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Motivated by the need of short FIR filters for perfect-reconstruction multirate 
systems, the main objective of this paper is to derive the shortest filters for such filter 
banks with M channels, for any integer M � 2, based on the M-dilated refinement 
sequence pm of the mth order cardinal B-spline. By imposing the additional 
constraint of �th order sum rule on the M-dual low-pass sequence am, the smoothness 
property of the M-dual scaling function, along with its corresponding analysis 
wavelets, is studied, and consequently yielding the �th order vanishing moment 
for each of the M − 1 synthesis (spline) wavelets. Several illustrative examples and 
tables of the filter systems are also included in this paper.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Multirate digital signal processing already gained popularity some three decades ago, and has been 
commonly used for audio/video and adaptive signal processing, as well as in communication systems ever 
since. The main reason is that the multirate capability allows for the use of older and slower components, 
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cost saving due to lower bitrates, and longer battery life for portable devices, just to name a few. Since 
the basic operation in multirate signal processing is to decompose a signal into any desirable number of 
sub-band components, it is implemented as a filter bank. More precisely, for any desired integer M � 2, 
a given signal (that is, a bi-infinite bounded sequence of real numbers) c = {c(k) : k ∈ Z} (for convenience, 
c = {c(k)}) is processed by applying M FIR (finite-impulse-response) filters

a = {a(k)}, b1 = {b1(k)}, . . . , bM−1 = {bM−1(k)},

followed by down-sampling by M for each of the M components with lower bitrate (or lower frequency), 
namely:

c0(n) =
∑
k

a(nM − k)c(k),

d1(n) =
∑
k

b1(nM − k)c(k),

...

dM−1(n) =
∑
k

bM−1(nM − k)c(k).

This process is called multirate decimation filtering. To recover some signal c∗ = {c∗(k)} with the original 
bitrate (or frequency), the M signal components

c0 := {c0(k)}, d1 := {d1(k)}, . . . , dM−1 := {dM−1(k)}

are up-sampled by M, followed by filtering with some suitable corresponding FIR filters

p = {p(k)}, q1 = {q1(k)}, . . . , qM−1 = {qM−1(k)},

namely:

c∗(s) =
∑
n

[
p(s− nM)c0(n) +

M−1∑
γ=1

qγ(s− nM)dγ(n)
]
, s ∈ Z.

This process is called multirate interpolation filtering.
For more details, the interested reader is referred to the comprehensive book [19] by P.P. Vaidyanathan, 

where the notion of perfect reconstruction (PR) is also introduced and studied. More precisely, a multirate 
system, as described above, is said to be a PR system, if when the consideration of output delay is ignored, 
the specification for the FIR decimation and interpolation filters are constructed to assure that the output 
c∗ agrees with the input c. Since this PR requirement must be met for all bi-infinite bounded sequences c, we 
have the following mathematical formulation of a PR multirate system ({p; q1, . . . , qM−1}, {a; b1, . . . , bM−1}):

∑
n

[
p(s− nM)a(nM − k) +

M−1∑
γ=1

qγ(s− nM)bγ(nM − k)
]

= δ(s− k), s, k ∈ Z, (1.1)

where {δ(k)} denotes the Kronecker delta sequence.
The birth and rapid advance of “wavelet analysis” in the late 1980s and early 1990s had impact in 

accelerating the popularity of multirate digital processing (for example, see [19] and the book [18] by 
B.W. Suter.) The reason is that the computation of the discrete wavelet transform (DWT) shares the same 
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architecture as the basic core of a multirate system, though with emphasis on the decomposition into only 
M = 2 bands (or channels). Unfortunately, since the objective of the study of multirate signal processing 
and that of DWT in wavelet analysis were quite different, the impact of the more recent mathematical 
development of wavelet analysis to the advancement of multirate signal processing has not been as significant 
as one would desire. In the first place, while multirate signal processing certainly benefits from PR filter bank 
algorithms, particularly with short filter taps, the research focus of wavelet analysis was mainly concerned 
with the properties of the wavelet and scaling functions. In addition, with the exception of a few publications 
such as [3,6,8,13,20] and the book [17] by Q. Sun, N. Bi, and D. Huang, most of other books and papers are 
concerned with dilation 2 (that is, with only M = 2 bands or channels, when applied to multirate systems). 
Furthermore, to meet other desirable properties, such as orthogonality, order of smoothness, and symmetry 
of the wavelet and scaling functions, the decomposition filter lengths have to be significantly longer than 
desired for a multirate system. To further convey this point of view, let us consider spline-wavelets with 
dilation M = 2 as an example. If (full) orthogonality is required, then the well-known Battle–Lemarie scaling 
functions and wavelets have infinite support, so that all of the four (decomposition and reconstruction) filters 
have infinite length. Giving up the orthogonality property of integer translates, while retaining orthogonality 
among the multi-level wavelet subspaces, allows us to construct compactly supported synthesis wavelets, 
but the analysis wavelets still have infinite support. These are the semi-orthogonal wavelets, as discussed 
in the book [2]. On the other hand, if only biorthogonality is desired, then both analysis and synthesis 
wavelets with compact supports have been constructed with arbitrarily pre-assigned order of smoothness 
in [7], although the filter lengths are significantly longer than desired for multirate signal processing. By 
ignoring the analysis wavelet and corresponding scaling functions, explicit formulations of the shortest 
decomposition filters were derived in [4] and studied in details in the book [5], where application to curve 
editing of spline-based subdivision schemes is discussed.

The core mathematical structure of wavelet analysis, particularly in the study of DWT, is the notion 
of multiresolution approximation/analysis (MRA). In this regard, among all compactly supported scaling 
functions, with dilation factor M = 2, that possess the MRA property, only the cardinal B-splines have 
explicit expressions. In addition, since any (polynomial) spline space is a subspace of another spline space 
with finer knots by arbitrary knot insertion, a cardinal B-spline (of any desirable order) is a scaling function 
with arbitrary integer dilation M � 2, and hence, its refinement sequence is a prime candidate for the design 
of multirate systems. Without loss of generality, we may consider cardinal splines defined on the integer 
knot sequence Z. Such cardinal splines f0(x) can be written as B-spline series, namely:

f0(x) =
∑
k

c(k)Nm(x− k), (1.2)

for some finite, infinite, or bi-infinite coefficient sequence c := {c(k)}, where Nm(x) denotes the cardinal 
B-spline of order m � 1, defined by

Nm(x) =
1∫

0

Nm−1(x− t)dt, m = 2, 3, . . . ,

with N1 = χ[0,1), the characteristic function of the interval [0, 1). We remark that since Nm(x) has compact 
support, (pointwise) convergence is not an issue at all, for any infinite or bi-infinite sequence c in (1.2).

In this paper, since one of our main objectives is to apply M-band MRA wavelet decomposition and 
reconstruction filters to PR multirate signal processing, we will consider spline coefficient sequences, such as 
c in (1.2), as signals; and therefore, c is always assumed to be a bounded bi-infinite sequence, with symbol 
(called z-transform), defined by C(z) =

∑
k c(k)zk. Of course, this consideration does not exclude finite 

and (one-sided) infinite sequences, since they can be padded with zeros. One of the important properties 
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of cardinal B-splines is that the B-spline series representation of f0(x) in (1.2), with bounded coefficient 
sequence c = {c(k)}, is unique; that is, c(k) = 0 for all k ∈ Z if f0(x) = 0 is the zero function (see 
[1, p. 133, Eq. (8)] and [5, p. 63, Theorem 2.5.1]). We remark that the uniqueness property remains valid 
for unbounded coefficient sequences c = {c(k)}, since Nm has linear independent shifts (see [5, p. 56] for 
the definition of linear independent shifts; p. 62, Corollary 2.4.1; and p. 58, Lemma 2.4.2). Henceforth, we 
no longer restrict B-spline series to have bounded coefficient sequences (see Theorem 1 below). Of course, 
the most important property of the cardinal B-spline Nm(x) is its refinability for any dilation integer factor 
M � 2, with finite refinement sequence. In the following discussion, we will shift Nm(x) to center at the 
origin, or close to the origin (for odd order m), by introducing the notation

φm(x) = Nm(x + �m/2�).

To write out the refinement sequence pm := {pm(k)} of φm(x) explicitly in the refinement relation:

φm(x) =
∑
k

pm(k)φm(Mx− k), (1.3)

it is more convenient to consider its (normalized) symbol

Pm(z) = 1
M
∑
k

pm(k)zk := z−(M−1)�m/2�
(

1 + z + · · · + zM−1

M

)m

, (1.4)

where the normalization in (1.4) is simply division of the symbol of pm by M. Observe from (1.4) that the 
support of the sequence pm is given by

supp pm :=
[
− (M − 1)�m/2�, (M − 1)�(m + 1)/2�

]
∩ Z.

Hence, when considered as an FIR filter, pm has m(M − 1) filter taps (or the length of pm, respectively Pm, 
is m(M − 1)).

For multirate interpolation filtering as discussed earlier, we need another M − 1 FIR filters

qm,γ := {qm,γ(k)}, γ = 1, . . . ,M − 1,

to go with the filter pm. For these filters, we will also consider their corresponding (normalized) symbols:

Qm,γ(z) = 1
M
∑
k

qm,γ(k)zk, γ = 1, . . . ,M − 1, (1.5)

so that when the compactly supported cardinal spline φm(x) is considered as a scaling function with dilation 
factor M, the M − 1 FIR filters qm,γ can be used to define the compactly supported functions

ψγ
m(x) =

∑
k

qm,γ(k)φm(Mx− k), γ = 1, . . . ,M − 1, (1.6)

called (cardinal spline) wavelets. To assure that the set of M FIR filters

pm, qm,1, . . . , qm,M−1

constitutes the interpolation filter component of a PR multirate filter bank, the filters qm,1, . . . , qm,M−1
must be so constructed that the wavelets defined in (1.6) are synthesis wavelets in the sense that for any 
integer j, every cardinal spline
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fj(x) :=
∑
k

cj(k)φm(Mjx− k)

of order m and with knot sequence M−jZ has a unique decomposition as the sum of M components:

fj(x) = fj−1(x) + g1
j−1(x) + · · · + gM−1

j−1 (x), (1.7)

where fj−1(x) is also a cardinal spline of the same order, but with the coarser knot sequence M−j+1Z, and 
the detailed components g1

j−1(x), . . . , gM−1
j−1 (x) are wavelet series:

gγj−1(x) =
∑
k

dj−1,γ(k)ψγ
m(Mj−1x− k), γ = 1, . . . ,M − 1,

with bounded coefficient sequences dj−1,γ := {dj−1,γ(k)}, γ = 1, . . . , M − 1.
Observe that by applying the refinement relation (1.3), the right-hand side of (1.7) can be written as:

fj−1(x) + g1
j−1(x) + · · · + gM−1

j−1 (x)

=
∑
k

[∑
s

pm(k − sM)cj−1(s) +
M−1∑
γ=1

∑
s

qm,γ(k − sM)dj−1,γ(s)
]
φm(Mjx− k).

Hence, for the left-hand and right-hand sides of (1.7) to agree for all x, it follows from the uniqueness 
property of B-spline series representations that

cj(k) =
∑
s

[
pm(k − sM)cj−1(s) +

M−1∑
γ=1

qm,γ(k − sM)dj−1,γ(s)
]
, k ∈ Z.

Of course, the FIR wavelet filters qm,1, . . . , qm,M−1 have yet to be constructed. Moreover, we need to 
construct certain decomposition FIR filters a, b1, . . . , bM−1, corresponding to pm, qm,1, . . . , qm,M−1, such 
that the M coefficient sequences cj−1, dj−1,1, . . . , dj−1,M−1 of fj−1(x), g1

j−1(x), . . . , gM−1
j−1 (x), respectively, 

can be derived by the multirate decimation filtering, namely:

cj−1(n) =
∑
k

a(Mn− k)cj(k),

dj−1,1(n) =
∑
k

b1(Mn− k)cj(k),

...

dj−1,M−1(n) =
∑
k

bM−1(Mn− k)cj(k).

Then, according to the above discussion of PR multirate systems, the desired pair

({pm; qm,1, . . . , qm,M−1}, {a; b1, . . . , bM−1})

of filters, must be constructed according to the specification in (1.1).
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To formulate the first specification item for meeting the perfect reconstruction requirement (1.1), we 
introduce the square matrix R(z) defined by

R(z) =

⎡
⎢⎢⎢⎣

Pm(z) Pm(αz) · · · Pm(αM−1z)
Qm,1(z) Qm,1(αz) · · · Qm,1(αM−1z)

...
...

. . .
...

Qm,M−1(z) Qm,M−1(αz) · · · Qm,M−1(αM−1z)

⎤
⎥⎥⎥⎦ , (1.8)

which is solely dependent on the known normalized symbol Pm(z) in (1.4) and the symbols Qm,1(z), . . . ,
Qm,M−1(z) in (1.5) of the wavelet filters to be constructed in this paper. Here and throughout, the notation

α := e2πi/M, (1.9)

for the Mth root of unity is used for convenience, and for any Laurent polynomial T (z) =
∑
k

t(k)zk, we 

adopt the polyphase notation

T (z) =
M−1∑
γ=0

zγT [γ](zM), where T [γ](z) :=
∑
k

t(Mk + γ)zk, γ = 0, . . .M − 1. (1.10)

It follows from (1.9) and (1.10) that

M−1∑
k=0

α−γkT (αkz) = MzγT [γ](zM), γ = 0, . . . ,M − 1. (1.11)

By extending the result in [2, Theorem 5.9], we have the following:

Theorem 1. Let R(z) be the square matrix defined in (1.8). Then a necessary and sufficient condition for 
the unique decomposition (1.7) of any spline series fj(x) is that the matrix R(z) is non-singular on the unit 
circle T := {z ∈ C : |z| = 1} of the complex plane. Furthermore, under the non-singularity condition of 
R(z), there exists a set of filters, a, b1, . . . , bM−1, such that the wavelet decomposition relation

φm(Mx− k) =
∑
n

a(Mn− k)φm(x− n) +
M−1∑
γ=1

∑
n

bγ(Mn− k)ψγ
m(x− n) (1.12)

holds for all x ∈ R and k ∈ Z.

In the wavelet literature (see, for example, the derivation of the special case M = 2 on pages 143–144 
in [2]), the wavelet decomposition relation (1.12) is obtained by applying the matrix identity:

S(z)R(z) = IM, z ∈ T, (1.13)

where IM denotes the identity matrix of dimension M and S(z) is defined by

S(z) =

⎡
⎢⎢⎢⎣

A(z) A(αz) · · · A(αM−1z)
B1(z) B1(αz) · · · B1(αM−1z)

...
...

. . .
...

M−1

⎤
⎥⎥⎥⎦
T

,

BM−1(z) BM−1(αz) · · · BM−1(α z)
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by using the symbols A(z), B1(z), . . . , BM−1(z) of the sequences a = {a(k)}, b1 = {b1(k)}, . . . , bM−1 =
{bM−1(k)}, respectively. Here, different from (1.4) and (1.5), these symbols are not normalized in the sense 
that A(z) =

∑
k a(k)zk, Bγ(z) =

∑
k bγ(k)zk, γ = 1, . . . , M − 1.

Observe that being the left inverse of R(z), the matrix S(z) is also the right inverse of R(z); that is, the 
matrix identity (1.13) is equivalent to the matrix identity:

R(z)S(z) = IM, z ∈ T. (1.14)

From (1.14), multiplication of the first row of R(z) with the matrix S(z) can be re-written as a set of M
equations:

M−1∑
k=0

Pm(αkz)A(αkz) = 1; (1.15)

and

M−1∑
k=0

Pm(αkz)Bγ(αkz) = 0, γ = 1, . . . ,M − 1. (1.16)

The time-domain formulation of (1.15) states that the sequence a is an M-dual of the given sequence pm, 
namely:

∑
k∈Z

pm(k)a(Ms− k) = δ(s), s ∈ Z, (1.17)

while the time-domain formulation of (1.16) states that the sequences b1, . . . , bM−1 are M-orthogonal to the 
given sequence pm, namely:

∑
k∈Z

pm(k)bγ(Ms− k) = 0, s ∈ Z, γ = 1, . . . ,M − 1. (1.18)

We remark that Theorem 1 is only concerned with the existence of the decomposition filters 
a, b1, . . . , bM−1, which could be infinite. The main objective of this paper is to construct finite (that is, 
FIR) filters a, b1, . . . , bM−1 with minimum lengths. More precisely, the FIR filter a is constructed according 
to the M-duality specification relative to the given B-spline refinement sequence pm in (1.17); and the 
construction of the other FIR decomposition filters b1, . . . , bM−1 meets the M-orthogonality requirement 
stated in (1.18). Of course, the FIR synthesis wavelet filters qm,1, . . . , qm,M−1 are then uniquely determined 
by the decomposition filters a, b1, . . . , bM−1, according to the matrix identity (1.14). In addition, it follows 
from (1.14) that each of the synthesis wavelet filters qm,1, . . . , qm,M−1 is M-orthogonal to a, while qm,γ is 
an M-dual of bγ for all γ = 1, . . . , M − 1, and qm,γ1 is M-orthogonal to qm,γ2 , whenever γ1 �= γ2.

We remark that since all polynomials of degree � m − 1 can be reproduced locally by some spline series 
fj(x), it can be shown by a standard argument that the M-orthogonality property of the decomposition 
filters b1, . . . , bM−1 implies that each of these filters has (discrete) vanishing moments of order m. On the 
other hand, the other decomposition filter a (with minimum-length), as described above, is not necessarily 
a refinement sequence of some scaling function. Another objective of this paper is to construct the shortest 
finite filter a that satisfies the additional constraint of M-sum rule property of order � � 1, defined by
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∑
s a(Ms + k) = 1

M , k = 0, . . . , M − 1 and
∑
s

(Ms)ra(Ms) =
∑
s

(Ms + 1)ra(Ms + 1) = · · · =
∑
s

(Ms + M − 1)ra(Ms + M − 1),

for r = 1, . . . , � −1 (if � � 2). In terms of the symbol A(z) =
∑

k a(k)zk, a has M-sum rule property of order 
� if and only if A(1) = 1 and (1 + z + · · · + zM−1)� | A(z). The importance of this additional constraint is 
two-fold: firstly, it assures that the filter a is the refinement sequence of some scaling function (with dilation 
factor M) with Sobolev smoothness dictated by the order � of the sum-rule property; and secondly it also 
guarantees that each of the synthesis spline-wavelets ψγ

m(x), introduced in (1.6), has (integral) vanishing 
moments of order �; i.e., 

∫
R
xrψγ

m(x)dx = 0 for r = 0, . . . , � − 1 and γ = 1, . . . , M − 1.
Since our construction will be in terms of (Laurent polynomial) symbols of the filters and since both 

matrices R(z) and S(z) are correlated, we will apply polyphase decomposition and representation in our 
derivations. The interested reader is referred to the book [19] for a detailed discussion of this de-correlation 
method. The paper is organized as follows. Construction of the shortest M-dual filter a = am, for any 
order m � 2, is studied in Section 2, with derivation of explicit formula for recursive computation. This 
discussion will include those filters a�m that satisfy the M-sum rule property of order �. In Section 3, the 
shortest decomposition filters b1 = bm,1, . . . , bM−1 = bm,M−1 are formulated. Then the wavelet synthe-
sis filters qm,1, . . . , qm,M−1 are derived in terms of the decomposition filters, first without the sum-rule 
constraint, and finally with the constraint of order � � 1, for which their corresponding cardinal spline 
wavelets ψγ

m, γ = 1, . . . , M − 1 have vanishing moments also of order �. Together with results in Section 2, 
the results in Section 3 provide the derivation of PR multirate systems ({p; q1, . . . , qM−1}, {a; b1, . . . , bM−1})
with shortest spline-wavelet filters whose symbols satisfy (1.14), which is summarized in Algorithm 1 at the 
end of Section 3. Section 4 is then devoted to the further discussion of biorthogonal wavelet bases in a pair 
(Hτ (R), H−τ (R)) of Sobolev spaces associated with the pairs ({p; q1, . . . , qM−1}, {a; b1, . . . , bM−1}) of PR 
multirate systems obtained in Section 3. Several illustrative examples and tables of the filters derived in 
this paper are included in Section 5 and Appendix A.

2. Laurent polynomial symbol of the M-dual low-pass filter

Let A(z) = Am(z) be the Laurent polynomial symbol of the FIR filter a = am, which is M-dual to the 
given B-spline refinement sequence pm; that is, Am(z) =

∑
k am(k)zk. For even m = 2n, an explicit formula 

of Am(z) is given in [3, Eq. (1.3)]; namely:

A2n(z) =
n−1∑
j=0

⎛
⎝ ∑

j1+···+jM−1=j

M−1∏
k=1

(
n + jk − 1

jk

)
sin−2jk

(
kπ

M

)⎞⎠(1
2 − z + z−1

4

)j

, (2.1)

which corresponds to the residual polynomial in the Deslauriers–Dubuc family of symmetric interpolatory 
masks (see, for example, [3]). Observe from (2.1) that A2(z) ≡ 1 for any integer M ≥ 2. However, there is 
no published literature on the study of Am(z) for odd m = 2n + 1 and M > 2, although the special case, 
with dilation factor M = 2 has been thoroughly discussed in the recent book [5, Chapter 6] (see also the 
earlier work [4]). For M = 3, although a preliminary study for odd order B-spline am was carried out in [20], 
yet the filter am obtained in [20] is not the shortest. In this section, for any integer m ≥ 2, we derive not 
only the general form of A(z) from the identity (1.15), but also a recursive formula Am+1(z) from Am(z)
for the shortest possible M-dual FIR filter am to pm; thereby providing an alternative and efficient way of 
computing (2.1) as well as a new family {A2n+1(z) : n ∈ N} of masks that fills the gap of {A2n(z) : n ∈ N}
for any integer dilation M � 2.

We first analyze (1.15) for A(z) with the shortest possible support. We shall write Πk for the space of 
polynomials of degree ≤ k, and with real coefficients. Let M and m denote integers, with M � 2 and m � 2. 
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It is easily shown that if H is a polynomial satisfying the identity

M−1∑
k=0

αk

(
1 + αkz + · · · + (αkz)M−1

M

)m

H(αkz) = zM�m/2�−1, (2.2)

then the Laurent polynomial A(z) := z−�m/2�+1H(z) satisfies the identity (1.15). By applying the Leibniz 
rule for the differentiation of a product to (2.2), we deduce that a necessary condition for a polynomial H
to satisfy the identity (2.2) is that

H(s)(1) = βm(s), s = 0, . . . ,m− 1, (2.3)

where {βm(s) : s = 0, . . . , m −1} is the (unique) solution in Rm of the m ×m lower-triangular linear system

s∑
j=0

(
s

j

) [(
d

dz

)s−j (1 + z + · · · + zM−1

M

)m
]∣∣∣∣∣

z=1

βm(j) =
(

M�m
2 � − 1
s

)
s! (2.4)

for s = 0, . . . , m − 1. Let the polynomial Hm ∈ Πm−1 be defined by

Hm(z) :=
m−1∑
j=0

βm(j)
j! (z − 1)j . (2.5)

It then follows from (2.4) and 
(
1 + αj + · · · + (αj)M−1) /M = δ(j), that the polynomial

G(z) :=
M−1∑
k=0

αk

(
1 + αkz + · · · + (αkz)M−1

M

)m

Hm(αkz) − zM�m/2�−1 (2.6)

satisfies G(s)(αk) = 0, s = 0, . . . , m − 1; k = 0, . . . , M − 1, and thus

G(z) = (1 − z)m(1 + z + · · · + zM−1)mK(z),

for some polynomial K. Since Hm ∈ Πm−1, we note from (2.6) that G ∈ ΠMm−1. Hence K, and therefore 
also G, must be the zero polynomial, which, together with (2.6), shows that Hm is a polynomial solution of 
the identity (2.2). Moreover, by recalling also that (2.3) is a necessary condition on a polynomial solution H
of (2.2), according to which any polynomial solution H ∈ Πm−1 of (2.2) must be given by the right-hand-side 
of (2.5), we deduce that H = Hm is the only solution in Πm−1 of (2.2).

We proceed to show that the polynomial Hm satisfies the property Hm ∈ Πm−2. To this end, let czm−1

denote the leading term of Hm(z) with respect to its representation in Πm−1, from which we deduce that 
the leading term of the polynomial in the left hand side of (2.2) is given by M−m+1czMm−1. It then follows 
from (2.2) that we must have c = 0, and thus Hm ∈ Πm−2 is satisfied.

Next, we prove that H2n is a symmetric polynomial, in the sense that

z2n−2H2n(z−1) = H2n(z).

We first replace z by z−1 in (2.2) to obtain, for m = 2n, and with H = H2n,

M−1∑
αk

(
1 + αkz−1 + · · · + (αkz−1)M−1

M

)2n

H2n(αkz−1) = z−Mn+1. (2.7)

k=0



C.K. Chui et al. / Appl. Comput. Harmon. Anal. 41 (2016) 266–296 275
Multiplying both sides of (2.7) by z2Mn−2, and using (1.9), we obtain

zMn−1 = z2Mn−2
M−1∑
k=0

αk

(
1 + αkz−1 + · · · + (αkz−1)M−1

M

)2n

H2n(αkz−1)

= z2Mn−2
M∑

k=1

αM−k

(
1 + αM−kz−1 + · · · + (αM−kz−1)M−1

M

)2n

H2n(αM−kz−1)

= z2Mn−2
M∑

k=1

αM−k

(
1 + αkz + · · · + (αkz)M−1

M

)2n

· (αkz)−(M−1)2n ·H2n((αkz)−1)

=
M∑

k=1

αk

(
1 + αkz + · · · + (αkz)M−1

M

)2n

· (αkz)2n−2 ·H2n((αkz)−1)

=
M−1∑
k=0

αk

(
1 + αkz + · · · + (αkz)M−1

M

)2n

H̃2n(αkz),

where H̃2n(z) := z2n−2H2n(z−1). Hence, H̃2n ∈ Π2n−2. By recalling also that H2n is the unique solution in 
Π2n−1 of the polynomial identity (2.2) for m = 2n, we deduce that H̃2n = H2n, which yields the desired 
symmetry result.

By recalling also A(z) = z−�m/2�+1H(z), we have therefore now established the following result.

Theorem 2. Let M, m � 2 be any integers. Then the following statements hold.

(a) There exists precisely one polynomial H = Hm ∈ Πm−2 satisfying the identity (2.2), where Hm is given 
by (2.5) in terms of the unique solution {β(j) : j = 0, . . . , m − 1} of the m ×m lower-triangular linear 
system (2.4).

(b) The Laurent polynomial A = Am, as defined by

Am(z) := z−�m/2�+1Hm(z), (2.8)

is a Laurent polynomial solution of the identity (1.15) with the shortest possible length, and satisfies, 
for m = 2n, the symmetry condition A2n(z−1) = A2n(z).

For the case m = 2n, we recall the explicit formulation (2.1) of the Laurent polynomial A2n. The following 
result provides an alternative and efficient way of computing A2n as well as the family {A2n+1 : n ∈ N} of 
masks in terms of a recursive formula that fills the gap of the family {A2n : n ∈ N} of masks, which are 
M-dual to pm with the shortest possible length.

Theorem 3. In Theorem 2, Am with the shortest possible length that satisfies (1.15) is given by the following 
recursive formulas ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A2 = 1;

A2n+1 = A2n(z) + z−n+1(1 − z)2nW2n(z)
(1 + z + · · · + zM−1)/M ;

A2n+2(z) = z−1A2n+1(z) + z−n(1 − z)2n+1W2n+1(z)
(1 + z + · · · + zM−1)/M ,

(2.9)

where n ∈ N and Wm ∈ ΠM−2 is uniquely determined by

Wm(αk) = −(1 − αk)−m(αk)�m/2�−1Am(αk), k = 1, . . . ,M − 1.
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Proof. By successively setting H = Hm, H = Hm+1, in (2.2), we obtain

M−1∑
k=0

αk

(
1 + αkz + · · · + (αkz)M−1

M

)m

Dm(αkz) = 0,

where

Dm(z) :=
(

1 + z + · · · + zM−1

M

)
Hm+1(z) −Hm(z).

Analogously to the argument in (2.2) and (2.3), we deduce that

D(s)
m (1) = 0, s = 0, . . . ,m− 1,

and thus

Dm(z) = (1 − z)mWm(z),

for some polynomial Wm. Together with Dm ∈ Πm+M−2, we deduce that Wm ∈ ΠM−2. Consequently, we 
have

(
1 + z + · · · + zM−1

M

)
Hm+1(z) = Hm(z) + (1 − z)mWm(z),

in which, we may set z = αk, k = 1, . . . , M − 1, to obtain,

Wm(αk) = −(1 − αk)−mHm(αk), k = 1, . . . ,M − 1,

which uniquely determines the polynomial Wm ∈ ΠM−2. Therefore,

Hm+1(z) = Hm(z) + (1 − z)mWm(z)
(1 + z + · · · + zM−1)/M .

The conclusions of the theorem then follows from (2.8). We are done. �
If one only concerns about the efficient derivation of A2n+1, we further provide the following formulation 

of A2n+1 in terms of A2n, which, apart from polynomial multiplication and division, requires merely the 
calculation of a polynomial interpolant in Π(M−2)/2 if M is even, and in Π(M−3)/2 if M is odd.

Corollary 1. Let A2n be given as in (2.1). In Theorem 2, for any n ∈ N, it holds that

A2n+1(z) =
A2n(z) + z�M/2�−n(1 − z)2nUn(1

2 − z+z−1

4 )
(1 + z + · · · + zM−1)/M , (2.10)

where Un ∈ Π�M/2�−1 is defined, with the notation ζk := sin2 (πk
M
)

and

ηn,s := (−1)n+s+1

22n

n−1∑
j=0

⎡
⎣ ∑
j1+···+jM−1=j

M−1∏
k=1

(
n + jk − 1

jk

)
ζ−jk
k

⎤
⎦ ζj−n

s , s ∈ N, (2.11)

by:
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(i) if M is even, then Un is the polynomial in Π(M−2)/2 determined by the interpolation conditions

Un(ζs) = ηn,s, s = 1, . . . ,M/2; (2.12)

(ii) if M is odd, then

Un(z) = (1 + z)Vn(z), (2.13)

where Vn is the polynomial in Π(M−3)/2 determined by the interpolation conditions

Vn(ζs) = ηn,s

2
√

1 − ζs
, s = 1, . . . , (M − 1)/2. (2.14)

Proof. By (2.9) in Theorem 3, we have
(

1 + z + · · · + zM−1

M

)
A2n+1(z) = A2n(z) + z−n+1(1 − z)2nW2n(z), (2.15)

with W2n ∈ ΠM−2 uniquely determined by

W2n(αj) = −(αj)n−1(1 − αj)−2nA2n(αj), j = 1, . . . ,M − 1,

which together with the symmetry of A2n implies

W2n(α−j) = W2n(αj) = (αj)2−MW2n(αj),

and thus

(αj)M−2W2n(α−j) = W2n(αj), j = 1, . . . ,M − 1.

Noting that W2n ∈ ΠM−2, the definition J(z) := zM−2W2n(z−1) −W2n(z) implies J ∈ ΠM−2 and J(αj) = 0, 
j = 1, . . . , M − 1, and thus, since (1.9) implies that {αj : j = 1, . . . , M − 1} are M − 1 distinct points in 
the complex plane C, it follows that J must be the zero polynomial, or equivalently, the polynomial W2n
satisfies the symmetry condition zM−2W2n(z−1) = W2n(z).

For odd M, we may set z = −1 to obtain W2n(−1) = 0. It follows that W2n(z) = (1 + z)Fn(z) for some 
F ∈ ΠM−3. Also, we have zM−3Fn(z−1) = Fn(z). Let the Laurent polynomial Gn be defined by

Gn(z) :=
{

z−(M−2)/2W2n(z), if M is even;
z−(M−3)/2Fn(z), if M is odd.

(2.16)

By the symmetry property of W2n, we have Gn(z−1) = Gn(z), and thus, there exist polynomials Un ∈
Π(M−2)/2 and Vn ∈ ΠM−3)/2 such that

Gn(z) =
{

Un(ζ), if M is even;
Vn(ζ), if M is odd,

(2.17)

where ζ := 1
2 − z+z−1

4 . Observe that ζ
∣∣
z=αj = ζj , j ∈ N. Also, note from (2.1) that A2n(αj) =

n−1∑
k=0

⎡
⎣ ∑
k1+···+kM−1=k

M−1∏
�=1

(
n + k� − 1

k�

)
ζ−k�

�

⎤
⎦ ζkj , j ∈ N, and by the definition of ζ we deduce that (1 − z)2n =

zn(−1)n22nζn.
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If M is even, then by the above relations and (αj)M/2 = (−1)j , j ∈ N, it follows that the polynomial 
Un satisfies the interpolation conditions (2.12). The identity (2.10) is an immediate consequence of (2.15), 
(2.16), and (2.17).

If M is odd, then by the above relations and (αj)
1
2

1+αj = 1
2 cos(πj

M ) = 1
2
√

1−ζj
, j = 1, . . . , (M − 1)/2, we 

deduce that the polynomial Vn satisfies the interpolation conditions (2.14). The identity (2.10) is obtained 
by combining (2.15), (2.16), and (2.17). �

We proceed to calculate the following examples for M = 2, 3 and 4 by means of (2.1) and Corollary 1, 
which can be also directly verified by using (2.9) as in Theorem 3.

Examples. (i) The case M = 2. According to (2.1), we have here the formula

A2n(z) =
n−1∑
j=0

(
n + j − 1

j

)(
1
2 − z + z−1

4

)j

. (2.18)

Also, in Theorem 2.2, Un is the constant polynomial Un(z) = ηn,1, where, from (2.11) and (2.12),

ηn,1 = (−1)n

22n

n−1∑
k=0

(
n + k − 1

k

)
= (−1)n

22n

n−1∑
k=0

[(
n + k

k

)
−
(
n + k − 1
k − 1

)]
= (−1)n

22n

(
2n− 1
n− 1

)
,

and thus, from (2.10),

A2n+1(z) =
A2n(z) + (−1)n

22n

(2n−1
n−1

)
z1−n(1 − z)2n

(1 + z)/2 . (2.19)

Calculating by means of (2.18) and (2.19), we obtain Table 5.1 (see Appendix A), which agrees with the 
corresponding tabled values in [6, Section 9.4].

(ii) The case M = 3. According to Corollary 1, we have here that Vn is a constant polynomial, that is, 
Vn(z) = ηn,1, where ζ1 = ζ2 = 2

3 , we may apply (2.11) and (2.1) to deduce that ηn,1 = (−1)n
3n A2n(α). Now 

use the polyphase notation (1.10), together with (1.9), to obtain

A2n(α) = A
[0]
2n(1) + αA

[1]
2n(1) + α2A

[2]
2n(1),

and thus

A2n(α) = A
[0]
2n(1) + α2A

[1]
2n(1) + αA

[2]
2n(1).

By the symmetry property A2n(z−1) = A2n(z), we have A2n(α) ∈ R, according to which A2n(α) = A2n(α), 
so that we may add the above two equations for A2n(α) and A2n(α) to obtain

A2n(α) = A
[0]
2n(1) − 1

2

[
A

[1]
2n(1) + A

[2]
2n(1)

]
.

But

1 = A2n(1) = A
[0]
2n(1) + A

[1]
2n(1) + A

[2]
2n(1),

as follows from (1.15) and (1.4). Hence, ηn,1 = (−1)n
3n

1
2

[
3A[0]

2n(1) − 1
]
, and thus, from (2.10) and (2.13), we 

deduce
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A2n+1(z) =
A2n(z) + (−1)n

3n
1
2z

1−n
[
3A[0]

2n(1) − 1
]
(1 − z)2n(1 + z)

(1 + z + z2)/3 . (2.20)

Calculating by means of (2.1) and (2.20), we obtain Table 5.2 (see Appendix A).
(iii) The case M = 4. By using (2.11), (2.12) in Corollary 1, we obtain the formulas

U1(ζ) = 1
4(−5 + 6ζ), U2(ζ) = 1

16(59 − 70ζ), U3(ζ) = − 1
32(391 − 462ζ),

and thus, from (2.10),

A3(z) =
A2(z) + 1

4z(1 − z)2
[
−5 + 6(1

2 − z+z−1

4 )
]

(1 + z + z2 + z3)/4 ,

A5(z) =
A4(z) + 1

16 (1 − z)4
[
59 − 70(1

2 − z+z−1

4 )
]

(1 + z + z2 + z3)/4 ,

A7(z) =
A6(z) + 1

64z
−1(1 − z)6

[
−391 + 462(1

2 − z+z−1

4 )
]

(1 + z + z2 + z3)/4 . (2.21)

Calculating by means of (2.1) and (2.21), we obtain Table 5.3 (see Appendix A). �

The above results provide recursive formulas for efficient computation of am that is M-dual to pm with 
the shortest possible length. However, am does not have any order of M-sum rule property. Our following 
result, which is a direct consequence of Theorem 2, provides a family of masks that are M-dual to pm with 
arbitrary preassigned M-sum rule order �. Together with (1.4), such a family of masks will be required in 
Section 3.

Corollary 2. For any integers M ≥ 2, m ≥ 2 and � ∈ N, the Laurent polynomial A = A�
m defined by

A�
m(z) := z−(M−1)(�(m+�)/2�−�m/2�)

(
1 + z + · · · + zM−1

M

)�

Am+�(z), (2.22)

with Am+� obtained as in (2.9), satisfies the identity (1.15), and the corresponding low-pass filter sequence 
a�m := {a�m(k) : k ∈ Z}, as defined by 

∑
j a

�
m(k)zk := A�

m(z), satisfies the M-sum rule property of order �.

Proof. It is easily seen that Pm(z)A�
m(z) = Pm+�(z)Am+�(z). The conclusions then follow from Theorem 2

and the definition of M-sum rule property. �
Finally in this section, we derive a formulation for the general Laurent polynomial solution A of the 

identity (1.15). Our first step is to establish the following result concerning the general form of filters that 
are M-orthogonal to pm, as will be required also in Section 3.

Lemma 1. For integers M ≥ 2 and m ≥ 2, let F denote any Laurent polynomial solution of the identity

M−1∑
k=0

Pm(αkz)F (αkz) = 0. (2.23)

Then F satisfies the formulation
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F (z) = z−�m/2�(1 − z)mG(z), (2.24)

with G denoting any Laurent polynomial satisfying the identity

G[0](zM) = 1
M

M−1∑
k=0

G(αkz) = 0. (2.25)

Proof. According to (2.23) and (1.4),

F (s)(1) = 0, s = 0, . . . ,m− 1,

and it follows that (2.24) is satisfied for some Laurent polynomial G. By substituting (2.24) into (2.23), 
and using (1.4), we obtain the second equation in (2.25). Finally, note that the first equation in (2.25) is 
obtained by setting γ = 0 in (1.11). �

The following result is then an immediate consequence of Lemma 1.

Theorem 4. The general Laurent polynomial solution A of the identity (1.15) is given by

A(z) = A∗(z) + z−�m/2�(1 − z)mÃ(z),

where A = A∗ is any particular solution of (1.15), and with Ã denoting any Laurent polynomial satisfying

Ã[0](z) = 1
M

M−1∑
k=0

Ã(αkz) = 0.

Observe from Theorem 2 and Corollary 2 that A∗ = Am in (2.9) and A∗ = A�
m in (2.22) are both 

admissible choices in Theorem 4.

3. The Laurent polynomial symbols of wavelet high-pass filters

For any given Laurent polynomial A satisfying the identity (1.15), we proceed in this section to obtain 
Laurent polynomials Q1, . . . , QM−1 and B1, . . . , BM−1 satisfying (1.13), or equivalently, (1.14). In the syn-
thesis side, P = Pm is with respect to the B-spline low-pass filter pm, and Q1, . . . , QM−1 are corresponding 
to the spline-wavelet high-pass filters q1, . . . , qM−1, which are all M-orthogonal to the analysis low-pass fil-
ter a, while B1, . . . , BM−1 are corresponding to the analysis wavelet high-pass filters b1, . . . , bM−1. The pair 
({p; q1, . . . , qM−1}, {a; b1, . . . , bM−1) forms a PR multirate system, which shall be further studied in next 
section in connection with the biorthogonal wavelet bases in a pair of Sobolev spaces. In applications, van-
ishing moments and short support of wavelet filters play an important role in signal/image processing since 
these properties provide efficient and sparse representation of the signals/images. In this section, we shall 
show that once the M-dual pair (pm, a) is given, the high-pass filters b1, . . . , bM−1 with shortest lengths can 
be derived, and it follows that the spline-wavelet filter q1, . . . , qM−1 are then uniquely determined; moreover, 
similar to Section 2, recursive formula of Q1, . . . , QM−1 can be derived as well.

We first simplify the matrix equation in (1.14) in terms of polyphase notation. It follows from (1.16), 
together with Lemma 1, that we must have

Bγ(z) = z−�m/2�(1 − z)mCγ(z), γ = 1, . . . ,M − 1, (3.1)

for some Laurent polynomials C1, . . . , CM−1 such that
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1
M

M−1∑
k=0

Cγ(αkz) = C [0]
γ (zM) = 0, γ = 1, . . . ,M − 1. (3.2)

Let the Laurent polynomial A be any solution of the identity (1.15). It follows from (3.1) that the Lau-
rent polynomials Q1, . . . , QM−1 and B1, . . . , BM−1 satisfy the identities (1.14) if and only if the Laurent 
polynomials Q1, . . . , QM−1 and C1, . . . , CM−1 satisfy the identity

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C1(z) C2(z) · · · CM−1(z)

C1(αz) C2(αz) · · · CM−1(αz)

...
...

. . .
...

C1(αM−1z) C2(αM−1z) · · · CM−1(αM−1z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q1(z)

Q2(z)

...
QM−1(z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − Pm(z)A(z)
z−�m/2�(1 − z)m
−Pm(z)A(αz)

(αz)−�m/2�(1 − αz)m
...

−Pm(z)A(αM−1z)
(αM−1z)−�m/2�(1 − αM−1z)m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.3)

as well as the condition (3.2), and where the Laurent polynomials B1, . . . , BM−1 are then given by (3.1). By 
multiplying the left hand side of (3.3) from the left by the matrix

T (z) := 1
M

⎡
⎢⎢⎢⎢⎣

1 1 · · · 1
z−1 (αz)−1 · · · (αM−1z)−1

...
...

. . .
...

z−(M−1) (αz)−(M−1) · · · (αM−1z)−(M−1)

⎤
⎥⎥⎥⎥⎦ , (3.4)

and using (1.10), (1.11), as well as (3.2), we obtain

⎡
⎢⎢⎢⎣

0 0 · · · 0
C

[1]
1 (zM) C

[1]
2 (zM) · · · C

[1]
M−1(zM)

...
...

. . .
...

C
[M−1]
1 (zM) C

[M−1]
2 (zM) · · · C

[M−1]
M−1 (zM)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

Q1(z)
Q2(z)

...
QM−1(z)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

T0(z)
T1(z)

...
TM−1(z)

⎤
⎥⎥⎥⎦ . (3.5)

Here the vector

[T0(z) T1(z) · · · TM−1(z)]T (3.6)

is obtained by the multiplication from the left of the right hand side of (3.3) with the matrix T (z). Since 
(1.4) implies

Pm(αkz)(αkz)−�m/2�(1 − αkz)m = z−M�m/2�
(

1 − zM

M

)m

, k = 0, . . . ,M − 1,

by using also (1.15), we have

T0(z) =
Pm(z)

[
(1 − Pm(z)A(z)) −

M−1∑
k=1

Pm(αkz)A(αkz)
]

z−M�m/2�((1 − zM)/M)m

=
Pm(z)

[
1 −

M−1∑
k=0

Pm(αkz)A(αkz)
]

−M�m/2� M m
= 0. (3.7)
z ((1 − z )/M)
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Similarly, for γ = 1, . . . , M − 1, we have

Tγ(z) = 1
Mzγ

Pm(z)
[
(1 − Pm(z)A(z)) −

M−1∑
k=1

α−γkPm(αkz)A(αkz)
]

z−M�m/2�((1 − zM)/M)m

= 1
Mzγ

1 −
M−1∑
k=0

α−γkPm(αkz)A(αkz)

z−�m/2�(1 − z)m
. (3.8)

By using also (1.15), we have

Tγ(z) = 1
M

z�m/2�−γ

(1 − z)m
M−1∑
k=1

(1 − α−γk)Pm(αkz)A(αkz), γ = 1, . . .M − 1. (3.9)

According to (1.4), we have that (1 −z)m divides Pm(αkz) for k = 1, . . . , M −1, and it follows from (3.9) that 
Tγ is a Laurent polynomial for each γ ∈ {1, . . . , M − 1}. Moreover, (3.8) and (1.11) imply the formulation

Tγ(z) = 1
Mz�m/2�−γ 1 − Mzγ(PmA)[γ](zM)

(1 − z)m , γ = 1, . . . ,M, (3.10)

according to which T1, . . . , TM−1 are Laurent polynomials with real coefficients.
Now observe from (3.4) that T (z) = [V (z)]T , where V (z) is the M ×M Vandermonde matrix with respect 

to the M distinct points {(αγz)−1 : γ = 0, . . . , M − 1}. Hence V (z) is an invertible matrix, according to 
which its transpose T (z) is also an invertible matrix. We may thus deduce from (3.5), (3.6), (3.7), and 
(3.8) that the Laurent polynomials Q1, . . . , QM−1 and B1, . . . , BM−1 satisfy (1.14) if and only if the Laurent 
polynomials Q1, . . . , QM−1 and C [k]

γ , γ, k = 1, . . . , M − 1, satisfy the identity

⎡
⎢⎢⎢⎢⎣

C
[1]
1 (zM) C

[1]
2 (zM) · · · C

[1]
M−1(zM)

C
[2]
1 (zM) C

[2]
2 (zM) · · · C

[2]
M−1(zM)

...
...

. . .
...

C
[M−1]
1 (zM) C

[M−1]
2 (zM) · · · C

[M−1]
M−1 (zM)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Q1(z)
Q2(z)

...
QM−1(z)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

T1(z)
T2(z)

...
TM−1(z)

⎤
⎥⎥⎥⎥⎦ (3.11)

with the Laurent polynomials T1, . . . , TM−1 given by (3.10). From (3.1), (1.10) and (3.2), the Laurent 
polynomials B1, . . . , BM−1 are then given by

Bγ(z) = z−�m/2�(1 − z)m
M−1∑
k=1

zkC [k]
γ (zM), γ = 1, . . . ,M − 1.

By observing that the Laurent polynomials

C [k]
γ (z) := δ(k − γ); Qγ(z) := Tγ(z), γ, k = 1, . . . ,M − 1, (3.12)

satisfy the identity (3.11), we have therefore now established the following result.

Theorem 5. For integers M ≥ 2 and m ≥ 2, let Pm be given as in (1.4) and A denote any Laurent polynomial 
satisfying the identity (1.15). Then the definitions
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Qγ(z) := 1
Mz�m/2�−γ 1 − Mzγ(PmA)[γ](zM)

(1 − z)m , γ = 1, . . . ,M − 1; (3.13)

and

Bγ(z) := z−�m/2�+γ(1 − z)m, γ = 1, . . . ,M − 1, (3.14)

yield Laurent polynomials satisfying (1.14). Moreover, for each γ ∈ {1, . . . , M − 1}, Bγ is a Laurent polyno-
mial of shortest length satisfying the identity (1.16), and, for these given choices of B1, . . . , BM−1, we have 
that Q1, . . . , QM−1 are the unique Laurent polynomials satisfying (1.14).

According to Theorem 2 (or Theorem 3) and Corollary 2, we may choose A = Am or A = A�
m in 

Theorem 5 to yield, in (3.13), the Laurent polynomials

Qγ(z) = Qm,γ(z) := 1
Mz�m/2�−γ 1 − Mzγ(PmAm)[γ](zM)

(1 − z)m , γ = 1, . . . ,M − 1, (3.15)

and

Qγ(z) = Q�
m,γ(z) := 1

Mz�m/2�−γ 1 − Mzγ(PmA�
m)[γ](zM)

(1 − z)m , γ = 1, . . . ,M − 1, (3.16)

for which we can establish the following properties.

Corollary 3. Let Qm,γ and Q�
m,γ be defined as in (3.15) and (3.16) for integers m � 2, � � 0, and γ =

1, . . . , M − 1. Then the following statements hold.

(a) Qm,γ(z) = z−(M−1)�m
2 �Rm,γ(z), where Rm,γ ∈ Πm(M−1)−M, γ = 1, . . . , M − 1.

(b) For m = 2n, the sequential symmetry condition Q2n,M−γ(z−1) = zMQ2n,γ(z), γ = 1, . . . , M − 1, holds.
(c) Qm,γ and Q�

m,γ(z) are related by

Q�
m,γ(z) = z�m/2�−�(m+�)/2�(1 − z)�Qm+�,γ(z). (3.17)

Proof. (a) By applying (1.4), (2.8), (1.10) and Hm ∈ Πm−2, we deduce that

1 − Mzγ(PmAm)[γ](zM) = z−M�m/2�+γTm,γ(z), γ = 1, . . . ,M − 1, (3.18)

where Tm,γ ∈ ΠM(m−1), γ = 1, . . . , M − 1. The desired results then immediately follow from (3.15) and 
(3.18), together with the divisibility condition

(1 − z)m|(1 − Mzγ(PmAm)[γ](zM)), γ = 1, . . . ,M − 1,

as follows from the equivalent formulations (3.9) and (3.10).
(b) Observe from (1.4) that P2n(z−1) = P2n(z). Now apply (3.12) and (3.9) with A = A2n, together with 

(1.9) and A2n(z−1) = A2n(z), to deduce that, for any γ ∈ {1, . . . , M − 1},

Mz−M−n+γ(1 − z)2nQ2n,M−γ(z−1) =
M−1∑
k=1

(1 − αγk)P2n(α−(M−k)z−1)A2n(α−(M−k)z−1)

=
M−1∑

(1 − αγ(M−k))P2n((αkz)−1)A2n((αkz)−1)

k=1
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=
M−1∑
k=1

(1 − α−γk)P2n(αkz)A2n(αkz)

= Mz−n+γ(1 − z)2nQ2n,γ(z),

which proves the desired symmetry result.
(c) The relation (3.17) is a direct consequence of the relation PmA�

m = Pm+�Am+�. �
Analogously to the family {Am : m = 2, 3, . . .}, we proceed to deduce recursive formulations for the 

families {Qm,γ : m = 2, 3, . . .}, γ = 1, . . . , M − 1 as well with respect to m.

Theorem 6. For any integers M ≥ 2, m ≥ 2 and γ ∈ {1, . . . , M − 1}, the Laurent polynomials {Qm,γ : m =
2, 3, . . .}, γ = 1, . . . , M − 1 in (3.15) satisfy the recursive formulation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q2,γ(z) = 1
M2

⎡
⎣− −γ−1∑

k=−M+1

(M + k)zk + (M − γ)
−1∑

k=−γ

kzk

⎤
⎦ ;

Q2n+1,γ(z) =
Q2n,γ(z) − z−(M−1)nQ2n,γ(1)

(
1 + z + · · · + zM−1

M

)2n

1 − z
;

Q2n+2,γ(z) =
zQ2n+1,γ(z) − z−(M−1)(n+1)Q2n+1,γ(1)

(
1 + · · · + zM−1

M

)2n+1

1 − z
.

(3.19)

Proof. First, for m = 2, we apply (3.15) and A2 ≡ 1 to obtain

Q2,γ(z) = 1
Mz1−γ 1 − Mzγ(P2)[γ](zM)

(1 − z)2 , γ = 1, . . . ,M − 1.

Now observe from (1.4) that

P2(z) = 1
M2

[ −1∑
k=−M+1

(M + k)zk + M +
M−1∑
k=1

(M − k)zk
]
,

from which, together with (1.10), we deduce that (P2)[γ](zM) = 1
M2

[
γz−M + (M − γ)

]
, γ = 0, . . . , M − 1. It 

follows that

Q2,γ(z) = − 1
M2 z

1−M (M − γ)zM − MzM−γ + γ

(1 − z)2 , γ = 1, . . .M − 1.

For any γ ∈ {1, . . .M − 1}, we have

(M − γ)zM − MzM−γ + γ

(z − 1)2 = 1
z − 1

⎡
⎣−γ

M−1−γ∑
k=0

zk + (M − γ)
M−1∑

k=M−γ

zk

⎤
⎦

= γ

M−2−γ∑
k=0

(k + 1)zk + (M − γ)
M−2∑

k=M−1−γ

(M − 1 − k)zk,

with the convention 
∑γ2 Fγ := 0, if γ2 < γ1. Consequently, we obtain the explicit formulation
γ=γ1
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Q2,γ(z) = 1
M2

⎡
⎣− −γ−1∑

k=−M+1

(M + k)zk + (M − γ)
−1∑

k=−γ

kzk

⎤
⎦ , γ = 1, . . . ,M − 1. (3.20)

Next, we use the relation for Qγ and Bγ in (1.14); that is,

M−1∑
k=0

Bj(αkz)Qγ(αkz) = δ(j − γ), j, γ = 1, . . . ,M − 1,

and (3.14) to obtain

M−1∑
k=0

(αkz)−�m/2�+j(1 − αkz)mQm,γ(αkz) = δ(j − γ), j, γ = 1, . . . ,M − 1.

By successively setting m = 2n, m = 2n + 1 and m = 2n + 2 in the above identities, and subtracting the 
resulting identities, we obtain

M−1∑
k=0

(αkz)−n+j(1 − αkz)2n+rXr
n,γ(αkz) = 0, j, γ = 1, . . . ,M − 1, (3.21)

for r = 0, 1, where

Xr
n,γ(z) := z−r(1 − z)Q2n+1+r,γ(z) −Q2n+r,γ(z), γ = 1, . . . ,M − 1; r = 0, 1. (3.22)

Let r ∈ {0, 1} and γ ∈ {1, . . . , M − 1} be fixed. By setting z = 1 in (3.21), we deduce that the sequence

grk := Xr
n,γ(αk), k = 1, . . . ,M − 1,

satisfies the (M − 1) × (M − 1) homogeneous linear system

Sr :
M−1∑
k=1

σr
j,kg

r
k = 0, j = 1, . . . ,M − 1,

where σr
j,k := (αk)−n+j(1 − αk)2n+r, j, k = 1, . . . , M − 1. Hence, we have

σr
j,k =

{
τ0
kα

jk, if r = 0;

τ1
kα

(j+ 1
2 )k, if r = 1,

where τ0
k := (−1)n22n sin2n (πk

M
)

and τ1
k := (−1)n+122n+1i sin2n+1 (πk

M
)
, k = 1, . . . , M − 1. Note that τ rk �= 0

for k = 1, . . . , M − 1.
Now observe that the coefficient matrix

Sr :=
[
σr
j,k

]
j,k=1,...,M−1

corresponding to the linear system Sr has the decomposition

Sr = YrZr, (3.23)
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where

Y0 :=

⎡
⎢⎢⎢⎢⎣

α α2 · · · αM−1

α2 (α2)2 · · · (α2)M−1

...
...

. . .
...

αM−1 (αM−1)2 · · · (αM−1)M−1

⎤
⎥⎥⎥⎥⎦ ,

Y1 :=

⎡
⎢⎢⎢⎢⎣

α
3
2 (α 3

2 )2 · · · (α 3
2 )M−1

α
5
2 (α 5

2 )2 · · · (α 5
2 )M−1

...
...

. . .
...

(αM− 1
2 ) (αM− 1

2 )2 · · · (αM− 1
2 )M−1

⎤
⎥⎥⎥⎥⎦ ,

and where Zr is the diagonal matrix with entries τ r1 , τ r2 , . . . , τ rM−1 on its main diagonal. Note that det(Yr) =
ανr det(V ), where ν0 := 1 + 2 + · · · + (M − 1) = 1

2(M − 1)M, ν1 := 3
2 + 5

2 + · · · + 2M−1
2 = 1

2 (M2 − 1), and

V :=

⎡
⎢⎢⎢⎢⎣

1 α · · · αM−2

1 α2 · · · (α2)M−2

...
...

. . .
...

1 αM−1 · · · (αM−1)M−2

⎤
⎥⎥⎥⎥⎦ . (3.24)

Hence, we can deduce that det(Y0) = det(V ) and det(Y1) = (−1)Mα− 1
2 det(V ). Now observe from (3.24)

that V is the (M − 1) × (M − 1) Vandermonde matrix with respect to the M − 1 distinct points {αk : k =
1, . . . , M − 1}, according to which V is an invertible matrix, and thus det(V ) �= 0, which yields det(Yr) �= 0, 
thereby establishing the invertibility of Yr. Also, it follows from τ rk �= 0, k = 1, . . . , M − 1 that the diagonal 
matrix Zr is invertible. Hence the matrix Sr in (3.23) is invertible.

Consequently, grk = 0, k = 1, . . . , M − 1, r = 0, 1 and hence Xr
n,γ(αk) = 0, k = 1, . . . , M − 1. It follows that

Xr
n,γ(z) = (1 + z + · · · + zM−1)X̃r

n,γ(z) (3.25)

for some Laurent polynomial X̃r
n,γ . By substituting (3.25) into (3.21), and using the fact that

(1 − αkz)(1 + αkz + · · · + (αkz)M−1) = (1 − z)M, k = 0, . . . ,M − 1,

we deduce that

M−1∑
k=0

(αkz)−n+j(1 − αkz)2n+r−1X̃r
n,γ(αkz) = 0, j = 1, . . . ,M − 1. (3.26)

Repeating the argument from (3.21) to (3.26) eventually yields

Xr
n,γ(z) = (1 + z + · · · + zM−1)2n+rW r

n,γ(z),

for some Laurent polynomial W r
n,γ satisfying the identity

M−1∑
k=0

α(−n+j)kW r
n,γ(αkz) = 0, j = 1, . . . ,M − 1.

By (3.22) and the length property of Qm,γ in Corollary 3(a), we deduce that W r
n,γ must be a monomial. 
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Hence,

W r
n,γ(z) = z−r−(M−1)�(2n+1+r)/2�crn,γ , j = 1, . . . ,M − 1, (3.27)

for some constants {crn,γ : γ = 1, . . . , M − 1}. By combining (3.22) and (3.27), we obtain

(1 − z)Q2n+1+r,γ(z) = zrQ2n+r,γ(z) + crn,γz
−(M−1)�(2n+1+r)/2�(1 + z + · · · + zM−1)2n+r,

in which we may now set z = 1 to obtain crn,γ = −M−2n−rQ2n+r,γ(1), and thus

(1 − z)Q2n+1+r,γ(z)

= zrQ2n+r,γ(z) − z−(M−1)�(2n+1+r)/2�Q2n+r,γ(1)
(

1 + z + · · · + zM−1

M

)2n+r

. (3.28)

The recursive formulation (3.19) now follows from (3.20), and by successively setting r = 0 and r = 1
in (3.28). �

For M = 2, note that α = −1, so that we may apply the formulation (3.9) to deduce from (3.12), (1.4), 
and (2.8) that

Qm,1(z) = (−1)�m/2�

2m z−1Am(−z) = − 1
2m z−�m/2�Hm(−z), if M = 2,

with Am and Hm ∈ Πm−2 as in Theorem 2. Calculating by means of Theorem 6, alternatively (3.15), we 
obtain the Laurent polynomials {Qm,γ : γ = 1, . . . , M − 1} for M = 2, 3, 4 and m = 2, 3, 4 in Tables 5.4–5.6
in Appendix A.

In summary, we have the following result for

({Pm;Q�
m,1, . . . , Q

�
m,M−1}, {A�

m;Bm,1, . . . , Bm,M−1})

of the PR multirate system (in terms of symbols), from which we also provide an algorithm for their efficient 
computations (see Algorithm 1).

Corollary 4. For any integers M ≥ 2, m ≥ 2, and � ≥ 0, the Laurent polynomials

P (z) = Pm(z) := z−(M−1)�m/2�
(

1 + z + · · · + zM−1

M

)m

;

A(z) = A�
m(z) := z−(M−1)(�(m+�)/2�−�m/2�)

(
1 + z + · · · + zM−1

M

)�

Am+�(z);

Qγ(z) = Q�
m,γ(z) := z�m/2�−�(m+�)/2�(1 − z)�Qm+�,γ(z), γ = 1, . . . ,M − 1;

Bγ(z) = Bm,γ(z) := z−�m/2�+γ(1 − z)m, γ = 1, . . . ,M − 1,

with Am+� and Qm+� as in, respectively, Theorem 3 (Eq. (2.9)) and Theorem 6 (Eq. (3.19)), satisfy the 
matrix identity (1.14).

4. Biorthogonal spline wavelets in a pair of Sobolev spaces

With the condition that P (1) = A(1) = 1, it is shown in [10] that the pair

({P ;Q1, . . . , QM−1}, {A;B1, . . . , BM−1})
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Algorithm 1 PR multirate system with shortest spline-wavelet filters.
(a) Input: (M, m, �): dilation factor M � 2, B-spline order m � 2, and sum rule order � � 0.
(b) Initialization: Initialize Pm, Bm, A2, and Q2,γ , γ = 1, . . . , M − 1.

1: Pm(z) ← z−(M−1)�m/2�
(

1+z+···+zM−1

M

)m
and A2(z) ← 1.

2: for γ from 1 to M − 1 do
3: Bm,γ(z) ← z−�m/2�+γ(1 − z)m.

4: Q2,γ(z) ← 1
M2

⎡
⎣− −γ−1∑

k=−M+1

(M + k)zk + (M − γ)
−1∑

k=−γ

kzk

⎤
⎦.

5: end for
(c) Recursive Computation: Compute Am+�, Qm+�,γ , γ = 1, . . . , M − 1.

6: for m̃ from 2 to m + � − 1 do
7: Determine Wm̃(z) ∈ ΠM−2 uniquely by

Wm̃(αk) = −(1 − αk)−m̃(αk)�m̃/2�−1Am̃(αk), k = 1, . . . ,M − 1.

8: Am̃+1(z) ←
z�m̃/2�−�(m̃+1)/2�Am̃(z) + z−�(m̃+1)/2�+1(1 − z)m̃Wm̃(z)

(1 + z + · · · + zM−1)/M .

9: for γ from 1 to M − 1 do

10: Qm̃+1,γ ←
z�

m̃+1
2 �−� m̃

2 �Qm̃,γ(z) − z−(M−1)� m̃+1
2 �Qm̃,γ(1)

(
1 + z + · · · + zM−1

M

)m̃

1 − z
.

11: end for
12: end for
(d) Finalization: Compute A�

m, Q�
m,γ , γ = 1, . . . , M − 1.

13: A�
m(z) ← z−(M−1)(�(m+�)/2�−�m/2�)

(
1+z+···+zM−1

M

)�
Am+�(z).

14: for γ from 1 to M − 1 do
15: Q�

m,γ(z) ← z�m/2�−�(m+�)/2�(1 − z)�Qm+�,γ(z).
16: end for
(e) Output: The PR multirate system with the shortest spline-wavelet filters

({Pm;Q�
m,1, . . . , Q

�
m,M−1}, {A�

m;Bm,1, . . . , Bm,M−1}).

of PR multirate system is always associated with an underlying pair of frequency-based dual M-framelets 
in the distribution space. In this section, we shall discuss biorthogonal wavelets in (Hτ(R), H−τ (R)) that 
are associated with such pairs of PR multirate systems.

Let us first recall some notations and definitions. For a function f : R → C, we define

fλ;k := |λ|1/2f(λ · −k), λ ∈ R\{0}, k ∈ R.

For any τ ∈ R, we denote by Hτ (R) the Sobolev space consisting of all tempered distributions f such that

‖f‖2
Hτ (R) := 1

2π

∫
R

|f̂(ξ)|2(1 + |ξ|2)τdξ < ∞,

where the Fourier transform f̂ of a function f ∈ L1(R) is defined to be f̂(ξ) :=
∫
R
f(x)e−ixξdx, ξ ∈ R. Note 

that Hτ (R) is a Hilbert space under the inner product
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〈f, g〉Hτ (R) := 1
2π

∫
R

f̂(ξ)ĝ(ξ)(1 + |ξ|2)τdξ, f, g ∈ Hτ (R).

Moreover, for each g ∈ H−τ (R),

〈f, g〉 := 1
2π

∫
R

f̂(ξ)ĝ(ξ)dξ, f ∈ Hτ (R),

defines a linear functional on Hτ (R). The spaces Hτ (R) and H−τ (R) form a pair of dual spaces.
Let N0 := N ∪ {0}. The functions φ, ψ1, . . . , ψs in Hτ (R) are said to generate the nonhomogeneous 

M-wavelet system

WS0(φ;ψ1, . . . , ψs) := {φ(· − k) : k ∈ Z} ∪ {ψ�
Mj ;k : j ∈ N0, k ∈ Z, � = 1, . . . , s},

(see [10]). For functions φ, ψ1, . . . , ψs ∈ Hτ (R) and φ̃, ψ̃1, . . . , ψ̃s ∈ H−τ (R), we say that

({φ;ψ1, . . . , ψs}, {φ̃; ψ̃1, . . . , ψ̃s}) (4.1)

generates a pair of biorthogonal M-wavelet bases in (Hτ (R), H−τ (R)), if

(WS0(φ;ψ1, . . . , ψs),WS0(φ̃; ψ̃1, . . . , ψ̃s))

is a pair of biorthogonal bases in (Hτ (R), H−τ (R)); i.e., each of WS0(φ; ψ1, . . . , ψs) and WS0(φ̃; ψ̃1, . . . , ψ̃s)
is a Riesz basis in Hτ (R) and H−τ (R), respectively, and the two systems are biorthogonal to each other; 
that is

〈φ0;k, φ̃0;k′〉 = δk,k′ , 〈ψ�
Mj ;k, ψ̃

�′

Mj′ ;k′〉 = δj,j′δ�,�′δk,k′ ,

〈φ0;k, ψ̃
�′

Mj′ ;k′〉 = 0, 〈ψ�
Mj ;k, φ̃0;k′〉 = 0.

A sequence {fn} in a Hilbert space H is said to be a Riesz basis of H if the span of {fn} is dense in H and 
there exists two positive constants 0 < A1 � A2 < +∞ such that

A1
∑
n

|cn|2 �
∥∥∥∥∥
∑
n

cnfn

∥∥∥∥∥
2

H

� A2
∑
n

|cn|2

for all finite sequences {cn}. It follows that the identity

〈f, g〉 =
∑
k∈Z

〈f, φ(· − k)〉〈φ̃(· − k), g〉 +
∞∑
j=0

s∑
�=1

∑
k∈Z

〈f, ψ�
Mj ;k〉〈ψ̃�

Mj ;k, g〉

for all f ∈ Hτ (R), g ∈ H−τ (R) is satisfied. It has been shown in [10] that if the pair in (4.1) generates a 
pair of biorthogonal M-wavelet bases in (Hτ (R), H−τ (R)), then we must have s = M − 1. See [7,11,17] for 
biorthogonal wavelets in L2(R).

For 0 < α � 1 and 1 � p � ∞, we say that f ∈ Lip(α, Lp(R)) if there is a constant C such that 
‖f − f(· − h)‖Lp(R) � Chα for all h > 0. The smoothness of a function f in Lp(R) is measured by

νp(f) := sup{n + α | n ∈ N0, 0 < α � 1, f (n) ∈ Lip(α,Lp(R))},
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where f (n) denotes the nth derivative of f . In order to state the result on biorthogonal M-wavelets in 
(Hτ (R), H−τ (R)) associated with biorthogonal M-wavelet filter banks, we also need to recall a quantity 
νp(F, M) for a low-pass filter Laurent polynomial F and 1 � p � ∞. We can write F (z) = (1 + z + · · · +
zM−1)mG(z) for some Laurent polynomial G such that (1 + z + · · · + zM−1) � G(z). Following [9, p. 61 and 
Proposition 7.2], we may define

νp(F,M) := 1/p− 1 − logM

(
lim sup
n→∞

‖Gn‖1/n
�p(Z)

)
, 1 � p � ∞,

where ‖Gn‖p�p(Z) :=
∑

k∈Z
|gn(k)|p and 

∑
k∈Z

gn(k)zk := G(z)G(zM) · · ·G(zMn−1). It has been proved in 
[9, Theorem 4.3] that the cascade algorithm with some mask (low-pass filter) F and a dilation factor M
converges in Lp(R) (as well as C(R) when p = ∞) if and only if νp(F, M) > 0.

Let φ be the compactly supported normalized M-refinable distribution with mask F and dilation M such 
that φ̂(ξ) :=

∏∞
j=1 F (e−iM−jξ). In general, we have νp(F, M) � νp(φ). If the integer shifts of φ form a 

Riesz system, then νp(F, M) = νp(φ). The quantity νp(F, M) plays an important role in the study of the 
convergence of cascade algorithms and smoothness of refinable functions, see [9] and the references therein 
on these topics. Moreover, when p = 2, we also have

ν2(F,M) = −1/2 − logM
√

ρ(F,M), (4.2)

where ρ(F, M) denotes the spectral radius of the square matrix [g(Mj − k)]−n2�j,k�n2 , where n2 := � n1
M−1�

and G(z)G(z−1) =:
∑k=n1

k=−n1
g(k)zk (see [8, Theorem 2.1]).

Let ({P ; Q1, . . . , QM−1}, {A; B1, . . . , BM−1}) be a pair of Laurent polynomials and suppose

1
M
∑
k

qγ(k)zk := Qγ(z);
∑
k

bγ(k)zk := Bγ(z), γ = 1, . . . ,M − 1.

One can define a pair of generators ({φ; ψ1, . . . , ψM−1}, {φ̃; ψ̃1, . . . , ψ̃M−1}) of distributions associated with 
({P ; Q1, . . . , QM−1}, {A; B1, . . . , BM−1}) by

φ̂(ξ) :=
∞∏
j=1

P (e−iM−jξ); ˆ̃φ(ξ) :=
∞∏
j=1

A(eiM
−jξ), ξ ∈ R, (4.3)

and

ψγ(x) :=
∑
k∈Z

qγ(k)φ(Mx− k) and ψ̃γ(x) :=
∑
k∈Z

bγ(−k)φ̃(Mx− k), (4.4)

when P = Pm, φ = φm is the mth order (centered) cardinal B-spline and the wavelets ψγ = ψγ
m, γ =

1, . . . , M − 1 are the corresponding cardinal spline wavelets. We have the following result.

Theorem 7. Let

({P ;Q1, . . . , QM−1}, {A;B1, . . . , BM−1})

be a pair of PR multirate systems, i.e., (1.14) holds. If P (1) = A(1) = 1 (that is, P and A are low-pass 
filters), and ν2(P, M) > τ , ν2(A, M) > −τ for some τ ∈ R, then the pair

({φ;ψ1, . . . , ψM−1}, {φ̃; ψ̃1, . . . , ψ̃M−1}) (4.5)
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defined as in (4.3) and (4.4) generates a pair of biorthogonal M-wavelet bases in (Hτ (R), H−τ (R)). If, in 
addition, ν2(P, M) > 0 (respectively, ν2(A, M) > 0) and

(1 − z)� | Qγ (respectively, (1 − z)�̃ | Bγ), γ = 1, . . . ,M − 1, (4.6)

then the wavelets ψ1, . . . , ψM−1 (respectively, ψ̃1, . . . , ψ̃M−1) have vanishing moments of order � (respec-
tively, �̃).

Proof. Since ν2(P, M) > τ and ν2(A, M) > −τ , by applying [11, Theorem 3.1], (4.5) generates a pair of 
biorthogonal M-wavelet bases in (Hτ (R), H−τ (R)). By [9], when ν2(P, M) > 0, φ is a compactly supported 
refinable function in L2(R).

By (4.6) and Qγ(z) =
∑

k qγ(k)zk, we have

Q(r)
γ (1) =

∑
k

(
k

r

)
qγ(k) = 0, r = 0, . . . , �− 1, γ = 1, . . .M − 1, (4.7)

from which it then inductively follows that
∑
k

krqγ(k) = 0, r = 0, . . . , �− 1, γ = 1, . . . ,M − 1. (4.8)

For any γ ∈ {1, . . . , M − 1} and r ∈ {0, . . . , � − 1}, we obtain

∞∫
−∞

xrψγ(x)dx =
∑
k

qγ(k)
∞∫

−∞

(
k + x

M

)r

φm(x)dx

= 1
Mr

∑
k

qγ(k)
∞∫

−∞

[
r∑

ν=0

(
r

ν

)
kνxr−ν

]
φm(x)dx

= 1
dr

r∑
ν=0

(
r

ν

)⎧⎨
⎩

∞∫
−∞

xr−νφm(x)dx

⎫⎬
⎭
{∑

k

kνqγ(k)
}

= 0,

by virtue of (4.8). Hence, ψ1, . . . , ψM−1 have vanishing moments of order �. A similar proof yields vanishing 
moments of order �̃ for the M − 1 wavelets ψ̃1, . . . , ψ̃M−1. �

It is easy to show that ν2(Pm, M) = m −0.5 > 0 for m � 1. Recalling from Corollary 4 that (1 − z)m | Bγ

and (1 − z)� | Qγ when A = A�
m, we immediately have the following result from Theorem 7.

Corollary 5. Let M ≥ 2, m � 2, and � � 0 be integers. Then the pair

({φ;ψ1, . . . , ψM−1}, {φ̃; ψ̃1, . . . , ψ̃M−1}) = ({φm;ψ1
m, . . . , ψM−1

m }, {φ̃m; ψ̃1
m, . . . , ψ̃M−1

m )

as defined by (4.3) and (4.4) with respect to the pair

({P ;Q1, . . . , QM−1}, {A;B1, . . . , BM−1}) = ({Pm;Q�
m,1, . . . , Q

�
m,M−1}, {A�

m;Bm,1, . . . , Bm,M−1})

of PR multirate system given as in Corollary 4, generates a pair of biorthogonal cardinal spline M-wavelet 
bases in (Hτ (R), H−τ (R)) for some τ ∈ R such that ν2(Pm, M) = m −0.5 > τ and ν2(A�

m) > −τ . Moreover, 
the cardinal spline wavelets ψ1

m, . . . , ψM−1
m have vanishing moments of order �. If in addition, ν2(A�

m, M) > 0, 
then the wavelets ψ̃1

m, . . . , ψ̃M−1
m have vanishing moments of order m.
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The interested reader is referred to [12] for general discussion on the symmetry property of filter banks. 
For more references on biorthogonal and orthogonal wavelets in L2(R), see [2,6,8,14–16,21] and references 
therein.

5. Illustrative examples

In this section, we illustrate by examples our results in the previous sections.

Example 1. Let M = 3, m = 2, � = 0, which is with respect to the simplest case for M > 2. Then, by 
Theorems 3 and 6, we can directly obtain

P (z) = z−2
(

1 + z + z2

3

)2

; Q1(z) = −1
9z

−2(1 + 2z); Q2(z) = −1
9z

−2(2 + z).

A(z) = 1; B1(z) = (1 − z)2; B2(z) = z(1 − z)2.

By Eq. (4.2), we have ν2(P, M) = 1.5 and ν2(A, M) = −0.5. Hence by Corollary 5, the pair 
({φ; ψ1, ψ2}, {φ̃; ψ̃1, ψ̃2}) associated with ({P ; Q1, Q2}, {A; B1, B2}) is a pair of biorthogonal M-wavelet 
bases in a pair of dual Sobolev spaces (Hτ (R), H−τ (R)) for all 0.5 < τ < 1.5.

Example 2. Let M = 3, m = 2, � = 2. By Algorithm 1, we obtain

P (z) = z−2
(

1 + z + z2

3

)2

;

Q1(z) = 1
243z

−5(1 − z)2(4 + 16z + 40z2 + 50z3 + 20z4 + 5z5);

Q2(z) = 1
243z

−5(1 − z)2(5 + 20z + 50z2 + 40z3 + 16z4 + 4z5).

A(z) = −1
3z

−3
(

1 + z + z2

3

)2

(4 − 11z + 4z2);

B1(z) = (1 − z)2;

B2(z) = z(1 − z)2.

For the same special case, the dual-chain method yields, as given in [4, Example 1],

Q1(z) = − 1
27z

−2(1 − z)2(1 + 4z + 10z2 + 10z3 + 4z4 + z5);

Q2(z) = − 1
81z

−2(1 − z)2(1 + 4z + 10z2 − 10z3 − 4z4 − z5);

B1(z) = −1
2(1 − z)2(1 + z); B2(z) = −1

6(1 − z)3,

which has Q1 and Q2 Laurent polynomials of the same length, and with symmetry properties, but B1 and 
B2 Laurent polynomials of longer length.

By Eq. (4.2), we have ν2(P, M) = 1.5 and ν2(A, M) ≈ 0.2105. Hence by Corollary 5, the pair 
({φ; ψ1, ψ2}, {φ̃; ψ̃1, ψ̃2}) associated with ({P ; Q1, Q2}, {A; B1, B2}) is a pair of biorthogonal M-wavelet 
bases for L2(R). Moreover, the wavelets ψ1, ψ2, ψ̃1, ψ̃2 have vanishing moments of order 2.
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Example 3. Let M = 3, m = 3, � = 0. By Algorithm 1, we obtain

P (z) = z−2
(

1 + z + z2

3

)3

; A(z) = 2 − z;

Q1(z) = − 1
27z

−2(2 + 6z + 3z2 + z3); B1(z) = (1 − z)3;

Q2(z) = − 1
27z

−2(5 + 6z + 3z2 + z3); B2(z) = z(1 − z)3.

By Eq. (4.2), we have ν2(P, M) = 2.5 and ν2(A, M) ≈ −1.2325. Hence by Corollary 5, the pair 
({φ; ψ1, ψ2}, {φ̃; ψ̃1, ψ̃2}) associated with ({P3; Q1, Q2}, {A3; B1, B2}) is a pair of biorthogonal M-wavelet 
bases in a pair (Hτ (R), H−τ (R)) of dual Sobolev spaces for all 1.2325 < τ < 2.5.

Example 4. Let M = 3, m = 3, � = 3. By Algorithm 1, we obtain

P (z) = z−2
(

1 + z + z2

3

)3

;

Q1(z) = − 1
2187z

−8(1 − z)3(7 + 42z + 147z2 + 336z3 + 546z4 + 588z5 + 378z6 + 168z7 + 48z8 + 8z9);

Q2(z) = − 1
2187z

−8(1 − z)3(8 + 48z + 168z2 + 378z3 + 588z4 + 546z5 + 336z6 + 147z7 + 42z8 + 7z9);

and

A(z) = 1
3z

−6
(

1 + z + z3

3

)3

(7 − 34z + 57z2 − 34z3 + 7z4);

B1(z) = (1 − z)3;

B2(z) = z(1 − z)3.

By Eq. (4.2), we have ν2(P, M) = 2.5 and ν2(A, M) ≈ −0.5004. Hence by Corollary 5, the pair 
({φ; ψ1, ψ2}, {φ̃; ψ̃1, ψ̃2}) associated with ({P ; Q1, Q2}, {A; B1, B2}) is a pair of biorthogonal M-wavelet bases 
in a pair (Hτ (R), H−τ (R)) of dual Sobolev spaces for all 0.5004 < τ < 2.5. The cardinal spline wavelets 
ψ1, ψ2 have vanishing moments of order 3.

Example 5. Let M = 4, m = 3, � = 2. By Algorithm 1, we obtain

P (z) = z−3
(

1 + z + z2 + z3

4

)3

;

Q1(z) = 1
8192z

−7(1 − z)2(35z11 + 175z10 + 525z9 + 1225z8 + 2198z7 + 3150z6 + 3570z5 + 2730z4

+ 1575z3 + 675z2 + 225z + 45);

Q2(z) = 1
512z

−7(1 − z)2(1 + z)5(5 + 25z2 + 15z4 + 3z6);

Q3(z) = 1
8192z

−7(1 − z)2(35z11 + 175z10 + 525z9 + 1225z8 + 2230z7 + 3310z6 + 4050z5 + 3850z4

+ 2695z3 + 1155z2 + 385z + 77);
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and

A(z) = −1
8z

−4
(

1 + z + z2 + z3

4

)2

(45 − 145z + 127z2 − 35z3);

B1(z) = (1 − z)3;

B2(z) = z(1 − z)3;

B3(z) = z2(1 − z)3.

By Eq. (4.2), we have ν2(P, M) = 2.5 and ν2(A, M) ≈ −0.8256. Hence by Corollary 5, the pair 
({φ; ψ1, ψ2, ψ3}, {φ̃; ψ̃1, ψ̃2, ψ̃3}) associated with the PR multirate system ({P ; Q1, Q2, Q3}, {A; B1, B2, B3})
is a pair of biorthogonal M-wavelet bases in (Hτ (R), H−τ (R)) for all 0.8256 < τ < 2.5. The cardinal spline 
wavelets ψ1, ψ2, ψ3 have vanishing moments of order 2.

Example 6. Finally, for M = 3 and m = 2, 3, 4, we list the values

ν2(P2, 3) = 1.5; ν2(P3, 3) = 2.5; ν2(P4, 3) = 3.5,

as well as, as given in Table 5.7 (see Appendix A), the values of ν2(A�
m,3, 3), for � = 0, 1, . . . , 9.
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Appendix A. Tables

Table 5.1
The Laurent polynomials A2, . . . , A8 for M = 2.

m Am(z)
2 1
3 1

2 (3 − z)
4 1

2 z
−1(−1 + 4z − z2)

5 1
8 z

−1(−5 + 25z − 15z2 + 3z3)
6 1

8 z
−2(3 − 18z + 38z2 − 18z3 + 3z4)

7 1
16z

−2(7 − 49z + 126z2 − 98z3 + 35z4 − 5z5)
8 1

16z
−3(−5 + 40z − 131z2 + 208z3 − 131z4 + 40z5 − 5z6)

Table 5.2
The Laurent polynomials A2, . . . , A8 for M = 3.

m Am(z)
2 1
3 2 − z

4 1
3 z

−1(−4 + 11z − 4z2)
5 1

3 z
−1(−7 + 25z − 20z2 + 5z3)

6 1
3 z

−2(7 − 34z + 57z2 − 34z3 + 7z4)
7 1

9 z
−2(35 − 201z + 427z2 − 392z3 + 168z4 − 28z5)

8 1
9 z

−3(−40 + 276z − 768z2 + 1073z3 − 768z4 + 276z5 − 40z6)
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Table 5.3
The Laurent polynomials A2, . . . , A8 for M = 4.

m Am(z)
2 1
3 1

2 (5 − 3z)

4 1
2 z

−1(−5 + 12z − 5z2)

5 1
8 z

−1(−45 + 145z − 127z2 + 35z3)

6 1
8 z

−2(63 − 282z + 446z2 − 282z3 + 63z4)

7 − 1
16 z

−2(−273 + 1463z − 2982z2 + 2842z3 − 1297z4 + 231z5)

8 − 1
16 z

−3(429 − 2792z + 7387z2 − 10064z3 + 7387z4 − 2792z5 + 429z6)

Table 5.4
For M = 2, the Laurent polyno-
mials {Qm,1 : m = 2, 3, 4}.
m Qm,1(z)

2 − 1
4 z

−1

3 − 1
16z

−1(3 + z)

4 1
16z

−2(1 + 4z + z2)

Table 5.5
For M = 3, the Laurent polynomials {Qm,γ : m = 2, 3, 4,
γ = 1, 2}.
m Qm,1(z)

2 − 1
9 z

−2(1 + 2z)

3 − 1
27 z

−2(2 + 6z + 3z2 + z3)

4 1
243z

−4(4 + 16z + 40z2 + 50z3 + 20z4 + 5z5)

m Qm,2(z)

2 − 1
9 z

−2(2 + z)

3 − 1
27 z

−2(5 + 6z + 3z2 + z3)

4 1
243z

−4(5 + 20z + 50z2 + 40z3 + 16z4 + 4z5)

Table 5.6
For M = 4, the Laurent polynomials {Qm,γ : m = 2, 3, 4, γ = 1, 2, 3}.
m Qm,1(z)

2 − 1
16 z

−3(1 + 2z + 3z2)

3 − 1
128z

−3(5 + 15z + 30z2 + 18z3 + 9z4 + 3z5)

4 1
512z

−6(5 + 20z + 50z2 + 100z3 + 140z4 + 140z5 + 70z6 + 28z7 + 7z8)

m Qm,2(z)

2 − 1
16 z

−3(1 + 4z + 2z2)

3 − 1
256 z

−3(9 + 59z + 70z2 + 42z3 + 21z4 + 7z5)

4 1
1024z

−6(13 + 52z + 130z2 + 260z3 + 380z4 + 300z5 + 150z6 + 60z7 + 15z8)

m Qm,3(z)

2 − 1
16 z

−3(3 + 2z + z2)

3 − 1
128z

−3(21 + 31z + 30z2 + 18z3 + 9z4 + 3z5)

4 1
512z

−6(7 + 28z + 70z2 + 140z3 + 140z4 + 100z5 + 50z6 + 20z7 + 5z8)
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Table 5.7
The values of ν2(A�

m, M), for M = 3, m = 2, 3, 4 and � = 0, 1, . . . , 9.
m\� 0 1 2 3 4
2 −0.5 −0.233 0.211 0.289 0.5
3 −1.23 −0.789 −0.711 −0.5 −0.494
4 −1.79 −1.71 −1.50 −1.49 −1.36

m\� 5 6 7 8 9
2 0.506 0.641 0.642 0.745 0.745
3 −0.359 −0.358 −0.255 −0.255 −0.171
4 −1.36 −1.25 −1.25 −1.17 −1.17
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