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Abstract
Based on hierarchical partitions, we provide the construction of Haar-type tight
framelets on any compact set K ⊆ R

d . In particular, on the unit block [0, 1]d , such
tight framelets can be built to be with adaptivity and directionality. We show that
the adaptive directional Haar tight framelet systems can be used for digraph signal
representations. Some examples are provided to illustrate results in this paper.
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1 Introduction andMotivation

Harmonic analysis including Fourier analysis, frame theory, wavelet/framelet analy-
sis, etc., has been one of the most active research areas in mathematics over the past
two centuries [47]. Typical harmonic analysis is on theory and applications related to
functions defined on regular Euclidean domains [5,11,12,23,25,27,30,37]. In recent
years, driven by the rapid progress of deep learning and their successful applications
in solving AI (artificial intelligence) related tasks, such as natural language process-
ing, autonomous systems, robotics, medical diagnostics, and so on, there has been
a great interest in developing harmonic analysis for data defined on non-Euclidean
domains such as manifold data or graph data, e.g., see [1,4,7,8,14,16,20,29,40,41,49]
and many references therein. For example, data in machine/statistical learning, are
typically from social networks, biology, physics, finance, etc., and can be naturally
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obtained or organized as graphs or graph data. Such data can be regarded as samples
from an underlying manifold, where its graph Laplacian is connected to the manifold
Laplacian encoding the essential information of the data to be exploited by various
machine/deep learning approaches [45]. One also refers this area as the graph signal
processing (GSP) in contrast to signal/image/video processing [1].

For graph signal analysis, the underlying graphs are typically directed graphs (or
digraphs). For example, the citation networks modelling relations among papers (as
nodes) are digraphs where a paper can either be cited or cite other papers, which
indicates a directed edge between two nodes; the information networks [39]with nodes
consisting of URLs of web pages are digraphs, where an edge means that there is an
URL in one web page linking to another web page; the traffic networks [21] in modern
cities with nodes representing intersections and edges representing traffic flows from
one node to another are digraphs; the human body networks, the nervous systems, and
biological networks, etc., are all digraphs. The interested reader can refer to [38,42,46]
and many references therein. Similar to the wavelets and framelets for signal/image
processing, multiscale representation systems based on various approaches such as
spectral theory [9], diffusion wavelets[6], non-spectral construction [7,8], etc., have
also been developed for graph signal representation and processing.

In this paper, motivated by the recent development of directional Haar framelet sys-
tems on Rd [13,22,32,35] as well as wavelet-like systems for graph signal processing
[1,8,33,50,51], we focus on the development of directional multiscale representation
systems for signals defined on digraphs. We are going to investigate the following two
main problems:

1) How to construct directional Haar tight framelets on bounded domains with adap-
tivity?

2) How to efficiently represent digraph signals?

In what follows, we lay out the main idea of this paper for the above two problems.
The details are given in the later sections.

For the first problem, we start withHaar wavelets. Recall that for a separable Hilbert
spaceH, a collection X = {h j } j∈N ⊆ H is said to be a frame if there exist two positive
constants 0 < C1 ≤ C2 < ∞ such that

C1‖ f ‖2 ≤
∑

j∈N

∣∣〈 f , h j
〉∣∣2 ≤ C2‖ f ‖2 ∀ f ∈ H,

where 〈·, ·〉 and ‖ · ‖ are the inner product and norm in H, respectively. If C1 = C2,
then such an X is said to be tight. If C1 = C2 = 1 and ‖h j‖ = 1 for all j , then such
an X is an orthonormal basis for H.

Haar wavelet system [19] is the first ever constructed orthonormal wavelet system
on the interval [0, 1]. It is a very simple yet elegant system that even nowadays there
are many literatures on Haar-type systems, e.g., see [7,8,22,33,50]. Starting from a
scaling (refinable) function φ := χ[0,1], which is a characteristic function defined on
the unit interval I := [0, 1], and the mother wavelet function ψ := χ[0, 12 ) − χ[ 12 ,1],
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one can show that the system

X(R;φ,ψ) := {φ(· − k) : k ∈ Z} ∪ {ψ j,k := 2 j/2ψ(2 j · −k) : k ∈ Z} j∈N0

obtained from dilations and translations of φ and ψ , is an orthonormal wavelet basis
for L2(R) of square-integrable functions on R [12]. Here N0 := N ∪ {0}. Thanks to
their compact support property, the restriction of such an orthonormal wavelet basis
on the unit interval I directly gives an orthonormal basis on the bounded domain for
L2([0, 1]) of square-integrable functions on I :

X(I ;φ,ψ) := {φ} ∪ {ψ j,k : 0 ≤ k < 2 j } j∈N0 . (1)

This is indeed the system constructed by Haar in [19].
In higher dimensions, the tensor product approach is usually employed to obtain

orthonormal wavelets, e.g., see Fig. 1 for the 4 generators φ ⊗ φ, φ ⊗ ψ , ψ ⊗ φ, and
ψ ⊗ψ of the 2D orthonormal Haar wavelets. However, it is well-known that the tensor
product orthonormal real-valued wavelets lack directionality [2], which hinders the
sparsity representation of such systems for high-dimensional data analysis and their
applications in image/video processing. Various approaches including curvelets [2],
shearlets [3,15,28,30,53], dual-tree complex wavelets [44], TP-CTFs [24,26,52], etc.,
on increasing directionality of multiscale representation systems have been proposed
over the past two decades, which we will not get into much of such developments but
drawour attentions only to themain focus of this paper:Haar-typemultiscale represen-
tation systems with directionality on bounded domains. Note that in order to increase
directionality, one necessarily needs to consider wavelet frames or framelet systems,
which are more redundant representation systems than the orthonormal systems.

In [32], the authors proposed a new and simple Haar-type directional system, the
directionalHaar tight framelets (DHF) for L2(R

2), whose generators have 4 directions
(0◦, 90◦, and ±45◦). The system is generated from the scaling function ϕ = χI ⊗ χI

and 6 generators in Ψ := {ψ(1,1), . . . , ψ(3,4)} defined by

ψ(1,2) = χB1 − χB2 , ψ(1,3) = χB1 − χB3 , ψ(1,4) = χB1 − χB4 ,

ψ(2,3) = χB2 − χB3 , ψ(2,4) = χB2 − χB4 , ψ(3,4) = χB3 − χB4 ,
(2)

where B1 := [0, 1
2 ) × [0, 1

2 ), B2 := [ 12 , 1] × [0, 1
2 ), B3 := [0, 1

2 ) × [ 12 , 1], and
B4 := [ 12 , 1] × [ 12 , 1] are the 4 sub-blocks obtained from refining the unit square
I 2 = [0, 1]×[0, 1] = ∪4

�=1B�, see Fig. 2. Clearly, compared to the 2D tensor product
Haar wavelets (see Fig. 1), the DHF system has more directionality: the generators
ψ(1,2) and ψ(3,4) can be used for vertical edge information extraction, the generators
ψ(1,3) and ψ(2,4) can be used for horizontal edge information extraction, and the
generators ψ(1,4) and ψ(2,3) can be used for ±45◦ edge information extraction. Note
that the labelling (�1, �2), 1 ≤ �1 < �2 ≤ 4, is with respect to the number of choices of
choosing two sub-blocks from the four sub-blocks in [0, 1]2 ((42

) = 6 , see Theorem 1
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Fig. 1 The tensor product of 1D Haar wavelet scaling function φ and wavelet function ψ . All are supported
on the unit square [0, 1]2. The 4 big squares are (from left to right): φ ⊗ φ, φ ⊗ ψ , ψ ⊗ φ, ψ ⊗ ψ . Each
colored sub-block represents either 1 (blue) or −1 (orange) of the function value (Color figure online)

Fig. 2 The 6 functions in Ψ . Left to right: ψ(1,2), ψ(1,3), ψ(1,4), ψ(2,3), ψ(2,4), ψ(3,4). Each of them is
supported on the unit square [0, 1]2, which is split to 4 sub-blocks B1, . . . , B4. Each colored sub-block
represents either 1 (blue) or −1 (orange) of the function value. White blocks mean 0 function value (Color
figure online)

for more general results). The system defined by

X(R2;ϕ,Ψ ) := {ϕ(· − k) : k ∈ Z
2} ∪ {ψ j,k : k ∈ Z

2, ψ ∈ Ψ } j∈N0 ,

where ψ j,k := 2 jψ(2 j · −k), is a tight frame for L2(R
2). Its restriction to the unit

square I 2 = [0, 1]2 can be shown as

X(I 2;ϕ,Ψ ) := {ϕ} ∪ {ψ j,k : k = (k1, k2), 0 ≤ k1, k2 < 2 j ;ψ ∈ Ψ } j∈N0 . (3)

This system X(I 2;ϕ,Ψ ) is indeed also a tight frame for L2([0, 1]2) (see Theorem 1).
Such a tightness property on [0, 1]2 is not explicitly shown in [32] nor in [22]. In
[22], the authors further generalized such directional Haar tight framelets to arbitrary
dimension R

d .
By inspecting the structure of the system, we can regroup X(I 2;ϕ,Ψ ) as

X(I 2;ϕ,Ψ ) = {ϕ} ∪
∞⋃

j=0

2 j−1⋃

k1,k2=0

Ψ j,(k1,k2), (4)

where each

Ψ j,k := {2 jψ(�1,�2)(2 j · −k) : 1 ≤ �1 < �2 ≤ 4}

has 6 framelet functions supported on a sub-block

Bj,(k1,k2) = [2− j k1, 2
− j (k1 + 1)] × [2− j k2, 2

− j (k2 + 1)] ⊆ I 2

at level j . Each Bj,(k1,k2) is further refined to4 sub-blocks Bj+1,(2k1,2k2), Bj+1,(2k1+1,2k2),
Bj+1,(2k1,2k2+1), and Bj+1,(2k1+1,2k2+1) at level j +1, see Fig. 3 for the illustration. In
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Fig. 3 The unit square I 2 = [0, 1]2 is refined to 4 sub-blocks B1, . . . , B4. Each block B� is further refined
to 4 sub-blocks, and so on. Left: the unit square I 2 is associated with ϕ and ψ ∈ Ψ at level j = 0. Middle:
4 refined blocks B1, . . . , B4 are associated with Ψ1,k at level j = 1. Right: 16 refined blocks are associated
with Ψ2,k at level j = 2
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Fig. 4 An undirected graph Gx = (V ,Wx ) (Top) and a digraph G = (V ,W ) (Bottom) with the same
vertex set V = {a, b, c, d, e, f }. Note that Wx 
= W and Wx is symmetric

other words, the system in (4) is based on a hierarchical partition of the unit square I 2.
This point of view together with how to sparsely represent digraph signals motivates
us the main result in Theorem 1, where the question boils down to the construction
of directional Haar tight framelet systems with adaptivity. Here, by “adaptivity” we
mean that the blocks are not necessary square sub-blocks. We affirmatively show that
a system X({B j } j∈N0), associated with a sequence B j with each B j being a collection
of subsets of a compact set K ⊆ R

d from a refining process, could be built to be a
tight frame for L2(K ). When K = I 2 = [0, 1]2, such a system is our adaptive direc-
tional Haar tight framelets and it plays a key role in our second problem of efficient
representations of digraph signals.

Now, continue to the second problem of efficient representations of signals on
digraphs (directed graphs). We begin with undirected graphs. Recall that a graph is
an ordered pair G = (V ,W ) with a nonempty set V = {v1, . . . , vn} of vertices and
an (weighted) adjacency matrix W : V × V → [0,∞) of size n × n indicating edges
between vertices (W (vi , v j ) 
= 0 if there is an edge from the vertex vi to v j ; otherwise
0). If the edges are unordered, that is, the edge from vi to v j is considered to be the
same as the edge from v j to vi , in which case, the matrix W is symmetric, then G is
said to be undirected; otherwise, it is called a directed graph or digraph, see Fig. 4 for
an example of undirected graph and digraph. A signal defined on a graph G (or graph
signal) is a function f : V → C.

For a signal f on an undirected graph G = (V ,W ), one could identify it with a
function on I = [0, 1] by associating each vertex v ∈ V a suitable subinterval Iv ⊆ I .
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Fig. 5 A coarse-grained chain of G. G3 is the underlying graph G. G j−1 is from clustering of G j for
j = 1, 2, 3. Note that G0 has one vertex only. Here each box represents a node (or cluster) in the graph,
the lines represent edges between vertices, and the arc on a same node indicates a self-loop. G0 can be
identified as the root interval I = [0, 1], G1 as [0, 1

4 ) ∪ [ 14 , 1], G2 as [0, 1
4 ) ∪ [ 14 , 11

12 ) ∪ [ 1112 , 1], and G3 as
[0, 1

6 ) ∪ [ 16 , 1
4 ) ∪ [ 14 , 7

12 ) ∪ [ 7
12 , 9

12 ) ∪ [ 9
12 , 11

12 ) ∪ [ 1112 , 1]

In [7], the paper uses the concept of a filtration, which is a weight tree, for identifying
vertices as subintervals in I as well as building an (Haar-type) orthonormal basis on
the filtration to represent signals on the underlying graph G. In this paper, we use
the concept of the coarse-grained chains ([33,50,51]). Roughly speaking, a coarse-
grained chain GJ→0 := (GJ ,GJ−1, . . . ,G0) of G ≡ GJ is a sequence of graphs such
that G j−1 is from the clustering result of G j . When G0 has only one node, the coarse-
grained chain is actually equivalent to a filtration in [7]. See Fig. 5 for an example of
a coarse-grained chain G3→0 := (G3, . . . ,G0) of G. Each vertex in G j−1 is a cluster
of vertices in G j . Based on such a coarse-grained chain, one can give a hierarchical
representation {I j }3j=0 of the interval I , where each I j = {I j,k} is the collection of
subintervals I j,k of I such that ∪k I j,k = I , see Fig. 5.

Based on such a hierarchical sequence, one could build a Haar-type orthonormal
basis [7] for the function space span{χI3,k : k = 1, . . . , 6}, which is the space for the
signal defined on the graph. See Sect. 4 for more details.

Returning to digraph signal representations, can one use similar approaches for
undirected graph to represent digraph signals? The answer is yes and no. For “no”
it is because most of the clustering algorithms are developed based on the symmetry
property of the adjacency matrix W or the well-defined and well-understood operator
on the undirected graph: the graph Laplacian [9]. It is not trivial to directly use them
for digraph cases. For “yes” it is because there are undirect ways to circumvent such
difficulties. In fact, one typical approach is to define a counterpart graph Laplacian on
digraph, such as the Hodge Laplacian in [36], the weighted adjacency matrix in [10],
the so-called dilaplacian in [34], and so on. In this paper, we use the idea developed
in [8]: to lift the dimension from one to two by using a pair of undirected graphs to
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represent a given digraph. In a nutshell, a digraph signal is identified as a signal defined
on I 2 = [0, 1] × [0, 1] through the following steps.

1) In view of the singular value decomposition, the adjacency matrix W in a digrah
G = (V ,W ) is uniquely determined by WW� and W�W from which one could
construct a pair of undirected graphs Gx = (V ,WW�) and G y = (V ,W�W ).

2) Applying well-known techniques, e.g., [7], for undirected graphs, one can repre-
sent vertices in each graph of Gx and G y as subintervals in I = [0, 1].

3) Suppose a vertex v is identified as a subinterval I xv = [a, b) on Gx and I yv = [c, d)

on G y , then v in the original digraph G is identified as a block [a, b)×[c, d) ⊆ I 2.
Consequently, the vertices in the digraph are sub-blocks in the unit square.

4) Then, signals on G can be viewed as functions defined on the unit square [0, 1]2.
In [8], once orthonormal bases are built for Gx and G y , then the tensor product

approach is used to construct orthonormal bases for G. As we pointed out, the tensor
product approach lacks directionality. Since directional systems provide better sparse
representations than those by the tensor product ones, in this paper, we use our adaptive
directional Haar tight framelets in 2D for the digraph signal representations based on
the above digraph representations G ↔ (Gx ,G y).

The contribution of the paper is threefold. First, based on a hierarchical partition,
we provide a simply yet flexible construction of Haar-type tight framelets on any
compact set K ⊆ R

d . Second, such framelet systems include directional Haar systems
in [22,32] as special cases and lead to the adaptive directional Haar tight framelet
systems for non-dyadic partitions of the unit block [0, 1]d . Last but not least, we
demonstrate that digraph signals can be identified as signals defined on the unit square
[0, 1]2 and hence could be efficiently represented by the adaptive directional Haar
tight framelet systems where the directionality is a really desired property.

The structure of the paper is as follows. In Sect. 2, we present ourmain results on the
construction of tight frames for L2(K ) for some compact set K ⊆ R

d . Then, adaptive
directional Haar tight framelets on bounded domains are deduced. In Sect. 3, we
show how to represent digraph signals using the developed adaptive directional Haar
tight framelets. In Sect. 4, we provide some examples to illustrate our main results.
Conclusion and further remarks are given in Sect. 5. Some proofs are postponed to
the last section.

2 Adaptive Directional Haar Tight Framelets on Bounded Domains

Let K ⊆ R
d be a compact set and consider theHilbert space L2(K ) := { f : ‖ f ‖2 :=

(
∫
K | f (x)|2dx) 1

2 < ∞} of square-integrable functions f on K . The inner product on
L2(K ) is defined by 〈 f , g〉 := ∫

K f (x)g(x)dx for f , g ∈ L2(K ). In this section,
based on a hierarchical partition of K , we construct a system X = {ϕ} ∪ {Ψ j } j∈N0of
elements in L2(K ) and show that it is a tight frame for L2(K ). Such a system X leads
to our adaptive directional Haar tight framelets (AdaDHF) on K .

Before we present and prove our main result in Theorem 1, let us introduce some
necessary notation, definitions, and auxiliary results first. For a Hilbert space H, the
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collection X = {h j } j∈N ⊆ H is a tight frame forH if

‖ f ‖2 =
∑

j∈N

∣∣〈 f , h j
〉∣∣2 ∀ f ∈ H. (5)

Using the polarization identity, one can show that it is equivalent to

f =
∑

j∈N

〈
f , h j

〉
h j ∀ f ∈ H. (6)

We denote Im the identity matrix of size m × m. The matrix A in the following
lemma is used to connect functions on two scales supported on a same block B ⊆ K .
Its proof is postponed to Sect. 6.

Lemma 1 Let m ∈ N and b1, . . ., bm be m positive constants such that
∑m

�=1 b� = 1.
Let n = (m

2

)
and A = (ai,�)0≤i≤n;1≤�≤m be a matrix of size (n + 1) ×m of the form:

A =

⎡

⎢⎢⎢⎢⎢⎣

√
b1

√
b2

√
b3 · · · √

bm−1
√
bm√

b2 −√
b1 0 · · · 0 0√

b3 0 −√
b1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · √
bm −√

bm−1

⎤

⎥⎥⎥⎥⎥⎦
. (7)

That is, the first row of A (with respect to i = 0) is

(a0,�)
m
�=1 =

(√
b�

)m
�=1

,

and the row (ai,�)m�=1 for i 
= 0 is given by

ai,� = a(i1,i2),� =

⎧
⎪⎨

⎪⎩

√
bi2 if � = i1,

−√
bi1 if � = i2,

0 otherwise,

where for each i 
= 0, the index i is uniquely determined by a pair (i1, i2) satisfying
1 ≤ i1 < i2 ≤ m through (i1, i2) �→ i = (2m−i1)(i1−1)

2 + i2 − i1. Then, A satisfies
A�A = Im.

For a measurable set B ⊆ R
d , we denote |B| as its Lebesgue measure and χB as

the characteristic function on B. The following lemma shows that we can construct a
set of functions supported on B so that it is tight.

Lemma 2 Let B ⊆ K ⊆ R
d be a measurable subset in the compact set K satisfying

|B| > 0 and B�, � = 1, . . . ,m with m ≥ 2 be measurable sub-blocks of B such that



Journal of Fourier Analysis and Applications             (2021) 27:7 Page 9 of 26     7 

B = ∪m
�=1B�, |B�| > 0 for all � = 1, . . . ,m, and |B�1 ∩ B�2 | = 0 for �1 
= �2. Define

the set ΨB := {ψ(�1,�2) : 1 ≤ �1 < �2 ≤ m} of functions by

ψ(�1,�2) := √
b�2γ�1 − √

b�1γ�2 , 1 ≤ �1 < �2 ≤ m, (8)

where γ� := χB�√|B�| and b� := |B�||B| . Then ΨB is a tight frame for

WB := span{ψ(�1,�2) : 1 ≤ �1 < �2 ≤ m}.

That is,

f =
∑

1≤�1<�2≤m

〈
f , ψ(�1,�2)

〉
ψ(�1,�2) ∀ f ∈ WB .

The proof of Lemma 2 uses results in Lemma 1 and it is one of the key steps in our
proof of the main theorem. We postpone it to Sect. 6.

Note thatψ(�1,�2) in Lemma 2 are constructed from χB�
, � = 1, . . . ,m. The follow-

ing lemma demonstrates that those χB�
’s can be constructed from ψ(�1,�2)’s together

with χB as well.

Lemma 3 Let B, B�, γ�, � = 1, . . . ,m, and ΨB := {ψ(�1,�2), 1 ≤ �1 < �2 ≤ m} be
defined as in Lemma 2. Define vectors ΓB, ΦB of functions by

ΓB := (γ�)
m
�=1 and ΦB := (γB, ΨB) = (γB, ψ1, . . . , ψn) ,

where γB := χB√|B| and ψ1, . . . , ψn are from enumerating the elements in ΨB through

(�1, �2) �→ (2m−�1)(�1−1)
2 + (�2 − �1) with n = (m

2

) = m×(m−1)
2 . Then

ΓB = A�ΦB .

Consequently, the space V1 := span{γ� : � = 1, . . . ,m} = VB ⊕ WB where
VB := span{χB} and WB := span{ψ : ψ ∈ ΨB}.
Proof Note that ΓB is a vector of size m while ΦB is a vector of size n = (m

2

) + 1.
From the definition of ψ(�1,�2) in (8) and B = ∪�B�, it is easy to verify that

ΦB = AΓB,

where A = (ai,�)0≤i≤n;1≤�≤m is a matrix of size (n + 1) ×m defined as in Lemma 1.
By Lemma 1, we have A�A = Im , which implies that ΓB = A�ΦB . Hence, V1 ⊆
VB+WB . Now the fact thatV1 = VB⊕WB follows directly fromVB ⊆ V1,WB ⊆ V1
and VB ⊥ WB . This completes the proof. ��

By splitting the compact set K , one can obtain subsets B� of K . For each subset
B�, one can further refine it to have smaller subsets. Such a process could continue
and one could obtain a hierarchical partition of K . We say that the sequence {B j } j∈N0

is a hierarchical partition of K if it satisfies the following conditions:
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a) Root property: each B j is a collection of finite number of measurable subsets of
K with B0 = {K }, ∪B∈B j B = K , |B| > 0 for all B ∈ B j , and |B1 ∩ B2| = 0 for
any B1 
= B2 in B j .

b) Nested property: {B j } j∈N0 is nested in the sense that for each B ∈ B j−1, B =
∪cB

�=1B� with B� ∈ B j . That is B�’s are children of B in B j and the positive integer
cB ≥ 1 denotes the number of children of B in B j . In other words, the sets in B j

are obtained from the splitting of sets in B j−1.
c) Density property: lim j→∞ diam(B j ) = 0 where diam(B j ) := max{diam(B) :

B ∈ B j } and diam(B) := sup{|x − y| : x, y ∈ B} is the diameter of the set B.

We are now ready to introduce and prove our main result.

Theorem 1 Let K ⊆ R
d be a compact set in R

d with |K | > 0 and {B j } j∈N0 be a
hierarchical partition of K . Define the set

X({B j } j∈N0) := {ϕ0} ∪ {Ψ j,B : B ∈ B j } j∈N0

of functions by ϕ0 := χK√|K | and Ψ j,B := {ψ(�1,�2)
j,B : 1 ≤ �1 < �2 ≤ cB}∞j=0 with

ψ
(�1,�2)
j,B := √

b�2γ�1 − √
b�1γ�2 , 1 ≤ �1 < �2 ≤ cB, (9)

where B� ∈ B j+1, � = 1, . . . , cB are the children sub-blocks of B, γ� := χB�√|B�| , and
b� := |B�||B| . Then, X({B j } j∈N0) is a tight frame for L2(K ).

Proof By (5), we need to prove that

‖ f ‖22 = | 〈 f , ϕ0〉 |2 +
∞∑

j=0

∑

B∈B j

∑

1≤�1<�2≤cB

∣∣∣
〈
f , ψ(�1,�2)

j,B

〉∣∣∣
2 ∀ f ∈ L2(K ).

We proceed through the following steps.

1) First, let V0 := span{χK } = span{ϕ0} and

V j := span{χB : B ∈ B j } (10)

for j ∈ N0. Then by the nested property of {B j } j∈N0 , we have

V0 ⊆ V1 ⊆ · · · ⊆ V j ⊆ V j+1 ⊆ · · · .

By the density property of {B j } j∈N0 , we see that ∪ j∈N0V j is dense in L2(K ).
2) Let

W j := span{ψ : ψ ∈ Ψ j,B, B ∈ B j } (11)

and

W j,B := span{ψ : ψ ∈ Ψ j,B}, j ∈ N0.
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Thanks to the nested property of {B j } j∈N0 and our construction of ψ
(�1,�2)
j,B , we

have that for any B ∈ B j

〈
χB, ψ

(�1,�2)
j,B

〉
= 0, 1 ≤ �1 < �2 ≤ cB .

Hence, we see that V j ⊥ W j and W j ⊥ W j ′ for all j, j ′ ∈ N0 and j 
= j ′.
Moreover, we claim that

V j+1 = V j ⊕ W j ∀ j ∈ N0.

Obviously, V j ⊆ V j+1 and W j ⊆ V j+1. Hence, we only need to show that
V j+1 ⊆ (V j +W j ), which by the nested property and noticingW j = ⊕B∈B jW j,B

for all j ∈ N0, it suffices to show that for each B ∈ B j , functions in

{χB�
: B� ∈ B j+1 are children of B} ⊆ V j+1

are the linear combinations of functions in

{χB} ∪ {ψ(�1,�2)
j,B : 1 ≤ �1 < �2 ≤ cB} ⊆ (V j + W j ),

which follows from Lemma 3. Therefore V j+1 = V j ⊕ W j for all j ∈ N0.
3) Consequently, V0 ⊕ ⊕

j∈N0,B∈B j
W j,B is dense in L2(K ). Hence, for each f ∈

L2(K ), there exists a sequence {cϕ0} ∪ {c(�1,�2)
j,B : B ∈ B j , 1 ≤ �1, �2 ≤ cB} j∈N0

of constants such that

f = cϕ0ϕ0 +
∞∑

j=0

∑

B∈B j

∑

1≤�1<�2≤cB

c(�1,�2)
j,B ψ

(�1,�2)
j,B ,

where the equality holds in the L2-sense. Define

f j,B :=
∑

1≤�1<�2≤cB

c(�1,�2)
j,B ψ

(�1,�2)
j,B ∈ W j,B .

Then f = cϕ0ϕ0 + ∑∞
j=0

∑
B∈B j f j,B and we have

‖ f ‖22 = 〈 f , f 〉 = |cϕ0 |2 +
∞∑

j=0

∑

B∈B j

‖ f j,B‖22,
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where the series converges absolutely. On the other hand, we have

∑

h∈X({B j } j∈N0 )

| 〈 f , h〉 |2 = | 〈 f , ϕ0〉 |2 +
∞∑

j=0

∑

B∈B j

∑

1≤�1<�2≤cB

∣∣∣
〈
f , ψ(�1,�2)

j,B

〉∣∣∣
2

= | 〈 f , ϕ0〉 |2 +
∞∑

j=0

∑

B∈B j

∑

1≤�1<�2≤cB

∣∣∣
〈
f j,B, ψ

(�1,�2)
j,B

〉∣∣∣
2
.

Hence, to prove that ‖ f ‖22 = ∑
h∈X({B j } j∈N0 ) |〈 f , h〉|2, it suffices to show that for

each j ∈ N0 and B ∈ B j , we have

‖ f j,B‖22 =
∑

1≤�1<�2≤cB

∣∣∣
〈
f j,B, ψ

(�1,�2)
j,B

〉∣∣∣
2
.

This is equivalent to showing that Ψ j,B = {ψ(�1,�2)
j,B : 1 ≤ �1, �2 ≤ cB} is a tight

frame for W j,B , which follows from Lemma 2.

Consequently, we prove that X({B j } j∈N0) is a tight frame for L2(K ). ��
The system X({B j } j∈N0) in Theorem 1, which depends only on the hierarchical

partition of K , is very flexible. Next, we discuss some of its special cases.
In practice, signals usually lie in finite-dimensional spaces. Hence, it is useful to

study the cut-off system X({B j }Jj=0) up to some scale J ∈ N0.

Corollary 1 Retaining all assumptions and notation in Theorem 1. Given J ∈ N0,
define the cut-off system X({B j }Jj=0) by

X({B j }Jj=0) := {ϕ0} ∪ {Ψ j,B : B ∈ B j }J−1
j=0 . (12)

Then, X({B j }Jj=0) is a tight frame for VJ defined as in (10).

Proof Note that VJ = V0 ⊕ ⊕J−1
j=0 W j . The conclusion follows similarly to the proof

of Theorem 1 by showing that ‖ f ‖22 = ∑
h∈X({B j }Jj=0)

| 〈 f , h〉 |2 for all f ∈ VJ .

��
We immediately have the following corollary if each splitting of a block B has at

most two children (sub-blocks).

Corollary 2 Retaining all assumptions in Theorem 1. In addition, if cB ≤ 2 for each
B ∈ B j and j ∈ N0, that is, the number of children of each block B is at most 2, then
X({B j } j∈N0) is an orthonormal basis for L2(K ).

Proof Note that L2(K ) = V0 ⊕ j∈N0,B∈B j W j,B from the proof of Theorem 1. If
cB ≤ 2, then there is at most one element ψ j,B = √

b2γ1 − √
b1γ2 in Ψ j,B and

‖ψ j,B‖2 = 1 for all j, B. Note that ‖ϕ0‖2 = 1 also. Consequently, each W j,B is at
most one-dimensional. Hence, X({B j } j∈N0) is orthonormal. ��
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TheHaar orthonormal wavelets on I = [0, 1] is a special case of the consequence of
Corollary 2. It is with respect to the hierarchical partition {I j } j∈N0 of the unit interval
I with I j := {I j,k := [2− j k, 2− j (k + 1)] : k = 0, . . . , 2 j − 1}. Note that each
I j,k has exactly two children subintervals I j+1,2k and I j+1,2k+1 with the same size.
Such a type of partition is called dyadic. More generally, in dimension d, we have the
following result, which includes directional Haar tight framelets in [22,32] as special
cases.

Corollary 3 For j ∈ N0, let I j := {I j,k := [2− j k, 2− j (k + 1)] : k = 0, . . . , 2 j − 1}
and define

B j := ⊗dI j := {I j,k1 × I j,k2 × · · · × I j,kd : k1, . . . , kd ∈ [0, 2 j ) ∩ Z}. (13)

Then, the system X({B j } j∈N0) defined as in Theorem 1 is a tight frame for L2([0, 1]d).
In particular, when d = 1, it is the Haar orthonormal wavelets X(I ;φ,ψ) defined as
in (1) and when d = 2, it is the directional Haar tight framelets X(I 2;ϕ,ψ) defined
as in (3).

Proof It is easy to show that {B j } j∈N0 is a hierarchical partition of the unit block
I d := [0, 1]d in d-dimension. Each B ∈ B j has exactly 2d children sub-blocks in
B j+1. The conclusions follow directly from Theorem 1 and Corollary 2. ��

The blocks in B j defined as in (13) are dyadic. In practice, as demonstrated in
Fig. 5, intervals used to identify nodes on a graph are not necessarily dyadic. Hence,
we introduce the adaptive directional Haar tight framelets (AdaDHF) based on the
following hierarchical partition of the unit square I d = [0, 1]d , whose sub-blocks are
not necessarily dyadic.

Corollary 4 For each s = 1, . . . , d, let {Is
j } j∈N0 be a hierarchical partition of the unit

interval I = [0, 1], where Is
j := {I sj,k : k = 1, . . . , n j,s}. Define

B j := ⊗dIs
j = {I j,k1 × · · · × I j,kd : ks = 1, . . . , n j,s, s = 1, . . . , d}. (14)

Then, {B j } j∈N0 is a hierarchical partition of the unit block I
d = [0, 1]d and the system

X({B j } j∈N0) defined as in Theorem 1 is a tight frame for L2([0, 1]d). In particular,
for any J ∈ N0, the cut-off system X({B j }Jj=0) as defined in (12) is a tight frame for
VJ .

Proof Since {Is
j } j∈N0 is a hierarchical partition of I , by the definition of B j , {B j } j∈N0

is a hierarchical partition of the unit square I d . The conclusions follow directly from
Theorem 1 and Corollary 1. ��

3 Digraph Signal Representations

In this section, we use the AdaDHF systems developed in Corollary 4 of Sect. 2
to investigate digraph signal representations. We study representations of signals on
undirected graphs first and then turn to digraph signal representations.
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3.1 The Coarse-Grained Chain of an Undirected Graph

We start with undirected graphs and the coarse-grained chain of an undirected graph.
For an undirected graph G = (V ,W ) with vertex (or node) set V = {v1, . . . , vn}
and adjacency matrix W : V × V → [0,∞). We use |V | (abuse of notation) to
denote the number of vertices of G. The degree of a vertex vi is denoted by deg(vi ) :=∑n

j=1 W (vi , v j ). IfW (vi , v j ) > 0, then it corresponds to an edge (vi , v j ) (unordered
pair). Two vertices vi , v j are said to be connected if there exists a path between them,
that is, [Wm](vi , v j ) 
= 0 for some positive integer m. The graph G is said to be
connected if there exists a path between any two vertices. Throughout the paper, we
only consider connected graphs.

Let G = (V ,W ) and Gcg = (V cg,Wcg) be two undirected graphs. We say that
Gcg is a coarse-grained graph of G if V cg is a partition of V ; i.e., there exists subsets
U1, . . . ,Um of V for some m ∈ N such that

V cg = {U1, . . . ,Um}, U1 ∪ · · · ∪Um = V , Ui ∩Uj = ∅, 1 ≤ i < j ≤ m.

In such a case, each node Ui of Gcg is called a cluster from G. The edges of Gcg are
edges between clusters. ClustersU1, . . . ,Um define an equivalence relation on G: two
vertices u, v ∈ G are equivalent, denoted by u ∼ v, if u and v belong to the same
cluster. An equivalent class (cluster) in G, which is a node in Gcg , associated with a
vertex v ∈ V , then can be denoted as [v]Gcg := {u ∈ G : u ∼ v}, and we have
V cg = V /∼ = {[v]Gcg : v ∈ V }. If no confusion arises, we will drop the subscript
Gcg and simply use [v] to denote a cluster from G. Note that a vertex v in G can be
viewed as [v]G = {v}, which is a singleton.

Given an undirected graph G = (V ,W ), there are many clustering algorithms can
be used to obtain clusters from G, see e.g., [8,17,18,31,48]. Once we obtain the set
{U1, . . . ,Um} =: V cg of clusters fromG, we can define theweighted adjacencymatrix
Wcg on V cg × V cg by

Wcg([u], [v]) :=
∑

u∈[u]

∑

v∈[v]
W (u, v), [u], [v] ∈ V cg. (15)

Then, the new graph Gcg := (V cg,Wcg) is a coarse-grained graph of G. Given the new
graph Gcg , we can further apply clustering process on it and obtain a coarse-grained
graph of Gcg . Recursively doing such clustering processes, we would obtain a chain
of graphs from the original graph G. More precisely, let J ≥ 0 be an integer. We say
that the sequence GJ→0 := (GJ ,GJ−1, . . . ,G0) with GJ ≡ G is a coarse-grained
chain of G if G j = (Vj ,Wj ) is a coarse-grained graph of G for all 0 ≤ j ≤ J and
[v]G j ⊆ [v]G j−1 for each j = 1, . . . , J and for all v ∈ V . Note that, we treat each
vertex v of the finest level graph GJ ≡ G as a cluster of singleton. See Fig. 5 and Fig. 7
for illustrations of coarse-grained chains.

Oncewe have a coarse-grained chainGJ→0 ofG, we next discuss how to associate it
with a hierarchical partition of I = [0, 1]. Without loss of generality, we could assume
that G0 = (V0,W0) has only one node, which is a cluster consisting of all vertices of
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G. If not, we simply add such a graph to the chain. Now we define I j recursively as
follows (c.f. Figs. 5 and 7).

1) I0 = {I = [0, 1]} is the root node.
2) Suppose I j−1 = {I j−1,k = [ak, bk] : k = 1, . . . , |Vj−1|} has been defined and

associated with the graph G j−1 = (Vj−1,Wj−1). That is, I j−1,k is associated with
a node uk ∈ Vj−1.

3) For each uk ∈ Vj−1, denote (and order) the children of uk in G j = (Vj ,Wj ) as
uk,1, . . . , uk,m ∈ Vj and define subintervals I j,k,1, . . . , I j,k,m by

I j,k,s = [ak + ws−1, ak + ws], s = 1, . . . ,m, (16)

where ws := (bk − ak) ×
∑s

i=1 deg(uk,i )∑m
i=1 deg(uk,i )

. Note that [ak, bk] = ∪s I j,k,s . Collect all

such subintervals I j,k,s as the collection I j := {I j,k′ : k′ = 1, . . . , |Vj |}. Then
I j is associated with the graph G j .

Given a hierarchical partition {I j }Jj=0 that is associated with a coarse-grained chain
of the graph G = (V ,W ), then the vertex v ∈ V is associated with a subinterval
Iv ∈ IJ . A signal f : V → C on the graph can be identified as a function

f =
∑

v∈V
f (v)χIv

defined on I = [0, 1]. We can thus define the space

L2(G) := L2(G|GJ→0) := span{χIv : v ∈ V } ⊆ L2([0, 1])

with the usual norm ‖ · ‖2 and inner product 〈·, ·〉 for L2([0, 1]). We immediately have
the following result from Corollary 1.

Theorem 2 The system X({I j }Jj=0) = {ϕ0} ∪ {Ψ j,I : I ∈ I j }J−1
j=0 defined as in (12)

is a tight frame for L2(G).

We remark that, from Corollary 2, when each I j,k has at most two children, such a
system X({I j }Jj=0) is an orthonormal basis for L2(G) (c.f. [7,8]).

3.2 Digraph Signal Representations

Now continue to the digraph case. For a digraph (V ,W ), the underlying undirected
graph is given by (V ,W0), whereW0 = (W +W�)/2. A digraph isweakly connected
if the underlying undirected graph is connected. For simplicity, we restrict ourselves in
this paper toweakly connected digraphwhile results in the paper can be easily extended
to general digraphs. To represent signals on the digraph G, we use the following steps
to produce a pair (Gx ,G y) of two undirected graphs:

1) Extension: we define the extended graph Ge = (V ,We) byWe = I +W , which is
the same graph as G = (V ,W ) except for a new (or enhanced) self-loop inserted
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at each vertex. This increases the connectivity of the undirected graphs obtained
in the next step.

2) Symmetrization: define the pre-symmetrized graph G1 = (V ,W1) and the post-
symmetrized graph ([43]) G2 = (V ,W2) for the digraph Ge = (V ,We) by W1 :=
WeW�

e and W2 := W�
e We.

3) Post-processing: remove the self–loops of G1 and G2 by Wx := W1 − diag(W1)

and W y := W2 − diag(W2). Define Gx = (V ,Wx ) and G y = (V ,W y).

It is not difficult to show that if G is weakly connected, then Gx and G y are connected
(undirected) graphs.

We next use the pair (Gx ,G y) to study signals defined onG. As discussed in previous
subsections, using various clustering algorithms, we can obtain coarse-grained chains
Gx
Jx→0 and G y

Jy→0 of Gx and G y , respectively for some Jx , Jy ∈ N0. Without loss of
generality, we can assume Jx = Jy =: J . In fact, if Jx 
= Jy , say Jx < Jy , then we
simply extend the chain Gx

Jx→0 as Gx
Jy→0 by appending Gx :

Gx
Jy→0 := (Gx

Jy , . . . ,Gx
Jx+1,Gx

Jx , . . . ,Gx
0 ),

where Gx
j ≡ Gx for all j ≥ Jx .

For each of the coarse-grained chains Gx
J→0 and G y

J→0, it is associated with a
hierarchical partition {Ix

j }Jj=0 and {I y
j }Jj=0, respectively. Define

B j := Ix
j ⊗ I y

j := {I x × I y : I x ∈ Ix
j , I

y ∈ I y
j }, j = 0, . . . , J . (17)

Then, by Corollary 4, we immediately have the following result.

Theorem 3 Let B j , j = 0, . . . , J be defined as in (17) from Ix
j and I y

j associat-

ing with the coarse-grained chains Gx
J→0 and G y

J→0 for graphs Gx ,G y , respectively.
Then, the system X({B j }Jj=0) defined as in (12) is a tight frame for L2(Gx ,G y) :=
L2(Gx |Gx

J→0,G y |G y
J→0) := VJ = span{χB : B ∈ BJ }.

For signals f : V → C defined on the digraph G, we can define the digraph signal
space L2(G) as follows. For v ∈ V , there are I xv ∈ Ix

J and I yv ∈ I y
J . Bv := I xv × I yv is

then a block in BJ . Thus, f can be identified as a function defined on [0, 1]2:

f =
∑

v∈V
f (v)χBv , Bv = I xv × I yv , v ∈ V . (18)

Hence, we can define L2(G) as

L2(G) := L2(G|(Gx
J→0,G y

J→0)) := span{χBv : v ∈ V }.

with the usual norm ‖ · ‖2 and inner product 〈·, ·〉 for L2([0, 1]2).
Since f ∈ L2(G) is supported on ∪v∈V Bv , we can conclude this section by the

following result.
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Corollary 5 Let X({B j }Jj=0) be defined as in Theorem 3 and Bv, v ∈ V be blocks
defined as in (18) associated with the digraph G. Define

X({B j }Jj=0|G) := {ϕ0}∪
{ψ : |suppψ ∩ Bv| > 0 for some v ∈ V , ψ ∈ Ψ j,B, B ∈ B j }J−1

j=0 .
(19)

Then X({B j }Jj=0|G) is a tight frame for L2(G).

Proof Note that

L2(G) ⊆ L2(Gx ,G y) ⊆ L2([0, 1]2).

Hence, by Theorem 3, any f ∈ L2(G) can be represented by the tight frame system
X({B j }Nj=0) as

f = 〈 f , ϕ0〉 ϕ0 +
J−1∑

j=0

∑

B∈B j

∑

1≤�1<�2≤cB

〈
f , ψ(�1,�2)

j,B

〉
ψ

(�1,�2)
j,B .

Since f is supported on ∪v∈V Bv , we can discard those of ψ
(�1,�2)
j,B whose essential

support is not intersecting with any Bv, v ∈ V . Then,

f = 〈 f , ϕ0〉 ϕ0 +
J−1∑

j=0

∑

B∈B j

∑

1≤�1<�2≤cB ,|suppψ∩Bv |
=0

〈
f , ψ(�1,�2)

j,B

〉
ψ

(�1,�2)
j,B .

That is, the restriction X({B j }Jj=0|G) of X({B j }Jj=0) on G is a tight frame for L2(G).
This completes the proof. ��

4 Illustration Examples

In this section, we provide some examples to illustrate results in previous sections.

4.1 Example 1: A Tight Frame on an Undirected Graph

Let G = (V ,W ) = G3 be the graph in Fig. 5 (see also Gx in Fig. 6). That is,

W =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 0
1 0 0 0 0 0
1 0 0 1 1 1
0 0 1 0 1 0
0 0 1 1 0 0
0 0 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, (20)
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where the rows and columns are ordered from 1 to 6 with respect to the vertices
a, b, c, d, e, f in V .

Applying clustering algorithms, e.g., the NHC algorithm in [8], to the graph G, we
can obtain a coarse-grained chain G3→0 := (G3, . . . ,G0) of G as in Fig. 5. Each vertex
in G j−1 is a cluster of vertices in G j . Based on such a coarse-grained chain, we can
give a hierarchical sequence {I j }3j=0 and build our tight frame system X({I j }3j=0) =
{ϕ0} ∪ {Ψ j }2j=0 as follows (see Fig. 5).

1) The root node ( j = 0): G0 ←→ I0 := {I0,1 = I = [0, 1]}. This is associated
with ϕ0 = χ[0,1].

2) At level j = 1: G1 ←→ I1 := {I1,1, I1,2}. The graph G1 has two nodes [a]G1 =
{a, b} (degree 3) and [c]G1 = {c, d, e, f } (degree 9). According to their degrees
and (16), we identify the nodes [a]G1 and [c]G1 with the intervals

I1,1([a]) =
[
0,

3

12

)
=

[
0,

1

4

)
and I1,2([c]) =

[
3

12
,
3 + 9

12

]
=

[
1

4
, 1

]
, (21)

respectively. The two subintervals I1,1 and I1,2 are the two children of I0,1. Hence,
by (9), Ψ0 = {ψ0} with

ψ0 := 3χI1,1 − χI1,2√
3

.

Note that ‖ψ0‖2 = 1 and ‖ψ0‖1 = 0.
3) At level j = 2: G2 ←→ I2 := {I2,1, I2,2, I2,3}. The graph G2 has three nodes

[a]G2 = {a, b} (degree 3), [c]G2 = {c, d, e} (degree 8), and [ f ]G2 = { f } (degree
1). Similarly, we identify them with the intervals

I2,1([a]) =
[
0,

1

4

)
, I2,2([c]) =

[
1

4
,
11

12

)
, I2,3([ f ]) =

[
11

12
, 1

]
, (22)

respectively. Only I2,2 and I2,3 are split from I1,2. Hence, by (9), Ψ1 = {ψ1} with

ψ1 := χI2,2 − 8χI2,3√
6

.

Note that ‖ψ1‖2 = 1 and ‖ψ1‖1 = 0.
4) At level j = 3: G3 ←→ I3 := {I3,1, . . . , I3,6}. The graph G3 is the underly-

ing graph with 6 vertices. According to their degrees, we identify the vertices
a, b, c, d, e, f with the intervals

I3,1(a) =
[
0,

1

6

)
, I3,2(b) =

[
1

6
,
1

4

)
, I3,3(c) =

[
1

4
,
7

12

)
,

I3,4(d) =
[
7

12
,
3

4

)
, I3,5(e) =

[
3

4
,
11

12

)
, I3,6( f ) =

[
11

12
, 1

]
,

(23)
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respectively.Note that I2,1 is split to I3,1 and I3,2 while I2,2 is split to I3,3, I3,4, I3,5.
Hence, by (9), Ψ2 = {ψ2, ψ3, ψ4, ψ5} with

ψ2 := √
2(χI3,1 − 2χI3,2), ψ3 :=

√
3

2
(χI3,3 − 2χI3,4),

ψ4 :=
√
3

2
(χI3,3 − 2χI3,5), ψ5 :=

√
3

2
(χI3,4 − χI3,5).

Note that ‖ψi‖1 = 0 for i = 2, . . . , 5.

By Theorem 2, X({I j }3j=0) = {ϕ0, ψ0, . . . , ψ5} is a tight frame for L2(G) =
span{χI3,k : k = 1, . . . , 6}.

4.2 Example 2: Tight Frames on a Digraph

Let the digraph G = (V ,W ) be determined by

W =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 0 0 0
1 0 0 1 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
,

where the rows and columns are ordered from 1 to 6 with respect to the vertices
a, b, c, d, e, f in V , see Fig. 6. After applying the symmetrization processing as
discussed in Sect. 3.2, we obtain two undirected graphs Gx = (V ,Wx ) and G y =
(V ,W y), where Gx is the same graph considered as in Example 1 (see its adjacency
matrix in (20)) and G y is determined by W y :

W y =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 1
1 0 0 0 0 0
1 0 0 1 1 1
1 0 1 0 1 1
0 0 1 1 0 0
1 0 1 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Applying clustering algorithms, e.g., the NHC algorithm in [8], to the undirected
graphs Gx ,G y , we can obtain coarse-grained chains Gx

3→0 := (Gx
3 , . . . ,Gx

0 ) and
G y
3→0 := (G y

3 , . . . ,G y
0 ) ofGx andG y , respectively. The coarse-grained chainGx and its

associated interval collection {Ix
j }3j=0 are already shown in Example 1 (or see Fig. 5).

Nowwe describe the coarse-grained chain G y
3→0 and its associated interval collections{I y

j }3j=0 (see Fig. 7). Based on the hierarchical interval sequences {Ix
j , I y

j }3j=0, we

can build the hierarchical block sequence {B j = Ix
j ⊗ I y

j }3j=0 defined as in (17).
See Fig. 8 (top) for the illustration of blocks and the blocks in B j are labelled with a
number from 0 to 49 in Fig. 8 (bottom).
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a b c d e f
1 1 1

1

1

1

G

a b c d e f
1 1 1

1

1

1

Gx

a b c d e f
1

1

1

1

1

1

1

1

1
Gy

Fig. 6 Symmetrization of G (bottom) gives a pair (Gx ,Gy) of undirected graphs (top and middle)

a b d c e f1

1

1
1

1

1

1

1

1

Gy
3

[0, 2
9 ) [ 29 ,

5
18 )

[ 5
18 ,

1
2 ) [ 12 ,

13
18 ) [ 1318 ,

5
6 )

[ 56 , 1]

a b d c e f

4
3

2

12
Gy
2

[0, 1
2 ) [ 12 ,

5
6 ) [ 56 , 1]

a b d c e f

4
5

4

Gy
1

[0, 1
2 ) [ 12 , 1]

a b d c e f Gy
0

[0, 1]

Fig. 7 A coarse-grained chain of Gy . Gy
3 is the underlying graph Gy . Gy

j−1 is from clustering of Gy
j for

j = 1, 2, 3. Note that Gy
0 has one node only. Here each box represents a node (or cluster) in the graph,

the lines represent edges between vertices, and the arc on a same node indicates a self-loop. Gy
0 can be

identified as the root interval I y = [0, 1], Gy
1 as [0, 1

2 ) ∪ [ 12 , 1], Gy
2 as [0, 1

2 ) ∪ [ 12 , 5
6 ) ∪ [ 56 , 1], and Gy

3 as

[0, 2
9 ) ∪ [ 29 , 5

18 ) ∪ [ 5
18 , 1

2 ) ∪ [ 12 , 13
18 ) ∪ [ 1318 , 5

6 ) ∪ [ 56 , 1]

1) The root node ( j = 0): G y
0 ←→ I y

0 := {I y0,1 = I = [0, 1]}. Together with
Ix
0 = {[0, 1]}, we have B0 = {I 2 = [0, 1]2} and ϕ0 = χ[0,1]2 .

2) At level j = 1: G y
1 ←→ I y

1 := {I y1,1, I y1,2}. The graph G y
1 has two nodes [a]G y

1
=

{a, b, d} (degree 9) and [c]G y
1

= {c, e, f } (degree 9). According to their degrees,
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Fig. 8 Each big block is the unit square [0, 1]2 (totally 8). Top 4 unit squares (left to right): B0,B1,B2,B3
from the coarse-grained chains Gx

3→0 (Ix
j , j = 0, . . . , 3) and Gy

3→0 (I y
j , j = 0, . . . , 3) in Example 2.

Horizontal axis is x while the vertical axis is y. Each colored sub-block represents B = Ix × Iy for some
Ix ∈ Ix

j and Iy ∈ I y
j . Note that the top-right square contains 36 sub-blocks from Ix

3 ⊗ I y
3 with respect

to V × V in Gx = (V ,Wx ) and Gy = (V ,W y). Bottom 4 unit squares: sub-blocks in each of B j are
selected so that |B ∩ Bv | 
= 0 for some v ∈ V . White blocks are those discarded ones. This is with respect
to the system X({B j }3j=0|G ). Each block in the unit square is labelled with a number from 0 to 49. The
blocks B14, B21, B34, B29, B42, B49 are the vertices a, b, c, d, e, f in the digraph, respectively (Color
figure online)

we identify the nodes [a]G y
1
and [c]G y

1
with the intervals

I y1,1([a]) =
[
0,

9

18

)
=

[
0,

1

2

)
and I y1,2([c]) =

[
9

18
,
9 + 9

18

]
=

[
1

2
, 1

]
,

respectively. From Ix
1 = {I x1,1, I x1,2}, see (21), B1 = Ix

1 ⊗ I y
1 has four sub-blocks

B1, . . . , B4 in [0, 1]2. Hence, by (9), Ψ1 = {ψ(�1,�2)

0,[0,1]2 : 1 ≤ �1, �2 ≤ 4} has 6
functions.

3) At level j = 2: G y
2 ←→ I y

2 := {I y2,1, I y2,2, I y2,3}. The graph G y
2 has three nodes

[a]G y
2

= {a, b, d} (degree 9), [c]G y
2

= {c, e} (degree 6), and [ f ]G y
2

= { f } (degree
3). Similarly, we identify them with the intervals

I y2,1([a]) =
[
0,

1

2

)
, I y2,2([c]) =

[
1

2
,
5

6

)
, I y2,3([ f ]) =

[
5

6
, 1

]
,

respectively. From Ix
2 in (22), B2 = Ix

2 ⊗ I y
2 = {B5, . . . , B13} has nine sub-

blocks split from B1, . . . , B4: B1 has cB1 = 1 sub-block B5 = B1; B2 has cB2 = 2
sub-blocks B6 and B7;B3 has cB3 = 2 sub-blocks B8 and B11; B4 has cB4 = 4
sub-blocks B9, B10, B12, and B13. Hence, by (9), Ψ1 = {ψ(�1,�2)

1,Bk
: 1 ≤ �1, �2 ≤

cBk , k = 1, 2, 3, 4} has in total (22
) + (2

2

) + (4
2

) = 8 functions.
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4) At level j = 3: G y
3 ←→ I y

3 := {I y3,1, . . . , I y3,6}. The graph G y
3 is the underlying

graph G y with 6 vertices. According to their degrees, we identify the vertices
a, b, d, c, e, f with the intervals

I y3,1(a) =
[
0,

2

9

)
, I y3,2(b) =

[
2

9
,
5

18

)
, I y3,3(d) =

[
5

18
,
1

2

)
,

I y3,4(c) =
[
1

2
,
13

18

)
, I y3,5(e) =

[
13

18
,
5

6

)
, I y3,6( f ) =

[
5

6
, 1

]
,

(24)

respectively. From Ix
3 in (23), B3 = Ix

3 ⊗ I y
3 has in total 36 blocks B14, . . ., B49.

Hence, by (9), Ψ2 = {ψ(�1,�2)
2,Bk

: 1 ≤ �1, �2 ≤ cBk , k = 5, . . . , 13} containing
(6
2

)+(9
2

)+(3
2

)+(4
2

)+(6
2

)+(2
2

)+(2
2

)+(3
2

) = 15+36+3+6+15+1+1+3 = 80
functions.

According to Theorem 3, the system X({B j }3j=0) = {ϕ0} ∪ {Ψ j }2j=0 is a tight frame
for L2(Gx ,G y).

Next, we focus on the tight frame X({B j }3j=0|G) for L2(G) as in Corollary 5. Note
that the vertices a, b, c, d, e, f in the digraph G are with respect to blocks

Ba =
[
0,

1

6

)
×

[
0,

2

9

)
, Bb =

[
1

6
,
1

4

)
×

[
2

9
,
5

18

)
, Bc =

[
1

4
,
7

12

)
×

[
1

2
,
13

18

)
,

Bd =
[
7

12
,
3

4

)
×

[
5

18
,
1

2

)
, Be =

[
3

4
,
11

12

)
×

[
13

18
,
5

6

)
, B f =

[
11

12
, 1

]
×

[
5

6
, 1

]
.

(25)

The functions in X({B j }3j=0|G) are as follows.

a) Supported on B0: {ϕ0} ∪ {ψ(�1,�2)

0,[0,1]2 : 1 ≤ �1 < �2 ≤ 4}. There are 7 = 1 + 6
functions with support intersecting Bv in (25).

b) Supported onB1:ψ
(�1,�2)
1,Bk

for k = 2, 4 and 1 ≤ �1 < �2 < cBk . There are 6 = 1+5
functions with support intersecting Bv in (25).

c) Supported on B2: ψ
(�1,�2)
2,Bk

for k = 5, 6, 9 and 1 ≤ �1 < �2 < cBk . There are
26 = 9 + 8 + 9 functions with support intersecting Bv in (25).

We see that the number of functions in X({B j }3j=0|G) (39) is significantly less than

those in X({B j }3j=0) (95). We remark that the 26 functions from B2 could be further
reduced in view of the non-effective blocks in B3. For example, the block B6 has 9
sub-blocks (#16, #17, #18, #22, #23, #24, #28, #29, #30). These produce 8 functions
ψ

(�1,�2)
2,B6

in X({B j }3j=0|G). But since the block B29 representing the vertex d is the

only effective block, one function, sayψ
(29,30)
2,B6

, is indeed enough. The total number of

functions in X({B j }3j=0|G) could be reduced to 20 = 7(in B0) + 6(in B1) + 7(in B2).

5 Final Remarks

We conclude the paper by some remarks and potential future work.
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(1) In [7,8], the systems used to represent graph (digraph) signals are orthonormal.
They are obtained through the tensor product approach of two 1D orthonormal
systems coming from the Gram–Schmidt process. The tensor product orthonormal
system is used for the digraph signal representation. In this paper, we do not use
the Gram-Schmidt process but simply rely on the selection of two sub-blocks. The
resulted systems are tight frame systems and could have more directionality than
the tensor product approach orthonormal systems. Note that when each block has
atmost two children sub-blocks, our resulted system is also orthonormal. However,
such an orthonormal system is different to those in [7,8].

(2) Our construction of the system X({B j } j∈N0) is not necessarily restricted to com-
pact subsets K ⊆ R

d . It is possible to extend the construction of the system on
any σ -finite measurable subsets of Rd . More generally, our construction could be
extended to abstract measurable spaces as well as compact Riemannian manifolds.

(3) Since it is Haar-type, the frameletψ ∈ Ψ j,B has only vanishingmoment of order 1:∫
K ψ(x)dx = 0. To increase the sparse representation ability, one could consider

the construction of similar tight framelet systems with higher vanishing moments.
(4) The number of elements in X({B j }Jj=0|G) could be significantly reduced by dis-

carding non-effective framelet functions as pointed out in the end of Example 2.
(5) Since there is a natural nested structure of the block sequences, fast algorithms

could be developed for framelet transforms.

6 Proofs

We provide proofs of Lemma 1 and Lemma 2 here.

Proof of Lemma 1 We prove that A�A = Im by showing that the columns of A are
orthogonal. Indeed, the 2-norm of the �-th column of A is

n∑

i=0

|ai,�|2 = |a0,�|2 +
∑

1≤i1<i2≤m

|a(i1,i2),�|2

= |a0,�|2 +
∑

1≤i1<�≤m

|a(i1,�),�|2 +
∑

1≤�<i2≤m

|a(�,i2),�|2

= b� +
∑

i1<�

bi1 +
∑

i2>�

bi2 = 1, 1 ≤ � ≤ m.

Moreover, the dot product of the �1-th column and the �2-th column of A with �1 < �2
is

n∑

i=0

ai,�1ai,�2 = a0,�1a0,�2 +
∑

1≤i1<i2≤m

a(i1,i2),�1a(i1,i2),�2

=
√
b�1b�2 +

∑

i2>�1

a(�1,i2),�1a(�1,i2),�2 +
∑

i1<�1

a(i1,�1),�1a(i1,�1),�2

+
∑

i2>�2

a(�2,i2),�1a(�2,i2),�2 +
∑

i1<�2,i1 
=�1

a(i1,�2),�1a(i1,�2),�2
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=
√
b�1b�2 +

∑

i2>�1

a(�1,i2),�1a(�1,i2),�2 =
√
b�1b�2 +

∑

i2>�1

√
bi2 (−

√
b�1δi2,�2 )

=
√
b�1b�2 −

√
b�2

√
b�1 = 0.

Similarly,
∑n

i=0 ai,�1ai,�2 = 0 for �1 > �2. Hence, A�A = Im is an identity matrix.
��

Proof of Lemma 2 To prove that ΨB is tight, by linearity, it suffices to show that

ψ(�1,�2) =
∑

1≤�′
1<�′

2≤m

〈
ψ(�1,�2), ψ(�′

1,�
′
2)

〉
ψ(�′

1,�
′
2), 1 ≤ �1 < �2 ≤ m.

In fact, from (8), we have ψ(�1,�2) = √
b�2γ�1 − √

b�1γ�2 = ∑m
�=1 a(�1,�2),�γ�, where

(a(�1,�2),�)
m
�=1 is the row of the matrix A in Lemma 1. By A�A = I and the orthogo-

nality of {γ� : 1 ≤ � ≤ m}, we have
∑

1≤�′
1<�′

2≤m

〈
ψ(�1,�2), ψ(�′

1,�
′
2)

〉
ψ(�′

1,�
′
2)

=
∑

1≤�′
1<�′

2≤m

(
∑

�

a(�1,�2),�a(�′
1,�

′
2),�

∑

�̃

a
(�′

1,�
′
2),�̃

γ
�̃
)

=
∑

�

a(�1,�2),�

∑

�̃

∑

1≤�′
1<�′

2≤m

a(�′
1,�

′
2),�

a
(�′

1,�
′
2),�̃

γ
�̃

=
∑

�

a(�1,�2),�

∑

�̃

(δ
�,�̃

−
√
b�b�̃

)γ
�̃

=
∑

�

a(�1,�2),�(γ� −
∑

�̃

√
b�b�̃

γ
�̃
)

=(
√
b�2γ�1 −

∑

�̃

√
b�1b�2b�̃

γ
�̃
) − (

√
b�1γ�2 −

∑

�̃

√
b�2b�1b�̃

γ
�̃
)

=√
b�2γ�1 − √

b�1γ�2 = ψ(�1,�2),

where the 3rd equation follows from that
√
b�b�̃

+∑
1≤�′

1<�′
2≤m a(�′

1,�
′
2),�

a
(�′

1,�
′
2),�̃

is the

dot product of the �-th column and �̃-th column of A, which equals to δ
�,�̃

. Therefore,
ΨB is a tight frame for WB . ��
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