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a b s t r a c t

A directional compactly supported d-dimensional Haar tight framelet is constructed
such that all its high-pass filters in its underlying tight framelet filter bank have
only two nonzero coefficients with opposite signs and they exhibit totally (3d −1)/2
directions in dimension d. Furthermore, applying the projection method to such
a tight framelet, a directional compactly supported box spline tight framelet with
simple geometric structure is built such that all the high-pass filters in its underlying
tight framelet filter bank have only two nonzero coefficients with opposite signs as
well. Moreover, such compactly supported box spline tight framelets can achieve
arbitrarily high numbers of directions by using refinable box splines with increasing
supports. Their application to pMRI with good performance is presented.

© 2018 Elsevier Ltd. All rights reserved.

To capture singularities in high-dimensional data such as images/videos, directional representations play
an important role both in theory and application. For example, see curvelets and shearlets in [1,2] and
tensor product complex tight framelets in [3,4]. On the other hand, (refinable) box splines are widely
used in both approximation theory and wavelet analysis. Motivated by the interesting example of a two-
dimensional directional Haar tight framelet constructed in [5] which has impressive performance in parallel
magnetic resonance imaging (pMRI), in this paper we construct compactly supported tight framelets with
directionality and very simple geometric structures from the Haar refinable functions and all refinable box
splines in all dimensions. All the high-pass filters in such directional tight framelets have only two nonzero
coefficients with opposite signs. Consequently, all of them naturally exhibit directionality and their associated
fast framelet transforms can be efficiently implemented through simple difference operations.

Let us first recall some definitions and notation. Let ϕ, ψ1, . . . , ψs ∈ L2(Rd). We say that {ϕ;ψ1, . . . , ψs}
is a (nonhomogeneous dyadic) tight framelet in L2(Rd) if

∥f∥2
L2(Rd) =

∑
k∈Zd

|⟨f, ϕ(· − k)⟩|2 +
∞∑

j=0

s∑
ℓ=1

∑
k∈Zd

|⟨f, 2jd/2ψℓ(2j · −k)⟩|
2
, ∀ f ∈ L2(Rd). (1)
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According to [6, Theorem 4.5.4], tight framelets are closely related to filter banks. By l0(Zd) we denote the
set of all finitely supported sequences/filters a = {a(k)}k∈Zd : Zd → C on Zd. For a filter a ∈ l0(Zd), its
Fourier series is defined to be â(ξ) :=

∑
k∈Zd a(k)e−ik·ξ for ξ ∈ Rd, which is a 2πZd-periodic trigonometric

polynomial. In particular, by δ we denote the Dirac sequence such that δ(0) = 1 and δ(k) = 0 for all
k ∈ Zd\{0}. For γ ∈ Zd, we also use the notation δγ to stand for the sequence δ(· − γ), i.e., δγ(γ) = 1 and
δγ(k) = 0 for all k ∈ Zd\{γ}. Note that δ̂γ(ξ) = e−iγ·ξ. For filters a, b1, . . . , bs ∈ l0(Zd), we say that a filter
bank {a; b1, . . . , bs} is a (d-dimensional dyadic) tight framelet filter bank if

∑
k∈Zd

a(γ+2k)a(n+ γ + 2k)+
s∑

ℓ=1

∑
k∈Zd

bℓ(γ+2k)bℓ(n+ γ + 2k) = 2−dδ(n), ∀ γ ∈ {0, 1}d, ∀n ∈ Zd. (2)

In the frequency domain, it is equivalent to â(ξ)â(ξ + πω) +
∑s

ℓ=1 b̂ℓ(ξ)b̂ℓ(ξ + πω) = δ(ω), ∀ ξ ∈ Rd, ω ∈
{0, 1}d. Eq. (1) is just the perfect reconstruction property of a tight framelet filter bank ([6, Theorems 1.1.1
and 1.1.4]).

Let a, b1, . . . , bs ∈ l0(Zd) and assume that â(0) =
∑

k∈Zd a(k) = 1. Then we can define compactly
supported tempered distributions ϕ and ψ1, . . . , ψs on Rd through

ϕ̂(ξ) :=
∞∏

j=1
â(2−jξ) and ψ̂ℓ(ξ) = b̂ℓ(ξ/2)ϕ̂(ξ/2), ξ ∈ Rd, ℓ = 1, . . . , s. (3)

It is known in [7, Corollary 12 and Theorem 17] and [6, Theorem 4.5.4] that {ϕ;ψ1, . . . , ψs} is a tight framelet
in L2(Rd) if and only if {a; b1, . . . , bs} is a tight framelet filter bank. Also cf. [8–11] for related results. Further
see [7,9–15] and many references therein for extensive investigation on tight framelets derived from refinable
functions. The tempered distribution ϕ is called a refinable function satisfying the refinement equation
ϕ̂(ξ) = â(ξ/2)ϕ̂(ξ/2) for ξ ∈ Rd with the refinement filter a.

This paper is motivated by the interesting paper [5], where a two-dimensional directional Haar tight
framelet has been constructed and applied with impressive performance to pMRI. Applying finite linear
combinations to the standard tensor product two-dimensional Haar wavelet, the authors constructed in
[5, (3.5)] a two-dimensional directional tight framelet filter bank {aH ; b1, . . . , b6} with

aH = 1
4(δ(0,0) + δ(0,1) + δ(1,0) + δ(1,1)), b1 = 1

4(δ(0,0) − δ(0,1)), b2 = 1
4(δ(0,0) − δ(1,0)),

b3 = 1
4(δ(0,0) − δ(1,1)), b4 = 1

4(δ(0,1) − δ(1,0)), b5 = 1
4(δ(0,1) − δ(1,1)),

b6 = 1
4(δ(1,0) − δ(1,1)).

Since each high-pass filter has only two nonzero coefficients with opposite signs, it naturally has directionality
and very simple structures. To deal with problems in higher dimensions such as video inpainting/denoising,
it is very natural to ask

Q1. Is it possible to construct a directional Haar tight framelet for every dimension such that each high-pass
filter has only two nonzero coefficients with opposite signs?

A similar construction method/argument as in [5] will quickly run into difficulty, since there are so many
possible linear combinations even at the dimension three. Fortunately, adopting a geometric viewpoint, we
can positively answer the question Q1 completely as follows:

Theorem 1. Let aH = 2−d
∑

γ∈{0,1}d δγ be the d-dimensional Haar low-pass filter. Define the high-pass
filters b1, . . . , bs with s :=

(2d

2
)

= 2d−1(2d − 1) in the following way: 2−d(δγ1 − δγ2) for all undirected edges
with endpoints γ1, γ2 ∈ {0, 1}d and γ1 ̸= γ2. Then {aH ; b1, . . . , bs} is a tight framelet filter bank such that
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all the high-pass filters b1, . . . , bs have directionality and exhibit 1
2 (3d − 1) directions in dimension d. Define

functions ϕ and ψ1, . . . , ψs as in (3). Then {ϕ;ψ1, . . . , ψs} is a d-dimensional directional compactly supported
Haar tight framelet in L2(Rd).

Proof. To prove that {aH ; b1, . . . , bs} is a tight framelet filter bank, we have to check the conditions in (2).
Since all the filters are supported inside {0, 1}d, it is trivial to observe that all the filters aH , b1, . . . , bs vanish
at the position γ + 2k for all γ ∈ {0, 1}d and for all k ∈ Zd\{0}. Therefore, Eqs. (2) become

aH(γ)aH(n+ γ) +
s∑

ℓ=1
bℓ(γ)bℓ(n+ γ) = 2−dδ(n), γ ∈ {0, 1}d, n ∈ Zd. (4)

Case 1: n = 0. Then |aH(γ)|2 = 2−2d. By the definition of the high-pass filters, there are totally 2d − 1
filters whose supports contain the point γ. Consequently,

∑s
ℓ=1 |bℓ(γ)|2 = 2−2d(2d − 1). Thus, we have

|aH(γ)|2 +
∑s

ℓ=1 |bℓ(γ)|2 = 2−2d + 2−2d(2d − 1) = 2−d which proves (4) with n = 0.
Case 2: n ̸= 0 and n + γ ̸∈ {0, 1}d. For this case, since all the filters are supported inside {0, 1}d, we

trivially have aH(n+ γ) = 0 and bℓ(n+ γ) = 0 for all ℓ = 1, . . . , s. Hence, (4) is trivially true for n ̸= 0 and
n+ γ ̸∈ {0, 1}d.

Case 3: n ̸= 0 and n+ γ ∈ {0, 1}d. Then n and n+ γ are two distinct points in {0, 1}d. By the definition
of the high-pass filters, there exists exactly one integer j with 1 ⩽ j ⩽ s such that bj(γ)bj(n+ γ) = −2−2d

and bℓ(γ)bℓ(n+ γ) = 0 for all ℓ ∈ {1, . . . , s}\{j}. Noting that aH(γ) = aH(n+ γ) = 2−d, we conclude

aH(γ)aH(n+ γ) +
s∑

ℓ=1
bℓ(γ)bℓ(n+ γ) = aH(γ)aH(n+ γ) + bj(γ)bj(n+ γ) = 2−2d − 2−2d = 0,

which proves (4) for n ̸= 0 and n+ γ ∈ {0, 1}.
Therefore, {aH ; b1, . . . , bs} is a tight framelet filter bank. Since each high-pass filter has only two nonzero

coefficients with opposite signs, all the high-pass filters b1, . . . , bs trivially have directionality. We now count
the total number of directions of all the high-pass filters. Note that the direction of a high-pass filter
2−d(δγ1 −δγ2) can be represented by the vector v = γ1 −γ2 or v = γ2 −γ1. Such a direction vector v is unique
if we additionally require that the first nonzero entry of v should be positive. Note that v ∈ {−1, 0, 1}d\{0}
with each entry of v belonging to {−1, 0, 1}. Let S be the set of all the nonzero vectors v ∈ {−1, 0, 1}d

such that the first nonzero entry of v is positive (i.e., 1). Hence, any direction vector v of a high-pass filter
belongs to S. Conversely, for every vector v ∈ S, we can uniquely write v = γ1 −γ2 with γ1, γ2 ∈ {0, 1}d and
γ1 + γ2 ∈ {0, 1}d by separating the positive and negative entries of v. Therefore, the vector v represents the
direction of the high-pass filter 2−d(δγ1 − δγ2). Hence, the total number of directions of all the high-pass
filters is equal to the cardinality of the set S. Consider the subset Sj whose elements are in S with the first
nonzero entry at the position j for j = 1, . . . , d. Clearly, the cardinality of Sj is 3d−j . Since S is the disjoint
union of S1, . . . , Sd, we conclude that the cardinality of S is 3d−1 + 3d−2 + · · · + 3d−d = (3d − 1)/2. □

The tight framelet filter bank in Theorem 1 with d = 1 is just the standard Haar orthogonal wavelet filter
bank and the case d = 2 recovers the directional Haar tight framelet filter bank in [5].

One possible shortcoming of Theorem 1 is that all the Haar refinable functions χ[0,1]d are discontinuous
and often introduce unpleasant block effects in data/image processing. Therefore, smooth refinable functions
and directional smooth tight framelets are often preferred in applications. Refinable box splines can be made
arbitrarily smooth and are widely used in approximation theory and wavelet analysis. This naturally leads
us to ask

Q2. Can we construct directional compactly supported tight framelets in L2(Rd) with simple geometric
structure from every refinable box spline in every dimension?
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Applying the projection method in [16,17] to Theorem 1, we positively answer the question Q2 painlessly.
To do so, let us recall the definition of box splines which are closely linked to the projection method. Let P
be a d× n real-valued matrix of rank d with d ⩽ n. A box spline MP with the d× n direction matrix P is
defined to be

M̂P (ξ) :=
∏
k∈P

1 − e−ik·ξ

ik · ξ
, ξ ∈ Rd, (5)

where k ∈ P means that k is a column vector of P and k goes through all the columns of P once and only
once. A box spline can be also defined through the projection method. For an integrable function f ∈ L1(Rn),
we can define the projected function Pf on Rd by P̂ f(ξ) := f̂(PTξ), ξ ∈ Rd. Since f̂ is continuous on Rn,
the function P̂ f is a well-defined continuous function on Rd. In the spatial domain, the definition of the d-
dimensional projected function Pf can be equivalently expressed as [Pf ](x) = 1√

det(P P T)

∫
P −1x

fdS, x ∈ Rd,
where S is the surface element on the superplane P−1x := {y ∈ Rn : Py = x}. In fact, for
f ∈ L1(Rn), the projected function Pf ∈ L1(Rd) (see [16,17]). Note that χ̂[0,1]n(ξ) =

∏
k∈{0,1}n

1−e−ik·ξ

ik·ξ

and ˆPχ[0,1]n(ξ) = χ̂[0,1]n(PTξ) =
∏

k∈{0,1}n
1−e−ik·(P Tξ)

ik·(P Tξ) =
∏

k∈{0,1}n
1−e−i(P k)·ξ

i(P k)·ξ = M̂P (ξ). Hence, the box
spline MP is nothing else but the projected function Pχ[0,1]n of the n-dimensional Haar function along the
direction matrix P , refer to the book [18] for extensive study on box splines.

The projection method can be also applied to filters on Zn provided that P is a d×n integer matrix. For
an n-dimensional filter a ∈ l0(Zn), the projected filter Pa ∈ l0(Zd) is defined by

P̂ a(ξ) := â(PTξ), ξ ∈ Rd, or equivalently, [Pa](j) =
∑

k∈P −1j

a(k), j ∈ Zd, (6)

where P−1j := {k ∈ Zn : Pk = j}. Because â is a 2πZn-periodic trigonometric polynomial and P is
an integer matrix, P̂ a is a well-defined 2πZd-periodic trigonometric polynomial. If aH is the n-dimensional
Haar low-pass filter, then we define aP := PaH to be the box spline refinement filter/mask for the box spline
MP with a d × n direction matrix. For an integer projection matrix P , the box spline function MP in (5)
is refinable: M̂P (2ξ) = âP (ξ)M̂P (ξ), since Pχ[0,1]n = MP and the n-dimensional Haar function χ[0,1]n is
refinable: χ̂[0,1]n(2ξ) = âH(ξ)χ̂[0,1]n(ξ).

Suppose that P is a d × n integer matrix of rank d with d ⩽ n satisfying PT(Zd\[2Zd]) ⊆ Zn\[2Zn].
For every tight framelet {ϕ;ψ1, . . . , ψs} in L2(Rn) regardless of whether {ϕ;ψ1, . . . , ψs} has an associated
underlying filter bank or not, it is known in [16, Theorem 4] and [17, Theorem 2.3 and Corollary 5.3] that
{Pϕ;Pψ1, . . . , Pψs} must be a tight framelet in L2(Rd). Similarly, for every n-dimensional tight framelet
filter bank {a; b1, . . . , bs}, then {Pa;Pb1, . . . , P bs} must be a d-dimensional tight framelet filter bank. The
condition that PT(Zd\[2Zd]) ⊆ Zn\[2Zn] is equivalent to saying ([17, Theorem 2.5]) that the filter aP has
the sum rules of order at least one, i.e.,

∑
k∈Zd aP (γ + 2k) = 2−d for all γ ∈ {0, 1}d. If such a condition

fails, then the box spline filter aP does not have any sum rules and therefore, no tight framelets can be ever
derived from the box spline MP , refer to [17, Theorem 2.5] for more details as well as Han [16,17] for some
applications of the projection method in wavelet analysis.

Note that if a high-pass filter b has only two nonzero coefficients with opposite signs, then either Pb = 0
or Pb has only two nonzero coefficients with opposite signs. Applying the projection method to the Haar
tight framelets in Theorem 1, we have the following result positively answering Q2.

Theorem 2. Let P be a d × n integer matrix of rank d with d ⩽ n such that PT(Zd\[2Zd]) ⊆ Zn\[2Zn].
Let {aH ; b1, . . . , bs} with s :=

(2n

2
)

= 2n−1(2n − 1) be the n-dimensional Haar tight framelet filter bank
constructed in Theorem 1. Then {PaH ;Pb1, . . . , P bs} is a d-dimensional tight framelet filter bank with PaH

being the box spline refinement filter aP such that all the high-pass filters have only two nonzero coefficients
with opposite signs. Define ϕ and ψ1, . . . , ψs as in (3) with a and b1, . . . , bs being replaced by PaH and
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Fig. 1. Each edge connecting every two vertices indicates a high-pass filter with coefficients of the same weight but opposite signs at
its endpoints. (a) Example 1. Weight for each dashed blue edge (total 15) is 1

8 , while weight for each solid red edge (total 6) is
√

2
8 . The

total number of all the high-pass filters is 21 with 6 solid red edges and 15 dashed blue edges. The total number of directions/slopes
for the 21 high-pass filters is 6 with angles 0◦ (5 edges), 26.6◦ (= arctan( 1

2 ), 2 edges), 45◦ (5 edges), 63.4◦ (= arctan(2), 2 edges), 90◦

(5 edges), and −45◦ (2 edges). (b) Example 2. Weight for each small-dotted brown arc-edge (total 6) is 1
16 , weight for each dotted blue

edge (total 16) is
√

2
16 , weight for each dashed green edge (total 10) is 1

8 , and weight for each solid red edge (total 4) is
√

2
8 . The total

number of directions/slopes for the 36 high-pass filters is 8 with angles 0◦ (9 edges), ±26.6◦ (2 edges each), ±45◦ (5 edges each), ±63.4◦

(= arctan( 1
2 ), 2 edges each), and 90◦ (9 edges).

Pb1, . . . , P bs, respectively. Then {ϕ;ψ1, . . . , ψs} is a d-dimensional directional compactly supported tight
framelet in L2(Rd) with ϕ being the box spline MP in (5) having the direction matrix P .

Let {a; b1, . . . , bs} be a d-dimensional tight framelet filter bank. If b1 = c1b and b2 = c2b for some constants
c1, c2 ∈ C and b ∈ l0(Zd), then it is trivial that {a;

√
|c1|2 + |c2|2b, b3, . . . , bs} is a tight framelet filter bank.

That is, we can combine high-pass filters which are almost the same up to a multiplicative constant. Hence,
the number of high-pass filters in Theorem 2 can be reduced. We would like to point out that a further
development on Theorem 2 can be found in [19]. Now we provide a geometric construction for the box spline
tight framelet filter bank in Theorem 2 but with similar filters combined to reduce the number of filters.
First we calculate the support supp(aP ) of the box spline filter aP , which must be the set P{0, 1}n ⊆ Zd.
Now the set {0, 1}n of the vertices of the unit cube [0, 1]n can be written as a disjoint union of the subsets
P−1k, k ∈ supp(aP ). Then all the high-pass filters are constructed in the following way: For every pair of two
distinct points γ1, γ2 ∈ supp(aP ), construct the high-pass filter 2−n

√
(#P−1γ1)(#P−1γ2)(δγ1 −δγ2), where

#S is the cardinality of a set S. Clearly, there are totally
(

m
2
)

with m := #supp(aP ) number of high-pass
filters. We provide two examples to illustrate this construction.

Example 1. Let P be the 2 × 3 integer matrix P =
[

1 0 −1
0 1 −1

]
. Then MP is the three-direction

interpolating linear box spline with the refinement filter given by âP (ξ1, ξ2) = 2−3(1 + e−iξ1)(1 + e−iξ2)(1 +
ei(ξ1+ξ2)). Note that supp(aP ) = {−1, 0, 1}2\{(−1, 1)T, (1,−1)T} with #supp(aP ) = 7 and P−1(0, 0)T =
{(0, 0, 0)T, (1, 1, 1)T}, while P−1γ contains only one point in Z3 for every γ ∈ supp(aP )\{(0, 0)T}.
Consequently, there are totally 21 (by

(7
2
)

= 21) high-pass filters given by b1 =
√

2
8 (δ(1,0) − δ), b2 =

√
2

8 (δ(1,1) − δ), b3 =
√

2
8 (δ(0,1) − δ), b4 =

√
2

8 (δ(−1,0) − δ), b5 =
√

2
8 (δ(−1,−1) − δ), b6 =

√
2

8 (δ(0,−1) − δ) and all
the rest 15 filters b7, . . . , b21 are given by choosing a pair of two distinct points from supp(aP )\{(0, 0)T} =
{(1, 0)T, (1, 1)T, (0, 1)T, (−1, 0)T, (−1,−1)T, (0,−1)T} with value 1

8 at one point and − 1
8 at the other. This

filter bank {aP ; b1, . . . , b21} occupies 6 directions in dimension two. See Fig. 1a for details.

Example 2. Let P be the 2 × 4 integer matrix P =
[

1 0 −1 0
0 1 0 −1

]
. Then MP is the tensor product of the

piecewise linear B-spline with the refinement filter aP given by âP (ξ1, ξ2) = 2−2|1 + e−iξ1 |2|1 + e−iξ2 |2.
Note that supp(aP ) = {−1, 0, 1}2 with #supp(aP ) = 9 and similar to the calculation of Example 1,



218 B. Han, T. Li and X. Zhuang / Applied Mathematics Letters 91 (2019) 213–219

Table 1
pMRI performance in terms of normalized mean square error (NMSE, the smaller NMSE, the better
performance) for the Shepp–Logan phantom as detailed in [5, Sec. 5.1]. “Tensor Haar” is the standard tensor
product Haar orthogonal filter bank, “D-Haar” is the 2-dimensional directional Haar tight framelet filter bank
in Theorem 1 and in [5], Examples 1 and 2 refer to the directional tight framelet filter banks given there.

Systems Tensor Haar D-Haar Example 1 Example 2

NMSE 4.177E−04 2.326E−04 2.133E−04 2.017E−04

there are total 36 (by
(9

2
)

= 36) high-pass filters that can be written in 5 groups: (i) 1
8 (δγ − δ), γ ∈ S1,

(ii)
√

2
8 (δγ − δ), γ ∈ S2, (iii)

√
2

16 (δγ1 − δγ2), γ1 ∈ S1, γ2 ∈ S2, (iv) 1
16 (δγ1 − δγ2), γ1 ̸= γ2, γ1, γ2 ∈ S1,

(v) 1
8 (δγ1 − δγ2), γ1 ̸= γ2, γ1, γ2 ∈ S2, with 4, 4, 16, 6, and 6 filters for each group, respectively, and

with S1 := {(1,−1)T, (−1, 1)T, (1, 1)T, (−1,−1)T} and S2 := {(1, 0)T, (0, 1)T, (−1, 0)T, (0,−1)T}. This tight
framelet filter bank {aP ; b1, . . . , b36} occupies 8 directions in dimension two. See Fig. 1b for details.

We finally compare the performance of our newly developed directional tight framelets in a pMRI
(parallel magnetic resonance imaging) application, which is a noninvasive medical imaging technique used
in radiology to investigate the anatomy and physiology of the human body. The pMRI uses an array of
surface coils to acquire multiple sets of undersampled k-space data simultaneously to significantly accelerate
the MRI process as well as improve the quality of reconstruction images, which can be modeled as:
gℓ = F−1PFSℓu + ηℓ, ℓ = 1, . . . , p, where u is the desired image, Sℓ is the coil sensitivity, F and F−1

are the Fourier transform matrix and its inverse, P is the sampling matrix, ηℓ is the white Gaussian noise,
and p is the number of coils. We test the pMRI reconstruction process for the Shepp–Logan phantom
(512 × 512 image) using the same experiment setting as detailed in [5, Sec. 5.1] and the same algorithm
provided by [5, Algorithm 1] with several directional tight framelet filter banks constructed in this paper.
The result is reported in Table 1 and one can easily draw the conclusion that directionality does improve
performance in pMRI applications. We shall explore more applications of the directional tight framelets in
Theorems 1 and 2 and report more details elsewhere.
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