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In this paper, we propose a model for parallel magnetic resonance imaging (pMRI) 
reconstruction, regularized by a carefully designed tight framelet system, that can 
lead to reconstructed images with much less artifacts in comparison to those from 
existing models. Our model is motivated from the observations that each receiver 
coil in a pMRI system is more sensitive to the specific object nearest to the coil, 
and all coil images are correlated. To exploit these observations, we first stack all 
coil images together as a 3-dimensional (3D) data matrix, and then design a 3D 
directional Haar tight framelet (3DHTF) to represent it. After analyzing sparse 
information of the coil images provided by the high-pass filters of the 3DHTF, we 
separate the high-pass filters into effective ones and ineffective ones, and we then 
devise a 3D directional Haar semi-tight framelet (3DHSTF) from the 3DHTF by 
replacing its ineffective filters with only one filter. This 3DHSTF is tailor-made 
for coil images, meanwhile, giving a significant saving in computation comparing 
to the 3DHTF. With the 3DHSTF, we propose an �1-3DHSTF model for pMRI 
reconstruction. Numerical experiments for MRI phantom and in-vivo data sets are 
provided to demonstrate the superiority of our �1-3DHSTF model in terms of the 
efficiency of reducing aliasing artifacts in the reconstructed images.
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1. Introduction and motivation

Since the development of magnetic resonance imaging (MRI) in the 1970s [25], it has been widely used 
in hospitals and clinics for medical diagnosis thanks to its non-invasive property of not requiring exposure 
to radiation. Most of the MRI machines in use today utilize a spin-warp imaging scheme [14], where spatial 
information and associated phase were encoded successively by varying the amplitude of the gradients of 
the radio frequency (RF) pulses. Such a scheme is a Fourier-transform based MRI method that produces 
data in the spatial frequency space, known as the K-space. The decoding process involves an inverse Fourier 
transform to obtain an image. In order to produce an accurate image, it requires enough phase-encoding 
steps to sufficiently cover the K-space, which can lead to long scan time [36]. To obtain accurate MRI 
images with less scan time, modern parallel MRI (pMRI) techniques have been developed and advancing 
during the past two decades. By using multiple RF coils, such as surface coils in an array, to simultaneously 
receive partial information of the target slice with fewer positions in the K-space data, the pMRI approach 
accelerates the imaging speed significantly [12], which leads to reduction of motion artifact, breath-hold 
time, diagnostic duration, and so on. The information loss due to reduction of samples in the K-space can 
be compensated by the duplicity of the data from multiple coil acquisitions using appropriate reconstruction 
techniques, e.g., see [22]. However, pMRI has its own drawbacks in terms of specific aliasing artifacts due 
to undersampling, hardware issues, field of view (FOV) selection, coil-calibration, etc. The success of the 
pMRI techniques depends on their ability to remove such aliasing artifacts without sacrificing too much 
of the diagnostic integrity. Current techniques for pMRI reconstruction can be categorized as image-based 
methods, K-space based methods, or their hybrids [12,42]. The sensitivity encoding (SENSE), e.g., [33,37,44], 
which is image-based, and the generalized autocalibrating partially parallel acquisitions (GRAPPA), e.g., 
[16,34,40], which is K-space based, are the two most well-known pMRI techniques for reconstruction and 
are commercially available for clinical purposes. We next briefly discuss these two methods.

1.1. SENSE and GRAPPA

SENSE was the first pMRI method used routinely, which performs the K-space sampling in the phase-
encoding direction; that is, a field of view (FOV) reduction acquisition. To recover the skipped K-space 
data, multiple receiver coils in an array of surface coils are used to produce multiple coil images. The coil-ι
K-space data gι from the receiving process can be modeled as follows:

gι = PFSιũ + ηι, ι = 1, . . . , p,

where p is the number of coils, ηι is the white Gaussian noise, ũ is the target ground-truth image, Sι is 
the individual coil sensitivity, F is the discrete Fourier transform operator, and P is the sampling operator 
with respect to the downsampling procedure. See Fig. 1(a)–(d) for an example of coil images (with full 
FOV selection). Due to the downsampling procedure, the obtained coil images are aliased. Moreover, the 
accurate estimation of coil sensitivities is needed in the SENSE-based methods, but it is often difficult 
to determine them due to the complex geometry of the coils. Consequently, the reconstructed images, to 
approximate the ground-truth image by the SENSE model (e.g., via least square methods), often suffer from 
aliasing and artifacts. More advanced regularization techniques using sparse representation systems with 
desirable properties must be employed in order to reduce the aliasing artifact. The TV (Total Variation)-
based [23,43] and wavelet-based [6] regularization methods were successfully adopted into the SENSE-based 
reconstruction problem to suppress the noise or artifacts. Recently, a 2-dimensional (2D) directional Haar 
tight framelet (2DHTF) system was constructed and successfully applied for the pMRI problem in [28].

GRAPPA is currently the most commonly employed K-space based pMRI method. Unlike SENSE-based 
methods, GRAPPA does not need the explicit computation of the coil sensitivity Sι. Instead, it uses a few 
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Fig. 1. (a)–(d) are the four coil images from the corresponding full K-space data; and (e) is the Sum-of-Squares (SoS) image.

extra lines of the full K-space data, sampled at the region near the center of the K-space during the scan. 
Such extra lines of the K-space data are called auto-calibration signal (ACS) data. The more ACS lines are 
used, the more accurate K-space data are reconstructed, but it comes at the cost of increased scan time. 
Moreover, the number of interpolation kernels to be estimated may be extremely large, especially for the 
random sampling model in the K-space.

In view of the above drawbacks of GRAPPA, the �1-SPIRiT (Iterative Self-Consistent Parallel Imaging 
Reconstruction, [34,40]) method modifies the GRAPPA method by constructing exactly p interpolation 
kernels regardless of sampling patterns, only one kernel for each coil, and iteratively reconstructs the target 
K-space data by regularizing coil images together with the joint sparsity-promoting norm ‖ · ‖1,2. A general 
study on sparsity promoting functions can be found in the recent work [38,39]. To avoid overloading symbols, 
we present the �1-SPIRiT model here and postpone the discussion of the GRAPPA and �1-SPIRiT with 
more details in Section 4:

min
u

1
2‖(C − I)(Qu + g)‖2

2 + λ‖WwavF−1
p (Qu + g)‖1,2, (1)

where u = (u1, . . . , up) collects p coil K-space data, Qu = (Ip ⊗ (I − P))u is the missing K-space data to 
be recovered, g = (Pgι)pι=1 is the observed p coil K-space data, C = (Cι)pι=1 is the pre-estimated kernel 
matrix with Cι being the matrix form of the kernel for coil-ι, Fp = Ip ⊗F is the stacked Fourier transform 
operators, and Wwav = Ip ⊗ W is the stacked 2D wavelet transform operator W . Here Ip is the identity 
matrix of size p × p, I is the identity whose size is consistent with that of underlying image, the symbol ⊗
denotes the Kronecker product of matrices. Solving the model (1) eventually results in a 3D K-space data 
u3D = Qu + g, which gives a 3D image ũ3D = F−1

p u3D. The final reconstructed MRI image ũ is obtained 
by the SoS (Sum-of-Square) of ũ3D.

In model (1), only 2D transform-based systems are essentially used to decompose coil images [6,23,34,
40,43]. That is, W is applied to each coil image independently. However, multiple coil images (or coil K-
space data) in the pMRI system are correlated to each other since each coil image contains parts of the 
information of the same target slice. For example, see Fig. 1(a)–(d) for the four coil images of size 512 ×512
from (the inverse discrete Fourier transform of) the corresponding full K-space data. The four coil images 
contain essentially the same information except for varying pixel intensity due to different coil positions. 
Using only 2D systems may not well exploit such correlated information. In fact, Fig. 2(b) is the SoS image 
of the four coil images reconstructed by GRAPPA [16] while Fig. 2(c) is reconstructed by the �1-SPIRiT 
[34] method using 2D wavelet regularization. Compared with the GRAPPA method without regularization, 
one can see the effectiveness of the �1-regularization using the 2D wavelets (with sharper edges and smooth 
background, also cf. Fig. 2(a) for the SoS image by full K-space data). However, due to the use of 2D 
systems, the correlated information among coil images is considered by joint-sparsity regularization over 
wavelet coefficients of multiple coils and the aliasing artifacts may not be well suppressed in the reconstructed 
images. Fig. 2(b) by GRAPPA has obviously aliasing artifacts while Fig. 2(c) by �1-SPIRiT reduces aliasing 
artifacts but many of them are still observable (see their zoom-in parts, respectively).
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Fig. 2. Reconstruction results on 32% K-space data of the four coil images in Fig. 1(a)–(d) by the uniform sampling mode (one 
line taken from every four lines) with 48 ACS lines. (a) SoS image of full K-space data (Reference, upper) with zoom-in block 
(lower). (b) GRAPPA [16]: aliasing artifacts and noise could not be suppressed clearly. (c) �1-SPIRiT method [34]: noise removed 
but with aliasing artifacts. (d) �1-ShearLab3D: noise and artifacts exist. (e) �1-3DHTF: noise and artifacts are suppressed nicely. 
(h) �1-3DHSTF: best performance. The lower images are the zoom-in parts of upper images with respect to the same zoom-in 
block in (a).

In view of the above discussion, it is very natural to consider the following �1-W3D model:

min
u

1
2‖(C − I)(Qu + g)‖2

2 + ‖ΓW3DF−1
p (Qu + g)‖1, (2)

where W3D is a 3D wavelet/framelet transform applied to a 3D image data directly, and Γ is a diagonal 
matrix with non-negative elements. Since the GRAPPA method does not need the explicit estimation of 
coil sensitivity functions and in view of the effectiveness of the �1-SPIRiT model (see Fig. 2(c)), we therefore 
focus on the development of a suitable W3D system for the above GRAPPA-based model �1-W3D.

1.2. Motivation: a tailor-made 3D directional Haar semi-tight framelet

Sparsity is always the core in the development of wavelet/framelet representation systems and their 
applications in image processing (e.g., see [8,7,10,18]). To capture sparsity of high dimensional signals, 
directionality is one of the most desired properties when designing such representation systems. In fact, 
directional systems have been intensively studied during the last two decades and shown to play an important 
role in both theory and application. For example, see curvelets and shearlets in [5,13,26] and tensor product 
complex tight framelets (TP-CTFs) in [20,21], and many references therein related to directional multiscale 
representation systems. One would expect that the use of a 3D directional representation system W3D in (2)
should lead to better results compared to the use of 2D systems. Unfortunately, without carefully picking 
a 3D system, one would immediately run into trouble. We summarize the issues, results, and our findings, 
after we tested various 3D directional systems, as follows.

Unbalanced dimensions. The support of 3D input data to be decomposed by W3D is not evenly distributed 
due to the fact that the number of coils is much smaller than the dimension of the coil images. For example, 
when stacking the 4 coil images of size 512 × 512 in Fig. 1(a)–(d), it becomes a 512 × 512 × 4 cuboid data 
and the length 4 of the stacked dimension is significantly small compared to 512 in the other two image 
dimensions. Typical 2D/3D directional systems of shearlets or TP-CTFs are bandlimited systems whose 
underlying filter banks are with infinitely supported filters. Even with the compactly supported TP-CTF
systems developed in [20] and the compactly supported 3D shearlets in [27], the supports of those filters are 
still too long.

Directionality. The more directionality of the 3D systems do not necessarily lead to the better perfor-
mance of such systems in the pMRI reconstruction. For example, shearlet systems can achieve directionality 
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Fig. 3. The coil images of Fig. 2 (a)–(d) can be stacked as a 3D image data and decomposed by the 3D directional Haar tight 
framelet filter banks in DHTF2

3. The framelet coefficient images (a)–(f) are slices of the 3D framelet coefficient data obtained by 
the filters bx, by, bxy, bx,y, bz and bxz, respectively. Note that (a)–(d) are with sparse coefficients (in terms of black area), while 
(e) and (f) are not sparse.

with desired number of directional filters, and we used the shearlet transforms in the software package 
ShearLab3D1 of [27] as the W3D system for model (2) by properly setting of filter parameters (cf. [32] on 
MRI setting). It turns out that the performance of such a shearlet system in ShearLab3D (see Fig. 2(d)) is 
not as good as the �1-SPIRiT though it is better than the GRAPPA in terms of suppression of noise and 
aliasing artifacts. This result demonstrates that the use of general 3D systems with directionality, including 
the TP-CTF systems (as demonstrated in [28]), do not necessarily perform well in the setting of pMRI 
reconstruction.

Coil correlated information. The 3D data from pMRI contains intra-coil essential information and inter-
coil correlated information. A 3D system that does not take care of such information appropriately will 
not result in good pMRI reconstruction images. The 2DHF system in [28] only captures the intra-coil 
information. It is natural to ask whether one can extend the 2DHF system to a 3D setting. Indeed, the work 
in [19,41] proved that similar directional Haar tight framelet (DHTF) systems exist in any dimension. The 
underlying multi-dimensional high-pass filters of the DHTF system have only two nonzero filter coefficients 
with opposite signs. Hence, all of them naturally exhibit directionality. In particular for the 3D case, the 
respective 3DHTF system (an extension of the 2DHTF system) has 28 framelet functions supported on the 
unit cube. Since the support of each high-pass filter is extremely short (only 2 taps), it fits the setting of 
pMRI reconstruction well. We applied such a 3DHTF system in our model (2) and it does produce better 
results. See Fig. 2(e) for �1-3DHTF (i.e., W3D = 3DHTF). One can see that though the noise and aliasing 
artifacts are still observable in Fig. 2(e), the resulted pMRI reconstruction image is clearly better than those 
of GRAPPA, �1-SPIRiT, and �1-ShearLab3D.

The successful application of the 3DHTF system in Fig. 2(e) as well as its drawbacks (still observable 
noise and artifacts) motives us to further examine the 3DHTF system carefully and eventually leads to the 
construction of our tailor-made 3-dimensional directional Haar semi-tight framelet (3DHSTF) system (see 
[30] for a preliminary version). Here, we briefly lay out the main ideas for the explanation of both why and 
why not the 3DHTF system performs well and for the construction of our 3DHSTF system. We leave the 
details in Section 3.

The 3DHTF system, also denoted by DHTF1
3, consists of 28 high-pass filters, but essentially is equivalent 

to a filter bank, denoted by DHTF2
3 := {aH ; bx, by, bz, bxy, bx,y, bxz, bx,z, byz, by,z, bxyz, bxy,z, bx,yz, bxz,y}, 

with 13 high-pass filters by eliminating same directional filters (see Section 3 for details). The low-pass filter 
aH is a 3D Haar low-pass filter while the others are 3D high-pass filters with only 2 taps. In short, the 
low-pass filter captures essentially the inter-coil information while the high-pass filters can capture intra-
coil information. This explains the better performance of the �1-3DHTF result in Fig. 2(e) than those of 
GRAPPA, �1-SPIRiT, and �1-ShearLab3D.

1 The code is available at: http://www .shearlab .org.

http://www.shearlab.org
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Not all high-pass filters in DHTF2
3, however, are effective. The subscripts x, y, z in the high-pass filters 

indicate the directional information that the corresponding filter can capture. The z direction is with respect 
to the stacked dimension (along p coils) while the x, y directions are with respect to the image dimensions. 
One can clearly see from Fig. 3 that the high-pass filters bx, by, bxy, bx,y produce sparse framelet coefficients 
while other two filters bz, bxz do not produce sparse coefficient sequences. In fact, all filters in DHTF2

3
involving the z-axis (the z-filters) do not give sparse representations. This is because the pixel intensity 
varies along different coils and the z-filters taking difference between different coil images only reflect the 
pixel intensity difference but not the key information. As a result, the use of z-filters may bring unnecessary 
information that reduces the performance of the system. This answers the question why the �1-3DHTF 
still has observable noise and aliasing artifacts, and eventually leads to our tailor-made 3D directional Haar 
semi-tight framelet system 3DHSTF := {aH ; bx, by, bxy, bx,y, baux} from the DHTF2

3 by replacing all filters 
involving the z-axis with only one filter baux. Such a system is called semi-tight since the system is very close 
to a tight framelet system up to certain modifications. One may doubt that the filters bx, by, bxy, bx,y seem to 
be 2D filters only. We would like to point out that together with the 3D low-pass filter aH , they are indeed 
3D filters that nicely fit to our setting of coil image data. The first level decomposition of 3DHSTF is able 
to capture 2D features in each coil image while the second level decomposition of 3DHSTF (dealing with 
data convolved with aH already) can detect the correlated information between every two consecutive coil 
images. Our experimental result in Fig. 2(f) shows that model (2) with W3D being our 3DHSTF performs 
the best among all methods in Fig. 2(b)–(f). Edge details are preserved, the noise is almost removed, and 
there is almost no aliasing artifacts. We remark that the framelet coefficients from both aH and baux will 
not be not processed, instead will be directly used in the reconstruction of 3DHSTF.

1.3. Our contributions

The contributions of this paper mainly lie in the following four aspects. First, we propose a GRAPPA-
based model using 3D wavelet/framelet regularization to reduce noise and aliasing artifacts in the pMRI 
reconstruction; second, we carefully design a 3DHSTF that not only captures the crucial directional features 
inside each coil image but also well utilizes the correlated information among different coil images. The 
3DHSTF perfectly fits into the pMRI reconstruction algorithm using the GRAPPA-based model; third, 
fast undecimated discrete framelet transform (UDFmT) algorithms as well as the ADMM scheme [15] for 
efficiently solving our �1-W3D model are investigated and developed; and finally, our numerical experiments 
demonstrate the effectiveness and efficiency of the �1-3DHSTF model. In fact, we show that aliasing artifacts 
are significantly reduced using our model comparing to the GRAPPA and the �1-SPIRiT approaches.

The rest of this paper is organized as follows. In Section 2, we present the theoretical background of tight 
framelets and tight framelet filter banks. In Section 3 we discuss the construction of 3DHTF filter banks 
and our tailor-made 3DHSTF filter banks for our �1-W3D model. In Section 4, we present some details on 
GRAPPA method and the �1-SPIRiT method that related to our 3D wavelet/framelet regularization model 
for the pMRI reconstruction. Moreover, using ADMM scheme, we gives the detailed algorithm for solving 
our �1-W3D model step-by-step. Numerical experiments are presented in Section 5. Conclusions and further 
remarks are given in Section 6.

2. Preliminaries on tight framelets

In this section, we lay out the foundation for the construction of directional Haar tight framelets and 
introduce the fast undecimated discrete framelet transforms.



452 Y.-R. Li et al. / Appl. Comput. Harmon. Anal. 60 (2022) 446–470
2.1. Tight framelets and tight framelet filter banks

We first discuss the connections between tight framelets and filter banks. By L2(Rd), we denote the usual 
space of square integrable functions defined on Rd. We say that {φ; ψ1, . . . , ψs} ⊂ L2(Rd) is a (nonhomoge-
neous dyadic) tight framelet in L2(Rd) if

‖f‖2
L2(Rd) =

∑
k∈Zd

|〈f, φ(· − k)〉|2 +
∞∑
j=0

s∑
ι=1

∑
k∈Zd

|〈f, 2jd/2ψι(2j · −k)〉|2, ∀ f ∈ L2(Rd). (3)

Denote �0(Zd) the set of all finitely supported sequences. A mask/filter h = {h(k)}k∈Zd : Zd → C on Zd is 
a sequence in �0(Zd). For a filter h, its Fourier series is defined to be ĥ(ξ) :=

∑
k∈Zd h(k)e−ik·ξ for ξ ∈ Rd. 

In particular, by δ we denote the Dirac sequence such that δ(0) = 1 and δ(k) = 0 for all k ∈ Zd\{0}. For 
γ ∈ Zd, we use δγ to stand for the sequence δ(· − γ), i.e., δγ(γ) = 1 and δγ(k) = 0 for all k ∈ Zd\{γ}. 
Note that δ̂γ(ξ) = e−iγ·ξ. We say that a filter bank {a; b1, . . . , bs} ⊂ �0(Zd) is a (d-dimensional dyadic) tight 
framelet filter bank if

â(ξ)â(ξ + πω) +
s∑

ι=1
b̂ι(ξ)b̂ι(ξ + πω) = δ(ω), ξ ∈ Rd, (4)

where ω ∈ {0, 1}d and for a number x ∈ C, x̄ denotes its complex conjugate. Eq. (4) is equivalent to 
the perfect reconstruction property of the discrete framelet transforms associated with a filter bank [18, 
Theorems 1.1.1 and 1.1.4].

Assume that â(0) =
∑

k∈Zd a(k) = 1. Then one can define compactly supported tempered distributions 
φ and ψ1, . . . , ψs on Rd through

φ̂(ξ) :=
∞∏
j=1

â(2−jξ) and ψ̂ι(ξ) = b̂ι(ξ/2)φ̂(ξ/2), ξ ∈ Rd, ι = 1, . . . , s, (5)

where the Fourier transform f̂ of a Lebesgue integrable function f ∈ L1(Rd) is defined to be f̂(ξ) :=∫
Rd f(x)e−ix·ξdx, ξ ∈ Rd, and can be naturally extended for functions in L2(Rd). It is known that {φ; ψ1, . . ., 
ψs} is a tight framelet in L2(Rd) if and only if {a; b1, . . . , bs} is a tight framelet filter bank [18, Theorem 
4.5.4]. Also cf. [9,11] for related results and many references therein for extensive investigation on tight 
framelets derived from refinable functions. Consequently, in this paper we mainly focus on the design of 
framelet filter banks.

2.2. Discrete affine systems and fast discrete framelet transforms

A tight framelet filter bank can be used to (sparsely) represent data sequences through its associated 
discrete framelet transforms as well as its underlying discrete affine system [17]. More precisely, given a data 
sequence v ∈ l(Zd) and a filter h ∈ l0(Zd), the subdivision operator Sh : l(Zd) → l(Zd) and the transition 
operator Th : l(Zd) → l(Zd) are defined to be:

[Shv](γ) :=2d
∑
k∈Zd

v(k)h(γ − 2k) = 2d[h ∗ (v ↑ 2)](γ), γ ∈ Zd,

[Thv](γ) :=2d
∑
k∈Zd

v(k)h(k − 2γ) = 2d[(h� ∗ v) ↓ 2](γ), γ ∈ Zd,
(6)

where ∗ is the convolution operation:
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Fig. 4. Multi-level discrete framelet transforms (DFmT) associated with a filter bank {a; b1, . . . , bs}. Each box with b� runs through 
ι = 1, . . . , s and the circle with +s sums over all s outputs from boxes with bι.

[h ∗ v](γ) :=
∑
k∈Zd

h(γ − k)v(k), v ∈ l(Zd), h ∈ l0(Zd),

h� is a filter defined by h�(k) = h(−k), k ∈ Zd, and ↑ m, ↓ m are the up-, down-sampling operators with 
m ∈ N, respectively:

[v ↑ m](γ) :=
{
v(m−1γ), if m−1γ ∈ Zd;
0, otherwise,

and [v ↓ m](γ) = v(mγ), γ ∈ Zd.

For a given data v ∈ l(Zd), the one-level framelet decomposition employing a filter bank {a; b1, . . . bs}
produces a set {v0; w1, . . . , ws} of framelet coefficient sequences:

v0 := 2−d/2Tav, wι = 2−d/2Tbιv, ι = 1, . . . , s,

while the one-level framelet reconstruction with {v0; w1, . . . , ws} outputs a reconstruction data sequence

ṽ := 2−d/2

(
Sav0 +

s∑
ι=1

Sbιwι

)
.

Iteratively employing the one-level framelet decomposition (reconstruction) with vJ := v gives the mult-level 
discrete framelet transforms (DFmT):

Decomposition: vj−1 = 2−d/2Tavj , wj−1;ι = 2−d/2Tbιvj , ι = 1, . . . , s, j = J, . . . , 1.

Reconstruction: vj = 2−d/2

(
Savj−1 +

s∑
ι=1

Sbιwj−1;ι

)
, j = 1, . . . , J.

See Fig. 4 for the illustration of the multi-level discrete framelet transforms (DFmT) with J = 2.
Define filters aj and bι,j for j � 1 by

âj(ξ) := â(ξ)â(2ξ) · · · â(2j−1ξ) and b̂ι;j(ξ) := âj−1(ξ)b̂ι(2j−1ξ), ι = 1, . . . , s

with the convention that a0 := δ. That is,

aj = a ∗ (a ↑ 2) ∗ · · · ∗ (a ↑ 2j−1) and bι,j = aj−1 ∗ (bι ↑ 2j−1).

Define

a[j;k] := aj(· − k) and bι,[j;k] := bι,j(· − k), ι = 1, . . . , s.

Then, the discrete affine system associated with the filter bank {a; b1, . . . , bs} at level J is given by
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Fig. 5. Undecimated discrete framelet transforms (UDFmT) associated with a filter bank {a; b1, . . . , bs}. Each box with bι runs 
through ι = 1, . . . , s and the circle with +s sums over all s outputs from boxes with bι.

DASJ ({a; b1, . . . , bs}) := {2−J/2a[J;2Jk] : k ∈ Zd} ∪ {2−j/2bι,[j;2jk] : k ∈ Zd, ι = 1, . . . , s}Jj=1

One can show that ([17, Theorems 2.1 and 2.4]) a filter bank {a; b1, . . . , bs} is a tight framelet filter bank, 
i.e., satisfying (4) if and only if it satisfies

(a) the perfect reconstruction property: SaTav +
∑s

ι=1 SbιTbιv = 2dv for all v ∈ l(Zd), if and only if it 
satisfies,

(b) the energy preservation property:

‖Tav‖2
2 +

s∑
ι=1

‖Tbιv‖2
2 = 2d‖v‖2

2, ∀v ∈ l2(Zd), (7)

if and only if it has,
(c) the discrete affine tight frame representation: v =

∑
u∈DASJ ({a;b1,...,bs})〈v, u〉u for all v ∈ l2(Zd) and for 

all J ∈ N.

2.3. Fast undecimated discrete framelet transforms

A tight framelet filter bank can be used to (sparsely) represent data sequences through its associated 
discrete framelet transforms. However, noting that due to Th(v(· −2n)) = [Thv](· −n), for a translated version 
of the input signal, the output framelet coefficient sequence may no longer be a translated version of the 
original framelet coefficient sequence. In signal/image/video processing, translation invariance property of a 
discrete framelet transform is very much desirable especially in the scenario of signal denoising/inpainting. 
To preserve the translation invariance property, in this paper, we consider the more redundant version of 
DFmT, that is, the undecimated discrete framelet transforms (UDFmT):

Decomposition: vj−1 = vj ∗ (a� ↑ 2J−j), j = J, . . . , 1,

wj−1;ι = vj ∗ (b�ι ↑ 2J−j), ι = 1, . . . , s.

Reconstruction: vj = vj−1 ∗ (a ↑ 2J−j) +
s∑

ι=1
wj−1;ι ∗ (bι ↑ 2J−j), j = 1, . . . , J.

Here vJ := v is an input data sequence. See Fig. 5 for the illustration of UDFmT with J = 3.
The multi-level undecimated discrete framelet transforms correspond to a undecimated discrete affine 

system, which is given by

UDASJ ({a; b1, . . . , bs}) := {a[J;k] : k ∈ Zd} ∪ {bι;[j,k] : k ∈ Zd, ι = 1, . . . , s}Jj=1
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One can show that the undecimated discrete framelet transforms employing a filter bank {a; b1, . . . , bs} have 
the perfect reconstruction property, i.e., any input data sequence and its reconstruction data sequence using 
UDFmT are the same, if and only if it satisfies

(a) the partition of unity condition:

|â(ξ)|2 +
s∑

ι=1
|b̂ι(ξ)|2 = 1, ξ ∈ Rd, (8)

if and only if it has,
(b) the undecimated discrete affine tight frame representation: v =

∑
u∈UDASJ ({a;b1,...,bs})〈v, u〉u for all 

v ∈ l2(Zd) and for all J ∈ N.

3. A tailor-made 3D directional Haar tight and semi-tight framelet

We are ready to introduce the 3D directional Haar tight and semi-tight framelet (3DHTF and 3DHSTF) 
systems. The 3DHSTF is called semi-tight since it is very close to the tight framelet system 3DHTF with 
certain modifications. First, we have the following theorem from [19] that is motivated by the 2D directional 
Haar tight framelet (2DHTF) constructed in [28].

Theorem 1. Let aH := 2−d
∑

γ∈{0,1}d δγ be the d-dimension Haar low-pass filter. Define the high-pass filters 
b1, . . . , bs with s :=

(2d

2
)

= 2d−1(2d−1) by bι := bι1,ι2 := 2−d(δγι1
−δγι2

) and 1 � ι1 < ι2 � 2d, where we label 
the 2d vertices in {0, 1}d as {0, 1}d = {γι1 , . . . , γι2d} and ι = (2d+1−ι1)(ι1−1)

2 + ι2 − ι1. Then {aH ; b1, . . . , bs}
is a tight framelet filter bank such that all the high-pass filters b1, . . . , bs have directionality and exhibit 
1
2 (3d − 1) directions in dimension d. The functions φ and ψ1, . . . , ψs associated with {aH ; b1, . . . , bs} is a 
compactly supported d-dimension directional Haar tight framelet in L2(Rd) with

φ = χ[0,1]d , ψι = χ[0, 12 ]d(· −
γι1
2 ) − χ[0, 12 ]d(· −

γι2
2 )

for ι = 1, . . . , s, where χA is the characteristic function of A such that χA(x) = 1 if x ∈ A and χA(x) = 0
if x /∈ A for a set A ⊆ Rd.

In [19], the proof of the tightness in Theorem 1 is based on the proof of (4) from a geometric point of 
view. We now provide an alternative algebraic proof to show the tightness of the directional Haar tight 
framelets in Theorem 1 from the viewpoint of the energy preservation property of the discrete framelet 
transforms in (7).

Proof of Theorem 1. Because all the filters in Theorem 1 are supported inside {0, 1}d and noting that 
Thv = 2d

∑
k v(k + 2·)h(k), the d-dimensional discrete framelet transform (decomposition) using the filter 

bank {a; b1, . . . , bs} in Theorem 1 can be simply implemented by applying the discrete framelet transform 
acting on data supported on each disjoint {0, 1}d + 2k, k ∈ Zd, where {0, 1}d is the set of all vertices 
of the unit cube [0, 1]d. We now exam the framelet coefficient sequences Thv for h ∈ {a; b1, . . . , bs}. For 
simplicity, we list the vertices in {0, 1}d as {γ1, . . . , γ2d} = {0, 1}d and assume that the data value of v at 
the point γj + 2k is xj ∈ R. Then all the high-pass filters in Theorem 1 are given by b� := ±2−d(δγj

− δγk
)

with 1 � j < k � 2d. The framelet coefficient sequence Tbιv produced by this high-pass filter is simply 
±(xj − xk). The coefficient sequence TaHv produced by the Haar low-pass filter aH in Theorem 1 is simply 
(x1 + · · · + x2d). Hence, the total squared energy of all the framelet coefficient sequences is
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Fig. 6. The 2-Dimensional directional Haar tight framelet (2DHTF) system is generated from 6 framelet functions ψ1, . . . , ψ6
supported on the unit square [0, 1]2. Left to Right (First 6 squares): ψ1, . . . , ψ6. The unit square is split to 4 sub-blocks B1, . . . , B4. 
Each colored sub-block represents either 1 (blue) or -1 (orange) of the function value. White blocks mean 0 function value. The 6 
framelet functions clearly cover the directions of 0◦, 90◦, and ±45◦. The last 3D cube: The unit 3D cube [0, 1]3 evenly divided to 
8 sub-cubes C1, . . . , C8 and it is the support of the 28 framelet generating functions ψ1, . . . , ψ28 for the 3-dimensional directional 
Haar tight framelet (3DHTF) system. Each function ψi = χCi1

− χCi2
, 1 � i1 < i2 � 8 and i = (16−i1)(i1−1)

2 + i2 − i1, of the 
28 functions is supported on two sub-cubes Ci1 , Ci2 selected from the 8 sub-cubes. Note that 

(8
2
)

= 28. See Theorem 1 for more 
details. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

(x1 + · · · + x2d)2 +
∑

1�j<k�2d

(xj − xk)2 .

Noting that (x1 + · · ·+ x2d)2 = x2
1 + · · · + x2

2d +
∑

1�j<k�2d 2xjxk and (xj − xk)2 = (x2
j + x2

k) − 2xjxk, we 
conclude that the total squared energy of all the framelet coefficient sequences is∑

h∈{a;b1,...,s}
‖Thv‖2 = (x1 + · · · + x2d)2 +

∑
1�j<k�2d

(xj − xk)2

= (x2
1 + · · · + x2

2d) +
∑

1�j<k�2d

(x2
j + x2

k)

= 2d(x2
1 + · · · + x2

2d) = 2d‖v‖2
2,

which proves the energy preservation property of the discrete framelet transforms in (7). Hence, the fil-
ter bank {a; b1, . . . , bs} in Theorem 1 must be a tight framelet filter bank. Their associated functions 
φ, ψ1, . . . , ψs can be easily deduced according to (5). �
(1) When d = 1, Theorem 1 simply gives the standard Haar orthogonal wavelet filter bank DHTF1 :=

{aH ; b} with

aH = 1
2 (δ0 + δ1) and b = 1

2 (δ0 − δ1) .

(2) When d = 2, Theorem 1 recovers the 2D directional Haar tight framelet filter bank DHTF2 :=
{aH ; b1, . . . , b6} in [28, (3.5)] with aH = 1

4 (δ(0,0) + δ(0,1) + δ(1,0) + δ(1,1)) and

b1 = 1
4(δ(0,0) − δ(0,1)), b2 = 1

4(δ(0,0) − δ(1,0)), b3 = 1
4(δ(0,0) − δ(1,1)),

b4 = 1
4(δ(0,1) − δ(1,0)), b5 = 1

4(δ(0,1) − δ(1,1)), b6 = 1
4(δ(1,0) − δ(1,1)).

See Fig. 6 for their associated framelet functions ψ1, . . . , ψ6.
(3) When d = 3, Theorem 1 gives the following 3D directional Haar tight framelet filter bank DHTF1

3 :=
{aH ; b1, . . . , b28} with

aH = 1
8(δ(0,0,0) + δ(0,0,1) + δ(0,1,0) + δ(0,1,1) + δ(1,0,0) + δ(1,0,1) + δ(1,1,0) + δ(1,1,1)),

and
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Fig. 7. Left to Right: Directional Haar tight framelet filter banks in d = 1, 2, 3 respectively, where each line connecting two vertices 
γ1, γ2 ∈ {0, 1}d represents a high-pass filter b := 2−d(δγ1 − δγ2 ).

b1 =
1
8
(δ(0,0,0) − δ(0,0,1)), b2 =

1
8
(δ(0,0,0) − δ(0,1,0)), b3 =

1
8
(δ(0,0,0) − δ(0,1,1)), b4 =

1
8
(δ(0,0,0) − δ(1,0,0)),

b5 =
1
8
(δ(0,0,0) − δ(1,0,1)), b6 =

1
8
(δ(0,0,0) − δ(1,1,0)), b7 =

1
8
(δ(0,0,0) − δ(1,1,1)), b8 =

1
8
(δ(0,0,1) − δ(0,1,0)),

b9 =
1
8
(δ(0,0,1) − δ(0,1,1)), b10 =

1
8
(δ(0,0,1) − δ(1,0,0)), b11 =

1
8
(δ(0,0,1) − δ(1,0,1)), b12 =

1
8
(δ(0,0,1) − δ(1,1,0)),

b13 =
1
8
(δ(0,0,1) − δ(1,1,1)), b14 =

1
8
(δ(0,1,0) − δ(0,1,1)), b15 =

1
8
(δ(0,1,0) − δ(1,0,0)), b16 =

1
8
(δ(0,1,0) − δ(1,0,1)),

b17 =
1
8
(δ(0,1,0) − δ(1,1,0)), b18 =

1
8
(δ(0,1,0) − δ(1,1,1)), b19 =

1
8
(δ(0,1,1) − δ(1,0,0)), b20 =

1
8
(δ(0,1,1) − δ(1,0,1)),

b21 =
1
8
(δ(0,1,1) − δ(1,1,0)), b22 =

1
8
(δ(0,1,1) − δ(1,1,1)), b23 =

1
8
(δ(1,0,0) − δ(1,0,1)), b24 =

1
8
(δ(1,0,0) − δ(1,1,0)),

b25 =
1
8
(δ(1,0,0) − δ(1,1,1)), b26 =

1
8
(δ(1,0,1) − δ(1,1,0)), b27 =

1
8
(δ(1,0,1) − δ(1,1,1)), b28 =

1
8
(δ(1,1,0) − δ(1,1,1)).

See Fig. 6 the 3D unit cube for the support of their associated framelet functions ψ1, . . . , ψ28.

Fig. 7 illustrates the high-pass filters of DHTF filter banks DHTF1, DHTF2, DHTF1
3, respectively.

As discussed, the pMRI coil data are degenerated with noise and aliasing artifacts. For such tasks, 
redundant representation systems are more favor since it provides more information for data recovery. 
Thus, it is useful to use the UDFmT. In such a case, we only need the filter bank to satisfy the partition 
of unity condition in (8). However, the more the number of filters in a filter bank, the less efficiency of 
the UDFmT. Hence, we further simplify the filter bank DHTF1

3. In terms of directionality, there are many 
filters in DHTF1

3 characterizing the same directional property. For example, the filters in {b1, b14, b23, b28}
represent the same z-direction (vertical), the filters in {b2, b9, b25, b27} represent the same y-direction, and 
so on so forth. Here b1 = 1

8(δ(0,0,0) − δ(0,0,1)), b14 = 1
8 (δ(0,1,0) − δ(0,1,1)), and others are similarly defined 

according to Theorem 1 (see Fig. 8 for the illustration). Consequently, the 28 high-pass filters in DHTF1
3

can be regrouped to 13 filters in a simplified filter bank

DHTF2
3 := {aH ; bx, by, bz, bxy, bx,y, bxz, bx,z, byz, by,z, bxyz, bxy,z, bx,yz, bxz,y}

(see Fig. 8 left) with

bx = 1
4(δ(1,0,0) − δ(0,0,0)), by = 1

4(δ(0,1,0) − δ(0,0,0)),bx,y =
√

2
8 (δ(1,0,0) − δ(0,1,0)),

bxy =
√

2
8 (δ(1,1,0) − δ(0,0,0)), bz = 1

4(δ(0,0,1) − δ(0,0,0)),bxz =
√

2
8 (δ(1,0,1) − δ(0,0,0)),

bx,z =
√

2
8 (δ(1,0,0) − δ(0,0,1)), byz =

√
2

8 (δ(0,1,1) − δ(0,0,0)),by,z =
√

2
8 (δ(0,1,0) − δ(0,0,1)),

bxyz = 1(δ(1,1,1) − δ(0,0,0)), bxy,z = 1(δ(1,1,0) − δ(0,0,1)),bx,yz = 1(δ(1,0,0) − δ(0,1,1)),
8 8 8
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Fig. 8. The 3D directional Haar tight framelet filter banks DHTF2
3 := {aH ; bx, by, bz, bxy, bx,y, bxz, bx,z, byz, by,z, bxyz, 

bxy,z, bx,yz, bxz,y} (solid edges on left), and the 3D directional Haar semi-tight framelet filter banks 3DHSTF :=
{aH ; bx, by, bxy, bx,y, baux} (solid edges on right, baux is not shown). Each line connecting two vertices γ1, γ2 ∈ {0, 1}d repre-
sents a high-pass filter b := c(δγ1 − δγ2 ) for some constant c.

bxz,y = 1
8(δ(1,0,1) − δ(0,1,0)).

Note that the filter bank DHTF2
3 satisfies the partition of unity condition in (8).

As pointed out in Section 1, for the output framelet coefficient sequences, information involving the 
z-filters, i.e., those bz, bxz, bxyz, etc., are actually ‘bad’ features for the 3D framelet regularization. They 
represent local contrast discrepancy between coil images and are not sparse features suitable for the reg-
ularization process. More precisely, taking the coil images in Fig. 1 for example, they can be stacked as a 
512 × 512 × 4 data. When fed into the UDFmT decomposition with J = 1, we obtain one low-pass framelet 
coefficient sequence with respect to aH and 13 high-pass framelet coefficient sequences of size 512 × 512 × 4
with respect to those high-pass filters. Among those 13 high-pass framelet coefficient sequences, only four 
of them with respect to the high-pass filters bx, by, bxy, bx,y in DHTF2

3 are sparse; see Fig. 3 (a)–(d) for 
image slices (512 × 512) from those high-pass framelet coefficient sequences. The other framelet coefficient 
sequences involving the z-filters are not sparse at all and are similar to those shown in Fig. 3 (e) and (f). 
Same phenomena happen for further decomposition using UDFmT with high level J > 1. Involving such 
‘non-sparse’ features in our regularization process no doubt damages our purpose of sparse regularization. 
To regularize the framelet coefficients with true sparsity, we utilize this prior information and neglect the 
high-pass framelet coefficients involving the z-filters. Hence, further reduction of those filters gives us an 
even simplified filter bank

3DHSTF := {aH ; bx, by, bxy, bx,y, baux}

(see Fig. 8 right) with an auxiliary filter baux defined by

baux :=
{

1
2δ(0,0,0) −

1
16

(
δ(0,0,1) + δ(0,0,−1)

)
− 1

32
(
δ(1,0,−1) + δ(−1,0,1) + δ(0,1,−1) + δ(0,−1,1) + δ(1,0,1)

+δ(−1,0,−1) + δ(0,1,1) + δ(0,−1,−1)
)
− 1

64
(
δ(1,1,−1) + δ(−1,−1,1) + δ(1,−1,1) + δ(1,−1,1) + δ(−1,1,−1)

+δ(−1,1,1) + δ(1,−1,1) + δ(1,1,1) + δ(−1,−1,−1)
)}

,

to fulfill the partition of unity condition in (8). That is, the filter baux is deduced from

b̂aux = 1 −
(
|âH |2 + |b̂x|2 + |b̂y|2 + |b̂x,y|2 + |b̂xy|2

)
.

Since the decomposition and reconstruction filters involving baux are different in the UDFmT and the filter 
bank is very close to a tight framelet filter bank, we call the filter bank {aH ; bx, by, bxy, bx,y, baux} a 3-
dimensional directional Haar semi-tight framelet (3DHSTF) filter bank. Indeed, the decomposition filter 
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Table 1
Computation complexity in terms of multiplications and additions, and memory storage of UDFmT 
decomposition and reconstruction using DHTF2

3 and 3DHSTF with J = 1.

UDFmT Decomposition Reconstruction Memory
3DHSTF + × + × size

aH 7 1 7 1 1
bx 1 1 2 1 1
by 1 1 2 1 1
bx,y 1 1 2 1 1
bxy 1 1 2 1 1
baux 18 4 1 0 1

Total 29 9 16 5 6

DHTF2
3 + × + × size

aH 7 1 7 1 1
13 bι 13 13 26 13 13

Total 20 14 33 14 14

bank is {aH ; bx, by, bxy, bx,y, baux} while the reconstruction filter bank is {aH ; bx, by, bxy, bx,y, δ}. Using such 
a 3DHSTF filter bank, we have a very simple and efficient fast UDFmT. The pseudo code can be found in 
Algorithms 1 and 2, where � denotes circular convolution and the input data employ periodic extension.

Algorithm 1 (UDFmT: Decomposition with 3DHSTF).

1. Input: a 3D data vJ with J ∈ N and the filter bank 3DHSTF = {aH ; bx, by, bxy, bx,y, baux}.
2. For j = J, J − 1, . . . , 1,

(a) vj−1 ← vj � (aH ↑ 2J−j)�;
(b) For h ∈ {bx, by, bx,y, bxy, baux}:

• wj−1;h ← vj � (h ↑ 2J−j)�;
3. Output: framelet coefficient sequences: {v0} ∪ {wj,h : h ∈ {bx, by, bx,y, bxy, baux}}Jj=1.

Algorithm 2 (UDFmT: Reconstruction with 3DHSTF).

1. Input: framelet coefficient sequences {v0} ∪ {wj,h : h ∈ {bx, by, bx,y, bxy, baux}}Jj=1.
2. For j = 1, 2, . . . , J ,

(a) vj ← vj−1 � (aH ↑ 2J−j);
(b) For h ∈ {bx, by, bx,y, bxy}:

• vj ← vj + wj−1;h � (h ↑ 2J−j);
(c) vj ← vj + wj−1,baux

3. Output: a 3D data v = vJ .

Table 1 presents the computational complexity, scaled by the size of the underlying 3D data, in terms of 
multiplication (×), addition (+), and the memory storage requirement of the UDFmT with the 3DHSTF 
and DHTF2

3 for J = 1. It clearly shows that our 3DHSTF filter bank not only is simpler but also significantly 
reduces the computational complexity as well as the memory storage requirement.

4. Model and algorithm for the 3D framelet regularization in pMRI reconstruction

In this section, we briefly review the GRAPPA model and the �1-SPIRiT model that lead to our �1-W3D 
model using 3D framelet regularization. We present an algorithm for solving the �1-W3D model using the 
ADMM scheme.
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Fig. 9. Reconstruction model by GRAPPA (Left) and SPIRiT (Right) on 3 × 3 interpolating window. For GRAPPA, in the upper 
square 2D window, four K-space points (black dots) are known, p coils have 4p data to predict the target point (gray dot), and then 
interpolating kernel κ1

ι ∈ C4p×1 is needed; in the lower square window, 2p points (black dots) data are collected, then interpolating 
kernel κ2

ι ∈ C2p×1 is needed. For SPIRiT, the data on known and unknown points is fully utilized to predict the target, thus only 
one template for each coil kernel κι ∈ C(9p−1)×1 is needed. The shift-invariant kernel can be estimated on the ACS data according 
to the template by the model (9) or (10).

4.1. 3D framelet regularization for pMRI reconstruction

Suppose we have p coil K-space data gι ∈ Cn×1, ι = 1, . . . , p. Here, n is the size of one coil full K-space 
data. For example, we regard the K-space data for each coil image of 512 × 512 in Fig. 1 as an n × 1
vector data with n = 5122. It does not mean that the data is vectorized, but simply for the purpose of 
explaining the models in matrix form. The sampling matrix P ∈ Rn×n is diagonal with 0 and 1 (indicating 
the corresponding K-space data is skipped or not) at its diagonal elements. The collected data of each coil 
is denoted by Pgι.

For the GRAPPA method, every K-space coefficient of a coil image can be considered as a linear combi-
nation of the data within its neighbor and the data from the same local neighbors of the other coils. The 
interpolation kernel may have different patterns for each coil data and its template is determined by the 
positions of the collected data with respect to a target point within the interpolation window. For example, 
in the illustration of two kernels shown in the left image in Fig. 9, one template is four K-space points (black 
dots) collected in the upper square 2D window of each coil, but another one is only two points known in 
the lower window for one coil. We denote κi

ι ∈ Cηip×1 the interpolation kernel with the ith template for a 
missing position in the ιth coil, where ηi is the number of the known data in the 2D template around the 
missing position of gι, ι = 1, . . . , p. The interpolation kernels κi

ι are supposed to be shift-invariant and are 
estimated according to the sampling model by using the ACS data, fully sampled at the region near the 
center of K-space. For the ιth coil, we construct a matrix Di

ι row-by-row through collecting ηip known data 
points of the ith template from ACS K-space data of p coils and denote its corresponding target data as a 
vector diι, then the kernel κi

ι is estimated by

min
κi
ι

‖Di
ικ

i
ι − diι‖2

2, i = 1, . . . , �κι; ι = 1, . . . , p, (9)

where �κι is the number of kernels determined by the sampling model for the ιth coil. Once the interpolation 
kernels κi

ι are available, the missing coefficients of the same interpolation template can be predicted by its 
linear combination.

To reduce the number of interpolation kernels and reconstruct image from arbitrary sampling patterns in 
the K-space, iterative self-consistent parallel imaging reconstruction method, SPIRiT (see the right image 
in Fig. 9 for an example), is proposed to estimate exactly one interpolation kernel for each coil [31] and 
reconstruct the coil images through a 2D wavelet regularization [34]. The data within the cuboid, except for 
the target position, are all linearly combined together to predict the information in the �1-SPIRiT method. 
Suppose the interpolating window for each coil is of size η1 × η2. Then the ιth coil interpolation kernel, 
denoted by κι ∈ C(η1η2p−1)×1, is estimated by
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min
κι

‖Dικι − dι‖2
2, ι = 1, . . . , p, (10)

where Dι and dι are the known data and target interpolated data from the ACS lines, respectively. For the 
kernel κι from (10), we use Cι ∈ Cn×np as the matrix representation of κι. Once the p kernels are obtained, 
the optimization model by �1-SPIRiT [34] was presented by (1) in Section 1.

We make some remarks here. (i) Compared with the GRAPPA model in (9), the SPIRiT model in (10)
reduces the number of interpolation kernels significantly. Though only the use of (10) may not sufficient 
for pMRI reconstruction, yet by using the sparsity-promoting technique ‖WwavF−1

p (Qu + g)‖1,2 with 2D 
wavelet regularization, the �1-SPIRiT model in (1) improves the performance of GRAPPA. (ii) Although 
Wwav acts on the 3D data F−1

p (Qu +g), essentially, it is just a simple stacking of the 2D wavelet transforms 
of coil data. The correlated information among coils is not taken into account through the �1-�2 norm of 
the 2D wavelet coefficients of each coil.

Each surface coil of a parallel imaging system receives some parts of the information of the target slice, 
and can be stacked together as 3D data with redundancy. By stacking the coil data, we treat the 3D cuboid 
data as a whole object so that we could make good use of correlated information and reduce the aliasing 
artifacts more efficiently. In view of the effectiveness of the �1-SPIRiT model and the importance of the 
correlated information among coils, we hence propose the �1-W3D model in (2) for pMRI reconstruction. 
When W3D in (2) is our 3DHSTF system in Section 3, we call it �1-3DHSTF.

4.2. An algorithm for pMRI reconstruction

We elaborate on how to apply alternating direction method of multiplier (ADMM [15]) to solve the 
�1-W3D model (2). By introducing an auxiliary variable v, the �1-W3D can be reformulated as

min
u

1
2‖(C − I)(Qu + g)‖2

2 + ‖Γv‖1 subject to v = W3DF−1
p (Qu + g). (11)

Consequently, ADMM can be applied to solve the optimization problem (11) via solving several resulting 
subproblems. First, the augmented Lagrangian function of (11) can be written as

Lρ(u, v, α) :=1
2‖(C − I)(Qu + g)‖2

2 + ‖Γv‖1+

Re(α�(v −W3DF−1
p (Qu + g))) + ρ

2‖v −W3DF−1
p (Qu + g)‖2

2,

where Re takes the real part of a complex number, α is the Lagrange parameter vector, and ρ > 0 is a 
penalty parameter on the linear constraint. Then, the iterative scheme of ADMM can be specified below in 
(12). ⎧⎪⎨⎪⎩

uk+1 = arg minu Lρ(u, vk, αk),
vk+1 = arg minv Lρ(uk+1, v, αk),
αk+1 = αk + ρ(vk+1 −W3DF−1

p (Quk+1 + g)).
(12)

The convergence of the above iterative scheme is guaranteed under the condition that ρ > 0 ([15]). We list 
u-subproblem and v-subproblem at each iteration for solving (11).

The u-subproblem in (12) can be written as

uk+1 = arg min
u

{
1
2‖(C − I)(Qu + g)‖2

2 + ρ

2‖v
k −W3DF−1

p (Qu + g) + 1
ρ
αk‖2

2

}
.

The minimizer of the above problem is given by solving the following linear system
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(Q(C − I)�(C − I) + ρI)Qu = (W3DF−1
p Q)�(ρvk + αk) −Q(C − I)�(C − I)g − ρQg, (13)

where � is the complex conjugate transpose operator. The linear system (13) can be solved by the con-
jugate gradient method [35]. In our later numerical experiments, three iterations are performed to get an 
approximate solution of (13).

The v-subproblem in (12) can be written as

vk+1 = arg min
v

1
ρ
‖Γv‖1 + 1

2‖v −W3DF−1
p (Quk+1 + g) + 1

ρ
αk‖2

2,

whose closed-form solution will be given later.
We next present precisely what Γ is. The estimation of Γ is based on an approach in our previous 

work [29]. Let {wj,h : h ∈ {aH ; bx, by, bx,y, bxy, baux}}Jj=1 be the set of the framelet coefficient sequences 
obtained from Algorithm 1. Note that each wj,h is a 3D data of size n1 × n2 × p and can be regarded 
as wj,h = {wι

j,h ∈ Cn1×n2 : ι = 1, . . . , p}, where each wι
j,h is a 2D image slice of size n1 × n2 from wj,h

and p is the number of coils. That is, wj,h is from the stacking of wι
j,h. Then wι

j,h(k), k = (k1, k2) is the 
framelet coefficient at position k in the ιth slice at the jth level decomposition with respect to the filter 
h ∈ {aH ; bx, by, bx,y, bxy, baux}. This index (j, h, ι, k) corresponds to a diagonal entry of Γ, which we denote 
it as γι

j,h(k) and it is defined as follows:

γι
j,h(k) =

{
0, h ∈ {aH , baux},

λ×8J−j

σι
j,h(k) , h ∈ {bx, by, bx,y, bxy},

(14)

where the parameter λ is set by hand, σι
j,h(k) is the average of the absolute value of the 3 × 3 neighbor 

coefficients around position k of wι
j,h, the number 8 in λ × 8J−j comes from that after low-pass filtering by 

aH , the energy of the low-pass filtered framelet coefficient sequence is reduced to 1/8th. In our numerical 
experiments, UDFmTs are utilized with J = 2 and γι

j,h(k) only updates 3 times in the first 10 iterations 
(see Algorithm 3).

For a vector v in the v-problem, define the shrinkage operator y = shrinkΓ/ρ(v) by

yιj,h(k) =
vιj,h(k)
|vιj,h(k)| max

{
|vιj,h(k)| −

γι
j,h(k)
ρ

, 0
}
,

where the index (j, h, ι, k) is with respect to a diagonal entry of Γ indicated as above. Then, the solution of 
the v-subproblem can be obtained as follows:

vk+1 = shrinkΓ/ρ

(
W3DF−1

p (Quk+1 + g) − 1
ρ
αk

)
. (15)

The pMRI reconstruction algorithm for our �1-W3D model can then be described as in Algorithm 3.

Algorithm 3 (�1-W3D pMRI Reconstruction Algorithm).

1. Set ρ = 1, u1 = g, v1 = W3DF−1
p (Qu1 + g), α1 = 0;

2. For k = 1, 2, . . .,
(a) u-problem: Utilize the CG algorithm to compute uk+1 in equation (13);
(b) v-problem:

• If k = 1, 4, 7, update Γ in formula (14);
• Compute vk+1 by the shrinkage operator (15) for every entry of v;
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Fig. 10. Sampling models for K-space (‘white’ indicating the corresponding K-space data collected, but ‘black’ not). (a) The 512 ×512
random sampling matrix of 15% K-space data with 24 ACS lines; (b) The 512 × 512 uniform sampling matrix (one line taken from 
every four lines) of 32% K-space data with 48 ACS lines; (c) The 256 × 256 random sampling matrix of 19% K-space data with 
6 ACS lines; (d) The 256 × 256 uniform sampling matrix (one line taken from every four lines) of 27% K-space data with 6 ACS 
lines.

(c) α-problem: αk+1 using (12);
(d) Compute the 3D coil images ũ = F−1

p (Quk+1 + g) when the stopping condition is satisfied.

Here, for the stopping condition, in our numerical experiments, we set it as k reaching the maximal number 
of iterations 25.

Note that ũ is a 3D cuboid data and can be regarded as ũ = {ũι ∈ Cn1×n2 : ι = 1, . . . , p}. To get a final 
reconstruction image from our �1-W3D pMRI reconstruction algorithm, we use the real domain SoS image of 
the observed coil images ũι by ũsos(k) =

(∑p
ι=1 |ũι(k)|2

) 1
2 , where k = (k1, k2) ∈ {1, 2, . . . , n1} ×{1, 2, . . . , n2}.

5. Numerical experiments

In this section, we illustrate the effectiveness of our proposed �1-3DHSTF model (2) for the pMRI 
reconstruction in comparison with the well-known model �1-SPIRiT [34].

In our experiments, we adopt four sampling models of the K-space data in the phase-encoding direction 
on the Cartesian coordinate that are shown in Fig. 10. Two pseudo random sampling models in Fig. 10(a) 
and 10(c) collect about 15% and 19% K-space data with 24 and 6 ACS lines (fully sampling), respectively. 
Two uniform sampling models in Fig. 10(b) and 10(d) by taking one line data from every four lines, are 
about 32% and 27% K-space data with 48 and 6 ACS lines, respectively. With these sampling models, both 
the �1-SPIRiT method and our proposed �1-3DHSTF method are using the calibration kernel of size 5 ×5 for 
each coil K-space data to reconstruct an image from the coil images. The source code of �1-SPIRiT method 
was downloaded from the website of one of the authors.2 In our proposed Algorithm 3 for �1-3DHSTF 
model, the number of iterations for CG is set to be 3 and the number of iterations is set to be 25.

Section 5.1 presents the results of the pMRI reconstruction from phantom MR coil images acquired by 
an MRI machine while Section 5.2 present the results of the pMRI reconstruction from in-vivo medical MR 
coil images.

5.1. MRI phantoms

In this subsection, four phantom MR images of each slice from a 3T MRI system (Tim Trio, Siemens, 
Erlangen, Germany) are the T2-weighted images acquired by a turbo spin-echo sequence. The detailed 
imaging parameters are set as follows: field of view = 256 × 256 mm2, image matrix size = 512 × 512, 
slice thicknesses = 3 mm, flip angle = 180 degree, repetition time = 4000 ms, echo time = 71 ms, echo 
train length = 11, and number of excitation = 1. For these phantom MR images, the random sampling 
model in Fig. 10(a) and the uniform sampling model in Fig. 10(b) will be applied for these images to test 

2 The code is available at: http://people .eecs .berkeley.edu /~mlustig /Software .html.

http://people.eecs.berkeley.edu/~mlustig/Software.html
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Fig. 11. Reconstruction results on 15% K-space data by the sampling matrix in Fig. 10 (a). (a) SoS image of the full K-space 
with zoom-in parts; (b) SoS image of the 15% K-space data; (c) �1-SPIRiT [34] with parameter 0.012; (d) the �1-3DHSTF with 
parameter 0.022; First row is the obtained images while the second and the third row are the corresponding zoom-in parts of the 
first row images. {(e),(g)} and {(f),(h)} are the zoom-in parts of same positions by �1-SPIRiT [34] with different parameter 0.08 
and 0.003, respectively.

the �1-SPIRiT method and the �1-3DHSTF method in the pMRI reconstruction. The SoS image of the 
full K-space data from the four phantom MR images is considered as a reference image and is shown in 
Fig. 11(a).

We first present the results using the random sampling model. Fig. 11(b) is the SoS image of the coil 
images obtained by applying the inverse discrete Fourier transform for the collected K-space data with 
zero-padding for missing data. We can clearly see aliasing artifacts and blurred edges in this image. The 
image in Fig. 11(c) is the result from the �1-SPIRiT method using the default settings in the source code 
of �1-SPIRiT algorithm except that the calibration kernel is size of 5 × 5, and the regularization parameter 
λ is set to be 0.012 after an extensive trial-and-error searching the best one. The reconstruction image by 
the �1-3DHSTF method with regularization parameter λ = 0.022 is shown in Fig. 11(d). Clearly, aliasing 
artifacts appeared in Fig. 11(b) are significantly suppressed by both �1-SPIRiT and �1-3DHSTF. However, 
the aliasing artifacts in the reconstruction image by the �1-SPIRiT method is more obvious than those in 
the image by the �1-3DHSTF method.

To further evaluate the quality of the reconstructions, two regions shown in Fig. 11(a) are zoomed in the 
second and third rows of Fig. 11. The structural similarity index measure (SSIM) [45] is used for measuring 
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Fig. 12. Reconstruction results on 32% K-space data by the uniform sampling mode (one line taken from every four lines) with 48 
ACS lines in Fig. 10(b). (a) SoS image of the full K-space with zoom-in part; (b) GRAPPA [16]; (c) �1-SPIRiT method [34] with 
parameter 0.005; (d) the �1-3DHSTF method with parameter 0.003. The second row is the zoom-in parts of first row, respectively.

the similarity between two zoom-in images. The higher index value means that the input image is closer 
to the reference one. For the ‘rectangular’ region, the zoom-in image in column (d) by the �1-3DHSTF 
method preserves the rectangular edges and reduces aliasing artifacts in the smoothed area, which are close 
to the reference one in (a) and more shaper than that in the zoom-in images in (c) by the �1-SPIRiT 
method. The SSIM indexes for the ‘rectangular’ region are 0.686 and 0.875 by �1-SPIRiT, and �1-3DHSTF, 
respectively. For the ‘circle’ region, the edges of two circles in the zoom-in image (c) reconstructed by the 
�1-SPIRiT method are blurring with ringing artifacts, but the �1-3DHSTF method in the zoom-in image 
(d) can remove the artifacts and retrieve the shape of the circle more close to the reference one. The SSIM 
index by �1-3DHSTF is 0.884, but it is 0.645 by �1-SPIRiT. The last row in Fig. 11 is to show the ability 
of the �1-SPIRiT method to remove aliasing artifacts and preserve edges by its regularization parameter λ. 
The values of λ used in �1-SPIRiT is 0.012 in Fig. 11(c), 0.08 in Fig. 11(e) and 11(g), and 0.003 in Fig. 11(f) 
and 11(h). We see that the aliasing artifacts caused by the downsampling operation appeared in all images 
and can not be removed by using larger regularization parameters.

Next, we present the results for the uniform sampling model. The SoS image in Fig. 12(a) is identical to 
the one in Fig. 11(a). Fig. 12(b) is reconstructed by the GRAPPA method, and Fig. 12(c) and 12(d) are 
reconstructed by the �1-SPIRiT method and the �1-3DHSTF method with regularization parameters 0.005 
and 0.003, respectively. Both �1-SPIRiT and �1-3DHSTF reconstruct most of the target information, and 
are better than the GRAPPA method. For the zoom-in images, aliasing artifacts occur in Fig. 12(c) by the 
�1-SPIRiT method, but are efficiently removed by the �1-3DHSTF method. The SSIM indexes for zoom-in 
images of Fig. 12(c) and (d) by �1-SPIRiT and �1-3DHSTF, respectively, are 0.873 and 0.878.

In summary, for the random and uniform sampling cases on MRI phantoms, the �1-3DHSTF method 
performs much better than the �1-SPIRiT method in terms of keeping edges and remove aliasing artifacts. 
Moreover, unlike the sensitivity of the �1-SPIRiT model to the regularization parameter λ, our specific 
designed Γ in (14) makes the �1-3DHSTF model robust to the regularization parameter λ. For the MRI 
phantom cases in Fig. 2 and Fig. 12 with the same uniform sampling model in Fig. 10(b), though the 
target slices are different, the �1-3DHSTF method is efficient to reconstruct high quality images by the 
same parameter λ = 0.003. It shows that our model is not sensitive to λ for the K-space data acquired on 
the same MRI System with the same sampling model.
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Fig. 13. Reconstruction results on 19% K-space data of the matrix in Fig. 10 (c). (a) SoS image of the full K-space with zoom-in 
parts; (b) SoS image of the 19% K-space data; (c) �1-SPIRiT [34] with parameter 0.018; (d) the �1-3DHSTF with parameter 0.0003.

Fig. 14. Zoom-in parts of the reconstruction results in Fig. 13. First column: (a), (e), (i) and (m) SoS image of the full K-space. 
Second column: (b), (f), (j) and (n) SoS image of the 19% K-space data. Third column: (c), (g), (k) and (o) �1-SPIRiT [34] with 
parameter 0.018. Fourth column: (d), (h), (l) and (p) the �1-3DHSTF with parameter 0.0003.

5.2. In-vivo data

In this subsection we test the �1-3DHSTF method on MRI data that is obtained by head examination 
from a healthy volunteer. The imaging was done on a 3T MRI system. Transverse T2-weighted images were 
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Fig. 15. Reconstruction results (First row) and corresponding zoom-in parts (Second row) on 27% K-space data by the uniform 
sampling mode (one line taken from every four lines) with 6 ACS lines in Fig. 10 (d). (a) SoS image of the full K-space; (b) SoS 
image of the 27% K-space data; (c) �1-SPIRiT method [34] with parameter 0.008; (d) the �1-3DHSTF method with parameter 
0.0003. Second row is the zoom-in parts of first row, respectively.

Table 2
SSIM index for the zoom-in parts from reconstructed images on In-vivo data.

Fig. 13 (a) SoS (19%) �1-SPIRiT �1-3DHSTF Fig. 14
R1 0.600 0.879 0.912 First row
R2 0.683 0.862 0.933 Second row
R3 0.662 0.857 0.920 Third row
R4 0.718 0.872 0.924 Fourth row

Fig. 15 (a) SoS (27%) �1-SPIRiT �1-3DHSTF Fig. 15

R1 0.572 0.919 0.958 Second row

acquired with a turbo spin-echo sequence. The detail imaging parameters are as follows: field of view = 
256 ×256 mm2, image matrix size = 256 ×256, slice thicknesses = 3 mm, flip angle = 150 degree, repetition 
time = 5920 ms, echo time = 101 ms, echo train length = 11 and number of excitation = 1. Two slices of 
32-coil images were collected to compare the performance of the �1-SPIRiT method and the �1-3DHSTF 
method.

For the first slice, the full K-space data of 32-coil images are collected and their SoS image is considered 
as a reference image shown in Fig. 13(a). About 19% full K-space data with only 6 ACS lines are collected 
using the sampling model in Fig. 10(c). The resulting SoS image of the 19% full K-space data in Fig. 13(b) 
is noisy and the brain structures in this image are blurry. Furthermore, faint semicircle-like aliasing artifacts 
can be seen in the upper and lower portions of the image due to accelerating K-space sampling model. The 
regularization parameters of the �1-SPIRiT method and the �1-3DHSTF method are respectively set to be 
0.018 and 0.0003 to reconstruct high quality images. From Fig. 13(c) and 13(d), we see that the �1-SPIRiT 
and the �1-3DHSTF reconstruct edge information of structure and suppress aliasing artifacts which are 
observable in the downsampling SoS image in Fig. 13(b). For conveniently comparing the difference, four 
parts labeled by R1, R2, R3 and R4 in Fig. 13(a) are zoomed-in in Fig. 14, and the zoom-in images in the 
first, second, third and fourth columns are corresponding to Fig. 13(a)–(d), respectively.

For the first row of Fig. 14, zoom-in images in Fig. 14(c) and 14(d) have better structures of skull and scalp 
than those in Fig. 14(b), and their corresponding SSIM values are 0.879 and 0.912 according to SSIM index 
in Table 2. Comparing with reference SoS image of the full K-space in Fig. 14(a), the image in Fig. 14(c) 
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by the �1-SPIRiT method has faint ripple artifacts (arrow pointing to), but the image in Fig. 14(d) by 
the �1-3DHSTF method does not suffer from these artifacts and is more close to the reference one. For 
the second region of lobus occipitalis, ‘black concave artifacts’ (arrow pointing to) obviously occurs in the 
Fig. 14(g) with SSIM value 0.862 by the �1-SPIRiT method, but the �1-3DHSTF method can inhibit these 
artifacts by 3D semi-tight framelet regularization and provides close structures in Fig. 14(h) with SSIM 
value 0.933 with respect to the reference one in Fig. 14(e).

For the zoom-in images in the third row of Fig. 14, the cerebellum lobulus in Fig. 14(j) is discernible 
and blurred. However, images in Fig. 14(k) and 14(l) have better structures of cerebellum than images in 
Fig. 14(j). Comparing with reference SoS image of the full K-space in Fig. 14(i), the image in Fig. 14(l) with 
SSIM value 0.920 by the �1-3DHSTF method obviously preserves tiny detail (lower arrow pointing to) and 
edges (upper arrow pointing to) more noticeable than those in the Fig. 14(k) by the �1-SPIRiT method. 
The lobulus structures by the �1-3DHSTF method are high contrast and more obvious to be observed in 
Fig. 14(l), but the geometrical structures in Fig. 14(k) with SSIM value 0.857 are blurred by the �1-SPIRiT 
method. The final region of suprasellar cistern is provided in the last row of Fig. 14. ‘White aliasing artifacts’ 
(upper arrow pointing to) occurs in Fig. 14(o) with SSIM value 0.872 by the �1-SPIRiT method. However, 
the �1-3DHSTF method can remove these aliasing artifacts and provide distinguishable structures (lower 
arrow pointing to) at upper-middle position of Fig. 14(p) with SSIM value 0.924.

For the second set of 32 coil images, the reference SoS image of full K-pace data is shown in Fig. 15(a) 
and the SoS image of 27% K-space data by the uniform sampling model with 6 ACS lines in Fig. 10(d) is 
presented in Fig. 15(b). Regularization parameters of the �1-SPIRiT method and the �1-3DHSTF method 
are set to be 0.008 and 0.0003, respectively. The reconstruction images in Fig. 15(c) and 15(d) respectively 
by the �1-SPIRiT method and our �1-3DHSTF method mostly reduce the up and down half aliasing circles 
which are seen in Fig. 15(b). But one aliasing circle still obviously exists at the middle and the lower position 
of Fig. 15(c) by the �1-SPIRiT method, which is removed in Fig. 15(d) by our �1-3DHSTF method. We 
zoom in the region of genu corpus callosum in the second row of Fig. 15 to compare the difference between 
the �1-SPIRiT and �1-3DHSTF methods. Edge geometrical structures in Fig. 15(b) of the SoS image of 
27% K-space data are blurred and discernible. From the zoom-in images in Fig. 15 (c) and 15(d) with 
their corresponding SSIM value 0.919 and 0.958, we see that the �1-3DHSTF method preserves edges much 
shaper and removes aliasing artifacts better than the �1-SPIRiT method, and provides almost as same as 
the reference zoom-in one by SoS image of the full K-space data.

These experiments show that the �1-3DHSTF method efficiently removes aliasing artifacts through con-
sidering correlation information of coil images. It has a grater capacity of preserving edges, tiny details, and 
structures in constructed images to facilitate doctor’s diagnosis.

6. Conclusions and further remarks

In this paper, we propose a �1-W3D model for the pMRI reconstruction with 3DHSTF system that is 
tailor-made for the sparse representation of 3D cuboid data from different coil images. The 3DHSTF system 
has many desirable properties that nicely fits into the setting pMRI reconstruction. We use ADMM scheme 
to solve our �1-W3D model and our numerical experiments demonstrate the effectiveness and efficiency of 
the �1-3DHSTF model in removing aliasing artifacts and preserving edges.

We remark that the �1-3DHSTF model reconstructs images with significantly less aliasing artifacts and at 
the same time requires only a few ACS lines. Moreover, the �1-3DHSTF model is robust to the regularization 
parameter when the sampling model and number of coils are fixed. Further improvement of our �1-W3D 
could be considered. For example, we could consider 3D directional tight framelet systems with higher 
order of vanishing moments and short support; or incorporated with machine learning techniques, which 
have recently been proposed to improve the pMRI reconstruction quality; see e.g., [4,24]. These techniques 
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include both image domain approaches for better image regularization and K-space approaches for better 
K-space completion.

We also remark that the neural network has recently been used for the pMRI reconstruction [2]. The 
challenges of the neural network based pMRI problem are (i) lack of public databases with a large number 
of multi-coil K-space data [24]; (ii) varying imaging parameters’ setting of each MRI machine (for example, 
field of view, slice thicknesses, and so on), which are essential for a successful reconstruction [1]; and (iii) the 
patients’ heartbeat, slight body moving and other factors in the process of scanning that can form gradient 
information similar to adversarial attack, which affects the accuracy of prediction, resulting in blurred 
anatomical structure details and artifacts in reconstructed MRI images [3]. Hence, in this paper, we do 
not consider neural network approach for pMRI reconstitution but focus on the pMRI reconstruction via 
optimization model (2) regularized by the proposed framelet systems.
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