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ALGORITHMS FOR MATRIX EXTENSION AND

ORTHOGONAL WAVELET FILTER BANKS

OVER ALGEBRAIC NUMBER FIELDS

BIN HAN AND XIAOSHENG ZHUANG

Abstract. As a finite dimensional linear space over the rational number field
Q, an algebraic number field is of particular importance and interest in math-
ematics and engineering. Algorithms using algebraic number fields can be
efficiently implemented involving only integer arithmetics. We observe that all
known finitely supported orthogonal wavelet low-pass filters in the literature
have coefficients coming from an algebraic number field. Therefore, it is of the-
oretical and practical interest for us to consider orthogonal wavelet filter banks
over algebraic number fields. In this paper, we formulate the matrix extension
problem over any general subfield of C (including an algebraic number field as
a special case), and we provide step-by-step algorithms to implement our main
results. As an application, we obtain a satisfactory algorithm for constructing
orthogonal wavelet filter banks over algebraic number fields. Several examples
are provided to illustrate the algorithms proposed in this paper.

1. Introduction and motivation

In a digital world, data and signals are often recorded using integers and dyadic
rational numbers. For example, a 8-bit grey-scale image has its pixels taking integer
values between 0 and 255. The rational number field Q has many advantages in
scientific computing. Using integer arithmetics and having simple hardware imple-
mentation, algorithms using the rational number field are much more efficient than
using floating point arithmetics, and avoid roundup error in computation. Conse-
quently, it is one of the fascinating topics in applied mathematics and engineering
(see [3, 16, 19]) to construct orthogonal wavelet filter banks with rational coeffi-
cients. Indeed, a few examples of orthogonal wavelet low-pass filters with rational
coefficients have been reported in [1, 2, 3, 5]. Typically, the associated wavelets in
such examples have pretty low regularity and vanishing moments. This significantly
limits the use of such orthogonal wavelet low-pass filters in applications. The in-
terest of seeking orthogonal wavelet filter banks with rational coefficients has been
renewed recently in the paper Mo and Li [16], where tight framelet filter banks with
rational coefficients and with two high-pass filters have been considered. Though
a necessary and sufficient condition is obtained in [16] for a dyadic tight framelet
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filter bank with two high-pass filters having rational coefficients, almost none of the
known examples in the literature can satisfy the necessary and sufficient condition
in [16]. Moreover, the associated wavelets in the illustrative examples presented in
[16] have only one vanishing moment. Note that a tight framelet filter bank is a
generalization of an orthogonal wavelet filter bank by having more than necessary
number of high-pass filters. Despite the interesting work in [16], constructing or-
thogonal wavelet filter banks or tight framelet filter banks with rational coefficients
and with high vanishing moments remains as a challenging task.

We are motivated by [16] to examine again all the orthogonal wavelet filter
banks available in the literature. We observe two interesting phenomena. First,
though there are very few known examples of orthogonal wavelet low-pass filters
with rational coefficients, we notice that to our best knowledge all known finitely
supported orthogonal wavelet low-pass filters have their coefficients coming from
an algebraic number field, often in the form Q(

√
t1, . . . ,

√
tn) for some positive

integers t1, . . . , tn. For example, see [8] and [1, 2, 5, 13] for many examples of
orthogonal wavelet low-pass filters with symmetry. We shall provide a natural
explanation in Section 3 for this observation. Recall that an algebraic number
field A is a finite field extension of the rational number field Q. More precisely,
A = Q(t1, . . . , tn), where each of t1, . . . , tn is a root of some polynomial with integer
coefficients. It is well known that an algebraic number field A, when viewed as a
linear space over Q, is a finite dimensional vector space over Q. Consequently, the
arithmetics over A can be implemented by combining the integer arithmetics and
matrix/vector operations from linear algebra (for example, see [14] for more detail).
In other words, algorithms over an algebraic number field A have the same order
of complexity as those over the rational number field Q. Consequently, it is of
theoretical and practical interest for us to consider orthogonal wavelet filter banks
over an algebraic number field.

Second, we observe that even though the orthogonal wavelet low-pass filters
constructed in [1, Examples 1 and 2] and [2, (5.3)] have rational coefficients, the
constructed high-pass filters, which are obtained by a brute force calculation using
Gröbner bases, do not have rational coefficients; instead, such derived high-pass fil-
ters have rational coefficients only up to a multiplicative constant

√
t for some posi-

tive integer t. In other words, according to the evidence from symbolic computation,
even if an orthogonal wavelet low-pass filter has rational coefficients, the derived
high-pass filters cannot always be expected to have rational coefficients. This mo-
tivates us to examine the classical matrix extension problem in [6, 9, 10, 15, 17, 19]
and to seek the right formulation for the matrix extension problem and for the
construction of orthogonal wavelet filter banks over an algebraic number field.

In the following, we shall state our formulation of the matrix extension problem
over a general field including an algebraic number field as special cases. To do so,
let us recall some notation and definitions. Let F denote a general subfield of C
such that

(1.1) x̄ ∈ F if x ∈ F,

where x̄ denotes the complex conjugate of a complex number x ∈ C. That is, the
subfield F is closed under complex conjugation. For example, F can be the rational
number field Q or an algebraic number field A satisfying x̄ ∈ A for all x ∈ A. By
F[z, z−1] we denote the set of all Laurent polynomials with coefficients in F. We
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shall use the following notation throughout the paper:

P�(z) := P(z)� :=
∑
k∈Z

Pk
T
z−k for P(z) =

∑
k∈Z

Pkz
k,

where Pk ∈ Cr×s are r× s matrices of complex numbers. We also define P �
k := Pk

T

for a matrix Pk of complex numbers. With the above � notation, we often work on
P(z) with z ∈ T := {ζ ∈ C | |ζ| = 1}.

Now we are ready to formulate the matrix extension problem over a general field
F. Let P be an r × s matrix, with 1 � r � s, of Laurent polynomials satisfying

(i) P is paraunitary: P(z)P�(z) = Ir for all z ∈ C\{0};
(ii) P takes the form P(z) = Q0(z)D0, where Q0 is an r × s matrix of Laurent

polynomials in F[z, z−1] and D0 is a diagonal matrix with all the entries of
D0D

�
0 in F.

The matrix extension problem over a general field F is to find an s × s extension
matrix Pe of Laurent polynomials such that

(1) [Ir,0]Pe = P; that is, the submatrix of the first r rows of Pe is P;
(2) Pe is paraunitary: Pe(z)P

�
e(z) = Is for all z ∈ C\{0};

(3) Pe takes the form Pe(z) = DeQe(z)D0, where Qe is an s × s matrix of
Laurent polynomials in F[z, z−1] and De is a diagonal matrix with all the
entries of DeD

�
e in F.

Moreover, if the given matrix P has certain symmetry structure, then it is desirable
that the extension matrix Pe also possesses certain symmetry structure. It is also
important that the support of the coefficients of Pe is controllable in some way by
that of the given matrix P.

We shall explain in Section 3 why the above formulation of the matrix extension
problem over a general field F leads to a satisfactory solution in the setting of
wavelet analysis and filter banks.

The classical formulation of the matrix extension problem corresponds to the
special case D0 = De = Is, but only for subfields F of C satisfying the following
property:

(1.2) x̄ ∈ F and
√
y ∈ F ∀ x, y ∈ F with y > 0.

For example, in the context of wavelet analysis and filter banks, the matrix exten-
sion problem without symmetry for F = R or C was studied in Lawton, Lee, and
Shen [15] and Vaidyanathan [19]. The matrix extension problem with symmetry
has been considered in Petukhov [17] for r = 1 and F = R, and in Han [6] for r = 1
and a general subfield F of C satisfying (1.2). More recently, the matrix extension
problem with symmetry has been studied in [10] by the authors for any r satisfying
1 � r � s and any subfield F of C satisfying the condition in (1.2). Clearly, the
condition in (1.2) is satisfied if F = R or C and therefore, [10] generalizes the results
in [6, 17] to the most general setting.

However, even if all the coefficients of P are integers, the smallest such field F,
containing Z and satisfying the condition in (1.2), must contain

√
n for all positive

integers n. Therefore, any subfield F satisfying (1.2) can never be an algebraic
number field and it must be an infinite dimensional linear space over Q. Hence, in
the setting of wavelet analysis and filter banks, despite the beautiful results and
efficient algorithms on the matrix extension problem in [6, 10, 15, 17, 19], even if an
orthogonal wavelet low-pass filter has all its coefficients from an algebraic number
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field (which is indeed the case for all known finitely supported orthogonal wavelet
low-pass filters in the literature, for example, see [8] for systematic construction and
numerous examples of orthogonal wavelet low-pass filters with symmetry), the de-
rived orthogonal wavelet high-pass filters cannot be guaranteed to have coefficients
in an algebraic number field as well.

For a matrix P(z) =
∑n

k=m Pkz
k of Laurent polynomials such that Pm �= 0

and Pn �= 0 with m,n ∈ Z, we define the filter support and length of P to be
fsupp(P) := [m,n] and len(P) := n − m, respectively. Throughout the paper, 0
always denotes a zero matrix whose size can be determined from the context.

Let P be an r × s matrix, with 1 � r � s, of Laurent polynomials satisfying
P(z)P�(z) = Ir for all z ∈ C\{0} and P takes the form P(z) = Q0(z)D0, where
Q0 is an r × s matrix of Laurent polynomials in F[z, z−1] and D0 is a diagonal
matrix with all the entries of D0D

�
0 in F. To study and formulate the matrix

extension problem over a general subfield F, in this paper we shall investigate the
structure of P by factorizing the matrix P into a product of elementary matrices,
that is, we study a more general problem: the matrix factorization problem over a
general subfield F of C. More precisely, we shall construct a sequence of elementary
matrices A0, . . . ,AJ such that

(1) PA0 · · ·AJ = [Ir, 0];
(2) len(PA0 · · ·Aj) < len(PA0 · · ·Aj−1) for all j = 0, . . . , J ;
(3) A�

j (z)Aj(z) = Is for all j = 0, . . . , J and len(Aj) � 1;
(4) Each Aj takes the form D�

j−1Vj(z)Dj with Vj(z) = VjDj(z), where all Dj

are diagonal matrices such that all entries of D�
jDj in F, Vj is a constant

invertible matrix in F, and Dj is a diagonal matrix whose diagonal entries
are monomial Laurent polynomials.

Consequently, we have the following representation of P: P = [Ir,0]A
�
J · · ·A�

0, which
factorizes the paraunitary matrix P into a product of elementary paraunitary ma-
trices A�

j . When P has symmetry, the matrix extension problem and the matrix
factorization problem over a general subfield F are even much more complicated; see
Section 4 for details. The matrix extension problem and the matrix factorization
problem are of importance in engineering and system sciences. For example, they
play a central role in engineering for the design and study of paraunitary perfect
reconstruction filter banks (see [19, Sections 13 and 14]); they are also indispens-
able tools in the general theory of linear systems in system science; see [20] and
references therein.

Our major contribution of this paper is a proper formulation of the matrix ex-
tension problem and the matrix factorization problem with or without symmetry
over a general field, and provides a satisfactory solution to them. Though we shall
use some interesting ideas from [6, 10, 15, 17, 19], our results in this paper are
not simple generalizations of the results in [6, 10, 15, 17, 19] and new ideas are
needed in order to satisfactorily solve the matrix extension problem over a general
field without the condition in (1.2). More precisely, to avoid the square root re-
quirement of the subfield F in (1.2), we have to formulate the matrix extension and
factorization problems in an appropriate way by restricting ourselves to considering
only elementary matrices with additional structures. Our main new idea is a key
observation made in Lemma 2.2 which allows us to avoid directly using the square
roots of positive elements in F in our elementary matrices. Instead, we require that
elementary matrices should have the additional structure D�

0V D1 such that V is
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an invertible matrix in F and D0, D1 are diagonal matrices whose diagonal entries
are square roots of positive elements in F. In this way, the troubling square roots
of positive elements in F appearing in our elementary matrices are restricted in
the diagonal matrices D’s in a nested fashion (see Theorem 2.1 for details). On
the other hand, all the papers [6, 10, 15, 19] employ the Householder matrices to
transform a constant vector into a normalized one with only one nonzero entry.
However, using Householder matrices, one has to unavoidably use the square roots
of positive elements in F in elementary matrices in a nonseparable way, which in
turn forces one to use a subfield F with the square root requirement in (1.2). Once
we have the key observation made in Lemma 2.2, to establish the results and algo-
rithms in this paper, we shall follow the main ideas made in [6, 10] by appropriately
modifying the key procedures in [6, 10] to the new setting and formulation.

The structure of the paper is as follows. In Section 2, we shall state our result
on the matrix extension problem without symmetry constraint over a general field
and its associated step-by-step algorithm for deriving the extension matrix Pe from
P. In Section 3, we will discuss the application of the matrix extension problem
to the orthogonal wavelet filter banks without symmetry. We shall explain in
Section 3 that our formulation of the matrix extension problem over a general field
F leads to a satisfactory solution in the setting of wavelet analysis and filter banks.
In Section 4, we shall present our result on the matrix extension problem with
symmetry constraint over a general field and its associated step-by-step algorithm
for deriving the extension matrix Pe with symmetry structure from P. In Section 5,
we shall discuss the application of our results on the matrix extension problem over
a general field to wavelet analysis and filter banks. We shall see that our result
leads to a satisfactory solution to the design of symmetric filter banks over an
algebraic number field. We shall also provide several examples in Section 6 to
demonstrate our algorithms for designing orthogonal wavelet filter banks over an
algebraic number field. Proofs of some key lemmas are postponed to Section 7.

2. The matrix extension problem without symmetry constraint

In this section, we shall investigate the matrix extension problem without sym-
metry constraint over a general subfield F of the complex number field C. We also
present a step-by-step algorithm for finding the extension matrix Pe. To do so, let
us introduce some notation first.

Without further mention, F always denotes a general subfield of C satisfying
(1.1). We have the following result on the matrix extension problem without sym-
metry constraint over a general subfield F:

Theorem 2.1. Let P be an r × s matrix, with 1 � r � s, of Laurent polynomials
such that P takes the following form:

(2.1) P(z) = Q0(z)D0, z ∈ C\{0},

where Q0 is an r× s matrix of Laurent polynomials in F[z, z−1] and D0 is an s× s
diagonal matrix with all the entries of D0D

�
0 in F. Then P(z)P�(z) = Ir for all

z ∈ C\{0}, if and only if, there exists an s × s matrix Pe of Laurent polynomials
such that

(i) [Ir,0]Pe = P; that is, the submatrix of the first r rows of Pe is P;
(ii) Pe is paraunitary: Pe(z)P

�
e(z) = Is for all z ∈ C\{0};
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(iii) Pe can be represented as a product of s× s elementary matrices:

Pe(z) = DePJ (z)PJ−1(z) · · ·P1(z)P0(z)D0, z ∈ C\{0},

where Pj , j = 0, . . . , J are s×s matrices of Laurent polynomials in F[z, z−1]
such that len(Pj) � 1, and De is an s×s diagonal matrix with all the entries
of DeD

�
e in F;

(iv) the length of Pe is controlled by that of P in the following sense:

len([Pe]j,k) � max
1�n�r

len([P]n,k) for all 1 � j, k � s.

We make some remarks about Theorem 2.1. The integer J in item (iii) of The-
orem 2.1 always satisfies J � len(P). Each of the elementary matrices Pj , j =
0, . . . , J − 1 is a product of a constant matrix in F and a diagonal matrix whose
diagonal elements are either 1 or z−1. The matrix PJ is a product of a constant
matrix in F and a diagonal matrix whose diagonal elements are monomials.

Theorem 2.1 shows that all the coefficients of the paraunitary extension matrix
Pe are not “far away” from those of F, provided that the given matrix P has the
special form as in (2.1). In particular, when F is an algebraic number field A, the
extension matrix Pe is of the form Pe = DeQeD0 with Qe being a matrix of Laurent
polynomials with coefficients in A. Consequently, all the coefficients of Pe are from
an algebraic number field Ã, where Ã is the field extension over A by adding the
entries of D0 and De. For the result on matrix extension with symmetry constraint
over a general subfield F; see Theorem 4.1 in Section 4 and also see Examples 6.1
– 6.4 in Section 6 for its application.

For row vectors u and v in C1×r, we define v� := vT, 〈u, v〉 := uv�, and ‖v‖ :=√
〈v, v〉. To prove Theorem 2.1 we need the following auxiliary result.

Lemma 2.2. Let f = gD0 be a 1 × s nonzero row vector for some 1 × s row
vector g with all the entries in F and some nonsingular diagonal matrix D0 with
all the entries of D0D

�
0 in F. Then there exists an s × s unitary matrix Uf of the

form Uf = D�
0VfD1 such that UfU

�
f = Is and fUf = [‖f‖, 0, . . . , 0]T, where Vf is a

nonsingular matrix with all the entries in F, and where D1 is some diagonal matrix
with all the entries of D1D

�
1 in F.

Proof. Let g̃1 := g. Since g̃1 �= 0, we can find 1 × s vectors g2, . . . , gs in F1×s

such that g̃1, g2, . . . , gs are linearly independent. For instance, assuming g =
[g11, . . . , g1s] with g11 �= 0, we can choose gj = ej = [0, . . . , 1, . . . , 0], the standard
jth unit coordinate vector in F1×s, for j = 2, . . . , s. Then g̃1, g2, . . . , gs are linearly
independent. Because D0 is nonsingular, all the vectors g̃1D0, g2D0, . . ., gsD0 are
linearly independent. Applying the Gram-Schmidt orthogonalization process to the
linearly independent vectors g̃1D0, g2D0, . . ., gsD0 as follows:

v1 :=gD0 = g̃1D0,

v2 :=g2D0 −
〈g2D0, g̃1D0〉
〈g̃1D0, g̃1D0〉

g̃1D0 = (g2 − c2,1g̃1)D0 =: g̃2D0,

...

vs :=gsD0 −
s−1∑
j=1

〈gsD0, g̃jD0〉
〈g̃jD0, g̃jD0〉

g̃jD0 = (gs − cs,1g̃1 − · · · − cs,s−1g̃s−1)D0 =: g̃sD0,
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where

ck,j :=
〈gkD0, g̃jD0〉
〈g̃jD0, g̃jD0〉

=
〈gkD0D

�
0 , g̃j〉

〈g̃jD0D�
0 , g̃j〉

, 1 � j < k � s

and
g̃k := gk − ck,1g̃1 − · · · − ck,k−1g̃k−1, 1 � k � s.

By our assumption, it is not difficult to verify that all ck,j and all entries of g̃k are
in F for all 1 � j < k � s. It is also easy to check that 〈vj , vk〉 = δ(j − k)‖vj‖2
for all j, k = 1, . . . , s, where δ denotes the Dirac sequence such that δ(0) = 1 and
δ(k) = 0 for k �= 0.

Finally, define Vf :=[g̃�1,. . ., g̃
�
s] and D1 :=diag( ζ1

‖v1‖ , . . . ,
ζs

‖vs‖ ) for any ζ1, . . . , ζs ∈
T := {ζ ∈ C | |ζ| = 1}. It is straightforward to verify that Uf := D�

0VfD1 is the
desired unitary matrix. �

Setting ζ1= · · ·=ζs = 1 in the above proof, we see that D1=diag( 1
‖v1‖ ,. . .,

1
‖vs‖).

Define F
1/2
+ := {

√
x | x ∈ F, x � 0}. Then all D1’s constructed by employing

Lemma 2.2 in this paper can be chosen in such a way that all entries of D1’s are

from F
1/2
+ .

The role of Uf is to normalize the vector f by reducing f into a vector having
only one nonzero entry. Note that Uf does not affect the zero entries of f and there
exists a permutation matrix E such that

(2.2) [UfE]j,: = ([UfE]:,j)
T = ej , provided [f]j = 0.

Here, [A]j,:, [A]:,j denote the jth row, jth column of a matrix A, respectively, and
[f]j is the jth entry of a vector f. For simplicity, we also define Uf = Is for f = 0
and Uf = ∅ for f = ∅, where ∅ is the emptyset. Throughout the paper, up to a
permutationmeans there exists a permutation matrix E such that the identity holds
exactly with the corresponding matrix A being replaced by AE (e.g., see (2.3)).

As a direct consequence of Lemma 2.2, for a general r × s constant matrix F
taking the form F = GD0, we can construct a unitary matrix UF = D�

0VFD1 so
that FUF = [R,0] and up to a permutation,

(2.3) [UF ]j,: = ([UF ]:,j)
T = ej , provided [F ]:,j = 0,

which can be summarized as the following corollary.

Corollary 2.3. Let F = GD0 be an r× s matrix, where G is an r× s matrix with
all the entries in F and D0 is a nonsingular diagonal matrix with all the entries of
D0D

�
0 in F. Then there exists an s×s unitary matrix UF of the form UF = D�

0VFD1

such that UFU
�
F = Is and FUF = [R,0] for some lower triangular matrix R, where

VF is a nonsingular matrix with all the entries of VF in F and D1 is some diagonal
matrix with all the entries of D1D

�
1 in F.

Proof. The main idea is to apply Lemma 2.2 to F row by row.
Let f1 := [F ]1,: = [G]1,:D0 be the first row of F . By Lemma 2.2, we can

construct a unitary matrix U1 = D�
0V1Dr satisfying f1U1 = [‖f1‖, 0, . . . , 0] for

some nonsingular s× s matrix V1 ∈ Fs×s and some diagonal matrix Dr with all the
entries of DrD

�
r in F.

Next, let F1 = FU1. Then F1 = G1Dr with G1 = GD0D
�
0V1 ∈ Fr×s. Let

f2 := [F1]2,: = [G1]2,:Dr be the second row of F1. Applying Lemma 2.2 to f̃2 :=
[f2]2:s, the second row of F1 ignoring the first entry of f2, we can, through a
simple extension, find an s × s unitary matrix U2 = D�

rV2Dr−1 satisfying f2U2 =
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[[f2]1, ‖f̃2‖, 0, . . . , 0] for some nonsingular s×s matrix V2 ∈ Fs×s and some diagonal
matrix Dr−1 with all the entries of Dr−1D

�
r−1 in F.

Repeating the above procedure, we can construct a sequence of s × s unitary
matrices U1 = D�

0V1Dr, U2 = D�
rV2Dr−1, . . . , Ur = D�

2VrD1 by Lemma 2.2,
which reduce the matrix F to a lower triangular matrix. That is FU1 · · ·Ur =
[R,0] for some lower triangular matrix R. Let UF := D�

0VFD1 with VF :=
V1DrD

�
r · · ·Vr−1D2D

�
2Vr. Then UF is a desired matrix. �

Let p be a 1× s vector of Laurent polynomials taking the form p(z) = q0(z)D0.
Suppose fsupp(p) = [�, h] with h− � > 0. Then p can be written as

p(z) = f�z
� + · · ·+ fhz

h = (g�z
� + · · ·+ ghz

h)D0, z ∈ C\{0}.
Suppose that p is paraunitary, i.e., p(z)p�(z) = 1 for all z ∈ C\{0}. For the row
vector f�, we can construct a unitary matrix Uf� by Lemma 2.2 such that Uf�U

�
f�

=
Is and f�Uf� = [‖f�‖, 0, . . . , 0]. Because pp� = 1, we have 〈f�Uf� , fhUf�〉 = 0.
Consequently, fhUf� must take the form fhUf� = [0, ∗, . . . , ∗], where ∗ denotes
some number in F. Using a diagonal matrix D(z) := diag(1, z−1, . . . , z−1), we can
reduce the length of p by 1. Replacing p by pUf�D and repeating this procedure,
we can reduce the length of p step by step to 0. This is the main idea to prove
Theorem 2.1 for the case r = 1. The same idea, by employing Corollary 2.3 instead
of Lemma 2.2, yields the following proof of Theorem 2.1.

Proof of Theorem 2.1. The sufficiency part is trivial. We next prove the necessity
part. Suppose that P takes the form in (2.1) and P(z)P�(z) = Ir for all z ∈ C\{0}.
Assume that fsupp(P) = [�, h] with h− � > 0. Then P = Q0D0 takes the form

P(z) = F�z
� + · · ·+ Fhz

h = (G�z
� + · · ·+Ghz

h)D0, z ∈ C\{0},
where Fj , Gj for j = �, . . . , h are r× s constant matrices and Q0(z) = G�z

� + · · ·+
Ghz

h. We now perform the following steps to reduce the length of P by at least 1.

(1) Since F� = G�D0 �= 0, by Corollary 2.3, we can construct a unitary matrix
UF�

of the form UF�
= D�

0VF�
D1 such that UF�

U�
F�

= Is and F�UF�
= [R,0],

where VF�
is a nonsingular matrix with all the entries in F, D1 is a diagonal

matrix with all the entries of D1D
�
1 in F, and R is an r×m lower triangular

matrix with m being the rank of F�.
(2) In view of the paraunitary property, P(z)P�(z) = Ir for all z ∈ C\{0}

deduces that (F�UF�
)(FhUF�

)� = 0. Hence, PUF�
must take the following

form:

P(z)UF�
= [R,0R̃]z

� + · · ·+ [0R, R̃]zh, z ∈ C\{0},
where 0R is the r ×m zero matrix having the same size as R.

(3) Define D0(z) := diag(1m, z−11s−m) and P̃(z) := P(z)UF�
D0(z). Here 1m

denotes the 1 × m row vector [1, . . . , 1]. Then P̃(z) = Q1(z)D1, with
Q1(z) := Q0(z)D0D

�
0VF�

D0(z) being an r × s matrix of Laurent polynomi-

als in F[z, z−1], satisfies fsupp(P̃) = [�, h− 1]. Define A0(z) := UF�
D0(z) =

D�
0V0(z)D1 with V0(z) := VF�

D0(z). Then A0(z) is paraunitary.

Repeating the above steps, we can construct a sequence of paraunitary matrices
Aj(z) = D�

jVj(z)Dj+1, j = 0, . . . , J such that PA0 · · ·AJ = [Ir,0]. Define Pe :=
A�
J · · ·A�

0. Then it is easy to show that Pe takes the form as in Item (iii). Items
(i) – (iii) follow directly from the above construction. Item (iv) follows from the
property of UF�

in (2.3). �
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Based on the constructive proof of Theorem 2.1, we provide an algorithm (see
Algorithm 1) for the matrix extension problem without symmetry constraint. In
the algorithm and this paper, for an r × s matrix P(z) =

∑
k∈Z

Pkz
k of Laurent

polynomials, coeff(P, k) refers to the coefficient matrix Pk of zk.

Algorithm 1. Matrix Extension without Symmetry Constraint

(a) Input. An r × s paraunitary matrix P = Q0D0 as in Theorem 2.1.
(b) Output. A paraunitary extension matrix Pe satisfying Items (i) – (iv) of

Theorem 2.1.
(c) Initialization. P̃ ← P. Pe ← Is. D1 ← D0. J ← 0.
(d) Support Reduction.

1: while len(P̃) �= 0 do

2: [�, h] ← fsupp(P̃). F ← coeff(P̃, �). F is of the form F = GD1.
3: Construct UF by Corollary 2.3 such that UFU

�
F = Is, UF = D�

1VFD2, and
FUF = [R,0] for an r×m lower triangular matrix R with m being the rank
of F .

4: D(z) ← diag(1m,1s−mz−1).

5: P̃ ← P̃UFD. PJ ← (VFDD2D
�
2)

�. Pe ← (UFD)
�Pe.

6: D1 ← D2. J ← J + 1.
7: end while

(e) Finalization.

8: F ← coeff(P̃, �), where fsupp(P̃) = [�, �] since len(P̃) = 0. Construct UF by
Corollary 2.3 such that UFU

�
F = Is, UF = D�

1VFD2, and FUF = [Ir,0].
9: D(z) ← z−�Is. Pe ← (UFD)

�Pe. PJ+1 ← (VFD)
�. De ← D�

2 .

3. Application to orthogonal wavelet filter banks

In this section, we shall discuss the application of our result on the matrix
extension problem without symmetry in Section 2 to d-orthogonal wavelet filter
banks in electronic engineering and wavelet analysis. We shall also explain in this
section why our formulation of the matrix extension problem over a general field
leads to a satisfactory solution to the construction of orthogonal wavelet filter banks
over algebraic number fields.

Let us first recall some definitions and notation. We say that d is a dilation factor
if d is an integer with |d| > 1. For simplicity of presentation, we further assume that
d is positive, while the case of a negative dilation factor can be handled similarly
by a slight modification of the statements in this paper.

Recall that in this paper F always denotes a general subfield of C satisfying
(1.1). A filter a = {a(k)}k∈Z : Z → Fr×r with multiplicity r is a finitely supported
sequence of r×r matrices on Z. The z-transform or symbol of the filter a is defined
to be

a(z) :=
∑
k∈Z

a(k)zk, z ∈ C\{0},

which is a matrix of Laurent polynomials with coefficients in Fr×r. Moreover, the
polyphase components of a (or a) are defined by

(3.1) a[γ](z) :=
∑
k∈Z

a(γ + dk)zk, γ ∈ Z.
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We say that a (or a) is a d-orthogonal wavelet filter if

(3.2)

d−1∑
γ=0

a[γ](z)a[γ](z)� = d−1Ir, z ∈ C\{0}.

Let b1, . . . , bd−1 : Z → Cr×r be filters with multiplicity r. We say that the
set of filters {a; b1, . . . , bd−1} is a d-orthogonal wavelet filter bank if the following
polyphase matrix

(3.3) P(z) =
√
d

⎡
⎢⎢⎢⎢⎣

a[0](z) · · · a[d−1](z)

b
[0]
1 (z) · · · b

[d−1]
1 (z)

...
. . .

...

b
[0]
d−1(z) · · · b

[d−1]
d−1 (z)

⎤
⎥⎥⎥⎥⎦ , z ∈ C\{0}

is paraunitary; that is, P(z)P�(z) = Idr for all z ∈ C\{0}, where each b
[γ]
m is a

polyphase component of bm defined similarly as in (3.1) for m, γ = 0, . . . , d − 1,
respectively. Without any a priori condition, any wavelet filter bank naturally
corresponds to a frequency-based framelet in the distribution space; see Han [7] for
more detail.

There are two major tasks in the construction of orthogonal wavelet filter banks.
One is to construct a d-orthogonal wavelet low-pass filter a with some desirable
properties, and the other is to derive the associated high-pass filters b1, . . . , bd−1

from a given d-orthogonal wavelet low-pass filter a so that {a; b1, . . . , bd−1} is a
d-orthogonal wavelet filter bank.

The matrix extension problem plays a major role in the second part for deriving
the high-pass filters b1, . . . , bd−1 from a given d-orthogonal wavelet low-pass filter a.
As an application of Theorem 2.1, we can construct the high-pass filters b1, . . . , bd−1

systematically when the d-orthogonal wavelet filter a is given. In fact, let P :=√
d[a[0], . . . , a[d−1]] =:

√
dQ0. Then P = Q0D0, with D0 :=

√
dIs, satisfies the

conditions in Theorem 2.1. Thus, we can extend P to a full paraunitary matrix
Pe(z) =: P(z) as in (3.3), from which it is not difficult to construct high-pass
filters b1, . . . , bd−1; see (5.11). More importantly, Theorem 2.1 guarantees that the
coefficients of the high-pass filters are not “far away” from the field generated by
the coefficients of the low-pass filter. This is summarized in Theorem 3.1 as follows.
For its proof, see the proof of the more detailed version in Theorem 5.2 of Section 5.

Theorem 3.1. Let a : Z → Fr×r be a d-orthogonal wavelet low-pass filter with
multiplicity r. Then there exist high-pass filters b1, . . . , bd−1 : Z → Cr×r such

that {a; b1, . . . , bd−1} forms a d-orthogonal wavelet filter bank and bm = Dmb̃m for

m = 1, . . . , d − 1, where b̃m : Z → Fr×r has coefficients in F and Dm is some
diagonal matrix with all the entries of DmD�

m in F.

Algorithm 3 in Section 5 provides the detail for the construction of the high-
pass filters b1, . . . , bd−1 in Theorem 3.1 and see Examples 6.1 – 6.4 in Section 6 for
the illustration. In the rest of this section we shall explain why almost all finitely
supported d-orthogonal wavelet filters have coefficients from an algebraic number
field, and why our formulation of the matrix extension problem over a general field
is satisfactory.

Assume that we are looking for a d-orthogonal wavelet filter a with multiplicity r
such that fsupp(a) ⊆ [m,n]. Regard the entries in the matrices a(k), k = m, . . . , n as
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unknowns. Then the orthogonality condition in (3.2) induces a system of quadratic
equations with rational coefficients. Finding a Gröbner basis of the system and
setting the unconstrained unknowns in the Gröbner basis to be numbers from an
algebraic number field (or simply from the rational number field), we see that all the
unknowns are roots of polynomials with coefficients from some algebraic number
fields. Consequently, by solving a system of quadratic equations with rational
coefficients induced by (3.2), all the coefficients of a d-orthogonal wavelet filter
are from certain algebraic number field. This more or less explains why all finitely
supported d-orthogonal wavelet filters known in the literature have their coefficients
from certain algebraic number field. See [1, 2, 3, 4, 5, 6, 8, 12, 13, 18] and Section 6
for many such examples. In particular, [8] provides a systematic construction for
d-orthogonal wavelet low-pass filters with linear-phase moments and/or symmetry.

Now we assume that a is a finitely supported d-orthogonal wavelet filter such
that all its coefficients are from an algebraic number field A. It is quite appealing
and desirable that one can derive a d-orthogonal wavelet filter bank {a; b1, . . . , bd−1}
such that all the coefficients of b1, . . . , bd−1 are also from the same algebraic number
field A. However, as demonstrated by many examples available in the literature and
obtained by brute force calculation using Gröbner bases in symbolic computation,
such a requirement is too strong or ideal to be feasible. For the convenience of the
reader, we provide a simple example here to illustrate this.

Example 3.2. Let d = 3 and a be given by a(z) = 1
3 (1 + z + z2). Then all the

coefficients of a are in the rational number field Q, and it is easy to show that a is
3-orthogonal. Suppose that b1 and b2 are two high-pass filters such that {a; b1, b2}
forms a 3-orthogonal wavelet filter bank. It is very much desired in both theory
and application that max(len(b1), len(b2)) � len(a) = 2 (most d-orthogonal wavelet
filter banks in the literature satisfy this property). In our case, we wish to construct
high-pass filters b1 and b2 with coefficients in Q and with length no more than 2. In
terms of polyphase components, this is equivalent to requiring that the polyphase
matrix should take the form

P(z) =
√
d

⎡
⎢⎣
a[0](z) a[1](z) a[2](z)

b
[0]
1 (z) b

[1]
1 (z) b

[2]
1 (z)

b
[0]
2 (z) b

[1]
2 (z) b

[2]
2 (z)

⎤
⎥⎦ =

√
3

⎡
⎣

1
3

1
3

1
3

t1z
m t2z

m t3z
m

s1z
n s2z

n s3z
n

⎤
⎦ ,

where t1, t2, t3, s1, s2, s3 ∈ Q and m,n ∈ Z. It is straightforward to see that the
orthogonality condition P(z)P�(z) = I3 for all z ∈ C\{0} implies

(3.4) t1 + t2 + t3 = 0, t21 + t22 + t23 = 1
3 .

So, we need to find a rational solution {t1, t2, t3} to the system of equations in (3.4).

Solving (3.4), we have t1 = x, t2 = −x
2±

√
6−27x2

6 , and t3 = −x
2∓

√
6−27x2

6 , where x is
a free parameter. To have a solution such that t1, t2, t3 ∈ Q, we must require x ∈ Q

and
√
6− 27x2 ∈ Q. Equivalently, we need to find a rational point (x, y) ∈ Q2

satisfying the equation 27x2+y2−6 = 0, which defines an algebraic curve. Finding
a rational point on an algebraic curve is a major task in computational algebraic
geometry. In other words, our question becomes whether or not the algebraic
curve 27x2 + y2 − 6 = 0 on R2 contains a rational point (x, y) ∈ Q2. Using the
package algcurves in maple, we find that the algebraic curve 27x2+y2−6 = 0 has
genus 0 and is irreducible. Therefore, the algebraic curve has a parametrization.
Using parametrization in the software maple for symbolic computation, from
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the parametrization of the algebraic curve 27x2 + y2 − 6 = 0, we conclude that
the algebraic curve does not contain any rational point (x, y) ∈ Q2. This shows
that it is impossible to have a 3-orthogonal wavelet filter bank {a; b1, b2} such that
max(len(b1), len(b2)) � len(a) and b1, b2 have rational coefficients. In fact, the
above argument shows that if b is a 3-orthogonal high-pass filter to a and b has
rational coefficients, then we must have len(b) � 3 > len(a).

On the other hand, if we relax the “rational coefficients” condition to “ratio-
nal coefficients up to a multiplicative constant”, we have the following solution:

m = n = 0, t1 =
√
6
6 , t2 = 0, t3 = −

√
6
6 , s1 =

√
2
6 , s2 = −

√
2
3 , s3 =

√
2
6 . The

corresponding high-pass filters are given by

b1(z) =
√
6
6 (1− z2), b2(z) =

√
2
6 (1− 2z + z2),

each of which has coefficients in Q up to a multiplicative constant and len(b1) =
len(b2) = len(a).

To appreciate our results and our formulation of the matrix extension problem,
in the following let us look at the multilevel wavelet transform. To do so, let us
introduce some notation and definitions.

The multilevel wavelet transform is implemented by using the subdivision oper-
ator for reconstruction and the transition operator for decomposition. For a filter
a : Z → Fr×r with multiplicity r, the subdivision operator Sa,d : (l2(Z))

1×r →
(l2(Z))

1×r is defined to be

(3.5) [Sa,dv](n) := d
∑
k∈Z

v(k)a(n− dk), n ∈ Z, v ∈ (l2(Z))
1×r

and the transition operator Ta,d : (l2(Z))
1×r → (l2(Z))

1×r is defined to be

(3.6) [Ta,dv](n) := d
∑
k∈Z

v(k)a(k − dn)
T
, n ∈ Z, v ∈ (l2(Z))

1×r.

For a positive integer J , the J-level discrete wavelet decomposition is given by

vj−1 =
√
d
d Ta,dvj and wj−1;m =

√
d
d Tbm,dvj , m = 1, . . . , d− 1; j = J, . . . , 1,

where vJ : Z → C1×r is an input signal in (l2(Z))
1×r. Moreover, entries in v0

are called low-pass wavelet coefficients and entries in wj−1;m are called high-pass
wavelet coefficients.

The J-level discrete wavelet reconstruction is given by

v̊j =
√
d
d Sa,dv̊j−1 +

√
d
d

d−1∑
m=1

Sbm,dẘj−1;m, j = 1, . . . , J.

Suppose that {a; b1, . . . , bd−1} is a d-orthogonal wavelet filter bank. Then we can
deduce from the identity P(z)P�(z) = Ir for all z ∈ C\{0} that

Sa,dTa,dv +
d−1∑
m=1

Sbm,dTbm,dv = dv, v ∈ (l2(Z))
1×r.

Noting that ‖Tbm,dv‖2(l2(Z))1×r = 〈Tbm,dv, Tbm,dv〉 = 〈Sbm,dTbm,dv, v〉, we now have

the following energy preserving equality:

‖vJ‖2(l2(Z))1×r = ‖v0‖2(l2(Z))1×r +
J∑

j=1

d−1∑
m=1

‖wj−1;m‖2(l2(Z))1×r .
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Moreover, if nothing is performed on the wavelet coefficients, i.e., v̊0 = v0 and
ẘj−1;m = wj−1;m for all m = 1, . . . , d− 1 and J = 1, . . . , J , then we must have the
perfect reconstruction property: v̊J = vJ , that is, the original input signal vJ can
be exactly reconstructed.

We now explain that our formulation of the matrix extension problem over a gen-
eral field leads to a satisfactory solution to the construction of orthogonal wavelet
filter banks.

Suppose that a : Z → Ar×r is a d-orthogonal wavelet filter with multiplicity
r such that all the coefficients of a belong to an algebraic number field A (for
example, A = Q). By Theorem 3.1, we can construct a d-orthogonal wavelet filter
bank {a; b1, . . . , bd−1} such that the polyphase matrix P in (3.3) is paraunitary and

(3.7) bm = Dmb̃m, m = 1, . . . , d− 1,

where all the filters b̃m : Z → Ar×r, m = 1, . . . , d− 1 with multiplicity r have their
coefficients in A, and all Dm are r × r diagonal matrices with all the entries of
DmD�

m in A.
Let ṽJ := vJ . We modify the J-level discrete wavelet decomposition as follows:

ṽj−1 := Ta,dṽj and w̃j−1;m := Tb̃m,dṽj

for j = J, . . . , 1 and m = 1, . . . , d− 1. Then we have the following relations:

vj−1 = d(j−1−J)/2ṽj−1, wj−1;m = d(j−1−J)/2w̃j−1;mD�
m

for m = 1, . . . , d−1, j = 1, . . . , J . That is, the original wavelet coefficients vj−1 and
wj−1;m are simply scaled versions of the new wavelet coefficients ṽj−1 and w̃j−1;m.
Suppose that the input signal vJ also has its entries from the algebraic number
field A (in fact, the coefficients of vJ are often rational numbers). Then all the
new wavelet coefficients ṽj−1 and w̃j−1;m can be efficiently computed using integer
arithmetics and matrix/vector operations in linear algebra. Also, by the definition
of the transition operator in (3.5) and the relation in (3.7), we see that the J-level
discrete wavelet reconstruction can be modified by

(3.8) ˚̃vj = d−1Sa,d
˚̃vj−1 + d−1

d−1∑
m=1

Sb̃m,d(
˚̃wj−1;mD�

mDm), j = 1, . . . , J.

Since all the entries of the diagonal matrices D�
mDm are from A, the above modified

J-level discrete wavelet reconstruction in (3.8) can be also efficiently implemented
using integer arithmetics and matrix/vector operations in linear algebra. Moreover,

if nothing is performed on the new wavelet coefficients, i.e., ˚̃v0 = ṽ0 and ˚̃wj−1;m =
w̃j−1;m for all m = 1, . . . , d − 1 and j = 1, . . . , J , then we must have the perfect

reconstruction property: ˚̃vJ = ṽJ = vJ ; that is, the original input signal vJ can be
exactly reconstructed by the modified discrete wavelet transform.

4. The matrix extension problem with symmetry constraint

In this section, we shall investigate the matrix extension problem with symmetry
constraint over a general subfield F of C satisfying (1.1). The matrix extension
problem with symmetry constraint is much more challenging than its counterpart
without the symmetry constraint in Section 2. Extra effort is needed to guarantee
the symmetry structure of the extension matrix. Let us first recall some necessary
notation and definitions related to symmetry of Laurent polynomials.
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Let p(z) =
∑

k∈Z
pkz

k, z ∈ C\{0} be a Laurent polynomial with complex coeffi-
cients pk ∈ C. We say that p has symmetry if its coefficient sequence {pk}k∈Z has
symmetry; more precisely, there exist ε ∈ {−1, 1} and c ∈ Z such that

(4.1) pc−k = εpk ∀ k ∈ Z.

If ε = 1, then p is symmetric about the point c/2; if ε = −1, then p is antisymmet-
ric about the point c/2. Symmetry of a Laurent polynomial can be conveniently
expressed using a symmetry operator S defined by

(4.2) Sp(z) :=
p(z)

p(z−1)
, z ∈ C\{0}.

When p is not identically zero, it is evident that (4.1) holds if and only if Sp(z) =
εzc. For the zero polynomial, it is very natural that S0 can be assigned any sym-
metry pattern; that is, for every occurrence of S0 appearing in an identity in this
paper, S0 is understood to take an appropriate choice of εzc for some ε ∈ {−1, 1}
and c ∈ Z so that the identity holds. If P is an r× s matrix of Laurent polynomials
with symmetry, then we can apply the operator S to each entry of P; that is, SP is
an r × s matrix such that [SP]j,k := S([P]j,k) for 1 � j � r and 1 � k � s.

For two matrices P and Q of Laurent polynomials with symmetry, even though
all the entries in P and Q have symmetry, their sum P + Q, difference P − Q, or
product PQ, if well defined, generally may not have symmetry anymore. This is one
of the difficulties for matrix extension with symmetry. In order for P±Q or PQ to
possess some symmetry, the symmetry patterns of P and Q should be compatible.
For example, if SP = SQ; that is, both P and Q have the same symmetry pattern,
then indeed P ± Q has symmetry and S(P ± Q) = SP = SQ. In the following, we
discuss the compatibility of symmetry patterns of matrices of Laurent polynomials.
For an r × s matrix P of Laurent polynomials with symmetry, we say that the
symmetry of P is compatible or P has compatible symmetry, if

(4.3) SP(z) = (Sθ1)
�(z)Sθ2(z),

for some 1× r vector θ1 and 1× s vector θ2 of Laurent polynomials with symmetry.
For an r×s matrix P and an s×t matrix Q of Laurent polynomials with symmetry,
we say that (P,Q) has mutually compatible symmetry if

(4.4) SP(z) = (Sθ1)
�(z)Sθ(z) and SQ(z) = (Sθ)�(z)Sθ2(z)

for some 1×r, 1×s, 1×t row vectors θ1, θ, θ2 of Laurent polynomials with symmetry,
respectively. If (P,Q) has mutually compatible symmetry as in (4.4), then it is
easy to verify that their product PQ has compatible symmetry and in fact S(PQ) =
(Sθ1)

�Sθ2. An s × s matrix V of Laurent polynomials is strongly invertible if V−1

is also a matrix of Laurent polynomials, or equivalently, the determinant of V is a
nonzero monomial.

Our main result in this section is as follows:

Theorem 4.1. Let P be an r × s matrix, with 1 � r � s, of Laurent polynomials
taking the form

(4.5) P(z) = Q0(z)D0, z ∈ C\{0},

where Q0 is an r× s matrix of Laurent polynomials in F[z, z−1] and D0 is an s× s
diagonal matrix with all the entries of D0D

�
0 in F. Then:
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(1) the symmetry pattern of P is compatible: SP = (Sθ1)
�Sθ2 for some 1 × r

vector θ1 and some 1× s vector θ2 of Laurent polynomials with symmetry;
(2) P is paraunitary: P(z)P�(z) = Ir for all z ∈ C\{0},

if and only if, there exists an s×s square extension matrix Pe of Laurent polynomials
such that

(i) [Ir,0]Pe = P; that is, the submatrix of the first r rows of Pe is P;
(ii) Pe is paraunitary: Pe(z)P

�
e(z) = Is for all z ∈ C\{0};

(iii) the symmetry pattern of Pe is compatible: SPe = (Sθ)�Sθ2 for some 1 × s
vector θ of Laurent polynomials with symmetry;

(iv) Pe can be represented as a product of some s× s elementary matrices:

(4.6) Pe(z) = DePJ+1(z)PJ (z) · · ·P1(z)P0(z)D0, z ∈ C\{0},

where
(a) De is an s× s diagonal matrix with all the entries of DeD

�
e in F;

(b) Pj, 1 � j � J are elementary: Pj is strongly invertible, has coefficients
in F, and fsupp(Pj) ⊆ [−1, 1];

(c) (Pj+1,Pj) is mutually compatible for all 0 � j � J ;
(d) P0 = U�

Sθ2
and PJ+1 = diag(USθ1 , Is−r), where USθ1 and USθ2 are

products of a permutation matrix with a diagonal matrix of monomials,
as defined in (4.7);

(e) the length of Pe is controlled by that of P in the following sense:

len([Pe]j,k) � max
1�n�r

len([P]n,k) for 1 � j, k � s.

We make some remarks about Theorem 4.1. The integer J in item (iv) of Theo-
rem 4.1 always satisfies J � �len(P)/2�. Here �·� denotes the ceiling function such
that �x� = n if n− 1 < x � n for some integer n. Each of the elementary matrices
Pj , j = 1, . . . , J is a product of a constant diagonal matrix in F and a matrix of
Laurent polynomials in F[z, z−1] with its length no greater than 2. The matrices P0

and PJ+1 are two matrices of Laurent polynomials in F[z, z−1] reducing the sym-
metry pattern of P into a standard simplified form. For more detail, see subsections
below and Algorithm 2.

Theorem 4.1 states that an r × s paraunitary matrix P having compatible sym-
metry can be extended into a square paraunitary matrix Pe having a special cascade
structure as in (4.6) and having compatible symmetry structure. In the rest of this
section, we shall prove Theorem 4.1 and provide an algorithm for it (for its illustra-
tion, see Examples 6.1 – 6.4 in Section 6). We follow the main idea in the proof of
[10, Theorem 1]. The key difference is that we need to take into account the special
form of P = QD0 and construct paraunitary matrices having certain form as well.
The proof for the sufficiency part of Theorem 4.1 is straightforward. The proof for
the necessity part is constructive with three major steps—initialization, support
reduction, and finalization—for deriving a desired matrix Pe in Theorem 4.1 from
P. The step of initialization normalizes the symmetry pattern of P to a standard
form. The step of support reduction is the main body of the proof, producing a
sequence of elementary matrices A1, . . . ,AJ that reduce the length of P to 0. The
step of finalization generates the desired matrix Pe as in Theorem 4.1. The fol-
lowing subsections provide details for the three major steps and the corresponding
algorithm.
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4.1. Initialization. Let θ be a 1×s row vector of Laurent polynomials with symme-
try such that Sθ = [ε1z

c1 , . . . , εsz
cs ] for some ε1, . . . , εs ∈ {−1, 1} and c1, . . . , cs ∈

Z. Then the symmetry of every entry in the vector θdiag(z−�c1/2�, . . . , z−�cs/2�)
belongs to {±1,±z−1}. Moreover, there is a permutation matrix Eθ to regroup
these four types of symmetries together so that

(4.7) S(θUSθ) = [1s1 ,−1s2 , z
−11s3 ,−z−11s4 ],

where USθ := diag(z−�c1/2�, . . . , z−�cs/2�)Eθ and s1, . . . , s4 are nonnegative integers
uniquely determined by Sθ such that s1 + · · ·+ s4 = s.

Since P satisfies SP = (Sθ1)
�Sθ2, the matrix P̃ := U�

Sθ1
PUSθ2 must have the

symmetry pattern

(4.8) SP̃ = [1r1 ,−1r2 , z1r3 ,−z1r4 ]
T[1s1 ,−1s2 , z

−11s3 ,−z−11s4 ].

Note that USθ1 and USθ2 do not increase the length of P. Moreover,

P̃ = U�
Sθ1PUSθ2 = U�

Sθ1Q0D0USθ2 = U�
Sθ1Q0USθ2(U

�
Sθ2D0USθ2) =: Q̃D̃0,

where D̃0 := U�
Sθ2

D0USθ2 is a diagonal constant matrix with all the entries of D̃0D̃
�
0

in F.

4.2. Support reduction. P̃ takes the following form:
(4.9)

P̃ =

⎡
⎢⎢⎣

F11 −F21 G31 −G41

−F12 F22 −G32 G42

0 0 F31 −F41

0 0 −F32 F42

⎤
⎥⎥⎦ z−k +

⎡
⎢⎢⎣

F51 −F61 G71 −G81

−F52 F61 −G72 G82

G11 −G21 F71 −F81

−G12 G22 −F72 F82

⎤
⎥⎥⎦ z−k+1

+

k−2∑
n=2−k

coeff(P̃, n)zn+

⎡
⎢⎢⎣

F51 F61 G31 G41

F52 F61 G32 G42

G51 G61 F71 F81

G52 G62 F72 F82

⎤
⎥⎥⎦ zk−1 +

⎡
⎢⎢⎣

F11 F21 0 0
F12 F22 0 0

G11 G21 F31 F41

G12 G22 F32 F42

⎤
⎥⎥⎦ zk

with at least one of coeff(P̃, k) and coeff(P̃,−k) being nonzero, where k � 1 is an
integer, all Fj�’s and Gj�’s are constant matrices in F, and F11, F22, F31, F42 are
constant matrices of size r1 × s1, r2 × s2, r3 × s3, r4 × s4, respectively.

We next construct an s×s paraunitary matrix AP̃ having the following properties:

(1) AP̃ = D̃�
0VP̃D̃1 for some strongly invertible matrix VP̃ of Laurent polynomi-

als in F[z, z−1] and some diagonal matrix D̃1 with all the entries of D̃1D̃
�
1

in F;
(2) fsupp(AP̃) ⊆ [−1, 1] and len(P̃AP̃) = len(P̃)− len(AP̃); that is, AP̃ is elemen-

tary and reduces the length of P by that of AP̃;

(3) AP̃ has compatible symmetry and P̃AP̃ satisfies

S(P̃AP̃) = [1r1 ,−1r2 , z1r3 ,−z1r4 ]
T[1s′1

,−1s′2
, z−11s′3

,−z−11s′4
],

for some nonnegative integers s′1, . . . , s
′
4 such that s′1 + · · ·+ s′4 = s;

(4) up to a permutation, [AP̃]j,: = ([AP̃]:,j)
T = ej , provided [P̃]:,j = 0.

Recall that “up to a permutation” in the above item (4) means that there exists

a permutation matrix E such that [AP̃E]j,: = [AP̃E]:,j = ej provided [P̃]:,j = 0.
Such a paraunitary matrix AP̃ is of the form AP̃ = B[−k,k]BP̃1

. The construction of

B[−k,k] consists of two parts: {B1, . . . ,Br} and B(−k,k). The first part {B1, . . . ,Br}
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is constructed recursively for each of the r rows of P̃ so that P̃0 := P̃B1 · · ·Br reduces
P̃ to a special form as follows:

(4.10)

⎡
⎢⎢⎢⎣

0 0 G̃31 −G̃41

0 0 −G̃32 G̃42

0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦ z−k + · · ·+

⎡
⎢⎢⎢⎣

0 0 0 0
0 0 0 0

G̃11 G̃21 0 0

G̃12 G̃22 0 0

⎤
⎥⎥⎥⎦ zk.

If both coeff(P̃0,−k) �= 0 and coeff(P̃0, k) �= 0, then the second part B(−k,k) is

further constructed so that P̃1 := P̃0B(−k,k) satisfies either fsupp(P̃1) ⊆ [−k + 1, k]

or fsupp(P̃1) ⊆ [−k, k − 1]. BP̃1
is then constructed so that fsupp(P̃1BP̃1

) ⊆ [−k +

1, k − 1].

4.2.1. Construction of B[−k,k]. The following lemma is needed for the construction
of B1, . . . ,Br, and we postpone its proof to Section 7.

Lemma 4.2. Let p be a 1 × s row vector of Laurent polynomials with symmetry
satisfying p(z)p�(z) = 1 for all z ∈ C \ {0} and p(z) = q0(z)D0, z ∈ C\{0} for
some 1 × s vector q0 of Laurent polynomials in F[z, z−1] and some s × s diagonal
matrix D0 with all the entries of D0D

�
0 in F. Suppose fsupp(p) = [k1, k2] with

k2 − k1 � 2. Then there exists an s × s paraunitary matrix Bp satisfying all the
following properties:

(i) Bp = D�
0VD1 for some strongly invertible matrix V of Laurent polynomials

in F[z, z−1] and some diagonal matrix D1 with all the entries of D1D
�
1 in

F;
(ii) fsupp(Bp) = [−1, 1] and SBp = (Sp)�Sp; that is, Bp has compatible symme-

try with its coefficients supported inside [−1, 1];
(iii) fsupp(pBp) = [k1 + 1, k2 − 1] and S(pBp) = S(p); that is, Bp reduces the

length of p exactly by 2 and preserves the symmetry pattern of p;
(iv) for any vector p̃ of Laurent polynomials such that p̃(z)p�(z) = 0 for all z ∈

C\{0} and Sp̃(z) = εzk0Sp(z) for some ε ∈ {−1, 1} and some k0 ∈ Z, then
S(p̃Bp) = Sp̃ and fsupp(p̃Bp) ⊆ fsupp(p̃); that is, Bp keeps the symmetry
pattern of p̃ and does not increase the length of p̃;

(v) up to a permutation, [Bp]j,: = ([Bp]:,j)
T = ej, provided [p]j = 0.

Suppose that P̃ takes the form (4.9) with k � 1. If fsupp(P̃) = [−k, k − 1]

or fsupp(P̃) = [−k + 1, k], we simply let B[−k,k] := Is, P̃1 := P̃, and continue to
construct BP̃1

as in Section 4.2.2; otherwise, let us construct B1, . . . ,Br and B(−k,k)

as follows. Let pj := [P̃]j,: be the jth row of P̃ and B0 := Is. Suppose we have
constructed Bj−1 for j � 1. We first define qj := pjB0 · · ·Bj−1. Then Bj := Bqj if
fsupp(pj) = fsupp(qj) = [−k, k]; otherwise Bj := Is, where Bqj is constructed as in
Lemma 4.2. Let j ← j + 1 and repeat this process until j = r. Note that each Bj

is of the form Bj = D�
j−1VjDj for j = 1, . . . , r. Hence, P̃0 := P̃B1 · · ·Br preserves

the form and symmetry pattern of P̃ as P̃ = Q̃0D̃0. Moreover, by [10, Lemma 2],
the support of B1 · · ·Br is contained inside [−1, 1].

Thanks to the properties of Bj as in Lemma 4.2, P̃0 must take the form as in

(4.10). If both coeff(P̃0,−k) �= 0 and coeff(P̃0, k) �= 0, then the second part B(−k,k)

is further constructed so that P̃1 := P̃0B(−k,k) satisfies either fsupp(P̃1) ⊆ [−k+1, k]
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or fsupp(P̃1) ⊆ [−k, k − 1]. The following lemma is needed for us to construct
B(−k,k). We postpone its proof to Section 7 as well.

Lemma 4.3. Let (q1, q2) be a pair of 1 × s vectors of Laurent polynomials with
symmetry satisfying qj(z)q

�
� (z) = δ(j − �) for all z ∈ C\{0} and for j, � = 1, 2.

Suppose q1 = q̃1D0 and q2 = q̃2D0 for some 1 × s vectors q̃1, q̃2 of Laurent poly-
nomials in F[z, z−1] and some diagonal matrix D0 with all the entries of D0D

�
0

in F. Moreover, fsupp(q1) = [−k, k − 1] and fsupp(q2) = [−k + 1, k] with k � 1,
and Sq2(z) = εzSq1(z) = εz[1s1 ,−1s2 , z

−11s3 ,−z−11s4 ] for some ε ∈ {−1, 1} and
some nonnegative integers s1, . . . , s4 such that s1 + · · ·+ s4 = s. Then there exists
an s× s paraunitary matrix B(q1,q2) satisfying all the following properties:

(i) B(q1,q2) = D�
0V(q1,q2)D1 for some strongly invertible matrix V(q1,q2) of Lau-

rent polynomials in F[z, z−1] and some diagonal matrix D1 with all the
entries of D1D

�
1 in F;

(ii) SB(q1,q2) = [1s1 ,−1s2 , z1s3 ,−z1s4 ]
T[1s1 ,−1s2 , z

−11s3 ,−z−11s4 ] and sup-
port fsupp(B(q1,q2)) = [−1, 1]; that is, B(q1,q2) has compatible symmetry
with coefficients supported inside [−1, 1];

(iii) fsupp(q1B(q1,q2)) ⊆ [−k+1, k−1] and fsupp(q2B(q1,q2)) ⊆ [−k+1, k−1]; that

is, B(q1,q2) reduces the length of [qT1 , q
T
2 ]

T by 2. Moreover, S(q1B(q1,q2)) =
Sq1 and S(q2B(q1,q2)) = Sq2;

(iv) if both (p, q�1) and (p, q�2) have mutually compatible symmetry and pq�1 =
pq�2 = 0, then S(pB(q1,q2)) = Sp and fsupp(pB(q1,q2)) ⊆ fsupp(p); that is,
B(q1,q2) keeps the symmetry pattern of p and does not increase the length of
p;

(v) up to a permutation, [B(q1,q2)]j,: = ([B(q1,q2)]:,j)
T = ej, provided [q1]j =

[q2]j = 0.

Now, suppose P̃0 takes the form in (4.10). Let B(−k,k) := Is and P̃1 := P̃0. Pick

any two rows q1, q2 of P̃1 such that fsupp(q1) = [−k, k − 1] and fsupp(q2) = [−k +
1, k]. Then, the pair (q1, q2) satisfies all the conditions in Lemma 4.3. Hence, we
can construct a paraunitary matrix B(q1,q2) having the properties as in Lemma 4.3.

Replace B(−k,k) and P̃1 by B(−k,k)B(q1,q2) and P̃1B(q1,q2), respectively. Pick another
two rows (q1, q2) such that fsupp(q1) = [−k, k−1] and fsupp(q2) = [−k+1, k] from

the new matrix P̃1 and repeat the above process. Lemma 4.3 guarantees that this
process stops in finite steps and there will be no pair (q1, q2) of rows in P̃1 satisfying
fsupp(q1) = [−k, k − 1] and fsupp(q2) = [−k + 1, k]. Then P1 must take the form

as in (4.10) with at least one of coeff(P̃1,−k) and coeff(P̃1, k) being 0.

4.2.2. Construction of BP̃1
. BP̃1

is constructed to handle the case that fsupp(P̃1) =

[−k, k − 1] or fsupp(P̃1) = [−k + 1, k] so that fsupp(P̃1BP̃1
) ⊆ [−k + 1, k − 1].

If P̃1 := P̃B[−k,k] takes the form in (4.10) with coeff(P̃1,−k) = coeff(P̃1, k) = 0,

then we simply let BP̃1
:= Is; otherwise, one of coeff(P̃1,−k) and coeff(P̃1, k)

is nonzero. For this case, BP̃1
:= diag(U1W1, Is3+s4)E with U1 and W1 being

constructed with respect to coeff(P̃1, k) �= 0 or BP̃1
:= diag(Is1+s2 , U3W3)E with

U3 and W3 being constructed with respect to coeff(P̃1,−k) �= 0, where E is a

permutation matrix. Note that P̃1 is still of the form P̃1 = Q̃1D̃1 similar to P̃. The
matrices U1,W1, U3,W3, and E are constructed as follows.
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Let U1 := diag(UG̃1
, UG̃2

) and U3 := diag(UG̃3
, UG̃4

) with

G̃1 :=

[
G̃11

G̃12

]
, G̃2 :=

[
G̃21

G̃22

]
, G̃3 :=

[
G̃31

G̃32

]
, G̃4 :=

[
G̃41

G̃42

]
,

where UG̃1
, . . . , UG̃4

are unitary constant matrices constructed as in Corollary 2.3.
If G1G

�
1 = G2G

�
2, one can show that UG1

and UG2
can be constructed such that

G1UG1
= [R,0] and G2UG2

= [R,0].

Let m1 and m3 be the ranks of G̃1 and G̃3, respectively (m1 = 0 if coeff(P̃1, k) =

0, and m3 = 0 if coeff(P̃1,−k) = 0). Note that G̃1G̃
�
1 = G̃2G̃

�
2 and G̃3G̃

�
3 = G̃4G̃

�
4

in view of P̃1P̃
�
1 = Ir. The matrices W1 and W3 are then constructed to be:

W1 :=

⎡
⎢⎢⎣

U1 U2

Is1−m1

U2 U1

Is2−m1

⎤
⎥⎥⎦ , W3 :=

⎡
⎢⎢⎣

U3 U4

Is3−m3

U4 U3

Is4−m3

⎤
⎥⎥⎦ ,

where U1(z) = −U2(−z) := 1+z−1

2 Im1
and U3(z) = U4(−z) := 1+z

2 Im3
.

Let WP̃1
:= diag(U1W1, Is3+s4) for the case that coeff(P̃1, k) �= 0 or WP̃1

:=

diag(Is1+s2 , U3W3) for the case that coeff(P̃1,−k) �= 0. Then WP̃1
is parauni-

tary. By the symmetry pattern and paraunitary property of P̃1, WP̃1
reduces

the coefficient support of P̃1 to [−k + 1, k − 1], i.e., fsupp(P̃1WP̃1
) = [−k + 1,

k− 1]. Moreover, WP̃1
changes the symmetry pattern of P̃1 such that S(P̃1WP̃1

) =

[1r1 ,−1r2 , z1r3 ,−z1r4 ]
TSθ0 with

Sθ0 = [z−11m1
,1s1−m1

,−z−11m1
,−1s2−m1

,1m3
, z−11s3−m3

,−1m3
,−z−11s4−m3

].

E is then the permutation matrix such that

S(P̃1WP̃1
)E = [1r1 ,−1r2 , z1r3 ,−z1r4 , ]

TSθ̃0,

with Sθ̃0 = [1s1−m1+m3
, ,−1s2−m1+m3

, z−11s3−m3+m1
,−z−11s4−m3+m1

] = (Sθ0)E.

4.3. Finalization. In summary, AP̃ = B[−k,k]BP̃1
reduces the support of P̃ and

preserves the compatible symmetry of P̃. The properties (1), (3), and (4) of
AP̃ follow directly from the above construction while the support property (2)

of AP̃ follows from [10, Lemmas 1 and 2]. Replacing P̃ by P̃AP̃ and repeating
the above construction, we can construct paraunitary matrices A1, . . . ,AJ so that
(U�

Sθ1
PUSθ2)A1 · · ·AJ = [Ir,0]. Since each Aj is of the form Aj = D̃�

j−1VjD̃j for

some strongly invertible matrix Vj of Laurent polynomials in F[z, z−1] and some

diagonal matrices D̃j−1, D̃j with all the entries of D̃j−1D̃
�
j−1, D̃jD̃

�
j in F, it is easy

to show that the paraunitary extension matrix Pe := diag(USθ1 , Is−r)A
�
J · · ·A�

1U
�
Sθ2

takes the form as in (4.6) with Pj := D̃jD̃
�
jV

�
J for j = 1, . . . , J − 1, PJ := V�

J , and

De := diag(USθ1 , Is−r)D̃
�
Jdiag(U

�
Sθ1

, Is−r). All the properties of Pe follow directly
from the properties of each AP̃.

4.4. Algorithm. Based on the above three steps: initialization, support reduction,
and finalization, we present an algorithm (see Algorithm 2) for the matrix extension
problem with symmetry constraint.
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Algorithm 2. Matrix Extension with Symmetry Constraint

(a) Input. P = Q0D0 as in Theorem 4.1 with SP = (Sθ1)
�Sθ2 for some 1×r vector

θ1 and 1× s vector θ2 of Laurent polynomials with symmetry.
(b) Output. A desired extension matrix Pe satisfying all the properties in Theo-

rem 4.1.
(c) Initialization. P̃ ← U�

Sθ1
PUSθ2 . D1 ← U�

Sθ2
D0USθ2 . P0 ← U�

Sθ2
. J ← 1.

Then P̃ has the symmetry pattern as in (4.8), where all nonnegative integers
r1, . . . , r4, s1, . . . , s4 are uniquely determined by SP.

(d) Support Reduction.

1: while (len(P̃) > 0) do

2: P̃0 ← P̃. P̃1 ← P̃. [k1, k2] ← fsupp(P̃). AJ ← Is. k ← k2.
3: if k2 = −k1 then
4: for j = 1 to r do
5: q ← [P̃0]j,: and p ← [P̃]j,:. //the jth rows of P̃0 and P̃..
6: [�1, �2] ← fsupp(q). � ← �2 − �1. Bj ← Is.
7: if fsupp(q) = fsupp(p) and � � 2 and (�1 = k1 or �2 = k2) then
8: Bj ← Bq =: D�

1VqD2. //Bq is constructed by Lemma 4.2.

9: AJ ← AJBj . P̃0 ← P̃0Bj . D1 ← D2.
10: end if
11: end for
12: P̃0 must take the form in (4.10).

13: B(−k,k) ← Is. P̃1 ← P̃0. j1 ← 1. j2 ← r3 + r4 + 1.
14: while j1 � r1 + r2 and j2 � r do
15: q1 ← [P̃1]j1,:. q2 ← [P̃1]j2,:.
16: if coeff(q1,−k) = 0 then j1 ← j1 + 1 end if
17: if coeff(q2, k) = 0 then j2 ← j2 + 1 end if
18: if coeff(q1,−k) �= 0 and coeff(q2, k) �= 0 then
19: B(q1,q2) =: D�

1V(q1,q2)D2.//See Lemma 4.3 for the construction.

20: B(−k,k) ← B(−k,k)B(q1,q2). P̃1 ← P̃1B(q1,q2). AJ ← AJB(q1,q2). D1 ←
D2.

21: j1 ← j1 + 1. j2 ← j2 + 1.
22: end if
23: end while // end inner while loop
24: end if
25: P̃1 takes the form in (4.10) with either coeff(P̃1,−k) = 0 or coeff(P̃1, k) = 0.
26: BP̃1

=: D�
1VP̃D2. //See Section 4.2.2 for the construction.

27: AJ ← AJBP̃1
. Then AJ is of the form AJ = D̃�

1VJD̃2 and

SP̃ = [1r1 ,−1r2 , z1r3 ,−z1r4 ]
T[1s′1

,−1s′2
, z−11s′3

,−z−11s′4
],

for some nonnegative integers s′1, . . . , s
′
4.

28: for j = 1 to 4 do sj ← s′j end for

29: P̃ ← P̃AJ . PJ ← D̃2D̃
�
2V

�
J . D1 ← D2. J ← J + 1.

30: end while // end outer while loop

(e) Finalization. P̃ = diag(F1, F2, F3, F4)D1 = diag(F̃1, F̃2, F̃3, F̃4) for some rj ×
sj constant matrices Fj in F, j = 1, . . . , 4. Let U := diag(UF̃1

, UF̃2
, UF̃3

, UF̃4
) =

D�
1V0D2 so that P̃U = [Ir,0]. Define PJ := V �

0 , PJ+1 := diag(USθ1 , Is−r), and
De := PJ+1D

�
2P

�
J+1.
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5. Application to orthogonal wavelet filter banks

with symmetry structure

In this section, we shall discuss the application of our results on the matrix
extension problem with symmetry in Section 4 to the construction of d-orthogonal
wavelet filter banks with symmetry structure in electronic engineering and wavelet
analysis.

Symmetry of the filters in a filter bank is a very much desired property in many
applications. We say that a low-pass filter a with multiplicity r has symmetry if its
symbol a satisfies

(5.1) a(z) = diag(ε1z
dc1 , . . . , εrz

dcr )a(z−1)diag(ε1z
−c1 , . . . , εrz

−cr )

for some ε1, . . . , εr ∈ {−1, 1} and some c1, . . . , cr ∈ R such that

(5.2) dc� − cj ∈ Z ∀ �, j = 1, . . . , r.

Under the symmetry condition in (5.1), to apply Theorem 4.1, we first show
that there exists a suitable paraunitary matrix U acting on Pa := [a[0], . . . , a[d−1]]

so that P :=
√
dPaU has compatible symmetry. Note that Pa itself may not have

any symmetry. More importantly, P has a special structure P = Q0D0 and satisfies
all the conditions in Theorem 4.1.

Lemma 5.1. Let a : Z → Fr×r be a d-orthogonal wavelet filter with multiplicity r
whose symbol a satisfies the symmetry property in (5.1). Let Pa := [a[0], . . . , a[d−1]],
where a[0], . . . , a[d−1] are polyphase components of a. Then there exists a dr × dr
paraunitary matrix U such that P :=

√
dPaU satisfies the following properties:

(i) P = Q0D0 for some r × dr matrix Q0 of Laurent polynomials in F[z, z−1]
and some dr × dr diagonal matrix D0 with all the entries of D0D

�
0 in F;

(ii) P has compatible symmetry; that is SP = (Sθ1)
�Sθ2 for some 1 × r vector

θ1 and some 1× dr vector θ2 of Laurent polynomials with symmetry.

Proof. From (5.1), we deduce that

(5.3) [a[γ](z)]�,j = ε�εjz
Rγ

�,j [a[Q
γ
�,j](z−1)]�,j , γ = 0, . . . , d− 1; �, j = 1, . . . , r,

where γ,Qγ
�,j ∈ Γ := {0, . . . , d− 1} and Rγ

�,j , Q
γ
�,j are uniquely determined by

(5.4) dc� − cj − γ = dRγ
�,j +Qγ

�,j with Rγ
�,j ∈ Z, Qγ

�,j ∈ Γ.

Since dc�−cj ∈ Z for all �, j = 1, . . . , r, we have c�−cj ∈ Z for all �, j = 1, . . . , r and
therefore, Qγ

�,j is independent of �. Consequently, by (5.3), for every 1 � j � r, the

jth column of the matrix a[γ] is a flipped version of the jth column of the matrix

a[Q
γ
�,j]. Let κj,γ ∈ Z be the integer such that len([a[γ]]:,j + zκj,γ [a[Q

γ
�,j ]]:,j) is the

smallest. Define Pã := [ã[0], . . . , ã[d−1]] as follows:

(5.5) [ã[γ]]:,j :=

⎧⎪⎨
⎪⎩
[a[γ]]:,j , γ = Qγ

�,j ;
1√
2
([a[γ]]:,j + zκj,γ [a[Q

γ
�,j ]]:,j), γ < Qγ

�,j ;
1√
2
([a[γ]]:,j − zκj,γ [a[Q

γ
�,j ]]:,j), γ > Qγ

�,j ,

where [a[γ]]:,j denotes the jth column of a[γ]. Let U denote the unique transform
matrix corresponding to (5.5). It is easily seen that U is paraunitary and can be
rewritten as a product of a strongly invertible matrix of Laurent polynomials with
a diagonal matrix whose diagonal entries are either 1 or 1√

2
.
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Define P :=
√
dPã =

√
dPaU. Then item (i) holds. We now show that P has

compatible symmetry. Indeed, by (5.3) and (5.5),

(5.6) [Sã[γ](z)]�,j = sgn(Qγ
�,j − γ)ε�εjz

Rγ
�,j+κj,γ ,

where sgn(x) = 1 for x � 0 and sgn(x) = −1 for x < 0. By (5.4) and noting that
Qγ

�,j is independent of �, we have

[Sã[γ](z)]�,j
[Sã[γ](z)]n,j

= ε�εnz
Rγ

�,j−Rγ
n,j = ε�εnz

c�−cn , �, n = 1, . . . , r,

which is equivalent to saying that P has compatible symmetry. �

In view of Lemma 5.1 and Theorem 4.1, we have the following result.

Theorem 5.2. Let a : Z → Fr×r be a d-orthogonal wavelet filter with multiplicity
r whose symbol a satisfies the symmetry property in (5.1). Then there exist high-
pass filters b1, . . . , bd−1 : Z → Cr×r such that {a; b1, . . . , bd−1} forms a d-orthogonal

wavelet filter bank with bm = Dmb̃m, m = 1, . . . , d − 1, where b̃m : Z → Fr×r has
coefficients in F and Dm is a diagonal matrix with all the entries of DmD�

m in F.
Moreover, all filters bm, m = 1, . . . , d− 1, have the following symmetry property:

(5.7) bm(z) = diag(εm1 zdc
m
1 , . . . , εmr zdc

m
r )bm(z−1)diag(ε1z

−c1 , . . . , εrz
−cr ),

where cm� := (km� − k�) + c� ∈ R, εm� ∈ {−1, 1}, and km� , k� ∈ Z, for �, j = 1, . . . , r
and m = 1, . . . , d− 1.

Proof. Let Pa := [a[0], . . . , a[d−1]]. By Lemma 5.1, there exists a paraunitary matrix

U such that P :=
√
dPaU has compatible symmetry: SP = [ε1z

k1 , . . . , εrz
kr ]TSθ

for some k1, . . . , kr ∈ Z and some 1 × dr row vector θ of Laurent polynomials
with symmetry. Moreover, P is of the form P = Q0D0, where Q0 is a matrix of
Laurent polynomials in F[z, z−1] and D0 is a diagonal matrix with all the entries of
D0D

�
0 in F. Because a is a d-orthogonal wavelet filter, we have PaP

�
a = d−1Ir and

consequently P is a paraunitary matrix satisfying PP� = Ir. Now by Theorem 4.1,
there exists a paraunitary extension matrix Pe of the form Pe = DeQeD0 having
the following compatible symmetry pattern:
(5.8)

[ε1z
k1 , . . . , εrz

kr , ε11z
k1
1 , . . . , ε1rz

k1
r , . . . , zk

d−1
1 , . . . , εd−1

r zk
d−1
r ]TSθ(z) := SPe(z).

Rewrite Pe = (ã
[γ]
m )0�m,γ�d−1 as a d×d block matrix with r×r blocks ã

[γ]
m . Since

Pe has compatible symmetry as in (5.8), we have [Sã
[γ]
m ]�,: = εm� ε�z

km
� −k� [Sã[γ]]�,:

for � = 1, . . . , r and m = 1, . . . , d− 1. By (5.6), we have

(5.9) [Sã[γ]m (z)]�,j = sgn(Qγ
�,j − γ)εm� εjz

Rγ
�,j+kj,γ+km

� −k� , �, j = 1, . . . , r.

Let P := PeU
� :=

√
d(b

[γ]
m )0�m,γ�d−1 with b0 := a. By (5.9) and the definition of

U� in (5.5), we deduce that

(5.10) [b[γ]m (z)]�,j = εm� εjz
Rγ

�,j+km
� −k�

[
b
[Qγ

�,j ]
m (z−1)

]
�,j

.

This implies that [Sbm(z)]�,j = εm� εjz
d(km

� −k�+c�)−cj , which is equivalent to (5.7)
with cm� := km� − k� + c� for m = 1, . . . , d− 1 and � = 1, . . . , r.

Noting that De = diag(Ir, D1, . . . , Dd−1) for some diagonal matrices Dm with
all the entries of DmD�

m in F, we complete the proof. �
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To end this section, for a d-orthogonal wavelet low-pass filter a satisfying (5.1),
we provide an algorithm (see Algorithm 3) to construct the associated high-pass
filters b1, . . . , bd−1 such that they form a symmetric d-orthogonal wavelet filter
bank.

Algorithm 3. Construction of Wavelet High-Pass Filters with Symmetry Structure

(a) Input. A d-orthogonal wavelet filter a with symmetry as in (5.1) and coeffi-
cients in F.

(b) Output. A symmetric d-orthogonal wavelet filter bank {a, b1, . . . , bd−1} such
that P in (3.3) is paraunitary and all filters bm, m = 1, . . . , d−1, have symmetry

pattern satisfying (5.7). Moreover, bm = Dmb̃m, m = 1, . . . , d − 1, where

b̃m : Z → Fr×r has coefficients from F and Dm is a diagonal matrix with all the
entries of DmD�

m in F.
(c) Initialization. Let Pa := [a[0], . . . , a[d−1]] and construct U with respect to (5.5)

such that P :=
√
dPaU = Q0D0 for some matrix Q0 of Laurent polynomials

in F[z, z−1] and some diagonal matrix D0 with all the entries of D0D
�
0 in F.

Moreover, P has compatible symmetry: SP(z) = [ε1z
k1 , . . . , εrz

kr ]TSθ(z) for
some k1, . . . , kr ∈ Z and some 1× dr row vector θ of Laurent polynomials with
symmetry.

(d) Matrix Extension. Derive Pe having all the properties as in Theorem 4.1
from P by Algorithm 2.

(e) High-Pass Filters. Let P := PeU
� =:

√
d(b

[γ]
m )0�m,γ�d−1 as in (3.3) with

b0 := a. Define high-pass filters b1, . . . , bd−1 through their symbols by

(5.11) bm(z) :=

d−1∑
γ=0

b[γ]m (zd)zγ , m = 1, . . . , d− 1.

6. Illustrative examples

In this section we provide several examples to illustrate our algorithms and
results stated in previous sections.

Example 6.1. Let d = 3 and r = 1. A 3-orthogonal low-pass wavelet filter a is
given by its symbol a as follows (also see [2]):

a(z) = ( z
−1+1+z

3 )2
(
− 1

9z
−2 − 2

9z
−1 + 5

3 − 2
9z −

1
9z

2
)
.

All the coefficients of a are rational numbers and the filter a is symmetric about 0:
Sa = 1.

Applying Lemma 5.1, we obtain

Pa(z) :=[a[0](z), a[1](z), a[2](z)] = 1
81 [−4z−1+35− 4z, 8z−1+20− z,−z−2+20z−1+8]

and U that symmetrizes Pa is given by

U(z)=

⎡
⎣ 1 0 0

0 1√
2

1√
2

0 1√
2
z − 1√

2
z

⎤
⎦ .

Then P :=
√
3PaU = Q0D0 satisfies SP = [1, 1,−1] with Q0 and D0 being given by

Q0(z)=
1

162

[
−8z−1 + 70− 8z, 7z−1 + 40 + 7z, 9z−1 − 9z

]
, D0=diag(

√
3,
√
6,
√
6).
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Applying Algorithm 2 to P, we obtain a desired paraunitary matrix Pe =

DeQeD0 with De = diag( 1
162 ,

√
2

324 ,
√
6

108 ) and Qe as follows:

Qe(z) =

⎡
⎢⎣

−8z−1 + 70− 8z 7z−1 + 40 + 7z −9z−1 + 9z

40z−1 + 28 + 40z −35z−1 + 16− 35z −45z−1 + 45z

−8z−1 + 8z 7z−1 − 7z 9z−1 + 9z

⎤
⎥⎦ .

We have SPe = [1, 1,−1]T[1, 1,−1] and fsupp([Pe]:,j) ⊆ fsupp([P]j) for all 1 � j � 3.

Now, from the polyphase matrix P := PeU
� =:

√
3(b

[γ]
m )0�m,γ�2 with b0 := a, we

derive two high-pass filters b1, b2 as follows:

b1(z) =
√
2

162 (5z
−4 + 20z−3 − 40z−2 + 8z−1 + 14 + 8z − 40z2 + 20z3 + 5z4),

b2(z) =
√
6

54 (z
−4 + 4z−3 − 8z−2 + 8z2 − 4z3 − z4).

The high-pass filter b1 is symmetric about 0: Sb1 = 1, while the high-pass filter b2
is antisymmetric about 0: Sb2 = −1. Note that len(b1) = len(b2) = len(a) = 8.

Example 6.2. Let d = 5 and r = 1. A 5-orthogonal wavelet low-pass filter a is
given by its symbol a as follows:

a(z) = ( z
−2+z−1+1+z+z2

5 )2(− 2
3z

−2 + 2
3z

−1 + 1 + 2
3z −

2
3z

2).

All the coefficients of a are rational numbers and the filter a is symmetric about 0:
Sa = 1.

Applying Lemma 5.1, we obtain

Pa(z) := [a[0](z), . . . , a[4](z)]

= 1
75 [−2z−1+19− 2z, z−1+16− 2z, 6z−1+9, 9z−1+6,−2z−2+16z−1+1]

and U that symmetrizes Pa is given by

U(z)=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1√

2
0 0 1√

2

0 0 1√
2

1√
2

0

0 0 1√
2

− 1√
2

0

0 1√
2
z 0 0 − 1√

2
z

⎤
⎥⎥⎥⎥⎥⎦
.

Then P :=
√
5PaU = Q0D0 satisfies SP = [1, 1, z−1,−z−1,−1] with

D0 = diag(
√
5,
√
10,

√
10,

√
10,

√
10)

and Q0 being given by

Q0(z) =
1

150 [−4z−1 + 38− 4z,−z−1 + 32− z, 15z−1 + 15,−3z−1 + 3, 3z−1 − 3z].

Applying Algorithm 2 to P, we obtain a desired paraunitary matrix Pe =

DeQeD0 with De = diag( 1
150 ,

1
300 ,

√
5

300 ,
√
5

60 ,
√
5

300 ) and Qe as follows:

Qe(z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

38− 4(z−1 + z) 32− (z−1 + z) 15(z−1 + 1) −3(z−1 + 1) 3z−1 − 3z

4(z−1 + z)− 88 z−1 + 68 + z −15z−1 − 15 3z−1 − 3 −3z−1 + 3z

−4z−1 + 4z −z−1 + z 15z−1 − 15 −3z−1 − 3 3(z−1 + 1) + 36

−4− 4z −1− z 6 0 3− 3 z

−4 + 4z −1 + z 0 42 3 + 3z

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MATRIX EXTENSION OVER ALGEBRAIC NUMBER FIELDS 483

We have SPe = [1, 1,−1, z,−z]T[1, 1, z−1,−z−1,−1] and fsupp([Pe]:,j) ⊆ fsupp([P]j)

for all 1 � j � 5. Now, from the polyphase matrix P := PeU
� =:

√
5(b

[γ]
m )0�m,γ�4

with b0 := a, we derive four high-pass filters b1, . . . , b4 as follows:

b1(z) =
1

150 (t1(z
−1) + t1(z)); b2(z) =

√
5

150 (−t2(z
−1) + t2(z));

b3(z) =
√
5

30 (−2z−1 − 2 + z + 3z2 + 3z3 + z4 − 2z5 − 2z6);

b4(z) =
√
5

150 (−2z−1 − 2 + z + 21z2 − 21z3 − z4 + 2z5 + 2z6)

with

t1(z) = −22+34z−9z2−6z3−z4+2z5+2z6; t2(z) = 18z−9z2−6z3−z4+2z5+2z6.

The high-pass filter b1 is symmetric about 0: Sb1 = 1, the high-pass filter b2 is
antisymmetric about 0: Sb2 = −1, the high-pass filter b3 is symmetric about 5/2:
Sb3 = z5, and the high-pass filter b4 is antisymmetric about 5/2: Sb4 = −z5. Note
that len(b1) = len(b2) = len(a) = 12 and len(b3) = len(b4) = 7 < len(a).

Example 6.3. Let d = 3 and r = 1. A 3-orthogonal low-pass wavelet filter a is
given by its symbol a as follows:

a(z) = 1
3 (

z−1+1+z
3 )3(−(3 + 2i

√
3)z−1 + 9 + 4i

√
3− (3 + 2i

√
3)z).

All the coefficients of a are from the algebraic number field Q(i
√
3) with i =

√
−1

being the imaginary unit, and the filter a is symmetric about 0: Sa = 1.
Applying Lemma 5.1, we obtain

Pa(z) :=[a[0](z), a[1](z), a[2](z)]

= 1
81 [−2i

√
3z−1+(27 + 4i

√
3)− 2i

√
3z, (6− 2i

√
3)z−1+(24+4i

√
3)

− (3+2i
√
3)z,−(3+2i

√
3)z−2+(24+4i

√
3)z−1+(6− 2i

√
3)]

and U that symmetrizes Pa is given by

U(z) =

⎡
⎣ 1 0 0

0 1√
2

1√
2

0 1√
2
z − 1√

2
z

⎤
⎦ .

Then P :=
√
3PaU = Q0D0 satisfies SP = [1, 1,−1] with D0 = diag(

√
3,
√
6,
√
6)

and Q0 being given by

Q0 = 1
162 [−4i

√
3(z−1+z)+(54+8

√
3i), (3−4i

√
3)(z−1+z)+(48+8i

√
3), 9(z−1−z)].

Applying Algorithm 2 to P, we obtain a desired paraunitary matrix Pe =

DeQeD0 with De = diag( 1
162 ,

√
78

4212 ,
√
78

1404 ) and Qe as follows:

Qe(z) =

⎡
⎢⎢⎣

−4i
√
3(z−1 + z) + t11 (3− 4i

√
3)(z−1 + z) + t12 9(z−1 − z)

−4(z−1 + z) + t21
√
3 −(4 + i

√
3)(z−1 + z) + t22 3i−

√
3(z−1 − z)

−4i
√
3(z−1 − z) (3− 4i

√
3)(z−1 − z) 9(z−1 + z)− 36i

√
3

⎤
⎥⎥⎦ ,

with

t11 = 54 + 8i
√
3; t12 = 48 + 8i

√
3; t21 = −208 + 36i

√
3; t22 = 116− 16i

√
3.
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We have SPe = [1, 1,−1]T[1, 1,−1] and fsupp([Pe]:,j) ⊆ fsupp([P]j) for all 1 � j � 3.

Now, from the polyphase matrix P := PeU
� =:

√
3(b

[γ]
m )0�m,γ�2 with b0 := a, we

derive two high-pass filters b1, b2 as follows:

b1(z)=
√
78

2106 (−(2− i
√
3)(z−4 + z4)− 2(z−3 + z3)− (2 + 2i

√
3)(z−2 + z2)

+ (58− 8i
√
3)(z−1 + z)− 104 + 18i

√
3),

b2(z) =
√
78

702 (−(3 + 2i
√
3)(z−4 − z4)− 2i

√
3(z−3 − z3) + (6− 2i

√
3)(z−2 − z2)

+ 18i
√
3(z−1 − z))

The high-pass filter b1 is symmetric about 0: Sb1 = 1, while the high-pass filter b2
is antisymmetric about 0: Sb2 = −1. Note that len(b1) = len(b2) = len(a) = 8.

Example 6.4. Let d = 2 and r = 2. A 2-orthogonal wavelet low-pass filter a with
multiplicity 2 in [4] is given by

a(z) =
1

40

[
12(z−1 + 1) 16

√
2z−1

−
√
2(z−1 − 9− 9z + z2) −2(3z−1 − 10 + 3z)

]
.

The low-pass filter a satisfies the symmetry property in (5.1) with c1 = −1, c2 = 0
and ε1 = ε2 = 1. Note that the coefficients of a are from the algebraic number field
F = Q(

√
2).

Applying Lemma 5.1, we obtain Pa := [a[0], a[1]] and U as follows:

Pa(z)=
1

20

⎡
⎣ 6 0 6z−1 8

√
2z−1

1√
2
(9− z) 10 1√

2
(9− z−1) −3(1 + z−1)

⎤
⎦

and

U(z) =
1√
2

⎡
⎢⎢⎣

1 0 1 0

0
√
2 0 0

z 0 −z 0

0 0 0
√
2z

⎤
⎥⎥⎦.

Then P :=
√
2PaU satisfies SP = [1, z]T[1, z−1,−1, 1] = Q0D0 with

Q0(z) =

√
2

20

[
6
√
2 0 0 8

√
2

4(1 + z) 10 5(1− z) −3(1 + z)

]
, D0 = I4.

We would like to point out that though the filter coefficients of Q0 are in Q(
√
2),

they are essentially in Q because Q0 can be written as

Q0 =
1

20

[
1 0

0
√
2

]
Q̃0 with Q̃0(z) =

[
12 0 0 16

4(1 + z) 10 5(1− z) −3(1 + z)

]
,

and our algorithms are essentially applied to the part Q̃0.
Applying Algorithm 2 to P, we obtain a desired paraunitary matrix Pe = DeQe

with De and Qe being given as follows:

De=diag(2,
√
2,
√
2, 2), Qe(z)=

1

20

⎡
⎢⎢⎣

6 0 0 8
4(1 + z) 10 5(1− z) −3(1 + z)
4(1 + z) −10 5(1− z) −3(1 + z)
4(1− z) 0 5(1 + z) −3(1− z)

⎤
⎥⎥⎦ .

We have SPe = [1, z, z,−z]T[1, z−1,−1, 1] and fsupp([Pe]:,j) ⊆ fsupp([P]:,j) for all
1 � j � 4.
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Now, from the polyphase matrix P := PeU
� =:

√
2(b

[γ]
m )0�m,γ�1 with b0 := a,

we derive a high-pass filter b1 as follows:

b1(z) =
1

40

[
−
√
2(z−1 − 9− 9z + z2) −2(3z−1 + 10 + 3z)

2(−z−1 + 9− 9z + z2) −6
√
2(z−1 − z)

]
.

Then the high-pass filter b1 satisfies (5.7) with c11 = c12 = 0 and ε11 = 1, ε12 = −1.

Our algorithms are applicable to many other examples with d � 2 and r ∈ N;
for example, see [10, Examples 2 and 3] and many examples in [5, 8].

7. Proofs of Lemmas 4.2 and 4.3

We now prove Lemmas 4.2 and 4.3 stated in Section 4. To do so, we need an
auxiliary result. The following lemma shows that for a 1 × 4 vector p of Laurent
polynomials with symmetry such that p(z)p�(z) = 1 for all z ∈ C\{0}, Sp =
[1,−1, z−1,−z−1], and p(z) = q0(z)D0, we can construct a 4×4 paraunitary matrix
with a special structure.

Lemma 7.1. Let p be a 1 × 4 row vector of Laurent polynomials with symme-
try satisfying p(z)p�(z) = 1 for all z ∈ C \ {0}, Sp(z) = [1,−1, z−1,−z−1], and
p(z) = q0(z)D0 for some 1 × 4 vector q0 of Laurent polynomials in F[z, z−1] and
some diagonal matrix D0 = diag(d1, d1, d3, d4), where d1, d3, and d4 are positive
numbers with d21, d

2
3, and d24 being numbers in F. Suppose fsupp(p) = [−k, k] with

a positive integer k � 1, coeff(q,−k) = [f1,−f1, g1,−g2], and coeff(q,−k + 1) =
[f3,−f4, g3,−g4] for some numbers f1, f3, f4, g1, g2, g3, g4 in F with f1 > 0 and
g1, g2 � 0, i.e., qT0 takes the form:

q0(z)
T =

⎡
⎢⎢⎣

f1
−f1
g1
−g2

⎤
⎥⎥⎦ z−k +

⎡
⎢⎢⎣

f3
−f4
g3
−g4

⎤
⎥⎥⎦ z−k+1 + · · ·+

⎡
⎢⎢⎣
f3
f4
g1
g2

⎤
⎥⎥⎦ zk−1 +

⎡
⎢⎢⎣
f1
f1
0
0

⎤
⎥⎥⎦ zk.

Define a matrix U0(z) := D�
0V0(z)D1 with D1 = 1

cdiag(1, 1,
d3

d1
, d4

d1
) and V0 being

given by
(7.1)

V0(z) :=

⎡
⎢⎢⎢⎣

f1(z + z−1) + f̄ f1(z − z−1) g1(1 + z−1) g2(1− z−1)
−f1(z − z−1) −f1(z + z−1) + f̄ −g1(1− z−1) −g2(1 + z−1)

g1(1 + z) −g1(1− z) −d2
1

d2
3
(2f1 + f) 0

g2(1− z) −g2(1 + z) 0
d2
1

d2
4
(2f1 − f)

⎤
⎥⎥⎥⎦ ,

where f := f3 − f4 and c :=
√
4d21f

2
1 + 2d23g

2
1 + 2d24g

2
2 + d21|f |2. Then U0 is parau-

nitary and has the following properties:

(i) fsupp(U0) = [−1, 1] and SU0(z) = [1,−1, z,−z]T[1,−1, z−1,−z−1]; that is,
U0 has compatible symmetry with filter support on [−1, 1];

(ii) fsupp(pU0) = [−k + 1, k − 1] and S(qU0) = S(p); that is, U0 reduces the
length of p exactly by 2 and preserves the symmetry pattern of p;

(iii) for any vector p̃ of Laurent polynomials such that p̃p� = 0 and Sp̃(z) =
εzk0Sp(z) for some ε ∈ {−1, 1} and some k0 ∈ Z, we have S(p̃U0) = Sp̃ and
fsupp(p̃U0) ⊆ fsupp(p̃); that is, U0 keeps the symmetry pattern of p̃ and
does not increase the length of p̃.
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Proof. Note that p is of the form:

p(z)T = DT
0

⎛
⎜⎜⎝
⎡
⎢⎢⎣

f1
−f1
g1
−g2

⎤
⎥⎥⎦ z−k +

⎡
⎢⎢⎣

f3
−f4
g3
−g4

⎤
⎥⎥⎦ z−k+1 + · · ·+

⎡
⎢⎢⎣
f3
f4
g1
g2

⎤
⎥⎥⎦ zk−1 +

⎡
⎢⎢⎣
f1
f1
0
0

⎤
⎥⎥⎦ zk

⎞
⎟⎟⎠ .

For such a vector p, by [6], a paraunitary matrix, that reduces its length by 2 and
preserves its symmetry pattern, is given by
(7.2)

U0(z) =
1

c

⎡
⎢⎢⎣

d1f1(z + z−1) + d1f̄ d1f1(z − z−1) d3g1(1 + z−1) d4g2(1− z−1)
−d1f1(z − z−1) −d1f1(z + z−1) + d1f̄ −d3g1(1− z−1) −d4g2(1 + z−1)

d3g1(1 + z) −d3g1(1− z) −2d1f1 − d1f 0
d4g2(1− z) −d4g2(1 + z) 0 2d1f1 − d1f

⎤
⎥⎥⎦

with c =
√
4d21f

2
1 + 2d23g

2
1 + 2d24g

2
2 + d21|f |2 and f = f3 − f4. It is easy to check

that U0 can be rewritten as in the lemma. The properties of U0 in items (i) – (iii)
can be verified directly by computations. �

We remark that the above result holds even when [p]3 or [p]4 is empty, or both
[p]3 and [p]4 are empty. In such a case, we obtain either a 2×2 or a 3×3 paraunitary
matrix by simply deleting the corresponding row(s) and column(s) in (7.2).

Thanks to Lemmas 2.2 and 7.1, we now prove Lemma 4.2 as follows.

Proof of Lemma 4.2. The paraunitary matrix Bp is constructed according to the
following steps: first reduce the problem size to a 1×4 vector of Laurent polynomi-
als, then construct a 4× 4 paraunitary matrix according to Lemma 7.1, and finally
extend it in a simple way to an s× s paraunitary matrix.

(1) Let p0 := pUSp, where USp is a matrix defined in (4.7). Then

Sp0 = [1s1 ,−1s2 , z
−11s3 ,−z−11s4 ]

with s1, . . . , s4 being nonnegative integers determined by Sp. p0 must take
one of the following forms:

p0 =
(
[f1,−f2, g1,−g2]z�1 + [f3,−f4, g3,−g4]z�1+1 +

�2−2∑
�=�1+2

coeff(p0, �)z
�

+ [f3, f4, g1, g2]z
�2−1 + [f1, f2,0,0]z

�2
)
D̃0;

(7.3)

p0 =
(
[0,0, f1,−f2]z�1 + [g1,−g2, f3,−f4]z�1+1 +

�2−2∑
�=�1+2

coeff(p0, �)z
�

+ [g3, g4, f3, f4]z
�2−1 + [g1, g2, f1, f2]z

�2
)
D̃0.

(7.4)

If p0 is of the form (7.3), we simply let Dp := USp. If p0 takes the
form in (7.4), we further construct a permutation matrix E such that
[g1, g2, f1, f2]E=[f1, f2, g1, g2] and define Dp(z) :=USpEdiag(Is−sg , z

−1Isg),
where 1× sg is the size of the row vector [g1, g2]. In this way, p0 := pDp al-

ways takes the form in (7.3) with f1 �= 0. Moreover, the diagonal matrix D̃0

is given by D̃0 = D�
pD0Dp =: diag(D̃0,1, D̃0,2, D̃0,3, D̃0,4), where D̃0,1, D̃0,2,

D̃0,3, D̃0,4 are of the same sizes with respect to the vectors f1, f2, g1, g2.

Define f̃1 := f1D̃0,1, f̃2 := f2D̃0,2, g̃1 := g1D̃0,3, and g̃2 := g2D̃0,4.
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(2) Applying Lemma 2.2 to the vectors f̃1, f̃2, g̃1, g̃2, we can construct uni-

tary constant matrices Uf̃1
= D̃�

0,1Vf̃1D̃1,1, Uf̃2
= D̃�

0,2Vf̃2D̃1,2, Ug̃1 =

D̃�
0,3Vg̃1D̃1,3, and Ug̃2 = D̃�

0,4Vg̃2D̃1,4, where Ṽf̃1 = [f�1, F
�
1 ], Ṽf̃2 = [f�2, F

�
2 ],

Ṽg̃1 = [g�1, G
�
1], and Ṽg̃2 = [g�2, G

�
2] are nonsingular matrices with all the

entries in F. Moreover, U := diag(Uf1 , Uf2 , Ug1 , Ug2) = D̃�
0V D̃1 with D̃1 :=

diag(D̃1,1, D̃1,2, D̃1,3, D̃1,4) normalizes the vector [f1,−f2, g1,−g2]D̃0 to the
following form:

[f1,−f2, g1,−g2]D̃0U

= [d1f1, 0, . . . , 0,−d1f1, 0, . . . , 0, d3g1, 0, . . . , 0,−d4g2, 0, . . . , 0],

where we can choose d1, d3, d4 and f1, g1, g2 to be d1 = ‖f̃1‖, d3 = ‖g̃1‖,
d4 = ‖g̃2‖ and f1 = g1 = g2 = 1 (other choices are possible as long as
d1, d3, d4 and f1, g1, g2 satisfy conditions in Lemma 7.1). In other words,
under the action of U , f̃1, f̃2, g̃1, and g̃2 become [d1f1,0], [d1f1,0], [d3g1,0],
and [d4g2,0], respectively. Note that f̃1Uf̃1

= f̃2Uf̃2
= [d1f1, 0, . . . , 0] fol-

lows from the fact that ‖f̃1‖ = ‖f̃2‖, and d3g1 or d4g2 could be an empty
entry.

(3) Applying Lemma 7.1 to the 1 × 4 subvector of p0U = pDpU consisting its
1st, (1+ s1)th, (1− δ(s3))(1+ s1+ s2)th, and (1− δ(s4))(1+ s1+ s2+ s3)th
entries, we obtain a paraunitary matrix U0 as described in Lemma 7.1.
Note that U0 could be a 2 × 2 or 3 × 3 matrix depending on whether or
not d3g1 or d4g2 is an empty entry. Let I := {1, 1+ s1, (1− δ(s3))(1+ s1 +
s2), (1− δ(s4))(1 + s1 + s2 + s3)} \ {0} be an index set and n0 := #(I) be
its cardinality.

(4) Extend U0 to an s× s paraunitary matrix U as follows:

[U]Ij ,Ik
:= [U0]j,k, j, k = 1, . . . , n0; [U]j,j := 1, j /∈ I,

and all other entries of U are zero. Then U is of the form U = D̃�
2V2D̃3 for

some strongly invertible matrix V2 extended from (7.1), where

D̃2 = diag(d1,1s1−1, d1,1s2−1, d3,1s3−1, d4,1s4−1)

and

D̃3 = diag( 1c ,1s1−1,
1
c ,1s2−1,

d3

d1c
,1s3−1,

d4

d1c
,1s4−1)

with c defined in (7.1).

(5) Define Bp0(z) := UU(z) = (D̃�
0V D̃1)(D̃

�
2V1D̃3). Then Bp0 satisfies item

(i) – (iv) of Lemma 4.2 for p0, and by our construction, Bp0 is the form

Bp0 = D̃�
0V0D̃4:

V�
0(z) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1(z + c0 +
1
z ) f2(z − 1

z ) g1(1 +
1
z ) g2(1− 1

z )
F1 0 0 0

−f1(z − 1
z ) −f2(z − c0 +

1
z ) −g1(1− 1

z ) −g2(1 + 1
z )

0 F2 0 0

f1(1 + z) −f2(1− z) g1 0
0 0 G1 0

f1(1− z) f2(1 + z) 0 g2
0 0 0 G2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where c0 = 1
‖f̃1‖2 coeff(p0, �1 + 1)coeff(p�0,−�2) ∈ F and D̃4 is a diagonal

matrix determined by D̃1, D̃2 and D̃3.
(6) Define Bp(z) := Dp(z)Bp0(z)D

�
p(z). Then Bp is a desired paraunitary ma-

trix.

Properties (i) – (v) of Bp follow from our construction. �

We complete the paper by proving Lemma 4.3.

Proof of Lemma 4.3. The proof is similar to that of Lemma 4.2. First, one can show
that there exists a permutation matrix E(q1,q2) such that q1E(q1,q2) and q2E(q1,q2)

take the following form:[
p1
p2

]
:=

[
q1
q2

]
E(q1,q2) =

[
0 0 g̃3 −g̃4

0 0 0 0

]
z−k +

[
f̃5 −f̃6 g̃7 −g̃8

g̃1 −g̃2 f̃7 −f̃8

]
z−k+1

+ · · ·+
[

f̃5 f̃6 g̃3 g̃4

g̃5 g̃6 f̃7 f̃8

]
zk−1 +

[
0 0 0 0

g̃1 g̃2 0 0

]
zk,

where g̃1, g̃2, g̃3, g̃4 are all nonzero row vectors of size 1× s1, 1× s2, 1× s3, 1× s4,
respectively. And [g̃1, g̃2, g̃3, g̃4] = [g1, g2, g3, g4]D̃0 for some vectors g1, . . . , g4 with
all their entries in F and having same size as g̃1, . . . , g̃4, respectively, and for some
diagonal matrix D̃0 with all the entries of D̃0D̃

�
0 in F. Note that ‖g̃1‖ = ‖g̃2‖ and

‖g̃3‖ = ‖g̃4‖.
Using Lemma 2.2, we can construct unitary matrices Ug̃1 , Ug̃2 , Ug̃2 , Ug̃4 of the

form Ug̃1 = D̃�
0,1[g

�
1, G

�
1]D̃

�
1,1, Ug̃2 = D̃�

0,2[g
�
1, G

�
2]D̃

�
1,2, Ug̃3 = D̃�

0,3[g
�
3, G

�
3]D̃

�
1,3, and

Ug̃4 = D̃�
0,4[g

�
1, G

�
4]D̃

�
1,4, where D̃0 =: diag(D̃0,1, D̃0,2, D̃0,3, D̃0,4), G1, . . . , G4 are

nonsingular matrices with all the entries in F, and D̃1 := diag(D̃1,1, D̃1,2, D̃1,3, D̃1,4)

is some diagonal matrix with all the entries of D̃1D̃
�
1 in F.

Define U := diag(Ug̃1 , Ug̃2 , Ug̃2 , Ug̃4) =: D̃0V D̃1. Applying U to the pair (p1, p2),
we normalize the pair to be supported on [−k + 1, k − 1] except those entries on
1st, (1 + s1)th, (1 + s1 + s2)th, and (1 + s1 + s2 + s3)th positions. Hence, we
only need to consider a problem of constructing a 4 × 4 paraunitary matrix U0,
which can be constructed by Lemma 7.1 similarly as in the proof Lemma 4.2,
corresponding to the 1× 4 vector of Laurent polynomials with symmetry. Finally,
we can extend U0 into a full s× s paraunitary matrix U of the form U = D̃2V1D̃3.
Consequently, the paraunitary matrix for the pair (p1, p2) is given by B(p1,p2) =

UU = (D̃�
0V D̃1)(D̃

�
2V1D̃3), and by our construction, B(p1,p2) can be written as

B(p1,p2) = D̃0V0D̃4 with V0 being given as follows:

V�
0(z) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1 0 g3(1 +
1
z ) g4(1− 1

z )

G1 0 0 0

0 g2 −g3(1− 1
z ) −g4(1 + 1

z )

0 G2 0 0

g1(1 + z) −g2(1− z) −g3 0

0 0 G3 0

g1(1− z) −g2(1 + z) 0 −g4
0 0 0 G4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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and D̃4 being determined by D̃1, D̃2, and D̃3. Let B(q1,q2) := E(q1,q2)B(p1,p2)E
T
(q1,q2)

.

Then B(q1,q2) is a desired matrix and properties (i) – (v) follow from our construc-
tion. �
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