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In this paper, we introduce Gabor shearlets, a variant of shearlet systems, which
are based on a different group representation than previous shearlet constructions:
they combine elements from Gabor and wavelet frames in their construction. As a
consequence, they can be implemented with standard filters from wavelet theory
in combination with standard Gabor windows. Unlike the usual shearlets, the new
construction can achieve a redundancy as close to one as desired. Our construc-
tion follows the general strategy for shearlets. First we define group-based Gabor
shearlets and then modify them to a cone-adapted version. In combination with
Meyer filters, the cone-adapted Gabor shearlets constitute a tight frame and provide
low-redundancy sparse approximations of the common model class of anisotropic
features which are cartoon-like functions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

During the last 10 years, directional representation systems such as curvelets and shearlets were intro-
duced to accommodate the need for sparse approximations of anisotropic features in multivariate data.
These anisotropic features, such as singularities on lower dimensional embedded manifolds, called for repre-
sentation systems to sparsely approximate such data. Prominent examples in the 2-dimensional setting are
edge-like structures in images in the regime of explicitly given data and shock fronts in transport equations
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in the regime of implicitly given data. Because of their isotropic nature, wavelets are not as well adapted
to this task as curvelets [3], contourlets [6], or shearlets [19]. Recently, a general framework for directional
representation systems based on parabolic scaling – a scaling adapted to the fact that the regularity of
the singularity in the considered model is C2 – was introduced in [8] seeking to provide a comprehensive
viewpoint towards sparse approximations of cartoon-like functions.

Among these representation systems, shearlets distinguished themselves by the fact that they are available
as compactly supported systems – which is desirable for applications requiring high spatial localization such
as PDE solvers – and also provide a unified treatment of the continuum and digital setting thereby ensuring
faithful implementations. Shearlets were introduced in [9] with the early theory focusing on band-limited
shearlets, see e.g. [11]. Later, a compactly supported variant was introduced in [18], which again provides
optimally sparse approximations of cartoon-like functions [20]. In contrast to those properties, contourlets
do not provide optimally sparse approximations and curvelets are neither compactly supported nor do they
treat the continuum and digital realm uniformly due to the fact that they are based on rotations in contrast
to shearing.

1.1. Key problem

One major problem – which might even be considered a “holy grail” of the area of geometric multiscale
analysis – is whether a system can be designed to be

(P1) an orthonormal basis,
(P2) compactly supported,
(P3) possessing a multiresolution structure,
(P4) and providing optimally sparse approximations of cartoon-like functions.

Focusing from now on entirely on shearlets, we observe that bandlimited shearlets satisfy (P4) while replacing
(P1) with being a tight frame. Compactly supported shearlets accommodate (P2) and (P4), and form a
frame with controllable frame bounds as a substitute for (P1). We are still far from being able to construct
a system satisfying all those properties – also by going beyond shearlets – , and it is not even clear whether
this is at all possible, cf. also [17]. Several further attempts were already made in the past. In [21], shearlet
systems were introduced based on a subdivision scheme, which naturally leads to (P2) and (P3), but not
(P1) – not even being tight – and (P4). In [13], a different multiresolution approach was utilized leading to
systems which satisfy (P2) and (P3), but not (P4), and (P1) only by forming a tight frame without results
on their redundancy.

1.2. What are Gabor shearlets?

The main idea of the present construction is to use a deformation of the group operation with which
common shearlet systems are generated, together with a decomposition in the frequency domain to ensure
an almost uniform treatment of different directions, while modeling the systems as closely as possible after
the one-dimensional multiresolution analysis (MRA) wavelets. To be more precise, the new group opera-
tion includes shears and chirp modulations which satisfy the well-studied Weyl–Heisenberg commutation
relations. Thus, the shear part naturally leads us to Gabor frame constructions instead of an alternative
viewpoint in which shears enter in composite dilations [10]. The filters appearing in this construction can
be chosen as the trigonometric polynomials belonging to standard wavelets or to M -band versions of them,
or as the smooth filters associated with Meyer’s construction. To achieve the optimal approximation rate for
cartoon-like functions, we use a cone adaptation procedure. But in contrast to other constructions, we avoid
incorporating redundancy in this step.
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Due to the different group structure, the authors were not able to show that Gabor shearlets fall into the
framework of parabolic molecules (cf. [8]) although they are based on parabolic scaling. Thus, we cannot
apply this framework in a straightforward way in our situation for deriving results on sparse approxima-
tions by transferring such properties from other systems. We comment on differences with the structure of
parabolic molecules in Section 5.

1.3. Our contributions

Gabor shearlets satisfy the following properties, related to Section 1.1:

(P1∗) Gabor shearlets can be chosen to be unit norm and b−1-tight, where b−1 – which can be interpreted
as the redundancy (cf. Section 2.4) – can be chosen arbitrarily close to one.

(P2∗) Gabor shearlets are not compactly supported, but can be constructed with polynomial decay in the
spatial domain.

(P3) The two-scale relation for the shearlet subband decomposition is implemented with standard filters
related to MRA wavelets.

(P4) In conjunction with a cone-adaptation strategy and Meyer filters, Gabor shearlets provide optimally
sparse approximations of cartoon-like functions.

Thus, (P3) and (P4) are satisfied. (P1) is approximately satisfied in the sense that the systems with property
(P1∗) are nearly orthonormal bases. And (P2) is also approximately satisfied by replacing compact support
by polynomial decay in (P2∗). It is in this sense that we believe the development of Gabor shearlets
contributes to developing a system satisfying the desired properties. Or – if it could be proven that those
are not simultaneously satisfiable – providing a close approximation to those.

1.4. Outline of the paper

The remainder of this paper is organized as follows. In Section 2, we set the notation and recall the
essential properties of Gabor systems, wavelets, and shearlets which are needed in the sequel. In this section,
we also briefly introduce the notion of redundancy first advocated in [1]. In Section 3, after providing some
intuition on our approach, we introduce Gabor shearlets based on a group related to chirp modulations
and discuss their frame properties and the associated multiresolution structure. The projection of those
Gabor shearlets on cones in the frequency domain is then the focus of Section 4, again starting with the
construction followed by a discussion of similar properties as before. The last section, Section 5, contains
the analysis of sparse approximation properties of cone-adapted Gabor shearlets.

2. Revisited: wavelets, shearlets, and Gabor systems

In this section, we introduce the main notation of this paper, state the basic definitions of Gabor systems,
wavelets, and shearlets, and also recall the underlying construction principles, formulated in such a way that
Gabor shearlets will become a relatively straightforward generalization. We emphasize that this is not an
introduction to Gabor and wavelet theory, and we expect the reader to have some background knowledge,
otherwise we refer to [4] or [22]. A good general reference for most of the material presented in this section
is the book by Weiss and Hernández [24]. In the last part of this section, we discuss the viewpoint of
redundancy from [1], which we adopt in this paper.

In what follows, the Fourier transform of f ∈ L1(Rn) is defined to be f̂(ξ) :=
∫
Rn f(x)e−2πix·ξ dx, where

x · ξ is the dot product between x and ξ in Rn. As usual, we extend this integral transform to the unitary
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map f �→ f̂ defined for any function f which is square integrable. The unitarity is captured in the Plancherel
identity 〈f, g〉 = 〈f̂ , ĝ〉 for any two functions f, g ∈ L2(Rn) with 〈f, g〉 :=

∫
Rn f(x)g(x) dx.

2.1. MRA wavelets

Let {φ, ψ} be a pair of a scaling function and a wavelet for L2(R) associated with a pair of a low-pass
filter H : T → C and a high-pass filter G : T → C, for convenience defined on the torus T = {z ∈ C: |z| = 1}.
We start by recalling the Smith–Barnwell condition for filters.

Definition 2.1. A filter H : T → C satisfies the Smith–Barnwell condition, if∣∣H(z)
∣∣2 +

∣∣H(−z)
∣∣2 = 1

for almost every z ∈ T.

The Smith–Barnwell condition is an essential ingredient in the characterization of localized multiresolu-
tion analyses; that is, the scaling functions φ are localized in the sense of having faster than polynomial
decay:

∫
R
(1 + x2)n|φ(x)|2 dx < ∞ for all n ∈ N.

Theorem 2.1 (Cohen, as in [24] Theorem 4.23 of Chapter 7). A C∞ function H : T → C is the low-pass
filter of a localized multiresolution analysis with scaling function φ given by

φ̂(ξ) =
∞∏
j=1

H
(
e−2πiξ/2j)

if and only if H(1) = 1, H satisfies the Smith–Barnwell condition, and there exists a set K ⊂ T which
contains 1 and has a finite complement in T such that H(z2−j ) 	= 0 for all j ∈ Z, j � 0, and z ∈ K.

The two-scale relations for φ and ψ are conveniently expressed in the frequency domain,

φ̂(2ξ) = H
(
e−2πiξ)φ̂(ξ) and ψ̂(2ξ) = G

(
e−2πiξ)φ̂(ξ), a.e. ξ ∈ R.

The orthonormality of the integer translates of {φ, ψ} is captured in the matrix identity

M(z)M(z)∗ = I2 with M(z) :=
[
H(z) H(−z)
G(z) G(−z)

]
, for a.e. z ∈ T.

Often, only H is specified and the matrix has to be completed to a unitary, with a common choice being
G(z) = −zH(−z).

The low-pass filter of the Meyer scaling function is of particular use for the construction of Gabor shearlets,
which will be shown in Section 5 to yield optimal sparse approximations. The Meyer scaling function φ and
wavelet function ψ are given by

φ̂(ξ) =

⎧⎨⎩
1 if |ξ| � 1

3 ,

cos(π2 ν(3|ξ| − 1)) if 1
3 � |ξ| � 2

3 ,

0 otherwise,

and

ψ̂(ξ) =

⎧⎨⎩−e−πiξ sin[π2 ν(3|ξ| − 1)] if 1
3 � |ξ| � 2

3 ,

−e−πiξ cos[π2 ν(3
2 |ξ| − 1)] if 2

3 � |ξ| � 4
3 ,
0 otherwise.
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Here, ν is a function satisfying ν(x) = 0 for x � 0, ν(x) = 1 for x � 1, and in addition, ν(x) + ν(1− x) = 1
for 0 � x � 1. For example, ν can be defined to be ν(x) = x4(35 − 84x + 70x2 − 20x3) for x ∈ [0, 1], which
leads to C3 functions φ̂ and ψ̂.

The corresponding H is accordingly given by

H
(
e−2πiξ) =

⎧⎨⎩
1 |ξ| � 1

6 ,

cos(π2 ν(6|ξ| − 1)) 1
6 � |ξ| � 1

3 ,

0 1
3 � |ξ| � 1

2 .

We remark that ξ �→ H(e−2πiξ) is a 1-periodic function and the Meyer wavelet function ψ defined above
satisfies ψ̂(2ξ) = −e−2πiξH(e−2πi(ξ+ 1

2 ))φ̂(ξ). Hence the high-pass filter G for ψ is indeed given by G(z) =
−zH(−z) with z = e−2πiξ. For any k ∈ N, there exists ν such that φ̂ and ψ̂ are functions in Ck(R). Moreover,
ν can be constructed to be C∞ so that both φ̂ and ψ̂ are functions in C∞(R) and their corresponding filters
are functions in C∞(T). For more details about Meyer wavelets, we refer to [4] or [22].

2.1.1. Subband decomposition for discrete data
The two-scale relation in combination with downsampling as a simple data reduction strategy is crucial

for the efficient decomposition of data.
Let the group of integer translations {Tn}n∈Z acting on L2(R) be defined by Tnf(x) = f(x − n) for

almost every x ∈ R. The translates of the scaling function φ define the core subspace V0. By definition, each
function f ∈ V0 can be expressed as the series

f =
∑
n∈Z

cnTnφ

with a square summable sequence {cn}n∈Z. This enables us to associate with f the values of the almost
everywhere converging series

Zf(z) =
∞∑

n=−∞
cnz

n, z ∈ T.

We next formalize the decomposition of a function f ∈ V0 = V−1⊕W−1 in terms of the Z-transform, where
the coarser approximation space V1 is obtained by the inverse of the usual dyadic dilation D, V−1 = D−1(V0).

Letting now H : T → C be the low-pass filter of a localized multiresolution analysis as specified above,
the characterization of the subspace V−1 ⊂ V0 can then be expressed with the help of the filter H. We recall
that the orthogonal projection onto V−1 in V0 is given by applying the adjoint filter, downsampling the
sequence of coefficients {cn}n∈Z, upsampling and then applying the filter. In terms of the Z-transform,
the composition of downsampling and upsampling is a periodization operation. Thus, f ∈ V−1 if and only
if it is invariant under the orthogonal projection onto V−1,

f ∈ V−1 ⇐⇒ Zf(z) = H(z)
(
H(z)Zf(z) + H(−z)Zf(−z)

)
for a.e. z ∈ T.

This fact enables us to state a unified characterization of V−1 and of W−1 = V0  V−1.

Proposition 2.1. Let PV−1 and PW−1 denote the orthogonal projection of V0 onto V−1 and W−1, respectively.
Further, letting H be defined as above, define H+ to be the multiplication operator given by H+F (z) =
H(z)F (z), H− given by H−F (z) = H(−z)F (z), and R2 the reflection operator satisfying R2Zf(z) =
Zf(−z). Then, we have

ZPV−1f = H+(I + R2)H+Zf and ZPW−1f = H−(I −R2)H−Zf.
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Proof. By definition, the projection onto V−1 satisfies

ZPV−1f(z) = H(z)
(
H(z)Zf(z) + H(−z)Zf(−z)

)
= H+(I + R2)H+Zf(z).

Similarly, the projection onto W−1 is

ZPW−1f(z) = G(z)
(
G(z)Zf(z) + G(−z)Zf(−z)

)
= −zH(−z)

(
−zH(−z)Zf(z) + zH(z)Zf(−z)

)
= H(−z)

(
H(−z)Zf(z) −H(z)Zf(−z)

)
= H−(I −R2)H−Zf(z).

The proposition is proved. �
The relevance of these identities lies in the fact that (I + R2)H+Zf is an even function whereas

(I − R2)H−Zf is odd. Hence knowing every other coefficient in the series expansion is sufficient to de-
termine the projection onto the corresponding subband. Thus, in this case downsampling reduces the data
without loss of information.

2.1.2. M -band wavelets
If instead of a dilation factor of 2 in the two-scale relation, a factor of M is used, M − 1 wavelets are

necessary to complement the translates of φ to an orthonormal basis of the next higher resolution level.
In this situation, it is an M ×M matrix which has to satisfy the orthogonality identity. Generalizing the
consideration in the previous subsection, let ω = e−2πi/M and RMZf(z) = Zf(ωz) and the scaling mask
H0 for φ satisfy

∑M−1
j=0 |H0(ωjz)|2 = 1. We then define the orthogonal projection onto V−1 in terms of the

transform

ZPV−1f = H0

(
M−1∑
j=0

Rj
M

)
H0Zf.

For a proof that PV−1 is indeed a projection, see the more general statement in the next theorem.
We complement the filter H0 by finding Hn such that (Hn(ω�z))M−1

n,�=0 is unitary for almost every z ∈ T.
Once the wavelet masks H�, � = 1, . . . ,M − 1 are constructed by matrix extension, the wavelet functions
ψ�, � = 1, . . . ,M − 1 are given by ψ̂�(Mξ) = H�(e−2πiξ)φ̂(ξ), ξ ∈ R, � = 1, . . . ,M − 1. It is well-known that
then {ψ�: � = 1, . . . ,M − 1} generates an orthonormal wavelet basis for L2(R).

One goal in M -band wavelet design is to choose H0 and then to complete the matrix so that the filters Hn

impart desirable properties on the associated scaling function and wavelets. In fact, one can construct
orthonormal scaling functions for any dilation factor M � 2 and the matrix extension technique applies for
any dilation factor M � 2. When M > 2, the orthonormal bases can be built to be with symmetry [14–16].

In the same terminology as Proposition 2.1, we now have the following result that characterizes the
orthogonal projections belonging to M -band wavelets.

Theorem 2.2. Let {Hn}M−1
n=0 be such that (Hn(ω�z))M−1

n,�=0 is unitary for almost every z ∈ T, and let
{PW−1,�}M−1

�=0 be the operators defined by

ZPW−1,�f := H�

(
M−1∑
j=0

Rj
M

)
H�Zf.

Then {PW−1,�}M−1 are mutually orthogonal projections (note that PW−1,0 = PV−1).
�=0
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Proof. We first observe that by the assumed unitarity, every row is normalized, and each pair of rows is
mutually orthogonal, i.e.,

M−1∑
�=0

Hn

(
ω�z

)
Hm

(
ω�z

)
= δn,m,

where δn,m = 1 if n = m and δn,m = 0 otherwise.
Next, we show that each PW−1,� is an orthogonal projection. To begin with, we see that PW−1,� is Hermitian

because the sum
∑M−1

j=0 Rj
M is and this property is retained when it is conjugated by the multiplication

operator H�. The fact that each PW−1,� is idempotent and that the projections are mutually orthogonal is
due to the commutation relation

RMH� = H�(ω·)RM

and because of the orthogonality of the rows in (Hm(ω�z))M−1
m,�=0. Let �, k ∈ {0, 1, . . . ,M − 1}, we then have

for f ∈ L2(R) and almost every z ∈ T,

ZPW−1,�PW−1,kf(z) = H�

M−1∑
m=0

Rm
MH�Hk

M−1∑
n=0

Rn
MHkZf(z)

= H�

M−1∑
m=0

H�

(
ωmz

)
Hk

(
ωmz

)
Rm

M

M−1∑
n=0

Rn
MHkZf(z)

= H�

M−1∑
m=0

H�

(
ωmz

)
Hk

(
ωmz

)M−1∑
n=0

Rn
MHkZf(z)

= δ�,kH�

M−1∑
n=0

Rn
MHkZf(z) = δ�,kZPW−1,�f(z).

This shows that each PW−1,� is a Hermitian idempotent and that the ranges of any pair PW−1,� , PW−1,k with
k 	= l are mutually orthogonal, as claimed. �
2.2. From group-based to cone-adapted shearlets

In contrast to wavelets, shearlet systems are based on three operations: scaling, translation, and shearing;
the last one to change the orientation of those anisotropic functions. Letting the (parabolic) scaling matrix Aj

be defined by

Aj =
(

4j 0
0 2j

)
, j ∈ Z,

and the shearing matrix Sk be

Sk =
(

1 −k

0 1

)
, k ∈ Z.

Then, for some generator ψ ∈ L2(R2), the group-based shearlet system is defined by

{
2

3j
2 ψ(SkAj · −m): j, k ∈ Z, m ∈ Z2}.
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Despite the nice mathematical properties – this system can be regarded as arising from a representation
of a locally compact group, the shearlet group – group-based shearlet systems suffer from the fact that
they are biased towards one axis which prevents a uniform treatment of directions. Cone-adapted shearlet
systems circumvent this problem, by utilizing a particular splitting of the frequency domain into a vertical
and horizontal part. For this, we set Ah

j := Aj , Sh
k := Sk,

Av
j =

(
2j 0
0 4j

)
, and Sv

k =
(

1 0
−k 1

)
, j, k ∈ Z.

Given a scaling function φ ∈ L2(R2) and some ψ ∈ L2(R2), the cone-adapted shearlet system is defined by

{
φ(· −m): m ∈ Z2} ∪

{
23j/2ψ

(
Sh
kA

h
j · −m

)
: j � 0, |k| � 2j , m ∈ Z2}

∪
{
23j/2ψ̃

(
Sv
kA

v
j · −m

)
: j � 0, |k| � 2j , m ∈ Z2},

where ψ̃(x1, x2) = ψ(x2, x1). For more details on shearlets, we refer to [19].
Gabor shearlets will also be constructed first as group based systems, and then in a cone-adapted version.

However, in contrast to other constructions, we aim at low redundancy in the group-based system and avoid
increasing it in the cone adaptation.

2.3. Gabor frames

Like the previous systems, Gabor systems are based on translation and modulation. As usual, we denote
the modulations on L2(R) by Mmf(ξ) = e2πimξf(ξ).

By definition of tightness, a square-integrable function w : R → C is the window of a b−1-tight Gabor
frame {MmbTnw: m,n ∈ Z}, if it is unit norm and for all f ∈ L2(R),

‖f‖2 = b
∑

m,n∈Z

∣∣〈f,MmbTnw〉
∣∣2.

For more details on Gabor systems, we refer the reader to [7].
Various ways to construct such a window function w are known. We recall a construction of a b−1-tight

Gabor frame with b−1 > 1 arbitrarily close to 1 [5].

Example 2.1. Let ν be in C∞(R) and ν(x) = 0 for x � 0, ν(x) = 1 for x � 1 and ν(1 − x) + ν(x) = 1.
Let w(x) := (ν((1/2 + ε − |x|)/2ε))1/2, x ∈ R. Then, it is easy to show that w is a smooth function with
support belonging to [−1/2− ε, 1/2 + ε] for any 0 < ε < 1/2, ‖w‖2 = 1, and

∑
n |Tnw|2 = 1. Consequently,

if b = (1 + 2ε)−1, then {MmbTnw: m,n ∈ Z} defines a b−1-tight Gabor frame.

2.4. Redundancy

Since we cannot achieve (P1), but would like to approximate this property, besides the classical frame
definition, we also require a notion of redundancy. The first more refined definition of redundancy besides
the classical “number of elements divided by the dimension” definition was introduced in [1]. The extension
of this definition to the infinitely dimensional case can be found in [2]. Since the work [2] is not intended
for publication, we make this subsection self-contained.

We start by recalling a redundancy function, which provides a means to measure the concentration of
the frame close to one vector. If {ϕi}i∈I is a frame for a real or complex Hilbert space H without any
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zero vectors, and let S = {x ∈ H: ‖x‖ = 1}, then for each x ∈ S, the associated redundancy function
R : S → R+ ∪ {∞} is defined by

R(x) =
∑
i∈I

‖ϕi‖−2∣∣〈x, ϕi〉
∣∣2.

Taking the supremum or the infimum over x in this definition gives rise to the so-called upper and lower
redundancy, which is in fact the upper and lower frame bound of the associated normalized frame,

R+ = sup
x∈S

R(x) and R− = inf
x∈S

R(x).

For those values, it was proven in [1] that in the finite-dimensional situation, the upper redundancy provides
a means to measure the minimal number of linearly independent sets, and the lower redundancy is related
to the maximal number of spanning sets, thereby linking analytic to algebraic properties.

It is immediate to see that an orthonormal basis satisfies R− = R+ = 1, and a unit norm A-tight frame
R− = R+ = A. This motivates the following definition.

Definition 2.2. A frame {ϕi}i=∈I for a real or complex Hilbert space has a uniform redundancy, if R− = R+,
and if it is unit norm and A-tight, then we say that it has redundancy A.

In the sequel, we will use the redundancy to determine to which extent (P1) is satisfied.

3. Group-based Gabor shearlets

Let us start with an informal description of the construction of Gabor shearlets in a special case with
the goal to first provide some intuition for the reader.

Generally speaking, the shearlet construction in this paper is a Meyer-type modification of a mul-
tiresolution analysis based on the Shannon shearlet scaling function Φ̂0,0,0 = χK , where K = {ξ ∈
R2: |ξ1| � 1 and |ξ2/ξ1| � 1/2}. For an illustration, we refer to Fig. 1.

It is straightforward to verify that chirp modulations

Φ̂0,0,m(ξ) = χK(ξ)e2πim2ξ2/ξ1eπim1ξ
3
1/|ξ1|, m = (m1,m2) ∈ Z2,

define an orthonormal system {Φ0,0,m: m ∈ Z2}, while the usual modulations

Υ̂0,0,m(ξ) = χK(ξ)e2πim2ξ2eπim1ξ1

give a 2-tight frame {Υ0,0,m: m ∈ Z2} for its span. The same is true when the modulations are augmented
with shears, Φ̂0,k,m(ξ) = Φ̂0,0,m(ξ1, ξ2 − kξ1) and likewise for Υ̂0,k,m, in order to form the orthonormal or
tight systems {Φ0,k,m: k ∈ Z, m ∈ Z2} or {Υ0,k,m: k ∈ Z, m ∈ Z2}, respectively. Because both systems are
unit-norm, the tightness constant is a good measure for redundancy as detailed in Section 2.4, indicating
that chirp modulations are preferable from this point of view. Incorporating parabolic scaling preserves
those properties.

In a second step (Section 4) the strategy of shearlets is followed to derive a cone-adapted version, which
provides the property of a uniform treatment of directions necessary for optimal sparse approximation
results. Apart from directional selectivity, good decay properties form a further necessary ingredient for
optimal sparsity. We show that a combination of Gabor frames, Meyer wavelets and a change of coordinates
provide smooth alternatives for the characteristic function, yet with still near-orthonormal shearlet systems
that are similar to the Shannon shearlets we described.
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Fig. 1. Support of the scaling function belonging to group-based Shannon shearlets (as well as the group-based Gabor shearlets)
in the frequency domain. Additional lines indicate the boundaries of the support for sheared scaling functions.

3.1. Construction using chirp modulations

To begin the shearlet construction, we examine an alternative group of translations acting as chirp mod-
ulations in the frequency domain. These modulations do not correspond to the usual Euclidean translations,
but for implementations in the frequency domain this is not essential. In the following, we use the notation
R∗ := R \ {0}.

Definition 3.1. Let γ(ξ) := (γ1(ξ), γ2(ξ)) with γ1(ξ) := 1
2ξ

3
1/|ξ1| = 1

2 sgn(ξ1)ξ2
1 and γ2(ξ) := ξ2

ξ1
for ξ =

(ξ1, ξ2) ∈ R∗ × R. We define the two-dimensional chirp-modulations {Xβ : β ∈ R2} by

Xβ f̂(ξ) = e2πiβ1γ1(ξ)e2πiβ2γ2(ξ)f̂(ξ), ξ ∈ R∗ × R.

We emphasize that the set with ξ1 = 0 is excluded from the domain, which does not cause problems since
it has measure zero.

Next, notice that the point transformation γ has a Jacobian of magnitude one and is a bijection on
R∗ × R. Therefore, it defines a unitary operator Γ according to

Γ f̂(ξ) = f̂
(
γ(ξ)

)
, ξ ∈ R∗ × R.

As discussed in Section 2.2, the shear operator is a further ingredient of shearlet systems. By abuse of
notation, for any s ∈ R, we will also regard Ss as an operator, that is

Ssf̂(ξ1, ξ2) = f̂(ξ1, ξ2 − sξ1).

The benefit of choosing the chirp-modulations is that shearing and modulation satisfy the well-known
Weyl–Heisenberg commutation relations. The proof of the following result is a straightforward calculation,
hence we omit it.
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Proposition 3.1. For s ∈ R and β ∈ R2,

SsXβ = e−2πiβ2sXβSs.

The last ingredient is a scaling operator which gives parabolic scaling. Again abusing notation, we write
the dilation operator with Aj . For j ∈ Z, we let Aj be the dilation operator acting on f ∈ L2(R2) by

Aj f̂(ξ1, ξ2) = 2−3j/2f̂
(
2−2jξ1, 2−jξ2

)
for almost very ξ = (ξ1, ξ2) ∈ R2.

Now we are ready to define group-based Gabor shearlets by the generating functions to which those three
operators are then applied. For this, let φ be an orthogonal scaling function of a 16-band multiresolution
analysis in L2(R), with associated orthonormal wavelets {ψ�}15

�=1, and let w be the unit norm window
function of a b−1-tight Gabor frame {Mm2bTkw: m2, k ∈ Z} for L2(R). Then we define the generators

Φ̂0,0,0 := Γ φ̂⊗ w and Ψ̂ �
0,0,0 := Γψ̂� ⊗ w, � = 1, . . . , 15

in L2(R2) = L2(R) ⊗ L2(R), based on which we now define group-based Gabor shearlets.

Definition 3.2. Let Φ0,0,0 and Ψ �
0,0,0, � = 1, . . . , 15, and w be defined as above. Let j0 ∈ Z. Then the

group-based Gabor shearlet system is defined by

GGSj0

(
φ, {ψ�}15

�=1;w
)

:=
{
Φj0,k,m: k ∈ Z, m ∈ Z2} ∪

{
Ψ �
j,k,m: j, k ∈ Z, j � j0, m ∈ Z2, � = 1, . . . , 15

}
⊆ L2(R2),

where

Φ̂j,k,m(ξ) = AjX(m1,m2b)SkΦ̂0,0,0

= 2−3j/2φ̂
(
2−4jγ1(ξ)

)
w
(
2jγ2(ξ) − k

)
e2πim12−4jγ1(ξ)e2πim2b2jγ2(ξ),

and

Ψ̂ �
j,k,m(ξ) = AjX(m1,m2b)SkΨ̂

�
0,0,0

= 2−3j/2ψ̂�

(
2−4jγ1(ξ)

)
w
(
2jγ2(ξ) − k

)
e2πim12−4jγ1(ξ)e2πim2b2jγ2(ξ).

The particular choice of dilation factors in the first and second coordinate comes from the need for
parabolic scaling and integer dilations. The motivation is that the regularity of the singularity in the
cartoon-like model is C2, and if the generator satisfies width = length2 one can basically linearize the
curve inside the support with controllable error by the Taylor expansion. Since we utilize a different group
operation, it is not immediately clear which scaling leads to the size constraints width = length2. An integer
value of j requires 4j = j2, so j = 4. Then one considers the intertwining relationship between the dilation
operator A4 and the standard one-dimensional dyadic dilation D to deduce A4Γ = ΓD−16 ⊗ D4, which
explains the choice of M = 16 bands.

3.2. MRA structure

One crucial question is whether the just introduced system is associated with an MRA structure. As a
first step, we define associated scaling and wavelet spaces.
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Definition 3.3. Let Φj,k,m and Ψ �
j,k,m, j, k ∈ Z, m ∈ Z2, � = 1, . . . , 15 be defined as in Definition 3.2. For

each j ∈ Z, the scaling space Vj is the closed subspace

Vj = span
{
Φj,k,m: k ∈ Z, m ∈ Z2} ⊆ L2(R2),

and the associated wavelet space Wj is defined by

Wj = span
{
Ψ �
j,k,m: k ∈ Z, m ∈ Z2, � = 1, . . . , 15

}
.

Next, we establish that the group-based Gabor shearlet system is indeed associated with an MRA struc-
ture, and analyze how close it is to being an orthonormal basis.

Theorem 3.1. Let Φj,k,m and Ψ �
j,k,m, j, k ∈ Z, m ∈ Z2, � = 1, . . . , 15 be defined as in Definition 3.2

and let {Vj}j∈Z and {Wj}j∈Z be the associated scaling and wavelet spaces as defined in Definition 3.3.
Then, for each j ∈ Z, the family {Φj,k,m: k ∈ Z, m ∈ Z2} is a unit norm b−1-tight frame for Vj, and
{Ψ �

j,k,m: k ∈ Z, m ∈ Z2, � = 1, . . . , 15} forms a unit-norm b−1-tight frame for Wj.

Proof. We first verify that the scaling function generates a b−1-tight frame for a closed subspace of L2(R2).
By Proposition 3.1, the operator Γ intertwines shears and translations in the second component,

SkΓ f̂(ξ) = Γ f̂(ξ1, ξ2 − kξ1) = f̂
(
γ1(ξ), γ2(ξ) − k

)
.

Moreover, it intertwines chirp modulations with standard modulations. The overall dilation is irrelevant
because Aj is unitary, so we can set j = 0 for simplicity. Therefore, it is enough to prove that {Mm1 φ̂ ⊗
Mm2bTkw} defines a b−1-tight frame for Γ−1(V̂0). This follows from the fact that w is the unit norm
window function of a b−1-tight Gabor frame and from φ being an orthonormal scaling function of an MRA.
A similar argument shows that {Mm1 ψ̂ ⊗Mm2bTkw} defines a b−1-tight frame for Γ−1(Ŵ0), because ψ is
an orthonormal MRA wavelet. �
Theorem 3.2. The scaling and wavelet subspaces V0 and W0 as defined in Definition 3.3 satisfy the two-scale
relation

V0 ⊕W0 = Ǎ4(V0)

where Ǎ4 is the inverse Fourier transform of the dilation operator, so for f ∈ L2(R2), (Ǎ4f )̂ = A4f̂ .

Proof. We note that the functions

φ̂⊗ w and ψ̂� ⊗ w, � = 1, . . . , 15

are orthogonal by assumption, and the orthogonality remains under the usual modulations in the first
component. On the other hand, the window function in the second component forms a tight Gabor frame
under translations and modulations, so each of the tensor products generates a tight frame for its span.

Since the subspaces φ̂ ⊗ L2(R), ψ̂� ⊗ L2(R), � = 1, . . . , 15 are mutually orthogonal, by the unitarity
of Γ the same is true for their images Γ (φ̂ ⊗ L2(R)) and Γ (ψ̂� ⊗ L2(R)). Finally, the functions {φ, ψ�}
satisfy a two-scale relation of an MRA with dilation factor M = 16 in L2(R), so the claim follows from the
intertwining relationship A4Γ = ΓD−16 ⊗D4. �

Since implementations only concern a finite number of scales, the following result becomes important.
It is an easy consequence of Theorem 3.1.
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Corollary 3.1. The group-based Gabor shearlet system GGSj0(φ, {ψ�}15
�=1;w) as defined in Definition 3.2 for

any j0 ∈ Z, or the system {Ψ �
j,k,m: j, k ∈ Z, m ∈ Z2, � = 1, . . . , 15} forms a unit-norm b−1-tight frame for

L2(R2), and consequently it has uniform redundancy R− = R+ = b−1.

4. Cone-adapted Gabor shearlets

The construction of cone-adapted Gabor shearlets is based on complementing a core subspace V0 which
has the usual MRA properties for L2(R2) under scaling with a dilation factor of 16. The isometric embedding
of V0 in V1 proceeds in 3 steps:

1. V1 is split into a direct sum of two coarse-directional subspaces, V h
1 and V v

1 , corresponding to horizontally
and vertically aligned details, respectively.

2. Each of these two coarse-directional subspaces is split into a direct sum of high and low pass components.
The low-pass subspaces V h

0 and V v
0 combine to V0 = V h

0 ⊕ V v
0 .

3. The high pass components are further split into subspaces with a finer directional resolution obtained
from shearing.

The first step in the process of constructing the cone-adapted shearlets is a splitting between features
that are mostly aligned in the horizontal or in the vertical direction. The shearlets then refine this coarse
splitting.

4.1. Cone adaptation

In addition to filters which restrict to cones in the frequency domain, we introduce projections based on
quarter rotations for the splitting of horizontal and vertical features. This enables us to define two mutually
orthogonal closed subspaces containing functions with support near the usual cones for horizontal and
vertical components. As in the case of wavelets, the main goal of this construction is that the smoothness
of a function in the frequency domain is not substantially degraded by the projection onto the subspaces.

Again, we use standard filters from wavelets in our construction. For this, we define a version of the
Cayley transform ζ(ξ) = 1+iξ

1−iξ , which maps ξ ∈ R to the unit circle T = {z ∈ C: |z| = 1}. The inverse map
is defined on T \ {−1}, ζ−1(z) = i1−z

1+z . We use the map ζ to lift polynomial filters on T to rational filters
on R.

Lemma 4.1. Let H : T → C satisfy |H(z)|2 + |H(−z)|2 = 1 for all z ∈ T, then H̃(ξ) := H(ζ(ξ)) is a function
on R which satisfies

∣∣H̃(ξ)
∣∣2 +

∣∣H̃(−1/ξ)
∣∣2 = 1.

Proof. The Cayley transform intertwines the reflection ξ �→ −1/ξ on R with the reflection about the origin,
because

ζ(−1/ξ) = 1 − i/ξ

1 + i/ξ
= 1 + iξ

−1 + iξ
= −ζ(ξ).

Thus, the property of H̃ is a direct consequence of this coordinate transformation. �
We observe that if H(z) has N − 1 vanishing derivatives at z = −1, H(−1) = H ′(−1) = · · · =

H(N−1)(−1) = 0, then H̃(ξ) decays as ξ−N at infinity.
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Definition 4.1. Let H : T → C satisfy the Smith–Barnwell condition |H(z)|2 + |H(−z)|2 = 1 for all z ∈ T.
Its associated filter operators H+, H+, H− and H−, are defined to be the multiplicative operators with the
Fourier transform of any f ∈ L2(R2) in the frequency domain according to H+f̂(ξ) = H(ζ(ξ2/ξ1))f̂(ξ) and
H−f̂(ξ) = H(−ζ(ξ2/ξ1))f̂(ξ), the overbar denoting multiplication with the complex conjugate. We denote R
to be the rotation operator on L2(R2) given by Rf̂(ξ1, ξ2) = f̂(ξ2,−ξ1).

This allows us to introduce a pair of complementary orthogonal projections, which split the group based
Gabor shearlets into a vertical and a horizontal part to balance the treatment of directions. The design of
these projections is inspired by the description of smooth projections in [24].

We start the construction with isometries associated with the vertical and horizontal cone, which we
denote by Cv and Ch, respectively. By the set inclusion, L2(Cv) and L2(Ch) naturally embed isometrically in
L2(R2). We denote these embeddings by ιv: ιvf(ξ) = f(ξ) if ξ ∈ Cv and ιvf(ξ) = 0 otherwise and similarly
for ιh. We wish to find isometries that do not create discontinuities.

Theorem 4.1. Let H : T → C satisfy |H(z)|2 + |H(−z)|2 = 1 for all z ∈ T, and let H+, H+, H− and
H− be defined as in Definition 4.1. Let Cv = {x ∈ R2: |x2| � |x1|} and Ch = R2 \ Cv, then the map
Ξv : L2(Cv) → L2(R2) given by

Ξvf = H−

(
I − 1 + i

2 R− 1 − i

2 R3
)
ιvf

is an isometry, and so is the map Ξh : L2(Ch) → L2(R2),

Ξhf = H+

(
I + 1 + i

2 R + 1 − i

2 R3
)
ιhf.

Moreover, the range of Ξv is the orthogonal complement of the range of Ξh in L2(R2), and Pv = ΞvΞ
∗
v and

Ph = ΞhΞ
∗
h are complementary orthogonal projections on L2(R2).

Proof. We begin by showing that Ξv and Ξh are isometries. The space L2(Cv) splits into even and odd
functions. After embedding in L2(R2) these functions then satisfy R2ιvf = ιvf or R2ιvf = −ιvf , respec-
tively.

By the definition of R, the operator I − 1+i
2 R− 1−i

2 R3 maps even ιvf to(
I − 1 + i

2 R− 1 − i

2 R3
)
ιvf =

(
1
2I + 1

2R
2 − 1

2R− 1
2R

3
)
ιvf,

which implies that it is an eigenvector of R, R(1
2I + 1

2R
2 − 1

2R− 1
2R

3)ιvf = −(1
2I + 1

2R
2 − 1

2R− 1
2R

3)ιvf
and for odd f (

I − 1 + i

2 R− 1 − i

2 R3
)
ιvf =

(
1
2I −

1
2R

2 − i

2R + i

2R
3
)
ιvf,

which gives R(1
2I −

1
2R

2 − i
2R + i

2R
3)ιvf = i(1

2I −
1
2R

2 − i
2R + i

2R
3)ιvf .

Similarly, the operator (I + 1+i
2 R + 1−i

2 R3) maps the even functions into functions that are invariant
under R, whereas the odd functions give eigenvectors of R corresponding to eigenvalue −i. We verify that
for even ιhf , (

I + 1 + i
R + 1 − i

R3
)
ιhf =

(
1
I + 1

R2 + 1
R + 1

R3
)
ιhf.
2 2 2 2 2 2
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Hence we get the eigenvalue equation R(1
2I+ 1

2R
2+ 1

2R+ 1
2R

3)ιhf = (1
2I+ 1

2R
2+ 1

2R+ 1
2R

3)ιhf . Analogously,
for odd f , (

I + 1 + i

2 R + 1 − i

2 R3
)
ιhf =

(
1
2I −

1
2R

2 + i

2R− i

2R
3
)
ιhf

which yields R(1
2I −

1
2R

2 + i
2R− i

2R
3)ιhf = (−i)(1

2I −
1
2R

2 + i
2R− i

2R
3)ιhf .

Since R is unitary, the eigenvector equations imply that the orthogonality between even and odd functions
is preserved by the embedding followed by the symmetrization with (I+ 1+i

2 R+ 1−i
2 R3) or (I− 1+i

2 R− 1−i
2 R3).

Thus, the identity∥∥∥∥(I − 1 + i

2 R− 1 − i

2 R3
)
ιvf

∥∥∥∥2

L2(R2)
= 2‖f‖2

L2(Cv) for all f ∈ L2(Cv)

can be verified by checking it separately for even and odd functions. Next, multiplying by H− and using
that |H−|2 + R−1|H−|2R = |H−|2 + |H+|2 = 1 gives by the orthogonality of Rιvf and ιvf the isometry∥∥∥∥H−

(
I − 1 + i

2 R− 1 − i

2 R3
)
ιvf

∥∥∥∥2

L2(R2)

= ‖H−ιvf‖2
L2(R2) +

∥∥∥∥H−

(
1 + i

2 R + 1 − i

2 R3
)
ιvf

∥∥∥∥2

L2(R2)

= ‖H−ιvf‖2
L2(R2) +

∥∥∥∥H+

(
1 + i

2 + 1 − i

2 R2
)
ιvf

∥∥∥∥2

L2(R2)

= ‖H−ιvf‖2
L2(R2) + ‖H+ιvf‖2

L2(R2) = ‖f‖2
L2(Cv).

The same proof applies to Ξh.
To show that the ranges are orthogonal complements of each other, we first establish that the projections

Pv = ΞvΞ
∗
v and Ph = ΞhΞ

∗
h have the more convenient expressions

Ph = H+

(
I + 1 + i

2 R + 1 − i

2 R3
)
H+ and Pv = H−

(
I − 1 + i

2 R− 1 − i

2 R3
)
H−.

To this end, we note that if Mv is the multiplication operator Mvf(ξ) = χCv
(ξ)f(ξ) with χCv

the charac-
teristic function of Cv, and similarly for Mh, Mhf(ξ) = χCh

(ξ)f(ξ), then by definition

Ph = ΞhΞ
∗
h = H+

(
I + 1 + i

2 R + 1 − i

2 R3
)
Mh

(
I + 1 + i

2 R + 1 − i

2 R3
)
H+.

We simplify this expression using that MhR = RMv, Mv + Mh = I and R2Mh = MhR
2, which gives the

identities (
1 + i

2 R + 1 − i

2 R3
)
Mh + Mh

(
1 + i

2 R + 1 − i

2 R3
)

=
(

1 + i

2 R + 1 − i

2 R3
)
Mh +

(
1 + i

2 R + 1 − i

2 R3
)
Mv = 1 + i

2 R + 1 − i

2 R3

and (
1 + i

R + 1 − i
R3

)
Mh

(
1 + i

R + 1 − i
R3

)
=

(
1 + i

R + 1 − i
R3

)2

Mv = Mv.
2 2 2 2 2 2
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Inserting this in the expression for Ph results in

H+

(
I + 1 + i

2 R + 1 − i

2 R3
)
Mh

(
I + 1 + i

2 R + 1 − i

2 R3
)
H+

= H+

(
Mh +

(
1 + i

2 R + 1 − i

2 R3
)

+ Mv

)
H+ = H+

(
I + 1 + i

2 R + 1 − i

2 R3
)
H+.

The identities for Pv are completely analogous.
Finally, we show that the two orthogonal projections are complementary. To this end, we use

Ph = H+H+ + H+H−

(
1 + i

2 R + 1 − i

2 R3
)

and

Pv = H−H− −H−H+

(
1 + i

2 R + 1 − i

2 R3
)

which gives Ph+Pv = I after elementary cancellations and H+H++H−H− = I. Since Ph is by definition an
orthogonal projection, Pv = I−Ph is the complementary one. Thus, the ranges of Ξh and Ξv, or equivalently,
the ranges of Ph and Pv, are orthogonal complements in L2(R2). �

For later use, we denote the range spaces of Ξh and Ξv by

L2
h

(
R2) = Ξh

(
L2(Ch)

)
and L2

v

(
R2) = Ξv

(
L2(Cv)

)
,

which are orthogonal complements in L2(R2).
Under the isometries Ξv or Ξh, a unit norm tight frame for L2(Cv) or L2(Ch) is mapped to a unit norm

tight frame for L2
h(R2) or L2

v(R2). This means, in principle we would only need to construct shearlets for
the horizontal and vertical cones, not for all of R2. However, in order to achieve smoothness, we need to
enlarge the cones slightly.

To prepare this construction, we first refer to a result of Søndergaard from [23].

Theorem 4.2. (See [23].) Let N0, τ ∈ N, τ < N0 and let α0 = 2/N0, β0 = τ/2. If w is a function in the
Feichtinger algebra, and if {Mmβ0Tkα0w}m,k∈Z is an N0

τ -tight Gabor frame for L2(R), then the periodiza-
tion w◦,

w◦(ξ) =
∑
n∈Z

w(ξ − 2n) for a.e. ξ ∈ R,

defines an N0
τ -tight Gabor frame {Mmβ0Tkα0w

◦: 0 � k � N0 − 1, m ∈ Z} for L2([−1, 1]).

In order to achieve smoothness of the cone-adapted shearlets in the frequency domain, we need a slightly
dilated Gabor frame. For ε > 0, we denote the dilated window w◦

ε (x) = 1√
1+ε

w◦(x/(1 + ε)).

Corollary 4.1. Let N0, τ ∈ N, τ < N0 and let α = 2(1 + ε)/N0, β = (1 + ε)−1τ/2. If w satisfies the
assumptions in Theorem 4.2 then the dilated window gives rise to the N0/τ -tight Gabor frame {MmβTkαw

◦
ε }

for L2([−1 − ε, 1 + ε]).

Of particular interest to us is the next corollary, which we can draw from this result. We remark that
tightness is preserved when periodizing the window, and if its support is sufficiently small then so is the
norm.



B.G. Bodmann et al. / Appl. Comput. Harmon. Anal. 38 (2015) 87–114 103
Corollary 4.2. The uniform redundancy R− = R+ = N0
τ of the Gabor frame {MmβTkαw

◦
ε } defined in

Corollary 4.1 can be chosen as close to one as desired by choosing N0, τ ∈ N sufficiently large.

Before stating the definition of cone-adapted Gabor shearlets, we require the following additional ingre-
dients. We consider the change of variables (ξ1, ξ2) �→ γι(ξ) = (γι

1(ξ), γι
2(ξ)), ι ∈ {h, v}, defined by

γh
1 (ξ) = 1

2 sgn(ξ1)ξ2
1 , γh

2 (ξ) = ξ2
ξ1

and γv
1 (ξ) = 1

2 sgn(ξ2)ξ2
2 , γv

2 (ξ) = ξ1
ξ2

.

We let Γh and Γv denote the associated unitary operators, Γhf(ξ) = f(γh(ξ)) and Γvf(ξ) = f(γv(ξ)).
For each orientation v or h, we define the appropriate dilation, shear, and modulation operators by

Ah
j ≡ Aj , Xh

m ≡ Xm, and Sh
k ≡ Sk,

and if f̂(ξ1, ξ2) = ĝ(ξ2, ξ1), then

Av
j f̂(ξ1, ξ2) = Ah

j ĝ(ξ2, ξ1), Xv
mf̂(ξ1, ξ2) = Xh

mĝ(ξ2, ξ1), and Sv
k f̂(ξ1, ξ2) = Sh

k ĝ(ξ2, ξ1).

Definition 4.2. Let φ be an orthogonal scaling function of a 16-band multiresolution analysis in L2(R), with
associated orthonormal wavelets {ψ�: � = 1, . . . , 15}, and let ε > 0, N0, τ ∈ N such that w is the unit norm
window function of an N0

τ -tight Gabor frame {Mm2βTkαw: m2, k ∈ Z} for L2(R), with the periodization w◦
ε

as described in Corollary 4.1. For any j0 ∈ Z, the associated cone-adapted Gabor shearlet system is defined by

CGSj0

(
φ, {ψ�}15

�=1;w
)

:=
{
Φh
j0,k,m, Φv

j0,k,m: k ∈ Z, |k/N0| � 2j−1, m ∈ Z2}
∪
{
Ψh,�
j,k,m, Ψv,�

j,k,m: j, k ∈ Z, j � j0, |k/N0| � 2j−1, m ∈ Z2, � = 1, . . . , 15
}
⊆ L2(R2),

where

Φ̂h
j,k,m = PhA

h
jX

h
(m1,m2β)S

h
kαΓhφ̂⊗ w◦

ε and Φ̂v
j,k,m = PvA

v
jX

v
(m1,m2β)S

v
kαΓvw

◦
ε ⊗ φ̂

and accordingly

̂
Ψh,�
j,k,m = PhA

h
jX

h
(m1,m2β)S

h
kαΓhψ̂� ⊗ w◦

ε and ̂
Ψv,�
j,k,m = PvA

v
jX

v
(m1,m2β)S

v
kαΓvw

◦
ε ⊗ ψ̂�.

For an illustration of the support of the special case of cone-adapted Shannon shearlets and the more
general cone-adapted Gabor shearlets, we refer to Fig. 2.

4.2. MRA structure

By classical results from frame theory, the system consisting of the functions Φh
j,k,m, Φv

j,k,m forms a tight
frame. To show this, we denote the sets Cv,ε = {ξ ∈ R2: |ξ1/ξ2| < 1+ε} and Ch,ε = {ξ ∈ R2: |ξ2/ξ1| < 1+ε}.

Theorem 4.3. Let H : T → C satisfy |H(z)|2 + |H(−z)|2 = 1 for all z ∈ T, and let ε > 0 be such that
H+, H+, H− and H− defined as in Definition 4.1 have the support of H+ contained in Ch,ε and that of
H− contained in Cv,ε. Let N0 ∈ 2N, τ ∈ N, and let w be the unit norm window function of an N0

τ -tight
Gabor frame {Mm2τ/2T2k/N0w: m2, k ∈ Z} for L2(R). Let α = 2(1 + ε)/N0 and β = τ(1 + ε)−1/2, such
that w◦

ε is the window of a unit-norm Gabor frame {Mm2βTkαw
◦
ε } for L2([−1 − ε, 1 + ε]), then the system

CGSj0(φ, {ψ�}15
�=1;w) for any j0 ∈ Z, or the system
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Fig. 2. (a) Support of the cone-adapted Shannon shearlet scaling functions in the frequency domain, in horizontal and vertical
orientations; (b) Support of a cone-adapted Gabor shearlet scaling function in the frequency domain, corresponding to a Gabor
frame with N0 = 4. The smallest achievable redundancy with N0 = 4 is obtained by setting τ = 3, resulting in N0/τ = 4/3. With
sufficiently large values of N0, and the implicit finer directional resolution, N0/τ can be chosen as close to one as desired.

{
Ψh,�
j,k,m, Ψv,�

j,k,m: j, k ∈ Z, |k/N0| � 2j−1, m ∈ Z2, � = 1, . . . , 15
}

is a unit-norm N0
τ -tight frame for L2(R2). Moreover, if the wavelets of the 16-band multiresolution analysis

{ψ�: � = 1, . . . , 15}, H and w are in addition C∞, then the shearlets {Ψh,�
j,k,m, Ψv,�

j,k,m: j, k ∈ Z, |k/N0| �
2j−1, m ∈ Z2, � = 1, . . . , 15} have polynomial decay in R2.

Proof. The family

{
Ah

jX
h
(m1,m2β)S

h
kαΓhψ̂� ⊗ w◦

ε : j, k ∈ Z, |k/N0| � 2j−1, m ∈ Z2; � = 1, . . . , 15
}

is an N0
τ -tight frame for L2(Ch,ε). We use the orthogonal projection operator Ph for mapping this family to

L2(R2).
Since the functions in range of the projection Ph are supported in Ch,ε, the tight frame is mapped to a

tight frame for the range of Ph. Consequently, under the projection,

{̂
Ψh,�
j,k,m = PhA

h
jX

h
(m1,m2β)S

h
kαΓhψ̂� ⊗ w◦

ε : j, k ∈ Z, |k/N0| � 2j−1, m ∈ Z2, � = 1, . . . , 15
}

is an N0
τ -tight frame for Ph(L2(R2)). Similarly,

{̂
Ψv,�
j,k,m = PvA

v
jX

v
(m1,m2β)S

v
kαΓvψ̂� ⊗ w◦

ε : j, k ∈ Z, |k/N0| � 2j−1, m ∈ Z2, � = 1, . . . , 15
}

is a N0
τ -tight frame for Pv(L2(R2)). By the orthogonality of the ranges for Ph and Pv, the union

{
Ψh,�
j,k,m, Ψv,�

j,k,m: j, k ∈ Z, |k/N0| � 2j−1, m ∈ Z2, � = 1, . . . , 15
}

is an N0 -tight frame for L2(R2). The proof for the case of CGSj0(φ, {ψ�}15
�=1;w) is similar.
τ
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The polynomial decay is a consequence of the smoothness of ̂
Ψv,�
j,k,m and of ̂

Ψh,�
j,k,m which follows from the

construction. �
5. Optimal sparse approximations

In this section, we show that the cone-adapted Gabor shearlet system CGSj0(φ, {ψ�}15
�=1;w) provides

optimally sparse approximation of cartoon-like functions, similar to ‘classical’ shearlets (see [11,20]). Due to
the asymptotic nature of the optimally approximation results, which involve only shearlets with a large
scale j, without loss of generality, we consider CGSj0(φ, {ψ�}15

�=1;w) with j0 = 0 and denote the system as
CGS(Ψh, Ψv). We will first state the main result and the core proof in the following subsection, and postpone
the technical parts of the proof to later subsections.

Although we can use a similar strategy is in the proof for classical shearlets [11,20], certain adaptations
are necessary. One might have hoped to eliminate repeating some of the tedious estimates by a more elegant,
universal result such as showing that Gabor shearlets fall into the class of parabolic molecules [8] or perhaps
at least that they have the same asymptotic properties. However, it is not possible to simply linearize the
chirp modulations used in the construction of Gabor shearlets while incurring a negligible error on the
support of the shearlets because under parabolic scaling, even for shearlets in the high frequency regime,
the support size stays commensurate with the scale given by the modulations. In the absence of a universal
proof, we have chosen to examine the details of previous proofs and modify them when necessary for our
purposes.

5.1. Main result

We first require the definition of cartoon-like functions. For this, we recall that in [3] E2(A) denotes the
set of cartoon-like functions f , which are C2 functions away from a C2 edge singularity: f = f0 + f1χB ,
where f0, f1 ∈ C2([0, 1]2) and ‖f‖C2 :=

∑
|v|�2 ‖∂vf‖∞ � 1 with ∂v = ∂v1

1 ∂v2
2 being the 2D differential

operator with order ∂1 = ∂
∂x1

, ∂2 = ∂
∂x2

, and v = (v1, v2). More precisely, in polar coordinates, let ρ(θ) :
[0, 2π) �→ [0, 1]2 be a radius function satisfying supθ |ρ′′(θ)| � A and ρ � ρ0 � 1. The set B ⊂ R2

is given by B = {x ∈ [0, 1]2: ||x||2 � ρ(θ)}. In particular, the boundary ∂B is given by the curve in
R2: β(θ) = (ρ(θ) cos θ, ρ(θ) sin θ).

Utilizing this notion, we can now formulate out main result concerning optimal sparse approximation
of such cartoon-like functions by our cone-adapted Gabor shearlet system as follows. Here, the N -term
approximation fN of f is given by fN = τ

N0

∑N
j=1〈f, Ψμj

〉Ψμj
with 〈f, Ψμj

〉, j = 1, . . . , N being the N

largest coefficients in magnitude.

Theorem 5.1. Let CGS(Ψh, Ψv) satisfy all the assumptions in Theorem 4.3, let f ∈ E2(A) and fN be the
N -term approximation of f from the N largest cone-adapted Gabor shearlet coefficients {〈f, Ψμ〉: Ψμ ∈
CGS(Ψh, Ψv)} in magnitude, then

‖f − fN‖2
2 � c ·N−2 · (logN)3.

To prove this theorem, we follow the main idea as in [3,11]. In a nutshell, we first use a smooth partition of
unity that decomposes a cartoon-like function f into small dyadic cubes of size about 2−j ×2−j . If j is large
enough, then there are only two types of dyadic cubes: one intersects with the singularity of the function,
namely, the edge fragments, and the other only contains the smooth region of the function. We then analyze
the decay property of the shearlet coefficients. Eventually, by combining the decay estimation of each dyadic
cube, we can prove Theorem 5.1.
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Fig. 3. An edge fragment.

Although the main steps are similar to [3,11], we would like to point out that some of the key steps
require slightly technical extensions of results in [3,11]. For the results available in [3,11], we simply state
them here without proof for the purpose of readability.

Let us next state some necessary auxiliary results, including Theorem 5.2 for the decay estimate with
respect to those edge fragments and Theorem 5.3 for the decay estimate with respect to those smooth
regions.

An edge fragment (see Fig. 3) is of the form

f(x1, x2) = w0
(
2jx1, 2jx2

)
g(x1, x2)1{x1�E(x2)}, (1)

where w0, g are smooth functions supported on [−1, 1]2 and |E′′(x)| � A.
Let Qj be the collection of dyadic cubes of the form Q = [m1/2j , (m1 + 1)/2j ] × [m2/2j , (m2 + 1)/2j ].

For w0 a nonnegative C∞ function with support in [−1, 1]2, we can define a smooth partition of unity∑
Q∈Qj

wQ(x) = 1, x ∈ R2

with wQ = w0(2jx1 −m1, 2jx2 −m2). If Q ∈ Qj intersects with the curve singularity, then fQ := fwQ is
an edge fragment.

Let Q0
j be the collection of those dyadic cubes Q ∈ Qj such that the edge singularity intersects with the

support of wQ. Then the cardinality ∣∣Q0
j

∣∣ � c · 2j . (2)

Similarly, Q1
j := Qj\Q0

j are those cubes that do not intersect with the edge singularity. We have∣∣Q1
j

∣∣ � c · 22j + 4 · 2j . (3)

Let {sμ} be a sequence. We define |sμ|(N) to be the Nth largest entry of the {|sμ|}. The weak-�p quasi-
norm ‖ · ‖w�p of {sμ} is defined to be

‖sμ‖w�p := sup
N>0

(
N1/p · |sμ|(N)

)
,

which is equivalent to

‖sμ‖w�p =
(
sup

(
|{μ: |sμ| > ε}| · εp

))1/p
.

ε>0
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We abbreviate indices for elements in CGS(Ψh, Ψv) and write Ψμ with μ = (j, k,m; ι, �). The index set at
scale j is Λj := {μ = (j, k,m; ι, �): k ∈ Z, |k/N0| � 2j−1, m ∈ Z2; � = 1, . . . , 15, ι = h, v}.

Now similar to [11, Theorem 1.3], we have the following result which provides a decay estimate of the
coefficients with respect to those Q ∈ Q0

j .

Theorem 5.2. Let f ∈ E2(A) and fQ := fwQ. For Q ∈ Q0
j with j � 0 fixed, the sequence of coefficients

{〈fQ, Ψμ〉: μ ∈ Λj} obeys

∥∥〈fQ, Ψμ〉
∥∥
w�2/3 � c · 2−3j/2

for some constant c independent of Q and j.

Similarly, for the smooth part, we can show that the sequence of coefficients {〈fQ, Ψμ〉: μ ∈ Λj} with
Q ∈ Q1

j obeys the following estimate (c.f. [11, Theorem 1.4]).

Theorem 5.3. Let f ∈ E2(A). For Q ∈ Q1
j with j � 0 fixed, the sequence of coefficients {〈fQ, Ψμ〉: μ ∈ Λj}

obeys

∥∥〈fQ, Ψμ〉
∥∥
w�2/3 � c · 2−3j

for some constant independent of Q and j.

The proofs of Theorems 5.2 and 5.3 are very technical and require extension of results in [3,11].
We therefore postpone their detailed proofs to the next two subsections. As a consequence of Theorem 5.2
and Theorem 5.3, it is easy to show the following result.

Corollary 5.1. Let f ∈ E2(A) and for j � 0, let sj(f) be the sequence of sj(f) = {〈f, Ψμ〉: μ ∈ Λj}. Then

∥∥sj(f)
∥∥
w�2/3 � c

Proof. By the triangle inequality,

∥∥sj(f)
∥∥2/3
w�2/3 �

∑
Q∈Qj

∥∥〈fQ, Ψμ〉
∥∥2/3
w�2/3

�
∑

Q∈Q0
j

∥∥〈fQ, Ψμ〉
∥∥2/3
w�2/3 +

∑
Q∈Q1

j

∥∥〈fQ, Ψμ〉
∥∥2/3
w�2/3

� c ·
∣∣Q0

j

∣∣ · 2−j + c ·
∣∣Q1

j

∣∣ · 2−2j

� c. �
Now, we can give the decay rate of our cone-adapted Gabor shearlet coefficients as follows.

Theorem 5.4. Let f ∈ E2(A) and s(f) := {〈f, Ψμ〉: Ψμ ∈ CGS(Ψh, Ψv)} be the cone-adapted Gabor shearlet
coefficients associated with f . Let {|s(f)|(N): N = 1, 2, . . .} be the sorted sequence of the absolute values of
s(f) in descending order. Then

sup
f∈E2(A)

∣∣s(f)
∣∣
(N) � c ·N−3/2 · (logN)3/2.
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Proof. From Definition 4.2, we have ̂
Ψh,�
j,k,m = Phg

h
j,k,m with gh,�j,k,m = Ah

jX
h
(m1,m2β)S

h
kαΓhψ̂� ⊗ w◦

ε . Then,

̂
Ψh,�
j,k,m(ξ1, ξ2) = H+

(
I + 1 + i

2 R + 1 − i

2 R3
)
H+g

h,�
j,k,m(ξ1, ξ2)

=
∣∣H(

ζ(ξ2/ξ1)
)∣∣2gh,�j,k,m(ξ1, ξ2)

+ H
(
ζ(ξ2/ξ1)

)
H
(
−ζ(ξ2/ξ1)

)(1 + i

2 gh,�j,k,m(ξ2,−ξ1) + 1 − i

2 gh,�j,k,m(−ξ2, ξ1)
)

=: g1 + g2.

For analyzing the optimal sparsity, we first consider Θh,�
j,k,m = g1, which can be rewritten as follows:

Θh,�
j,k,m(ξ1, ξ2) ≡ σ�

j,k

(
γh(ξ)

)
· ej,m

(
γh(ξ)

)
with

σ�
j,k

(
γh(ξ)

)
:=

∣∣H(
ζ
(
γh(ξ)

))∣∣2ψ̂�

(
2−4jγh

1 (ξ)
)
w◦

ε

(
2jγh

2 (ξ) − kα
)

(4)

and

ej,m
(
γh(ξ)

)
:= 2−3j/2e2πim12−4jγh

1 (ξ)e2πiβm22jγh
2 (ξ). (5)

For simplicity, we use again the compact notation Θμ(ξ) := σ�
j,k(γι(ξ))ej,m(γι(ξ)) with μ = (j, k,m; ι, �)

∈ Λj . The index set Λj at scale j is as before.
By Corollary 5.1, we have

R(j, ε) :=
∣∣{μ ∈ Λj :

∣∣〈f,Θμ〉
∣∣ > ε

}∣∣ � c · ε−2/3.

Also, ∣∣〈f,Θμ〉
∣∣ � c · 2−3j/2.

Therefore, R(j, ε) = 0 for j > 2
3 log2(ε−1). Thus∣∣{μ:
∣∣〈f, Ψμ〉

∣∣ > ε
}∣∣ � ∑

j�0
R(j, ε) � c · ε−2/3 · log2

(
ε−1).

Repeating the steps for the second term in the definition of Ψh,�
j,k,m shows that we can replace Θμ

by Ψμ at the cost of a change of the constant c. This can be seen from the fact that the term
1+i
2 gh,�j,k,m(ξ2,−ξ1) + 1−i

2 gh,�j,k,m(−ξ2, ξ1) is supported in the vertical cone and thus g2 can be viewed as
composed of two quarter-rotated elements of the form of g1. The same strategy applies to the vertical cone
elements. The theorem is proved. �

Now we can prove Theorem 5.1 using the above results.

Proof of Theorem 5.1. fN =
∑

μ∈IN
〈f, Ψμ〉Ψμ where IN is the set of indices corresponding to the N largest

entry of {|〈f, Ψμ〉|: μ}. By the tight frame property and Theorem 5.4, we have

‖f − fN‖2 �
∑
n>N

∣∣s(f)
∣∣2
(N) � c ·

∑
n>N

N−3 log(N)3 � c ·N−2 · log(N)3.

This finishes the proof of the theorem. �
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5.2. Analysis of the edge fragments

We shall focus on proving Theorem 5.2 next. To that end, we need some auxiliary results first. From
[11, Theorem 2.2] or [3, Theorem 6.1], we have the following result, which gives the estimate of the decay
of the edge fragment in the Fourier domain along a fixed direction. We assume without loss of gener-
ality that the edge fragment in this subsection satisfying E(0) = E′(0) = 0 and sup|x2|�2−j |E(x2)| �
1
2 sup|x2|�2−j |E′′(x2)|.

Theorem 5.5. Let f be an edge fragment as defined in (1) and Ij := [22j−σ, 22j+μ] with σ ∈ {0, 1, 2, 3, 4}
and μ ∈ {0, 1, 2}, then ∫

|λ|∈Ij

∣∣f̂(λ cos θ, λ sin θ)
∣∣2 dλ � c · 2−4j ·

(
1 + 2j | sin θ|

)−5
.

Theorem 5.5 can be extended for a general edge fragment. Interested readers are referred to [3, Sec-
tion 7.2] and [12, Section 4.5].

Using Theorem 5.5, one can prove the following result (cf. [11, Proposition 2.1]).

Corollary 5.2. Let f be an edge fragment as defined in (1), then∫
R2

∣∣f̂(ξ)
∣∣2∣∣σ�

j,k

(
γh(ξ)

)∣∣2 dξ � c · 2−3j(1 + |k|
)−5

.

Note that although σ�
j,k(γh(ξ)) might not be compactly supported compared to [11, Proposition 2.1],

it does not affect the result here, since proofs related to the support of σ�
j,k(γh(ξ)) can be passed through its

essential support and the estimate outside the essential supported is absorbed in the constant c. For elements
in the vertical cone σ�

j,k(γv(ξ)), similarly to the above result, one can show that the decay estimate is of
order less than 2−3j(1 + |k|)−5.

From [11, Corollary 2.4] or [3, Corollary 6.6], we have the following result about the decay of the derivative
of the edge fragment in the Fourier domain along a fixed direction.

Corollary 5.3. Let f be an edge fragment as defined in (1) and v = (v1, v2), then∫
|λ|∈Ij

∣∣∂v f̂(λ cos θ, λ sin θ)
∣∣2 dλ � cv · 2−2j|v| · 2−2jv1 · 2−4j ·

(
1 + 2j | sin θ|

)−5 + cv · 2−2j|v| · 2−10j .

We also need the following lemma (see [11, Lemma 2.5]), which follows from a direct computation.

Lemma 5.1. Let σ�
j,k(γh(ξ)) be given as above, then, for each v = (v1, v2) ∈ N2, v1, v2 ∈ {0, 1, 2},∣∣∂vσ�

j,k

(
γh(ξ)

)∣∣ � cv · 2−(2v1+v2)j ·
(
1 + |k|

)v1
,

where |v| = v1 + v2 and cv is independent of j and k.

Use the above results, we can prove the following result, which is an extension of [11, Proposition 2.3]
and can be proved with a similar approach.

Corollary 5.4. Let f be an edge fragment defined as in (1), σ�
j,k(γh(ξ)) be defined as above, and Lt be the

differential operator defined by
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Lt =
(
t · I −

(
22j

2π(1 + |k|)

)2

∂2
1

)(
I −

(
2j

2π

)2

∂2
2

)
,

where t > 0 is a fixed constant. Then∫
R2

∣∣Lt

(
f̂(ξ)σ�

j,k

(
γh(ξ)

))∣∣2 dλ � ct · 2−3j(1 + |k|
)−5

for some positive constant ct independent of j and k.

Now we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. Fix j � 0, for simplicity, let f = fQ be the edge fragment as in (1). We have

〈f, Ψμ〉 =
∫
R2

f̂(ξ)σ�
j,k

(
γh(ξ)

)
· ej,m

(
γh(ξ)

)
dξ.

We have

∂1ej,m
(
γh(ξ)

)
=

(
2πim12−4j sgn(ξ1)ξ1 − 2πim2β2j ξ2

ξ2
1

)
ej,m

(
γh(ξ)

)
.

∂2
1ej,m

(
γh(ξ)

)
=

(
2πim12−4j sgn(ξ1) + 2πim2β2j+1 ξ2

ξ3
1

)
ej,m

(
γh(ξ)

)
+

(
2πim12−4j sgn(ξ1)ξ1 − 2πim2β2j ξ2

ξ2
1

)2

ej,m
(
γh(ξ)

)
.

Also,

∂2
2ej,m

(
γh(ξ)

)
=

(
2πim2β

2j

ξ1

)2

ej,m
(
γh(ξ)

)
.

Let Lt be the differential operator defined in Corollary 5.4. Then,

Lt

(
ej,m

(
γh(ξ)

))
= gmj,k(ξ)ej,m

(
γh(ξ)

)
with

gmj,k(ξ) =
[
t +

(
m1
2πi sgn(ξ1) + 1

2πim2β
25j+1ξ2

ξ3
1

)
+
(
m1

sgn(ξ1)ξ1
22j −m2β

23jξ2
ξ2
1

)2
(1 + |k|)2

]
·
[
1 +

(
m2β

22j

ξ1

)2]
.

Let Wj,k be the essential support of σ�
j,k(γh(ξ)) defined as

Wj,k :=
{
(λ, θ): 22ja′ � |λ| � 22jb′, arctan

(
2−j(kα− 1)

)
� θ � arctan

(
2−j(kα + 1)

)}
. (6)

For ξ ∈ Wj,k, we have |ξ1| ≈ 22j and one can show that 2jξ2
ξ1

≈ 2j tan θ ≈ k. Consequently, we can choose a
large t > 0 independent of j, k, m such that

sup
∣∣gmj,k(ξ)∣∣ � c ·

[
1 + (m1 −m2k)2

(1 + |k|)2
]
·
[
1 + m2

2
]

=: c ·Gk(m) (7)

ξ∈Wj,k
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for some positive constant c independent of j, k, and m. For Gk(m), we have

Gk(m) =
{

(1 + m2
1)(1 + m2

2) for k = 0
[1 + (m1

k −m2)2
(1+|k|)2/|k|2 ] · [1 + m2

2] for k 	= 0.

Consequently,

〈f, Ψμ〉 =
∫
R2

f̂(ξ)σ�
j,k

(
γh(ξ)

)
· ej,m

(
γh(ξ)

)
dξ

=
∫
R2

Lt

(
f̂(ξ)σ�

j,k

(
γh(ξ)

))
· L−1

t

(
ej,m

(
γh(ξ)

))
dξ

=
∫
R2

Lt(f̂(ξ)σ�
j,k(γh(ξ)))

gmj,k(ξ)
· ej,m

(
γh(ξ)

)
dξ.

For k 	= 0 and m̃ := (m̃1, m̃2) ∈ Z2, define Rm̃ := {m = (m1,m2) ∈ Z2: m1
k ∈ [m̃1, m̃1 + 1), m2 = m̃2}.

Since for j, k fixed, {ej,m(γh(ξ)): k ∈ Z2} is an orthonormal basis for L2 functions supported on Wj,k,
we obtain

∑
m∈Rm̃

∣∣〈f, Ψμ〉
∣∣2 �

∫
R2

∣∣∣∣Lt(f̂(ξ)σ�
j,k(γh(ξ)))

gmj,k(ξ)

∣∣∣∣2 dξ
� sup

ξ∈Wj,k

1
|gmj,k(ξ)|2

∫
R2

∣∣Lt

(
f̂(ξ)σ�

j,k

(
γh(ξ)

))∣∣2 dξ
� c · 1

[(1 + (m1/k −m2)2)(1 + m2
2)]2

∫
R2

∣∣Lt

(
f̂(ξ)σ�

j,k

(
γh(ξ)

))∣∣2 dξ.
By Corollary 5.4, we have ∑

m∈Rm̃

∣∣〈f, Ψμ〉
∣∣2 � c ·G−2

m̃ · 2−3j(1 + |k|
)−5

with Gm̃ := (1 + (m̃1 − m̃2)2)(1 + m̃2
2). For k = 0, similarly, we have Gm̃ = (1 + m̃2

1)(1 + m̃2
2).

Let Nj,k,m̃(ε) := |{m ∈ Rm̃: |〈f, Ψμ〉| > ε}|. Then Nj,k,m̃(ε) � c · (1 + |k|) and the above inequality
implies

Nj,k,m̃(ε) � c ·G−2
m̃ · 2−3j · ε−2 ·

(
1 + |k|

)−5
.

Thus,

Nj,k,m̃(ε) � c · min
(
1 + |k|, G−2

m̃ · 2−3j · ε−2 ·
(
1 + |k|

)−5)
,

which implies

2j∑
j

Nj,k,m̃(ε) � c ·G−2/3
m̃ · 2−j · ε−2/3.
k=−2
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Since
∑

m̃∈Z2 G
−2/3
m̃ < ∞, by above inequality, we obtain

∣∣{μ ∈ Mj :
∣∣〈f, Ψμ〉

∣∣ > ε
}∣∣ � ∑

m∈Z2

2j∑
k=−2j

Nj,k,m̃(ε) � c · 2−jε−2/3,

which is equivalent to the conclusion that

∥∥〈fQ, Ψμ〉
∥∥
w�2/3 � c · 2−3j/2. �

5.3. Analysis of the smooth region

Now, we shall focus on proving Theorem 5.3. Let us provide some lemmas first. From [3, Lemma 8.1]
or [11, Lemma 2.6], we have

Lemma 5.2. Let f = gwQ, where g ∈ E2(A) and Q ∈ Q1
j . Then

∫
Wj,k

∣∣f̂(ξ)
∣∣2 dξ � c · 2−10j ,

where Wj,k is the essential support of σ�
j,k(γh(ξ)) as in (6).

From [11, Lemma 2.7] we have

Lemma 5.3. for v = (v1, v2) ∈ N2,

2j∑
k=−2j

∣∣∂vσ�
j,k

(
γh(ξ)

)∣∣2 � c · 2−2|v|j .

Using the above two lemmas, one can easily prove the following result, which is an extension of [11,
Lemma 2.8] and can be proved by a similar approach.

Lemma 5.4. Let f = gwQ, where g ∈ E2(A) and Q ∈ Q1
j . Define the differential operator Lt := (tI− 22j

(2π)2 Δ)
with t > 0 and Δ = ∂2

1 + ∂2
2 . Then,

∫
R2

2j∑
k=−2j

∣∣L2
t

(
f̂(ξ)σ�

j,k

(
γh(ξ)

))∣∣2 dξ � ct · 2−10j

for some positive constant ct independent of j.

Now we are ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let f = fQ = gwQ and Lt as defined in Lemma 5.4. We have

Lt(ej,m
(
γh(ξ)

)
= gmj,k(ξ)ej,m

(
γh(ξ)

)
,

where
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gmj,k(ξ) =
[
t +

m12−2j sgn(ξ1) + m2β23j+1 ξ2
ξ3
1

2πi + 22j
(
m12−4j sgn(ξ1)ξ1 −m2β2j ξ2

ξ2
1

)2

+
(
m2β

22j

ξ1

)2]
ej,m

(
γh(ξ)

)
.

Similar argument to the proof of Theorem 5.2, we can choose t > 0 large enough so that

sup
ξ∈Wj,k

∣∣gmj,k(ξ)∣∣ � c ·
[
1 + 2−2j(m1 −m2k)2 + m2

2
]
.

For m̃ := (m̃1, m̃2) ∈ Z2, define Rm̃ := {m = (m1,m2) ∈ Z2: 2−2j(m1 −m2k) ∈ [m̃1, m̃1 + 1), m2 = m̃2}.
Observe that for each m̃, there are only 1 + 22j choices for m1 in Rm̃. Hence |Rm̃| � 1 + 22j . Again, similar
argument to the proof of Theorem 5.2, we have

∑
m∈Rm̃

∣∣〈f, Ψμ〉
∣∣2 � c · sup

ξ∈Wj,k

1
|gmj,k(ξ)|4

∫
R2

∣∣L2
t

(
f̂(ξ)σ�

j,k

(
γh(ξ)

))∣∣2 dξ
� c · 1

[1 + 2−2j(m1 −m2k)2 + m2
2]4

∫
R2

∣∣L2
t

(
f̂(ξ)σ�

j,k

(
γh(ξ)

))∣∣2 dξ.
Then by Lemma 5.4,

2j∑
k=−2j

∑
m∈Rm̃

∣∣〈f, Ψμ〉
∣∣2 � c ·G−4

m̃ ·
∫
R2

2j∑
k=−2j

∣∣L2
t

(
f̂(ξ)σ�

j,k

(
γh(ξ)

))∣∣2 dξ
� c ·G−4

m̃ · 2−10j

where Gm̃ := 1 + m̃2
1 + m̃2

2.
Using the Hölder inequality

N∑
m=1

|am|p �
(

N∑
m=1

|am|2
)p/2

N1−p/2, 1/2 < p < 2.

Since the cardinality of Rm̃ is bounded by 1 + 22j , we have

2j∑
k=−2j

∑
m∈Rm̃

∣∣〈f, Ψμ〉
∣∣p � c ·

(
22j)1−p/2 ·G−2p

m̃ · 2−5pj .

Moreover, since p > 1/2,
∑

m̃∈Z2 G
−2p
m̃ < ∞. Consequently,

∑
μ∈Mj

∣∣〈f, Ψμ〉
∣∣p � c · 22j(1−p/2)−5pj = c · 22j(1−3p).

In particular

∥∥〈f, Ψμ〉
∥∥
�2/3 � c · 2−3j . �
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