) = 1 for all z ∈ C\{0} (note that with the � notation, we are actually working on |z| = 1, z ∈ C), we first find
a pair (B1(z), B̃1(z)) of s × s biorthogonal matrices, which have some simple structure and reduce the length of the co-
efficient support of p(z) or p̃(z) (or both of them). Moreover, these two matrices preserve the compatible symmetry of
both p(z) and p̃(z). That is, p1(z) := p(z)B1(z) and p̃1(z) := p̃(z)B̃1(z) are both vectors of Laurent polynomials with sym-
metry and | csupp(pB1)| or | csupp(p̃B̃1)| is reduced. Next, replace (p(z), p̃(z)) by the new pair (p1(z), p̃1(z)) which again
satisfies p1(z)p̃�

1(z) = 1 for all z ∈ C\{0}. Continuing this procedure, we can find a sequence of pairs of biorthogonal matri-
ces (B1(z),B1(z)), . . . , (BK (z), B̃K (z)) that eventually reduce the lengths of coefficient supports of both p(z) and p̃(z) to 0.
Then the product matrices A(z) := B1(z) · · ·BK (z) and Ã(z) := B̃1(z) · · · B̃K (z) give us the desired extension matrices. This is
the idea for the case of extending a pair (p(z), p̃(z)) of 1 × s vectors. For extending a pair of r × s biorthogonal matrices
(P(z), P̃(z)), we can apply the above procedure to each pair of rows of P(z) and P̃(z) and obtain the desired extension
matrices.

Using the symmetry operator S, as mentioned, up to center shifting, there are at most four basic symmetry types
for a Laurent polynomial with symmetry: 1,−1, z−1,−z−1. For a vector of Laurent polynomials with symmetry, we can
normalize the symmetry of this vector to be a vector of symmetry types involving only these four basic symmetry types
too. Throughout this paper, 1n denotes the 1 ×n row vector [1, . . . ,1] and e j = [0, . . . ,0,1,0, . . . ,0] is the jth standard unit
row vector. [A] j,: denotes the jth row of a matrix A and [A] j,k:� is the row vector [[A] j,k, [A] j,k+1, . . . , [A] j,�].

Let θ(z) be a 1 × n row vector of Laurent polynomials with symmetry such that Sθ(z) = [ε1zc1 , . . . , εnzcn ] for some
ε1, . . . , εn ∈ {−1,1} and c1, . . . , cn ∈ Z. Then, the symmetry of any entry in the vector θ(z)diag(z−�c1/2	, . . . , z−�cn/2	) belongs
to {±1,±z−1}. Here �·	 is the ceiling operation: �x	 denotes the smallest integer no less than x for x ∈ R. Thus, there is a
permutation matrix Eθ to regroup these four types of symmetries together so that

S(θUSθ ) = [
1n1 ,−1n2 , z−11n3 ,−z−11n4

]
, (2.6)

where USθ (z) := diag(z−�c1/2	, . . . , z−�cn/2	)Eθ and n1, . . . ,n4 are nonnegative integers uniquely determined by Sθ so that
n1 + · · · + n4 = n. Note that USθ is paraunitary.
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Given a pair (p(z), p̃(z)) of vectors of Laurent polynomials with symmetry satisfying p(z)p̃�(z) = 1 for all z ∈ C\{0}, using
the paraunitary matrix USθ , we can assume that p(z) and p̃(z) are both vectors containing Laurent polynomials with at
most four symmetry types. We have the following key lemma on the existence and properties of a pair (B(z), B̃(z)) of
biorthogonal matrices that reduces the length of the coefficient support of the pair (p(z), p̃(z)).

Lemma 1. Let (p(z), p̃(z)) be a pair of 1 × s vectors of Laurent polynomials with symmetry and with coefficients in a subfield F of C
such that p(z)p̃�(z) = 1 for all z ∈ C\{0} and Sp = Sp̃ =: Sθ with Sθ(z) = εzc[1s1 ,−1s2 , z−11s3 ,−z−11s4 ] for some nonnegative
integers s1, . . . , s4 satisfying s1 + · · · + s4 = s and some ε ∈ {1,−1}, c ∈ {0,1}. Suppose | csupp(p)| > 0. Then there exists a pair
(B(z), B̃(z)) of s × s matrices of Laurent polynomials with symmetry and with coefficients in F as well such that

(a) B(z) and B̃(z) are biorthogonal: B(z)B̃�(z) = Is for all z ∈ C\{0}.
(b) SB = SB̃ = (Sθ)�Sθ1 with Sθ1 = εzc[1s′1 ,−1s′2 , z−11s′3 ,−z−11s′4 ] for some nonnegative integers s′

1, . . . , s′
4 such that s′

1 + · · ·
+ s′

4 = s.
(c) The length of the coefficient support of p(z) is reduced by that of B(z), and B̃(z) does not increase the length of the coefficient

support of p̃(z). That is,∣∣csupp(pB)
∣∣ �

∣∣csupp(p)
∣∣ − ∣∣csupp(B)

∣∣ and
∣∣csupp(p̃B̃)

∣∣ �
∣∣csupp(p̃)

∣∣.
In particular, when p(z) = p̃(z), items (a)–(c) hold with B(z) = B̃(z) and the coefficient support of B(z) satisfies csupp(B) ⊆ [−1,1].

The above lemma shows that we can always find a pair of biorthogonal matrices with some simple structure and with
compatible symmetry to reduce the length of the coefficient support of the given pair (p(z), p̃(z)). Proof of this lemma is
postponed to Section 5 for the purpose of clear presentation. Now, we can prove Theorem 1 using Lemma 1.

Proof of Theorem 1. The proof for the sufficiency part of the theorem is straightforward. Let us prove the necessity part of
the theorem.

For an r × s matrix P(z) of Laurent polynomials with compatible symmetry as in (2.1), it is easy to see that Q(z) :=
U�

Sθ1
(z)P(z)USθ2 (z) (given θ , USθ is obtained by (2.6)) has the symmetry pattern as follows.

SQ = [1r1 ,−1r2 , z1r3 ,−z1r4 ]T [
1s1 ,−1s2 , z−11s3 ,−z−11s4

]
, (2.7)

where r1, . . . , r4 and s1, . . . , s4 are nonnegative integers such that r1 + · · · + r4 = r and s1 + · · · + s4 = s. Note that USθ1 (z)
and USθ2 (z) do not increase the length of the coefficient support of P(z).

First, we normalize the symmetry patterns of P(z) and P̃(z) to the standard form as in (2.7). Let Q(z) :=
U�

Sθ1
(z)P(z)USθ2 (z) and Q̃(z) := U�

Sθ1
(z)P̃(z)USθ2 (z). Then the symmetry of each row of Q(z) or Q̃(z) is of the form εzc[1s1 ,

−1s2 , z−11s3 ,−z−11s4 ] for some ε ∈ {−1,1} and c ∈ {0,1}.
Next, let p(z) := [Q(z)]1,: and p̃(z) := [Q̃(z)]1,: , the first rows of Q(z) and Q̃(z), respectively. Applying Lemma 1 re-

cursively and in view of item (c) in Lemma 1, we can find pairs of biorthogonal matrices of Laurent polynomials
(B1(z), B̃1(z)), . . . , (BK (z), B̃K (z)) such that p(z)B1(z) · · ·BK (z) = [1,0, . . . ,0] and p̃(z)B̃1(z) · · · B̃K (z) = [1,q(z)] for some
1 × (s − 1) vector q(z) of Laurent polynomials with symmetry. Note that by item (b) of Lemma 1, all pairs (B j(z),B j+1(z))
and (B̃ j(z), B̃ j+1(z)) for j = 1, . . . , K − 1 have mutually compatible symmetry. Now construct BK+1(z), B̃K+1(z) as follows:

BK+1(z) =
[

1 0

q�(z) Is−1

]
, B̃K+1(z) =

[
1 −q(z)

0 Is−1

]
.

BK+1(z) and B̃K+1(z) are biorthogonal and have compatible symmetry. Let A1(z) := B1(z) · · ·BK (z)BK+1(z) and Ã1(z) :=
B̃1(z) · · · B̃K (z)B̃K+1(z). Then A1(z) and Ã1(z) are biorthogonal and we have p(z)A1(z) = p̃(z)Ã1(z) = e1 = [1,0, . . . ,0].

Now, we show that Q(z)A1(z) and Q̃(z)Ã1(z) are of the forms:

Q(z)A1(z) =
[

1 0

0 Q1(z)

]
, Q̃(z)Ã1(z) =

[
1 0

0 Q̃1(z)

]

for some (r − 1) × (s − 1) matrices Q1(z) and Q̃1(z) of Laurent polynomials with symmetry. In fact, by the biorthogonality
relation, we have (Q(z)A1(z))(Ã�

1(z)Q̃�(z)) = Ir for all z ∈ C\{0}. Since the first row of (Q(z)A1(z)) is [1,0, . . . ,0], the first
row of (Ã�

1(z)Q̃�(z)) must be [1,0, . . . ,0]. Consequently, the first column of Q̃(z)Ã1(z) is [1,0, . . . ,0]T . Similarly, the first
column of Q(z)A1(z) must be [1,0, . . . ,0]T . Therefore, Q(z)A1(z) and Q̃(z)Ã1(z) are of forms as above. Moreover, in view of
item (b) of Lemma 1, Q1(z) and Q̃1(z) have compatible symmetry and satisfy SQ1 = SQ̃1.

Employing the standard procedure of induction, we can find a sequence of pairs of biorthogonal matrices (A1(z), Ã1(z)),
. . . , (A J (z), Ã J (z)) having compatible symmetry for some integer J such that

Q(z)A1(z) · · ·A j(z) = Q̃(z)Ã1(z) · · · Ã j(z) = Ir .
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Consequently, the pair of biorthogonal extension matrices (Pe(z), P̃e(z)) is given by

Pe(z) = diag
(
USθ1(z), Is−r

)
Ã�

J (z) · · · Ã�
1(z)U�

Sθ2
(z),

P̃e(z) = diag
(
USθ1(z), Is−r

)
A�

J (z) · · ·A�
1(z)U�

Sθ2
(z).

Now, items (i) and (ii) of Theorem 1 follow from the above construction and item (a) of Lemma 1, items (iii) and (iv) are
the result of item (b) of Lemma 1, and finally item (v) is due to (c) of Lemma 1. In particular, when P(z) = P̃(z), we have
Pe(z) = P̃e(z) and (2.4) is replaced by (2.5). �
2.3. Algorithm

According to the proof of Theorem 1, we have an extension algorithm for Theorem 1, see Algorithm 1. Our algorithm has
three main steps: initialization, support reduction, and finalization. The step of initialization reduces the symmetry pattern
of (P(z), P̃(z)) to a standard form. The step of support reduction is the main body of the algorithm, producing a sequence of
pairs of biorthogonal matrices (A1(z), Ã1(z)), . . . , (A J (z), Ã J (z)) that reduce the lengths of the coefficient supports of both
P(z) and P̃(z) to 0. The step of finalization generates the desired pair of extension matrices (Pe(z), P̃e(z)) as in Theorem 1.

Algorithm 1 Biorthogonal matrix extension with symmetry.

(a) Input: A pair (P(z), P̃(z)) as in Theorem 1 with SP = SP̃ = (Sθ1)�Sθ2 for two 1×r, 1× s row vectors θ1(z), θ2(z) of Laurent polynomials with symmetry.
(b) Output: A desired pair of matrices (Pe(z), P̃e(z)) satisfying all the properties in Theorem 1.
(c) Initialization: Let Q(z) := U�

Sθ1
(z)P(z)USθ2 (z) and Q̃(z) := U�

Sθ1
(z)P̃(z)USθ2 (z). Then both Q(z) and Q̃(z) have the same symmetry pattern as in (2.7).

(d) Support reduction:
1: Let U0(z) := U�

Sθ2
(z) and A(z) = Ã(z) := Is .

2: for k = 1 to r do
3: Let p(z) := [Q(z)]k,k:s and p̃(z) := [Q̃(z)]k,k:s .
4: while | csupp(p)| > 0 and | csupp(p̃)| > 0 do
5: Construct a pair of biorthogonal matrices (B(z), B̃(z)) with respect to the pair (p(z), p̃(z)) by Lemma 1 such that

∣∣csupp(pB)
∣∣ + ∣∣csupp(p̃B̃)

∣∣ <
∣∣csupp(p)

∣∣ + ∣∣csupp(p̃)
∣∣.

6: Replace (p(z), p̃(z)) by (p(z)B(z), p̃(z)B̃(z)).
7: Set A(z) := A(z)diag(Ik−1,B(z)) and Ã(z) := Ã(z)diag(Ik−1, B̃(z)).
8: end while
9: The pair (p(z), p̃(z)) is of the form: ([1,0, . . . ,0], [1,q(z)]) for some 1 × (s − k) vector of Laurent polynomials q(z). Construct B(z), B̃(z) as follows:

B(z) =
[

1 0

q�(z) Is−k

]
, B̃(z) =

[
1 −q(z)

0 Is−k

]
.

10: Set A(z) := A(z)diag(Ik−1,B(z)) and Ã(z) := Ã(z)diag(Ik−1, B̃(z)).
11: Set Q(z) := Q(z)A(z) and Q̃(z) := Q̃(z)Ã(z).
12: end for
(e) Finalization: Let U1(z) := diag(USθ1 (z), Is−r). Set Pe := U1(z)Ã�(z)U0(z) and P̃e(z) := U1(z)A�(z)U0(z).

3. Application to biorthogonal multiwavelets with symmetry

In this section, we shall discuss the connection between biorthogonal matrix extension and the construction of biorthog-
onal multiwavelets. We shall also discuss the application of our results obtained in the previous section to the construction
of biorthogonal multiwavelets with symmetry. Examples will be provided in the next section.

We say that d is a dilation factor if d is an integer with |d| > 1. Throughout this section, d denotes a dilation factor.
For simplicity of presentation, we further assume that d is positive, while multiwavelets and filter banks with a negative
dilation factor can be handled similarly by a slight modification of the statements in this paper.

Let F be a subfield of C. A low-pass filter a0 : Z �→ Fr×r with multiplicity r is a finitely supported sequence of r × r
matrices on Z; that is a0 = {a0(k) ∈ Fr×r: k ∈ Z}. The symbol of the filter a0 is defined to be a0(z) := ∑

k∈Z a0(k)zk , which is
a matrix of Laurent polynomials with coefficients in F. Let d be a dilation factor and d, d̃ be two fixed numbers in F such
that d = d · d̃ (for instance, we can set d = 1, d̃ = 2 for F = Q; or d = d̃ = √

2 for F = R when d = 2). Let (a0, ã0) be a pair
of low-pass filters with multiplicity r. We say that (a0, ã0) is a pair of d-dual filters if

d−1∑
γ =0

a0;γ (z)ã�
0;γ (z) = Ir, z ∈ C\{0}, (3.1)

where a0;γ (z) and ã0;γ (z) are d-subsymbols (polyphase components, cosets) of a0(z) and ã0(z) defined to be
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a0;γ (z) := d
∑
k∈Z

a0(γ + dk)zk, ã0;γ (z) := d̃
∑
k∈Z

ã0(γ + dk)zk, γ ∈ Z. (3.2)

Quite often, a low-pass filter a0 is obtained beforehand. To construction a pair of d-dual low-pass filters (a0, ã0), i.e., (3.1)
holds, one can use the CBC (coset-by-coset) algorithm proposed in [20] to derive ã0 from a0. There are two key ingredients
in the CBC algorithm. One is that the CBC algorithm reduces the nonlinear system in the definition of sum rules for ã0 to a
system of linear equations. Another is that the CBC algorithm reduces the big system of linear equation of biorthogonality
relation for the pair (a0, ã0) to a small system of linear equations in (3.1). Moreover, the CBC algorithm guarantees that for
any given positive integers κ̃ , there always exists a finitely supported filter ã0 that satisfies the sum rules of order κ̃ . For
more details on the CBC algorithm, one may refer to [20,24]. In our first two examples presented in the next section, the
pairs of d-dual low-pass filters are obtained in this way using the CBC algorithm (see examples in [24]).

To construct biorthogonal multiwavelets in L2(R), we need to design high-pass filters a1, . . . ,ad−1 : Z → Fr×r and
ã1, . . . , ãd−1 : Z → Fr×r such that the polyphase matrices with respect to the filter bank pair ({a0;a1, . . . ,ad−1}, {ã0; ã1, . . . ,

ãd−1})

P(z) =

⎡
⎢⎢⎣

a0;0(z) · · · a0;d−1(z)
a1;0(z) · · · a1;d−1(z)

...
...

...

ad−1;0(z) · · · ad−1;d−1(z)

⎤
⎥⎥⎦ , P̃(z) =

⎡
⎢⎢⎣

ã0;0(z) · · · ã0;d−1(z)
ã1;0(z) · · · ã1;d−1(z)

...
...

...

ãd−1;0(z) · · · ãd−1;d−1(z)

⎤
⎥⎥⎦ (3.3)

are biorthogonal; that is, P(z)P̃�(z) = Idr for z ∈ C\{0}, where am;γ (z) and ãm;γ (z) are d-subsymbols of am(z) and ãm(z)
defined similar to (3.2) for m, γ = 0, . . . ,d − 1, respectively. The pair of filter banks ({a0;a1, . . . ,ad−1}, {ã0; ã1, . . . , ãd−1})
whose corresponding polyphase matrices P(z) and P̃(z) satisfy P(z)P̃�(z) = Idr for z ∈ C\{0} is called a pair of d-dual filter
banks (with the perfect reconstruction property).

For f ∈ L1(R), the Fourier transform is defined to be f̂ (ξ) := ∫
R f (x)e−ixξ dx and can be naturally extended to L2(R)

functions. Here i = √−1 is the imaginary unit. For a pair (a0, ã0) of d-dual low-pass filter, we assume that there exists a
pair of biorthogonal d-refinable function vectors (φ, φ̃) associated with (a0, ã0). That is,

φ̂(dξ) = a0
(
e−iξ )φ̂(ξ),

ˆ̃
φ(dξ) = ã0

(
e−iξ ) ˆ̃

φ(ξ), ξ ∈ R, (3.4)

and 〈
φ(· − k), φ̃

〉 := ∫
R

φ(x − k)φ̃(x)T dx = δ(k)Ir, k ∈ Z, (3.5)

where δ denotes the Dirac sequence such that δ(0) = 1 and δ(k) = 0 for all k �= 0, and φ = [φ1, . . . , φr]T , φ̃ = [φ̃1, . . . , φ̃r]T

are vectors of functions in L2(R).
Symmetry of the filters in a filter bank is a very much desirable property in many applications. We say that the low-pass

filter a0 with multiplicity r has symmetry if its symbol a0(z) satisfies

a0(z) = diag
(
ε1zdc1 , . . . , εr zdcr

)
a0

(
z−1) diag

(
ε1z−c1 , . . . , εr z−cr

)
(3.6)

for some ε1, . . . , εr ∈ {−1,1} and some c1, . . . , cr ∈ R such that dc� − c j ∈ Z for all �, j = 1, . . . , r. Let (a0, ã0) be a pair
of d-dual low-pass filters. The symmetry pattern in (3.6) comes from the following fact: If a d-refinable function vector φ

associated with a low-pass filter a0 satisfies φ1(c1 − ·) = ε1φ1, . . . , φr(cr − ·) = εrφr , and the shifts of φ are stable, then the
symbol a0 of a0 must satisfy (3.6). Conversely, if both a0 and ã0 have symmetry as in (3.6) and 1 is a simple eigenvalue of
both a0(1) and ã0(1), then the pair (φ, φ̃) of biorthogonal d-refinable function vectors associated with (a0, ã0) as in (3.4)
has the following symmetry:

φ1(c1 − ·) = ε1φ1, φ2(c2 − ·) = ε2φ2, . . . , φr(cr − ·) = εrφr,

φ̃1(c1 − ·) = ε1φ̃1, φ̃2(c2 − ·) = ε2φ̃2, . . . , φ̃r(cr − ·) = εr φ̃r . (3.7)

As shown in the previous section, compatible symmetry plays an important role in our biorthogonal matrix ex-
tension with symmetry. Though a low-pass filter a0 might have certain symmetry, its polyphase submatrix Pa0(z) :=
[a0;0(z), . . . ,a0;d−1(z)] – the first ‘row’ of P(z) in (3.3) – not necessarily has compatible symmetry. However, under the
symmetry condition in (3.6), the next lemma shows that there always exists a suitable unimodular symmetrization matrix
U(z) of Laurent polynomials with symmetry, which acts on Pa0 (z) := [a0;0(z), . . . ,a0;d−1(z)] producing a new submatrix
P(z) := Pa0(z)U(z) having compatible symmetry.

Lemma 2. Let Pa0(z) := [a0;0(z), . . . ,a0;d−1(z)], where a0;0(z), . . . ,a0;d−1(z) are d-subsymbols of a0(z) for a low-pass filter a0 sat-
isfying (3.6). Then there exists a dr × dr unimodular matrix U(z) of Laurent polynomials with symmetry such that P(z) := Pa0 (z)U(z)
has compatible symmetry.
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Proof. From (3.6), we deduce that[
a0;γ (z)

]
�, j = ε�ε j z

R
γ
�, j

[
a0;Q

γ
�, j

(
z−1)]

�, j, γ = 0, . . . ,d − 1; �, j = 1, . . . , r, (3.8)

where γ , Q γ
�, j ∈ Γ := {0, . . . ,d − 1} and Rγ

�, j , Q γ
�, j are uniquely determined by

dc� − c j − γ = dRγ
�, j + Q γ

�, j with Rγ
�, j ∈ Z, Q γ

�, j ∈ Γ. (3.9)

Since dc� − c j ∈ Z for all �, j = 1, . . . , r, we have c� − c j ∈ Z for all �, j = 1, . . . , r and therefore, Q γ
�, j is independent of �.

Consequently, by (3.8), for every 1 � j � r, the jth column of the matrix a0;γ (z) is a flipped version of the jth column of
the matrix a0;Q

γ
�, j

(z). Let κ j,γ ∈ Z be an integer such that | csupp([a0;γ ]:, j + zκ j,γ [a0;Q
γ
�, j

]:, j)| is the smallest possible integer.

Define P(z) := [b0;0(z), . . . ,b0;d−1(z)] as follows:

[
b0;γ (z)

]
:, j :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[a0;γ (z)]:, j, γ = Q γ
�, j;

1
2 ([a0;γ (z)]:, j + zκ j,γ [a0;Q

γ
�, j

(z)]:, j), γ < Q γ
�, j;

1
2 ([a0;γ (z)]:, j − zκ j,γ [a0;Q

γ
�, j

(z)]:, j), γ > Q γ
�, j.

(3.10)

Let U(z) denote the unique transform matrix corresponding to (3.10) such that

P(z) := [
b0;0(z), . . . ,b0;d−1(z)

] = [
a0;0(z), . . . ,a0;d−1(z)

]
U(z).

It is evident that U(z) is unimodular and P(z) = Pa0(z)U(z). Also note that U(z) and Ũ(z) := (U�(z))−1 have the same struc-
ture in view of (3.10). In fact, U(z)U�(z) is a diagonal constant matrix. We now show that P(z) has compatible symmetry.
Indeed, by (3.8) and (3.10),

[Sb0;γ ]�, j = sgn
(

Q γ
�, j − γ

)
ε�ε j z

R
γ
�, j+κ j,γ , (3.11)

where sgn(x) = 1 for x � 0 and sgn(x) = −1 for x < 0. By (3.9) and noting that Q γ
�, j is independent of �, we have

[Sb0;γ ]�, j

[Sb0;γ ]n, j
= ε�εnzR

γ
�, j−R

γ
n, j = ε�εnzc�−cn , 1 � �,n � r,

which is equivalent to saying that P(z) has compatible symmetry. �
Given a pair (a0, ã0) of d-dual low-pass filters with multiplicity r, if both a0 and ã0 have symmetry, it is quite natural to

require a0 and ã0 having the same symmetry as (3.6). Then, by the above lemma, we can always find a pair (U(z), Ũ(z)) of
symmetrization matrices such that the pair (P(z), P̃(z)) given by

P(z) := Pa0(z)U(z) = [
a0;0(z), . . . ,a0;d−1(z)

]
U(z),

P̃(z) := P̃ã0(z)Ũ(z) = [
ã0;0(z), . . . , ã0;d−1(z)

]
Ũ(z),

is biorthogonal and both P(z) and P̃(z) have the same compatible symmetry. Applying Algorithm 1 to the pair (P(z), P̃(z)),
we obtain the pair (Pe(z), P̃e(z)) of extension matrices, from which we derive a pair (P(z), P̃(z)) of polyphase matrices and
construct high-pass filters a1, . . . ,ad−1 and ã1, . . . , ãd−1. This is summarized in Algorithm 2 below.

Proof of Algorithm 2. Rewrite Pe(z) = (bm;γ (z))0�m,γ �d−1 as a d × d block matrix with r × r blocks bm;γ (z). Since Pe(z)

has compatible symmetry as in (3.18), we have [Sbm;γ (z)]�,: = εm
� ε�zkm

� −k� [Sb0;γ (z)]�,: for � = 1, . . . , r and m = 1, . . . ,d − 1.
By (3.11), we have

[Sbm;γ ]�, j = sgn
(

Q γ
�, j − γ

)
εm
� ε j z

R
γ
�, j+κ j,γ +km

� −k� , �, j = 1, . . . , r. (3.12)

By (3.12) and the definition of U�(z) in (3.10), we deduce that[
am;γ (z)

]
�, j = εm

� ε j z
R

γ
�, j+km

� −k�
[
am;Q

γ
�, j

(
z−1)]

�, j . (3.13)

This implies that [Sam]�, j = εm
� ε j z

d(km
� −k�+c�)−c j , which is equivalent to (3.17) with cm

� := km
� − k� + c� for m = 1, . . . ,d − 1

and � = 1, . . . , r. The proof for the symmetry of ã1, . . . , ãd−1 as in (3.17) is similar. We are done. �
Let (φ, φ̃) be a pair of biorthogonal d-refinable function vectors in L2(R) associated with a pair (a0, ã0) of d-dual low-

pass filters and φ = [φ1, . . . , φr]T , φ̃ = [φ̃1, . . . , φ̃r]T . Let (a1, . . . ,ad−1) and (ã1, . . . , ãd−1) be high-pass filters derived from
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(a0, ã0) using Algorithm 2. Define multiwavelet function vectors ψm and ψ̃m associated with the high-pass filters am and
ãm with symbols am(z) and ãm(z) for m = 1, . . . ,d − 1 by the following relations:

ψ̂m(dξ) := am
(
e−iξ )φ̂(ξ),

̂̃
ψm(dξ) := ãm

(
e−iξ ) ˆ̃

φ(ξ), ξ ∈ R. (3.14)

It is well known that ({φ;ψ1, . . . ,ψd−1}, {φ̃; ψ̃1, . . . , ψ̃d−1}) generates a pair of biorthogonal d-multiwavelet bases in L2(R).
Moreover, since the high-pass filters a1, . . . ,ad−1 and ã1, . . . , ãd−1 satisfy (3.17), it is easy to verify that ψm = [ψm

1 , . . . ,ψm
r ]T

and ψ̃m = [ψ̃m
1 , . . . , ψ̃m

r ]T defined in (3.14) for m = 1, . . . ,d − 1 also have the following symmetry:

ψm
1

(
cm

1 − ·) = εm
1 ψm

1 , ψm
2

(
cm

2 − ·) = εm
2 ψm

2 , . . . , ψm
r

(
cm

r − ·) = εm
r ψm

r ,

ψ̃m
1

(
cm

1 − ·) = εm
1 ψ̃m

1 , ψ̃m
2

(
cm

2 − ·) = εm
2 ψ̃m

2 , . . . , ψ̃m
r

(
cm

r − ·) = εm
r ψ̃m

r , (3.15)

for m = 1, . . . ,d − 1. Summarizing, we have the following theorem.

Theorem 2. Let F be any subfield of C and d be a dilation factor. Let (φ, φ̃) be a pair of biorthogonal d-refinable function vectors in
L2(R) associated with a pair (a0, ã0) of d-dual low-pass filters with multiplicity r, and the symbols a0(z), ã0(z) of a0, ã0 are r × r
matrices of Laurent polynomials with coefficients in F. Let ({a1, . . . ,ad−1}, {ã1, . . . , ãd−1}) be high-pass filters derived from the pair
(a0, ã0) via Algorithm 2. Suppose both a0 and ã0 have symmetry as in (3.6) and 1 is a simple eigenvalue of both a0(1) and ã0(1). Then
(φ, φ̃) has symmetry as in (3.7) and the following statements hold.

(i) The high-pass filters a1, . . . ,ad−1 and ã1, . . . , ãd−1 have symmetry as in (3.17), and their symbols a1(z), . . . ,ad−1(z) and
ã1(z), . . . , ãd−1(z) are r × r matrices of Laurent polynomials with coefficients in F.

(ii) The pair ({a0;a1, . . . ,ad−1}, {ã0; ã1, . . . , ãd−1}) is a pair of d-dual filter banks with the perfect reconstruction property.
(iii) The pair ({φ;ψ1, . . . ,ψd−1}, {φ̃; ψ̃1, . . . , ψ̃d−1}) defined in (3.14) has symmetry satisfying (3.15) and generates a pair of

biorthogonal d-multiwavelet bases in L2(R).

Algorithm 2 Construction of biorthogonal multiwavelets with symmetry.
(a) Input: A pair (a0, ã0) of d-dual low-pass filters with multiplicity r and with the same symmetry as in (3.6).
(b) Output: A pair ({a0;a1, . . . ,ad−1}, {ã0; ã1, . . . , ãd−1}) of d-dual filter banks with symmetry and with the perfect reconstruction property.
(c) Initialization: Construct a pair of biorthogonal matrices (U(z), Ũ(z)) in F by Lemma 2 such that both P(z) := Pa0 (z)U(z) and P̃(z) := P̃ã0 (z)Ũ(z)

(Ũ(z) = (U�(z))−1) are matrices of Laurent polynomials with coefficient in F having compatible symmetry: SP = SP̃ =: [ε1 zk1 , . . . , εr zkr ]T Sθ for some
k1, . . . ,kr ∈ Z and some 1 × dr row vector θ(z) of Laurent polynomials with symmetry.

(d) Extension: Derive a desired pair of extension matrices (Pe(z), P̃e(z)) with all the properties as in Theorem 1 from the pair (P(z), P̃(z)) by Algorithm 1.
(e) High-pass filters: Let P(z) := Pe(z)Ũ�(z) =: (am;γ (z))0�m,γ�d−1 and P̃(z) := P̃e(z)U�(z) =: (ãm;γ (z))0�m,γ�d−1 as in (3.3). For m = 1, . . . ,d − 1, define

high-pass filters a1, . . . ,ad−1 and ã1, . . . , ãd−1 through their symbols

am(z) := 1

d1

d−1∑
γ =0

am;γ
(
zd)zγ , ãm(z) := 1

d2

d−1∑
γ =0

ãm;γ
(
zd)zγ . (3.16)

P(z) and P̃(z) as in (3.3) are biorthogonal and all filters am, ãm , m = 1, . . . ,d − 1, have symmetry:

am(z) = diag
(
εm

1 zdcm
1 , . . . , εm

r zdcm
r
)
am

(
z−1

)
diag

(
ε1z−c1 , . . . , εr z−cr

)
,

ãm(z) = diag
(
εm

1 zdcm
1 , . . . , εm

r zdcm
r
)
ãm

(
z−1

)
diag

(
ε1z−c1 , . . . , εr z−cr

)
, (3.17)

where cm
� := (km

� − k�) + c� ∈ R and all εm
� ∈ {−1,1}, km

� ∈ Z, for � = 1, . . . , r and m = 1, . . . ,d − 1, are determined by the symmetry pattern of
(Pe(z), P̃e(z)):

[
ε1zk1 , . . . , εr zkr , ε1

1 zk1
1 , . . . , ε1

r zk1
r , . . . , zkd−1

1 , . . . , εd−1
r zkd−1

r
]T

Sθ := SPe = SP̃e . (3.18)

4. Illustrative examples

In this section, we will illustrate our algorithms and results stated in Sections 2 and 3 on the construction of biorthog-
onal multiwavelets with symmetry by three examples. For each example, a pair (a0, ã0) of d-dual low-pass filters with
symmetry is obtained beforehand and we apply Algorithm 2 to constructing the corresponding high-pass filters a1, . . . ,ad−1
and ã1, . . . , ãd−1 so that ({a0;a1, . . . ,ad−1}, {ã0; ã1, . . . , ãd−1}) forms a pair of d-dual filter banks with the perfect recon-
struction property and with symmetry. The first two examples are biorthogonal multiwavelets with coefficients in the
rational number filed F = Q and with r = 2, while the third example are biorthogonal wavelets with coefficients in the field
F = Q(

√
5i) = {c1 + c2

√
5i: c1, c2 ∈ Q}.
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Example 2. Consider d = r = 2. A pair (a0, ã0) of 2-dual low-pass filters with symbols a0(z), ã0(z) (cf. [24]) is given by

a0(z) = 1

16

[
8 6z−1 + 6

8z −z−1 + 3 + 3z − z2

]
,

ã0(z) = 1

384

[ −28z−1 + 216 − 28z 112z−1 + 112

21z−1 − 18 + 330z − 18z2 + 21z3 −36z−1 + 60 + 60z − 36z2

]
.

Both a0(z) and ã0(z) have the same symmetry pattern and satisfy (3.6) with ε1 = ε2 = 1, and c1 = 0, c2 = 1.
Let d = dd̃ with d = 1 and d̃ = 2. Then, following Algorithm 2, we first construct Pa0 (z) := [a0;0(z),a0;1(z)] and P̃ã0 (z) :=

[ã0;0(z), ã0;1(z)] as follows:

Pa0(z) = 1

16

[
8 6 0 6z−1

0 3 − z 8 −z−1 + 3

]
,

P̃ã0(z) = 1

192

[
216 112 −28(z−1 + 1) 112z−1

−18(1 + z) 12(5 − 3z) 3(7z−1 + 110 + 7z) 12(5 − 3z−1)

]
.

The unimodular symmetrization matrices U(z) and Ũ(z) as stated in Lemma 2 are given by

U(z) :=

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 1

0 0 1 0

0 z 0 −z

⎤
⎥⎥⎥⎦ , Ũ(z) := 1

2

⎡
⎢⎢⎢⎣

2 0 0 0

0 1 0 1

0 0 2 0

0 z 0 −z

⎤
⎥⎥⎥⎦ .

It is obvious that U(z)Ũ�(z) = I4. Let P(z) := Pa0(z)U(z) and P̃(z) := P̃ã0 (z)Ũ(z). Then we have SP = SP̃ = [1, z]T [1,1,

z−1,−1]; that is, both P(z) and P̃(z) have compatible symmetry. (P(z), P̃(z)) is a pair of biorthogonal matrices of Laurent
polynomials with coefficients in Q given as follows:

P(z) = 1

8

[
4 6 0 0

0 1(1 + z) 4 2(1 − z)

]
,

P̃(z) = 1

192

[
216 112 −28(1 + z−1) 0

−18(1 + z) 12(1 + z) 3(7z−1 + 110 + 7z) 48(1 − z)

]
.

Now applying Algorithm 1, we obtain a pair of extension matrices (Pe(z), P̃e(z)) as follows:

Pe(z) = 1

192

⎡
⎢⎢⎢⎣

96 144 0 0

0 24(1 + z) 96 48(1 − z)

−112 −3(z−1 − 70 + z) −12(1 + z−1) −6(z−1 − z)

0 −6(z − z−1) −24(1 − z−1) 12(z + 14 + z−1)

⎤
⎥⎥⎥⎦ ,

P̃e(z) = 1

192

⎡
⎢⎢⎢⎣

216 112 −28(1 + z−1) 0

−18(1 + z) 12(1 + z) 3(7z−1 + 110 + 7z) 48(1 − z)

−144 96 −24(1 + z−1) 0

0 0 −96(1 − z−1) 192

⎤
⎥⎥⎥⎦ .

Note that SPe = SP̃e = [1, z,1,−1]T [1,1, z−1,−1]. Moreover, for the support control, we have max{| csupp(Pe)|, | csupp(P̃e)|}
� max{| csupp(P)|, | csupp(P̃)|}.

Finally, as in the last part of Algorithm 2, from the polyphase matrices P(z) := Pe(z)Ũ�(z) =: (am;γ (z))0�m,γ �1 and
P̃(z) := P̃e(z)U�(z) =: (ãm;γ (z))0�m,γ �1, we derive two high-pass filters a1, ã1 as follows:

a1(z) = 1

384

[−8(3z + 28 + 3z−1) 3(z2 − 3z + 70 + 70z−1 − 3z−2 + z−3)

−48(z − z−1) 6(z2 − 3z + 28 − 28z−1 + 3z−2 − z−3)

]
,

ã1(z) = 1

16

[−(z + 6 + z−1) 4(1 + z−1)

−4(z − z−1) 8(1 − z−1)

]
.

Moreover, a1(z), ã1(z) satisfy (3.17) with ε1
1 = 1, ε1

2 = −1, and c1
1 = c1

2 = 0.
By the biorthogonality relation of the polyphase matrices P(z) and P̃(z), the pair ({a0;a1}, {ã0; ã1}) is a pair of d-dual

filter banks. Let φ = [φ1, φ2]T , φ̃ = [φ̃1, φ̃2]T , and ψ = [ψ1,ψ2]T , ψ̃ = [ψ̃1, ψ̃2]T be d-refinable function vectors and mul-
tiwavelet generators associated with a0, ã0, and a1, ã1, respectively. Then the pair ({φ;ψ}, {φ̃, ψ̃}) generates a pair of
biorthogonal d-multiwavelet bases in L2(R) and satisfies the following symmetry:
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Fig. 1. The graphs of φ = [φ1, φ2]T ,ψ = [ψ1,ψ2]T (top row, left to right), and φ̃ = [φ̃1, φ̃2]T , ψ̃ = [ψ̃1, ψ̃2]T (bottom row, left to right) in Example 2.

φ1(−·) = φ1, φ2(1 − ·) = φ2, ψ1(−·) = ψ1, ψ2(−·) = −ψ2,

φ̃1(−·) = φ̃1, φ̃2(1 − ·) = φ̃2, ψ̃1(−·) = ψ̃1, ψ̃2(−·) = −ψ̃2.

See Fig. 1 for the graphs of φ, φ̃ and ψ , ψ̃ . �
Example 3. Consider d = 3 and r = 2. A pair (a0, ã0) of 3-dual low-pass filters with symbols a0(z), ã0(z) (cf. [24]) are given
by

a0(z) = 1

243

[
a11(z) a12(z)

a21(z) a22(z)

]
, ã0(z) = 1

34884

[
ã11(z) ã12(z)

ã21(z) ã22(z)

]
.

where

a11(z) = −21z−2 + 30z−1 + 81 + 14z − 5z2, a12(z) = 60z−1 + 84 − 4z2 + 4z3,

a21(z) = 4z−2 − 4z−1 + 84z + 60z2, a22(z) = −5z−1 + 14 + 81z + 30z2 − 21z3,

and

ã11(z) = 1292z−2 + 2844z−1 + 17496 + 2590z − 1284z2 + 1866z3,

ã12(z) = −4773z−2 + 9682z−1 + 8715 − 2961z + 386z2 − 969z3,

ã21(z) = −969z−2 + 386z−1 − 2961 + 8715z + 9682z2 − 4773z3,

ã22(z) = 1866z−2 − 1284z−1 + 2590 + 17496z + 2844z2 + 1292z3.

The low-pass filters a0 and ã0 do not satisfy (3.6). However, we can employ a very simple transform matrix E := [ 1 1
1 −1

]
to a0 and ã0 so that the symmetry in (3.6) holds. That is, the new pair (b0, b̃0) with symbols b0(z) := Ea0(z)E−1 and
b̃0(z) := E−1ã0(z)E is a pair of 3-dual low-pass filters satisfying the symmetry condition in (3.6) with c1 = c2 = 1/2 and
ε1 = 1, ε2 = −1.

First, following Algorithm 2, let d = dd̃ with d = 1 and d̃ = 3. Construct polyphase submatrices Pb0 (z) := [b0;0(z),b0;1(z),
b0;2(z)] and P̃b̃0

(z) := [b̃0;0(z), b̃0;1(z), b̃0;2(z)] from b0(z) and b̃0(z). The unimodular symmetrization matrices is U(z) =
diag(U0(z), I2) with U0(z) being given by

U0(z) =

⎡
⎢⎢⎢⎣

z−1 0 z−1 0

0 z−1 0 z−1

1 0 −1 0

0 1 0 −1

⎤
⎥⎥⎥⎦ ,
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and Ũ(z) := (U�(z))−1. Let P(z) := Pb0 (z)U(z) and P̃(z) := P̃b̃0
(z)Ũ(z). Then we have SP = SP̃ = [z−1,−z−1]T [1,−1,−1,

1,1,−1] and (P(z), P̃(z)) is a pair of biorthogonal matrices with

P(z) = c

[
t11(1 + 1

z ) t12(1 − 1
z ) t13(1 − 1

z ) t14 t15(1 + 1
z ) t16(1 − 1

z )

t21(1 − 1
z ) t22(1 + 1

z ) t23(1 + 1
z ) t24(1 − 1

z ) t25(1 − 1
z ) t26(1 + 1

z )

]
,

P̃(z) = c̃

[
t̃11(1 + 1

z ) t̃12(1 − 1
z ) t̃13(1 − 1

z ) t̃14 t̃15(1 + 1
z ) t̃16(1 − 1

z )

t̃21(1 − 1
z ) t̃22(1 + 1

z ) t̃23(1 + 1
z ) t̃24(1 − 1

z ) t̃25(1 − 1
z ) t̃26(1 + 1

z )

]
,

where c = 1
486 , c̃ = 3

34884 , and t jk ’s, t̃ jk ’s are constants defined to be:

t11 = 162, t12 = 34, t13 = −196, t14 = 0, t15 = 81, t16 = 29,

t21 = −126, t22 = −14, t23 = 176, t24 = −36, t25 = −99, t26 = −31,

t̃11 = 5814, t̃12 = −1615, t̃13 = −7160, t̃14 = 0, t̃15 = 5814, t̃16 = 2584,

t̃21 = −5551, t̃22 = 5808, t̃23 = 7740, t̃24 = −1358, t̃25 = −6712, t̃26 = −4254.

Next, applying Algorithm 1, we obtain a pair of extension matrices (Pe(z), P̃e(z)) as follows:

Pe(z) = c

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t11(1 + 1
z ) t12(1 − 1

z ) t13(1 − 1
z ) t14 t15(1 + 1

z ) t16(1 − 1
z )

t21(1 − 1
z ) t22(1 + 1

z ) t23(1 + 1
z ) t24(1 − 1

z ) t25(1 − 1
z ) t26(1 + 1

z )

t31(1 + 1
z ) t32(1 − 1

z ) t33(1 − 1
z ) t34(1 + 1

z ) t35(1 + 1
z ) t36(1 − 1

z )

t41 0 0 t44 t45 0

0 t52 t53 0 0 t56

t61(1 − 1
z ) t62(1 + 1

z ) t63(1 + 1
z ) t64(1 − 1

z ) t65(1 − 1
z ) t66(1 + 1

z )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where all t jk ’s are constants given by:

t31 = 24, t32 = 472

27
, t33 = −148

27
, t34 = −36, t35 = −24,

t36 = −112

27
, t41 = 109998

533
, t44 = 94041

533
, t45 = −109989

533
, t52 = 406c0,

t53 = 323c0, t56 = 1142c0, t61 = 24210c1, t62 = 14318c1, t63 = −11807c1,

t64 = −26721c1, t65 = −14616c1, t66 = −1934c1, c1 = 200

26163
, c0 = 1609537

13122
,

and

P̃e(z) = c̃

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t̃11(1 + 1
z ) t̃12(1 − 1

z ) t̃13(1 − 1
z ) t̃14 t̃15(1 + 1

z ) t̃16(1 − 1
z )

t̃21(1 − 1
z ) t̃22(1 + 1

z ) t̃23(1 + 1
z ) t̃24(1 − 1

z ) t̃25(1 − 1
z ) t̃26(1 + 1

z )

t̃31(1 + 1
z ) t̃32(1 − 1

z ) t̃33(1 − 1
z ) t̃34(1 + 1

z ) t̃35(1 + 1
z ) t̃36(1 − 1

z )

t̃41 0 0 t̃44 t̃45 0

0 t̃52 t̃53 0 0 t̃56

t̃61(1 − 1
z ) t̃62(1 + 1

z ) t̃63(1 + 1
z ) t̃64(1 − 1

z ) t̃65(1 − 1
z ) t̃66(1 + 1

z )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where all t̃ jk ’s are constants given by:

t̃31 = 3483c̃0, t̃32 = 37427c̃0, t̃33 = 4342c̃0, t̃34 = −12222c̃0, t̃35 = −3483c̃0,

t̃36 = −7267, c̃0 = 8721

4264
, t̃41 = 5814, t̃44 = 11628, t̃45 = −11628,

t̃52 = 3c̃1, t̃53 = 2c̃1, t̃56 = 10c̃1, c̃1 = 12680011

243
,

t̃61 = 18203c̃2, t̃62 = 101595c̃2, t̃63 = 1638c̃2, t̃64 = −33950c̃2,

t̃65 = −10822c̃2, t̃66 = −36582c̃2, c̃2 = 26163

213200
.

Note that SPe = SP̃e = [z−1,−z−1, z−1,1,−1,−z−1]T [1,−1,−1,1,1,−1]. Moreover, for the support control, we have
| csupp(Pe)| = | csupp(P̃e)| = | csupp(P)| = | csupp(P̃)|.
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Finally, as in the last part of Algorithm 2, from the polyphase matrices P(z) := Pe(z)Ũ�(z) and P̃(z) := P̃e(z)U�(z), we
derive high-pass filters b1,b2 and b̃1, b̃2 as follows:

b1(z) =
[

b1
11(z) b1

12(z)

b1
21(z) b1

22(z)

]
, b2(z) =

[
b2

11(z) b2
12(z)

b2
21(z) b2

22(z)

]
,

where

b1
11(z) = 1

6561

(
199 + 125z3 − 324z2 + 199z − 324z−1 + 125z−2),

b1
12(z) = 1

6561

(−361 − 125z3 − 56z2 + 361z + 56z−1 + 125z−2),
b1

21(z) = 679

3198

(
z3 + z − 2z2), b1

22(z) = 387

2132

(
z3 − z

)
,

b2
11(z) = 8721

3219074

(
z3 − z

)
, b2

12(z) = 17442

3219074

(
203z3 + 1142z2 + 203z

)
,

b2
21(z) = c4

(−36017 + 12403z3 − 29232z2 + 36017z + 29232z−1 − 12403z−2),
b2

22(z) = c4
(
41039 − 12403z3 − 3868z2 + 41039z − 3868z−1 − 12403z−2)

with c4 = 50
6357609 , and

b̃1(z) =
[

b̃1
11(z) b̃1

12(z)

b̃1
21(z) b̃1

22(z)

]
, b̃2(z) =

[
b̃2

11(z) b̃2
12(z)

b̃2
21(z) b̃2

22(z)

]
,

where

b̃1
11(z) = 1

17056

(−859 + 7852z3 − 6966z2 − 859z − 6966z−1 + 7825z−2),
b̃1

12(z) = 1

17056

(−49649 + 25205z3 − 14534z2 + 49649z + 14534z−1 − 25205z−2),
b̃1

21(z) = 1

6

(
z3 + z − 2z2), b̃1

22(z) = 1

3

(
z3 − z

)
,

b̃2
11(z) = 2c̃3

(
z3 − z

)
, b̃2

12(z) = c̃3
(
3z3 + 10z2 + 3z

)
, c̃3 = 39257

26244
,

b̃2
21(z) = 1

852800

(
49696(z − 1) + 59523

(
z3 − z−2) + 32466

(
z−1 − z2)),

b̃2
22(z) = 1

170560

(
81327(1 + z) + 40587

(
z−2 + z3)) − 4221

32800

(
z−1 + z2).

The high-pass filters b1,b2 and b̃1, b̃2 satisfy (3.17) with c1
1 = c1

2 = 1/2, ε1
1 = 1, ε1

2 = 1 and c2
1 = c2

2 = 3/2, ε2
1 = −1, ε2

2 = −1,
respectively.

Let a1,a2 and ã1, ã2 be high-pass filters constructed from b1,b2 and b̃1, b̃2 through their symbols

a1(z) := E−1b1(z)E, a2 := E−1b2 E; ã1(z) := Eb̃1(z)E−1, ã2 := Eb̃2 E−1.

Then both pairs ({a0;a1,a2}, {ã0; ã1, ã2}) and ({b0;b1,b2}, {b̃0; b̃1, b̃2}) are pairs of 3-dual filter banks with the perfect recon-
struction property. Let ({φ;ψ1,ψ2}, {φ̃; ψ̃1, ψ̃2}) and ({η; ζ 1, ζ 2}, {η̃; ζ̃ 1, ζ̃ 2}) be pairs of biorthogonal 3-refinable function
vectors and multiwavelet generators associated with the filter banks ({a0;a1,a2}, {ã0; ã1, ã2}) and ({b0;b1,b2}, {b̃0; b̃1, b̃2}),
respectively. Then, we have

η1

(
1

2
− ·

)
= η1, η2

(
1

2
− ·

)
= −η2, η̃1

(
1

2
− ·

)
= η̃1, η̃2

(
1

2
− ·

)
= −η̃2,

ζ 1
1

(
1

2
− ·

)
= ζ 1

1 , ζ 1
2

(
1

2
− ·

)
= ζ 1

2 , ζ̃ 1
1

(
1

2
− ·

)
= ζ̃ 1

1 , ζ̃ 1
2

(
1

2
− ·

)
= ζ̃ 1

2 ,

ζ 2
1

(
3

2
− ·

)
= −ζ 2

1 , ζ 2
2

(
3

2
− ·

)
= −ζ 2

2 , ζ̃ 2
1

(
3

2
− ·

)
= −ζ̃ 2

1 , ζ̃ 2
2

(
3

2
− ·

)
= −ζ̃ 2

2 .

See Fig. 2 for the graphs of the 3-refinable function vectors η, η̃ associated with the low-pass filters b0, b̃0, respectively,
and the biorthogonal multiwavelet function vectors ζ 1, ζ 2 and ζ̃ 1, ζ̃ 2 associated with the high-pass filters b1,b2 and b̃1, b̃2,
respectively. Also see Fig. 2 for the graphs of the 3-refinable function vectors φ, φ̃ associated with the low-pass filters a0, ã0,
respectively, and the biorthogonal multiwavelet function vectors ψ1,ψ2 and ψ̃1, ψ̃2 associated with the high-pass filters
a1,a2 and ã1, ã2, respectively. �
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Fig. 2. The graphs of η = [η1, η2]T , ζ 1 = [ζ 1
1 , ζ 1

2 ]T , and ζ 2 = [ζ 2
1 , ζ 2

2 ]T (top row, left to right), and η̃ = [η̃1, η̃2]T , ζ̃ 1 = [ζ̃ 1
1 , ζ̃ 1

2 ]T , and ζ̃ 2 = [ζ̃ 2
1 , ζ̃ 2

2 ]T (second

row, left to right), and the graphs of φ = [φ1, φ2]T , ψ1 = [ψ1
1 ,ψ1

2 ]T , and ψ2 = [ψ2
1 ,ψ2

2 ]T (third row, left to right), and φ̃ = [φ̃1, φ̃2]T , ψ̃1 = [ψ̃1
1 , ψ̃1

2 ]T , and

ψ̃2 = [ψ̃2
1 , ψ̃2

2 ]T (bottom row, left to right) in Example 3.

Example 4. Consider dilation factor d = 3 and r = 1. Then we have a pair (a0, ã0) 3-dual low-pass filters having filter taps
in the coefficient field F = Q(

√
5i) as follows:

a0(z) =
( 1

z + 1 + z

3

)4[(
−4

3
− 2

√
5

3
i

)
1

z
+

(
11

3
+ 4

√
5

3
i

)
+

(
−4

3
− 2

√
5

3
i

)
z

]
,

ã0(z) =
( 1

z + 1 + z

3

)8(
b(z) + b

(
z−1)),

where

b(z) = 329387

2754
+ 209689

1377

√
5i −

(
102661

816
+ 5464379

22032

√
5i

)
z −

(
177727

2754
− 551620

4131

√
5i

)
z2

+
(

2967467

22032
− 1034833

22032

√
5i

)
z3 +

(
−375253

4131
+ 158555

15147

√
5i

)
z4 +

(
24620753

727056
− 29059

22032

√
5i

)
z5

− 24103

3366
z6 +

(
11

16
+ 21391

727056

√
5i

)
z7.

Note that both a0(z) and ã0(z) have symmetry: Sa0 = Sã0 = 1.
First, following Algorithm 2, let d = dd̃ with d = 1 and d̃ = 3. We construct polyphase vectors pa0(z) = [a0;0(z),a0;1(z),

a0;2(z)] and p̃ã0 (z) = [ã0;0(z), ã0;1(z), ã0;2(z)]. Note that a0;2(z) = z−1a0;3(z−1) and ã0;2(z) = z−1ã0;3(z−1). By Lemma 2,
the unimodular symmetrization matrices U(z) and Ũ(z) are given by U(z) = diag(1, U0) and Ũ(z) = diag(1, 1

2 U0) with

U0 = [ 1 1
1 −1

]
. Then Sp = Sp̃ = [1, z−1,−z−1] and (p(z), p̃(z)) is a pair of biorthogonal vectors; that is p(z)p̃�(z) = 1

for all z ∈ C\{0}. Applying Algorithm 1, we obtain a pair (Pe(z), P̃e(z)) of 3 × 3 extension matrices. We omit the ex-
act forms of (p(z), p̃(z)) and (Pe(z), P̃e(z)) here. Instead, we summarize the result as follows. (Pe(z), P̃e(z)) is a pair
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of 3 × 3 biorthogonal matrices extending the pair (p(z), p̃(z)), Pe(z) and P̃e(z) both have compatible symmetry satisfy-
ing SPe = SP̃e = [1,1,−1]T [1, z−1,−z−1], and for the support control in terms of the input pair (p(z), p̃(z)), we have
max{| csupp(Pe)|, | csupp(P̃e)|} = max{| csupp(p)|, | csupp(p̃)|} + 1 < | csupp(p)| + | csupp(p̃)|.

Finally, as in the last part of Algorithm 2, from P(z) = Pe(z)Ũ�(z) and P̃(z) = P̃e(z)U�(z), we can derive high-pass filters
a1,a2 and ã1, ã2 via (3.16) as follows:

a1(z) = b1(z) + b1
(
z−1), a2(z) = b2(z) − b2

(
z−1),

ã1(z) = b̃1(z) + b̃1
(
z−1), ã2(z) = b̃2(z) − b̃2

(
z−1),

where

b̃1(z) = (c0 + d0
√

5i) + (c1 + d1
√

5i)z + (c2 + d2
√

5i)z2 + (c3 + d3
√

5i)z3

1715154023316894153611
, b̃2(z) = 2

√
5i

3

(
z3 − 4z2 + 5z

)
with

c0 = 114117839473968000, d0 = −28945947289152960,

c1 = −126469325847476700, d1 = 41505677372992140,

c2 = 99644865829391520, d2 = −40357731236549760,

c3 = −30234459718898820, d3 = 13325027508134100,

and b1(z),b2(z) are also Laurent polynomials with coefficients in the field Q(
√

5i). Since their exact coefficients are too long
to be presented here, we only show their numerical coefficients as follows (note that, once (a0(z), ã0(z)) and (ã1(z), ã2(z))
are given, (a1(z),a2(z)) are exactly determined by the biorthogonality relation in (3.3)):

b1(z) ≈ (4247.95 − 488.11
√

5i) + (−1823.52 + 269.05
√

5i)z + (−1881.57 + 199.50
√

5i)z2

+ (1559.41 + −51.16
√

5i)z3 + (400.30 + −249.56
√

5i)z4 + (−83.46 − 131.24
√

5i)z5

+ (−201.19 + 156.04
√

5i)z6 + (−140.85 + 75.68
√

5i)z7 + (−49.48 + 18.56
√

5i)z8

+ (47.18 − 13.26
√

5i)z9 + (42.03 − 22.25
√

5i)z10 + (21.62 − 13.90
√

5i)z11

+ (−8.85 + 1.80
√

5i)z12 + (−3.36 + 2.75
√

5i)z13 + (−1.14 + 1.87
√

5i)z14

+ (−0.54 − 0.0017
√

5i)z15 + (−0.36 + 0.089
√

5i)z16 + (−0.18 + 0.071
√

5i)z17,

b2(z) ≈ 1

104

(
(−43.74 + 231.31

√
5i)z + (−30.02 + 131.54

√
5i)z2 + (98.64 − 130.36

√
5i)z3

+ (−26.84 − 76.66
√

5i)z4 + (−37.61 − 21.27
√

5i)z5 + (8.62 + 30.73
√

5i)z6

+ (4.58 + 22.17
√

5i)z7 + (2.06 + 9.10
√

5i)z8 + (3.25 − 4.49
√

5i)z9

+ (−0.92 − 4.74
√

5i)z10 + (−1.42 − 2.68
√

5i)z11 + (−0.51 + 0.50
√

5i)z12

+ (0.14 + 0.37
√

5i)z13 + (0.21 + 0.21
√

5i)z14 + (−0.025 + 0.027
√

5i)z15

+ (0.0058 + 0.022
√

5i)z16 + (0.0096 + 0.012
√

5i)z17).
We have Sa1 = Sã1 = 1 and Sa2 = Sã2 = −1.

The pair ({a0;a1,a2}, {ã0; ã1, ã2}) is a pair of 3-dual filter banks with the perfect reconstruction property. Let
({φ;ψ1,ψ2}, {φ̃; ψ̃1, ψ̃2}) be a pair of biorthogonal 3-refinable functions and wavelet generators associated with the pair
({a0;a1,a2}, {ã0; ã1, ã2}). Then, we have

φ(−·) = φ, ψ1(−·) = ψ1, ψ2(−·) = −ψ2; φ̃(−·) = φ̃, ψ̃1(−·) = ψ̃1, ψ̃2(−·) = −ψ̃2.

See Fig. 3 for the graphs of φ,ψ1,ψ2 and φ̃, ψ̃1, ψ̃2. �
5. Proof of Lemma 1

In this section, we shall prove our key lemma: Lemma 1. Our proof is constructive, which produces a pair (B(z), B̃(z))
of biorthogonal matrices having compatible symmetry and simple structure that reduces the length of coefficient support
of a given pair (p(z), p̃(z)). The construction of the pair (B(z), B̃(z)) only relates to a few coefficient vectors of the pair
(p(z), p̃(z)). The main idea is to normalize those coefficient vectors in a way that only a few nonzero coefficients are
involved in the construction of the pair (B(z), B̃(z)). To this end, let us introduce the following lemma – which generalizes
[18, Lemma 2.1] – that normalizes a given pair of constant vectors in a field F to a pair of unit coordinate vectors in F.
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Fig. 3. The graph of φ,ψ1,ψ2 (left to right) in Example 4. Real part: top row. Imaginary part: second row. The graph of φ̃, ψ̃1, ψ̃2 (left to right) in
Example 4. Real part: third row. Imaginary part: bottom row.

More precisely, given a pair (f, f̃) of constant vectors in F, we are going to construct a pair (U , Ũ ) of constant matrices
such that U and Ũ are biorthogonal to each other (U Ũ � = I), and up to a constant multiplication, they normalize f, f̃ to
two standard unit coordinate vectors.

In what follows, we shall use f,g to denote constant vectors with entries in a subfield F of C and U , V , E, F , G to denote
constant matrices with entries in F. Also, recall that � is the operator of transpose of complex conjugate, i.e., A� = AT for a
constant matrix, and [f]k is the kth entry of a vector f. The norm of a vector f is defined to be ‖f‖ = √

ff� .

Lemma 3. Let (f, f̃) be a pair of nonzero 1 × n constant vectors in Fn. Then the following statements hold.

(1) If ff̃� �= 0, then there exists a pair of n × n matrices (U , Ũ ) in Fn×n such that U Ũ � = In and

U =
[(

f̃

c̃

)�

, F

]
, Ũ =

[(
f

c

)�

, F̃

]
,

where F and F̃ are two n × (n − 1) constant matrices in Fn×(n−1) and c, c̃ are any two nonzero numbers in F such that ff̃� = cc̃.
In this case, fU = ce1 and f̃Ũ = c̃e1 .

(2) If ff̃� = 0, then there exists a pair of n × n matrices (U , Ũ ) in Fn×n such that U Ũ � = In and

U =
[(

f

c̃1

)�

,

(
f̃

c2

)�

, F

]
, Ũ =

[(
f

c1

)�

,

(
f̃

c̃2

)�

, F̃

]
,

where F and F̃ are two n × (n − 2) constant matrices in Fn×(n−2) and c1, c2, c̃1, c̃2 are nonzero numbers in F such that ‖f‖2 =
c1c̃1 and ‖f̃‖2 = c2c̃2 . In this case, fU = c1e1 and f̃Ũ = c2e2 .
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Proof. If ff̃� �= 0, then there exist n−1 constant vectors f2, . . . ,fn of size 1×n in Fn such that {f2, . . . ,fn} is a basis of the
orthogonal compliment of the linear span of {f} in Fn . It is easy to obtain such a basis {f,f2, . . . ,fn} using Gram–Schmidt
orthogonalization process. In fact, without loss of generality, we can assume the first component [f]1 of f is nonzero. Then,
{f,e2, . . . ,en} is a set of linear independent vectors in Fn and applying the Gram–Schmidt orthogonalization process to
{f,e2, . . . ,en} gives the desired basis {f,f2, . . . ,fn}. Next, let F := [f�

2, . . . ,f
�
n], which is an n × (n − 1) matrix, and define

U := [( f̃c̃ )�, F ]. Then U is invertible and hence we could define Ũ := (U �)−1. It is easy to show that (U , Ũ ) is the desired
pair of matrices.

If ff̃� = 0, similarly, let {f3, . . . ,fn} be a basis of the orthogonal compliment of the linear span of {f, f̃} in Fn and

define U = [( fc̃1
)�, ( f̃c2

)�, F ] with F := [f�
3, . . . ,f

�
n]. Then (U , Ũ ) with Ũ = (U �)−1 is the desired pair of matrices. �

Thanks to Lemma 3, we are now ready to prove Lemma 1.

Proof of Lemma 1. Suppose that Sθ = [1s1 ,−1s2 , z−11s3 ,−z−11s4 ] (proofs for other symmetry patterns are similar). By their
symmetry patterns, p(z) and p̃(z) must take the form as follows with � > 0 and coeff(p,−�) �= 0:

p(z) = [f1,−f2,g1,−g2]z−� + [f3,−f4,g3,−g4]z−�+1 +
�−2∑

k=−�+2

coeff(p,k)zk

+ [f3,f4,g1,g2]z�−1 + [f1,f2,0,0]z�,

p̃(z) = [f̃1,−f̃2, g̃1,−g̃2]z−�̃ + [f̃3,−f̃4, g̃3,−g̃4]z−�̃+1 +
�̃−2∑

k=−�̃+2

coeff(p̃,k)zk

+ [f̃3, f̃4, g̃1, g̃2]z�̃−1 + [f̃1, f̃2,0,0]z�̃. (5.1)

Then, either ‖f1‖ + ‖f2‖ �= 0 or ‖g1‖ + ‖g2‖ �= 0. Without loss of generality, we assume ‖f1‖ + ‖f2‖ �= 0 (for the case
‖f1‖ + ‖f2‖ = 0, simply swap the roles of f and g), due to p(z)p̃�(z) = 1 for all z ∈ C\{0} and | csupp(p)| > 0, we have
f1f̃�

1 − f2f̃�
2 = 0. Hence, f1f̃�

1 = f2f̃�
2 =: c. Then there are at most three cases: (a) c �= 0; (b) c = 0 but both f1,f2 are

nonzero vectors; (c) c = 0 and one of f1,f2 is 0. For case (a), we will show that we can find a pair (B(z), B̃(z)) of
biorthogonal matrices reduces the lengths of coefficient support of both p(z) and p̃(z) simultaneously. For cases (b) and
(c), the idea is to construct B(z) and B̃(z) so that B(z) reduces the length of csupp(p) while B̃(z) does not increase the
length of csupp(p̃).

Case (a): In this case, we have f1f̃�
1 �= 0 and f2f̃2 �= 0. By Lemma 3, we can construct two pairs (U1, Ũ1) and (U2, Ũ2)

of constant matrices with respect to the pairs (f1, f̃1) and (f2, f̃2) such that

U1 =
[(

f̃1

c̃1

)�

, F1

]
, Ũ1 =

[(
f1

c1

)�

, F̃1

]
, f1U1 = c1e1, f̃1Ũ1 = c̃1e1,

U2 =
[(

f̃2

c̃1

)�

, F2

]
, Ũ2 =

[(
f2

c1

)�

, F̃2

]
, f2U2 = c1e1, f̃2Ũ2 = c̃1e1,

where c1, c̃1 are constants in F such that c = c1c̃1. Define B0(z), B̃0(z) as follows:

B0(z) =
⎡
⎢⎣

1+z−1

2 (
f̃1
c̃1

)� F1 − 1−z−1

2 (
f̃1
c̃1

)� 0 0

− 1−z−1

2 ( f̃2
c̃1

)� 0 1+z−1

2 ( f̃2
c̃1

)� F2 0

0 0 0 0 Is3+s4

⎤
⎥⎦ ,

B̃0(z) =
⎡
⎢⎣

1+z−1

2 (f1
c1

)� F̃1 − 1−z−1

2 (f1
c1

)� 0 0

− 1−z−1

2 (f2
c1

)� 0 1+z−1

2 (f2
c1

)� F̃2 0

0 0 0 0 Is3+s4

⎤
⎥⎦ . (5.2)

It is easy to show that B0(z)B̃0(z)� = Is for all z ∈ C\{0} in view of properties of (U1, Ũ1) and (U2, Ũ2). Moreover, the
symmetry patterns of p(z)B0(z) and p̃(z)B̃0(z) satisfy

S(pB0) = S(p̃B̃0) = [
z−1,1s1−1,−z−1,−1s2−1, z−11s3 ,−z−11s4

]
.

Let E be a permutation matrix such that

S(pB0)E = S(p̃B̃0)E = [
1s1−1,−1s2−1, z−11s3+1,−z−11s4+1

] =: Sθ1.
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Define B(z) = B0(z)E and B̃(z) = B̃0(z)E . Then B(z) and B̃(z) are the desired matrices. It is easy to show that B(z) and
B̃(z) reduce the lengths of the coefficient support of both p(z) and p̃(z) by 1, respectively. In fact, in view of the above
symmetry patterns and the structures of B0(z) and B̃0(z), we only need to show that coeff([pB0] j, �) = coeff([p̃B̃0] j, �̃) = 0
for j = 1, s1 + 1. Indeed, for j = 1,

coeff
([pB0]1, �

) = coeff(p, �) coeff
([B0]:,1,0

) = 1

2c̃1

(
f1f̃

�
1 − f2f̃

�
2

) = 0.

Similar computations apply for other terms. In this case, | csupp(pB)| = | csupp(p)| − 1 and | csupp(p̃B̃)| = | csupp(p̃)| − 1.
When p(z) = p̃(z), case (a) always holds and as shown in [26, (3.5)]. The matrix B(z) = B̃(z) are given by

B�(z) := 1

cf

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(z + c0
cf1

+ 1
z ) f2(z − 1

z ) g1(1 + 1
z ) g2(1 − 1

z )

cfF1 0 0 0

− f1(z − 1
z ) −f2(z − c0

cf1
+ 1

z ) −g1(1 − 1
z ) −g2(1 + 1

z )

0 cfF2 0 0
cg1
cf1

f1(1 + z) − cg1
cf1

f2(1 − z) cg′
1
g′

1 0

0 0 cfG1 0
cg2
cf1

f1(1 − z) − cg2
cf1

f2(1 + z) 0 cg′
2
g′

2

0 0 0 cfG2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.3)

In such circumstance, B(z) reduces the length of the coefficient support of p(z) by 2. See [26, (3.5)] for more details on the
construction of B(z) in (5.3).

Case (b): In this case, f1f̃�
1 = f2f̃�

2 = 0 and both f1,f2 are nonzero vectors. We have f1f�
1 �= 0 and f2f�

2 �= 0. Again,
by Lemma 3, we can construct two pairs (U1, Ũ1) and (U2, Ũ2) of matrices with respect to the pairs (f1,f1) and (f2,f2)

such that

U1 =
[(

f1

c̃1

)�

, F1

]
, Ũ1 =

[(
f1

c0

)�

, F1

]
, f1U1 = c0e1,

U2 =
[(

f2

c̃2

)�

, F2

]
, Ũ2 =

[(
f2

c0

)�

, F2

]
, f2U2 = c0e1,

where c0, c̃1, c̃2 are constants in F such that f1f�
1 = c0c̃1 and f2f�

2 = c0c̃2. Let B0(z) and B̃0(z) be defined as follows:

B0(z) =
⎡
⎢⎣

1+z−1

2 (f1
c̃1

)� F1 − 1−z−1

2 (f1
c̃1

)� 0 0

− 1−z−1

2 (
f2
c̃2

)� 0 1+z−1

2 (
f2
c̃2

)� F2 0

0 0 0 0 Is3+s4

⎤
⎥⎦ ,

B̃0(z) =
⎡
⎢⎣

1+z−1

2 (
f1
c0

)� F1 − 1−z−1

2 (
f1
c0

)� 0 0

− 1−z−1

2 (
f2
c0

)� 0 1+z−1

2 (
f2
c0

)� F2 0

0 0 0 0 Is3+s4

⎤
⎥⎦ . (5.4)

Then, B0(z) reduces the length of the coefficient support of p(z) by 1 while B̃0(z) does not increase the support length of
p̃(z). Moreover,

S(pB0) = S(p̃B̃0) = [
z−1,1s1−1,−z−1,−1s2−1, z−11s3 ,−z−11s4

]
,

and similar to case (a), we can find a permutation matrix E such that

S(pB0)E = S(p̃B̃0)E = [
1s1−1,−1s2−1, z−11s3+1,−z−11s4+1

] =: Sθ1.

Define B(z) = B0(z)E and B̃(z) = B̃0(z)E . Then B(z) and B̃(z) are the desired matrices. In this case, we have | csupp(pB)| �
| csupp(p)| − 1 and | csupp(p̃B̃)| � | csupp(p̃).

Case (c): In this case, f1f̃�
1 = f2f̃�

2 = 0 and one of f1 and f2 is nonzero. Without loss of generality, we assume that
f1 �= 0 and f2 = 0. Construct a pair (U1, Ũ1) of matrices with respect to (f1, f̃1) by Lemma 3 such that f1U1 = c1e1 and
f̃1Ũ1 = c2e2 (when f̃1 = 0, construct the pair (U1, Ũ1) with respect to (f1,f1)). Extend this pair to a pair (U , Ũ ) of s × s
matrices by U := diag(U1, Is2+s3+s4 ) and Ũ := diag(Ũ1, Is2+s3+s4 ). Then p(z)U and p̃(z)Ũ must be of the form:
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q(z) := p(z)U = [c1,0, . . . ,0,−f2,g1,−g2]z−� + [f3,−f4,g3,−g4]z−�+1

+
�−2∑

k=−�+2

coeff(q,k)zk + [f3,f4,g1,g2]z�−1 + [c1,0, . . . ,0,f2,0,0]z�,

q̃(z) := p̃(z)Ũ = [0, c2, . . . ,0,−f̃2, g̃1,−g̃2]z−�̃ + [f̃3,−f̃4, g̃3,−g̃4]z−�̃+1

+
�̃−2∑

k=−�̃+2

coeff(q̃,k)zk + [f̃3, f̃4, g̃1, g̃2]z�̃−1 + [0, c2, . . . ,0, , f̃2,0,0]z�̃.

Here, in the above, we abuse the notation and still use f,g, f̃, g̃, and so on. We next construct B0(z), B̃0(z) so that
| csupp(qB0)| � | csupp(q)| − 1 and | csupp(q̃B̃0)| � | csupp(q̃)|. If [q̃(z)]1 ≡ 0, we choose k such that

k = arg min
��=1

{∣∣csupp
([q]1

)∣∣ − ∣∣csupp
([q]�

)∣∣},
i.e., k is such that the length | csupp([q]1)| − | csupp([q]k)| is minimal among those of all | csupp([q]1)| − | csupp([q]�)|,
� = 2, . . . , s; otherwise, due to q(z)q̃�(z) = 1 for all z ∈ C\{0}, there must exist k �= 1 such that∣∣csupp

([q]1
)∣∣ − ∣∣csupp

([q]k
)∣∣ � max

2� j�s

∣∣csupp
([q̃] j

)∣∣ − ∣∣csupp
([q̃]1

)∣∣
(k might not be unique, we can choose one of such k so that | csupp([q]1)| − | csupp([q]k)| is minimal among all
| csupp([q]1)| − | csupp([q]�)|, � = 2, . . . , s). For such k (in the case of either [q̃(z)]1 = 0 or [q̃(z)]1 �= 0), define two matrices
B0(z), B̃0(z) as follows:

B0(z) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

−a(z) 0 · · · 1
Is−k

⎤
⎥⎥⎥⎥⎥⎦ , B̃0(z) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · a�(z)
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
Is−k

⎤
⎥⎥⎥⎥⎥⎦ ,

where a(z) in B0(z) and B̃0(z) is a Laurent polynomial with symmetry such that

Sa(z) = S([q]1)

S([q]k)
,∣∣csupp

([q]1 − a(z)[q]k
)∣∣ <

∣∣csupp
([q]k

)∣∣, and∣∣csupp
([q̃]k − a�(z)[q̃]1

)∣∣ � max
1���s

∣∣csupp
([q̃]�

)∣∣.
Such a Laurent polynomial a(z) can be easily obtained by applying long division to ([q(z)]1, [q(z)]k). It is straightforward to
show that B0(z)B̃�

0(z) = Is for all z ∈ C\{0}. B0(z) reduces the length of the coefficient support of q(z) by that of a(z) due to
| csupp([q]1 − a(z)[q]k)| < | csupp([q]k)|. Moreover, by our choice of k, B̃0(z) does not increase the length of the coefficient
support of q̃(z). Define B(z) := UB0(z) and B̃(z) := Ũ B̃0(z). Then B(z) and B̃(z) are the desired matrices. Note in this case,
the symmetry of both p(z) and p̃(z) are preserved, i.e., S(pB) = Sp and S(p̃B̃) = Sp̃.

In summary, for all cases (a), (b), and (c), we can always find a pair (B(z), B̃(z)) of biorthogonal matrices of Laurent
polynomials having compatible symmetry such that B(z) reduces the length of the coefficient support of p(z) while B̃(z)
does not increase the length of the coefficient support of p̃(z). �

We remark that for the case ‖f1‖+‖f2‖ = 0, i.e., ‖g1‖+‖g2‖ �= 0. The discussion for this case is similar to above. We can
find two matrices B(z), B̃(z) such that all items in the lemma hold. For instance, in the case that g1g̃�

1 = g2g̃�
2 = c1c̃1 �= 0,

the pair (B0(z), B̃0(z)) similar to (5.2) is of the form:

B0(z) =

⎡
⎢⎢⎣

Is1+s2 0 0 0 0

0 1+z
2 (

g̃1
c̃1

)� G1 − 1−z
2 (

g̃1
c̃1

)� 0

0 − 1−z
2 ( g̃2

c̃1
)� 0 1+z

2 ( g̃2
c̃1

)� G2

⎤
⎥⎥⎦ ,

B̃0(z) =
⎡
⎢⎣ Is1+s2 0 0 0 0

0 1+z
2 (

g1
c1

)� G̃1 − 1−z
2 (

g1
c1

)� 0

0 − 1−z
2 (g2

c1
)� 0 1+z

2 (g2
c1

)� G̃2

⎤
⎥⎦ . (5.5)

The pairs (B(z), B̃(z)) for other cases can be obtained in a similar way.
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6. Final remarks

(1) For the construction of filter banks for multirate systems (see for example, [35]), we do not consider the existence
of their corresponding d-refinable function vectors and multiwavelet generators. In a recent paper [23], a one–one
correspondence has been established between filter banks for multirate systems and frequency-based wavelets in the
distribution space. For the existence of such biorthogonal multiwavelets in Sobolev spaces associated with a pair of
d-dual filter banks, see [20,21]. Further studies about multivariate bi-frames, see [9–15] and references therein.

(2) In Example 2, since the last entry of the first row of P(z) is 0, one can apply an alternative approach as in [34] (see
[34, Algorithm 2]) to construct a paraunitary matrix Pe(z), and then P̃e(z) is given by (P�

e(z))−1. We would like to point
out that this approach might result in longer lengths of coefficient supports of the extension matrices.

(3) For Example 4, since r = 1, i.e., the filters are filters with scalar filter taps, one can also apply the dual-chain approach
introduced in [2] for the construction of the corresponding high-pass filters.

(4) In higher dimensions, symmetry is more complicated than that in one dimension. For one dimension, there are only
two main symmetry patterns (symmetric and antisymmetric about some points) while in higher dimensions, symmetry
is related to some symmetry groups, which makes it difficult to analyze the corresponding matrix extension problem
with symmetry. A systematic approach for matrix extension problem with symmetry in higher dimension remains open
to our best knowledge.
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