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Spherical Framelets from Spherical Designs\ast 

Yuchen Xiao\dagger and Xiaosheng Zhuang\ddagger 

Abstract. In this paper, we investigate in detail the structures of the variational characterization AN,t of the
spherical t-design, its gradient \nabla AN,t, and its Hessian \scrH (AN,t) in terms of fast spherical harmonic
transforms. Moreover, we propose solving the minimization problem of AN,t using the trust-region
method to provide spherical t-designs with large values of t. Based on the obtained spherical t-
designs, we develop (semidiscrete) spherical tight framelets as well as their truncated systems and
their fast spherical framelet transforms for the practical spherical signal/image processing. Thanks to
the large spherical t-designs and localization property of our spherical framelets, we are able to pro-
vide signal/image denoising using local thresholding techniques based on a fine-tuned spherical cap
restriction. Many numerical experiments are conducted to demonstrate the efficiency and effective-
ness of our spherical framelets and spherical designs, including Wendland function approximation,
ETOPO data processing, and spherical image denoising.
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1. Introduction and motivation. Spherical data commonly appear in many real-world
applications such as the navigation data in the global positioning system (GPS), the global
climate change estimation in geography, the planet study in astronomy, the cosmic microwave
background (CMB) data analysis in cosmology, the virus analysis in biology and molecular
chemistry, the 360\circ panoramic images and videos in virtual reality and computer vision, and
so on. In many of these real-world application scenarios, the observed spherical data could
be large in terms of size, irregular in the sense of function property, or incomplete and noisy
due to machine and environment deficiency. How to represent such data ``well"" so that one
can process them ``efficiently"" is the key to solving these real-world problems successfully.
Spherical data are necessarily discrete and can typically be modeled as samples on spherical
meshes or spherical point sets [11]. In this paper, we focus on the study of spherical data
defined on a special type of structured point sets on the unit sphere, that is, the spherical
t-designs, and the construction of multiscale representation systems, namely, the semidiscrete
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SPHERICAL FRAMELETS FROM SPHERICAL DESIGNS 2073

spherical framelet systems, based on the spherical t-designs, for the sparse representation and
efficient processing of spherical data.

How to ``nicely"" distribute points on the unit sphere lies in the heart of many fundamental
problems of mathematics and physics such as the best packing problems [15], the minimal
energy problems [33], the optimal configurations related to Smale's 7th Problem [55], and so
on. It is well-known that it is highly nontrivial to define a so-called ``good"" point set on the
unit sphere \BbbS d := \{ \bfitx \in \BbbR d+1 | \| \bfitx \| = 1\} when the dimension d\geq 2, where \| \cdot \| is the Euclidean
norm. Many real-world problems can be interpreted as a partial differential equation (PDE)
or a PDE system and their numerical solutions (e.g., using finite-element methods) are then
sought to address the related problems. Numerical integrations (quadrature rules) hence play
an important role in such numerical solutions of PDEs. From the viewpoint of numerical
integrations on the sphere, that is, finding a quadrature (cubature) rule QN := \{ (\bfitx i,wi) \in 
\BbbS d \times \BbbR | i = 1, . . . ,N\} such that 1

| \BbbS d| 
\int 
\BbbS d f(\bfitx )d\mu d(\bfitx ) \approx 

\sum N
i=1wif(\bfitx i), where \mu d denotes the

surface measure on \BbbS d such that \mu d(\BbbS d) =: | \BbbS d| is the surface area of \BbbS d, one can define a
``good"" point set XN := \{ \bfitx 1, . . . ,\bfitx N\} \subset \BbbS d in the sense of requiring the weights wi \equiv 1

N for
all i for a certain class of functions f . More precisely, let \Pi t := \Pi t(\BbbS d) denote the space of
(d+1)-variate polynomials with total degree at most t restricted on \BbbS d. The point set XN is
said to be ``good"" if it satisfies

1

N

N\sum 
i=1

p(\bfitx i) =
1

| \BbbS d| 

\int 
\BbbS d

p(\bfitx )d\mu d(\bfitx ) \forall p\in \Pi t.(1.1)

Such a point configuration XN , is called a spherical t-design, which was established by Del-
sarte, Goethals, and Seidel [19] in 1977. In other words, a spherical t-design XN is an equal
weight polynomial-exact quadrature rule associated with \Pi t. We refer to the excellent survey
paper [5] by Bannai and Bannai on the topic of spherical designs.

A natural question immediately follows: Does such a spherical t-design XN exist? It turns
out that such a question leads to many profound mathematical results. Delsarte, Goethals,
and Seidel [19] showed that the lower bound of a spherical t-design XN \subset \BbbS d on the number

N of points for any degree t \in \BbbN satisfies N \geq N\ast (d, t), where N\ast (d, t) = 2
\bigl( d+ t - 1

2

d

\bigr) 
if t is odd

and N\ast (d, t) =
\bigl( d+ t

2

d

\bigr) 
+
\bigl( d+ t

2
 - 1

d

\bigr) 
if t is even. When the lower bound is attained, it is called

a tight spherical t-design. Note that on the circle \BbbS 1, the vertices of a regular (t + 1)-gon
form a tight spherical t-design, that is, N\ast (1, t) = t + 1. However, it is noteworthy that
tight spherical t-designs with N\ast (d, t) points exists only for t= 1,2,3,4,5,7,11 with different
restrictions on the dimension d [5, 48]. On the other hand, Seymour and Zaslavsky [52] proved
(nonconstructively) that a spherical t-design exists for any t if N is sufficiently large. Wagner
[60] gave the first feasible upper bounds with N =\scrO (tCd4

). Korevaar and Meyers [33] further
showed that spherical t-designs can be done with N =\scrO (td(d+1)/2) and conjectured that N =
\scrO (td). Using topological degree theory, Bondarenko, Radchenko, and Viazovska [6] proved
that spherical t-designs indeed exist for N = \scrO (td). They further showed that XN can be
well-separated in the sense that the minimal separation distance \delta XN

:=min1\leq i<j\leq N \| \bfitx i - \bfitx j\| 
is of order \scrO (N - 1/d) [7]. Together with N\ast (d, t) =\scrO (td), one implies that cdt

d \leq N \leq Cdt
d for

some constants Cd \geq cd > 0 depending on d only and can conclude that the optimal asymptotic
order is td.
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2074 YUCHEN XIAO AND XIAOSHENG ZHUANG

Most of the real-world spherical data mentioned in the beginning are typically spherical
signals on the 2-sphere \BbbS 2. In this paper and in what follows, we are interested in spherical
signal processing coming from many real-world applications. Hence, we restrict ourselves in
the case of d= 2 and consider the spherical t-design XN on \BbbS 2 obtained from numerical opti-
mization methods. Hardin and Sloane [30] have extensively investigated spherical t-designs on
\BbbS 2 and suggested a sequence of putative spherical t-designs with 1

2 t
2+o(t2) points. Numerical

calculation of spherical t-designs using multiobjective optimization was studied by Maier [40].
Numerical methods with computer-assisted proofs for computational spherical t-designs have
been developed through nonlinear equations and optimization problems in [2, 9, 10]. Note
that dim(\Pi t) = (t+1)2 on \BbbS 2. An extremal point set is a set of (t+1)2 points on \BbbS 2 that max-
imizes the determinant of a basis matrix for an arbitrary basis of \Pi t. Sloan and Womersley
[53] showed that the extremal point set has very nice geometric properties as the points are
well-separated. By finding the solutions of systems of underdetermined equations and using
the Krawczyk-type interval arithmetic technique, Chen and Womersley in [10] verified the
existence of spherical t-designs with (t+ 1)2 points for small t. In [9], Chen, Frommer, and
Lang further improved the interval arithmetic technique and showed that spherical t-designs
with (t+1)2 points exist for all degrees t up to 100. The spherical t-designs with (t+1)2 points
are called extremal spherical t-designs and are also studied in [2]. Womersley [64] construc-
ted symmetric spherical t-designs with N = t2+t+4

2 for t up to 325. The interval arithmetic
method [9] requires \scrO (t6) time complexity and thus prevents it from verifying the existence
of spherical t-designs when t is large.

Sloan and Womersley [54] introduced a variational characterization of the spherical t-
design via a nonnegative quantity AN,t(XN ) given by

AN,t(XN ) :=
4\pi 

N2

t\sum 
\ell =1

\ell \sum 
m= - \ell 

\bigm| \bigm| \bigm| \bigm| \bigm| 
N\sum 
i=1

Y m
\ell (\bfitx i)

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

,(1.2)

where Y m
\ell is the spherical harmonic with degree \ell and order m. They gave some important

properties for the relation between spherical t-designs and AN,t. One is that XN is a spherical
t-design if and only if AN,t(XN ) = 0 (cf. Theorem 3 in [54]). Hence, the search of spherical
t-designs is equivalent to finding the roots of the function f(\bfitx 1, . . . ,\bfitx N ) := AN,t(XN ), which
can be numerically solved via minimizing a nonlinear and nonconvex problem:

min
XN\subset \BbbS 2

AN,t(XN ).(1.3)

By using the addition theorem, the quantity can be rewritten in terms of the Legendre poly-
nomials and the three-term recurrence can be used to speed up the numerical evaluations of
AN,t (as well as its gradient and Hessian). However, since the formulation of AN,t in [54]
essentially uses a full matrix of Legendre polynomial evaluations, the computations of numer-
ical spherical t-designs are only feasible for small t. Gr\"af and Potts [25] rewrote AN,t using
fast matrix-vector evaluations based on optimization techniques on manifold and the noneq-
uispaced fast spherical Fourier transforms (NFSFTs). They computed numerical spherical
t-designs for t\leq 1000 with N \approx t2

2 .
Once spherical t-design point sets are obtained, signals on the sphere can be modeled

as samples of functions on such point sets. Sparsity is the key to exploiting the underlying
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SPHERICAL FRAMELETS FROM SPHERICAL DESIGNS 2075

structures of the signals for various applications such as signal denoising. It is well-known
that sparsity can be well-exploited using multiresolution analysis techniques, which are widely
used in terms of wavelet analysis in Euclidean space \BbbR d, d\geq 1. Multiscale representation sys-
tems including wavelets, framelets, curvelets, shearlets, etc., have been developed for the
sparse representations of data (see, e.g., [13, 17, 26, 27, 29, 35, 41, 65]) over the past four
decades, which play an important role in approximation theory, computer graphics, statis-
tical inference, compressed sensing, numerical solutions of PDEs, and so on. Wavelets on
the sphere first appeared in [47, 49, 51]. Later, Antonio and Vandergheynst in [3, 4] used a
group-theoretical approach to construct continuous wavelets on the spheres. Localized frames
on the sphere were studied in [36, 43], which use polynomial-exact quadrature rules on \BbbS d.
Based on hierarchical partitions, area-regular spherical Haar tight framelets were constructed
in [37]. Extension of wavelets/framelets on the sphere with more desirable properties, such as
localized property, tight frame property, symmetry, directionality, etc., were further studied in
[20, 32, 63, 42, 45] and many references therein. In [61], based on orthogonal eigenpairs, local-
ized kernels, filter banks, and affine systems, Wang and Zhuang provided a general framework
for the construction of tight framelets on a compact smooth Riemannian manifolds and con-
sidered their discretizations through polynomial-exact quadrature rules. Fast framelet filter
bank transforms are developed and their realizations on the 2-sphere are demonstrated.

In this paper, we further exploit the structure of AN,t and employ the trust-region method
together with the NFSFTs to find the numerical spherical t-designs for large values of t beyond
1000. Moreover, we focus on the development of spherical tight framelets on \BbbS 2 with fast
transform algorithms based on the spherical t-designs for practical spherical signal processing.
The contributions of this paper lie in the following aspects. First, we investigate in detail the
structures of AN,t, its gradient \nabla AN,t, and its Hessian \scrH (AN,t) in terms of the fast evaluations
of spherical harmonic transforms and their adjoints without the needs of referring to their
manifold versions as in [25]. Moreover, we proposed solving the minimization problem (1.3)
using the trust-region method to provide spherical t-designs with large values of t. Second,
(semidiscrete) spherical tight framelet systems are developed based on the obtained spherical
t-design point sets. More importantly, a truncated spherical framelet system is introduced for
discrete spherical signal representations and its associated fast spherical framelet (filter bank)
transforms are realized for practical signal processing on the sphere. Third, thanks to the high-
degree spherical t-designs and localization property of our framelets, we are able to provide
signal/image denoising using local thresholding techniques based on a fine-tuned spherical
cap [16, 31] restrictions. Last but not least, many numerical experiments are conducted to
demonstrate the efficiency and effectiveness of our spherical framelets and spherical designs,
including Wendland function approximation, ETOPO data processing, and spherical image
denoising.

This paper is organized as follows. We introduce the trust-region method for finding the
spherical t-designs in section 2 including the fast evaluations for AN,t, its gradient \nabla AN,t,
and its Hessian \scrH (AN,t). In section 3, we demonstrate the numerical spherical t-designs
obtained from various initial point sets and use them for Wendland function approximation. In
section 4, based on the spherical t-designs, we provide the construction, characterizations, and
algorithmic realizations of the spherical framelet systems as well as their truncated spherical
framelet systems. In section 5, numerical experiments to demonstrate the applications of
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2076 YUCHEN XIAO AND XIAOSHENG ZHUANG

the truncated spherical framelet systems in spherical signal/image denoising are conducted.
Finally, the conclusion and final remarks are given in section 6.

2. Spherical \bfitt -designs from trust-region optimization. In this section, we briefly intro-
duce the trust-region method for solving a general optimization problem and show how it can
be applied to find spherical t-designs with large values of t.

2.1. Trust-region optimization. As we mentioned in the introduction, finding XN to
achieve the minimum of AN,t in (1.3) can be regarded as a general nonlinear and nonconvex
optimization problem:

min
x\in X

f(x),(2.1)

where f : \BbbR d \rightarrow \BbbR is the objective function to be minimized and X \subset \BbbR d is a feasible set.
There are mainly two global convergence approaches to solve (2.1): one is the line search, and
another is the trust region. The line search approach uses the quadratic model to generate a
search direction and then find a suitable step size along that direction. Though such a line
search method is successful most of the time, it may not exploit the d-dimensional quadratic
model sufficiently. Unlike the line search approach, the trust-region method obtains a new
iterate point by searching in a neighborhood (trust region) of the current iterated point. The
trust-region method has many advantages over the line search method such as robustness of
algorithms, easier establishment of convergence results, second-order stationary point conver-
gence, and so on. The trust-region method has been developed over 70 years, we briefly give
an introduction below. For more details, we refer to the book [57].

Suppose that the objective function f is at least twice differentiable. The gradient of f at
x= (\xi 1, . . . , \xi d)\in \BbbR d is defined as

\nabla f(x) :=
\biggl[ 
\partial 

\partial \xi 1
f(x), . . . ,

\partial 

\partial \xi d
f(x)

\biggr] \top 
,(2.2)

and the Hessian of f is defined as a d\times d symmetric matrix with elements

[\scrH f(x)]ij :=
\partial 2

\partial \xi i\partial \xi j
f(x), 1\leq i, j \leq d.(2.3)

Suppose that xk is the current iterated point and consider the quadratic model to approximate
the original objective function f(x) at x = xk: q

(k)(s) = f(xk) + g\top k s+
1
2s

\top Aks, where gk =
\nabla f(xk) and Ak =\scrH f(xk). Then the optimization problem (2.1) is essentially reduced to solve
a sequence of trust-region subproblems:

min
s

q(k)(s) = f(xk) + g\top k s+
1

2
s\top Bks s.t. \| s\| \leq \Delta k,(2.4)

where Bk could be exactly equal to Ak or is a symmetric approximation to Ak (Bk \approx Ak). This
is equivalent to searching a new point xk+1 in a region \Omega k = \{ x : \| x - xk\| \leq \Delta k\} centered at
xk with radius \Delta k. The trust-region algorithm is presented in Algorithm 2.1, where with the
initial (x0,\Delta 0) and some parameters \Delta , \eta 1, \eta 2, \nu 1, \nu 2 given, the algorithm iteratively solves sk in

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPHERICAL FRAMELETS FROM SPHERICAL DESIGNS 2077

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bftwo .\bfone Trust-region algorithm

\bfI \bfn \bfp \bfu \bft : x: initial point; K\mathrm{m}\mathrm{a}\mathrm{x}: maximum iterations; \varepsilon : termination tolerance;
Initialize k=0, x0 = x, \Delta , \Delta 0 \in (0,\Delta ), 0< \eta 1 \leq \eta 2 < 1, 0< \nu 1 < 1< \nu 2.

1: \bfw \bfh \bfi \bfl \bfe k\leq K\mathrm{m}\mathrm{a}\mathrm{x} and \| gk\| > \varepsilon \bfd \bfo 
2: approximately solve the subproblem 2.4 for sk.

3: compute f(xk + sk) and \tau k =
f(xk) - f(xk+1)
q(k)(0) - q(k)(sk)

. Set

xk+1 =

\Biggl\{ 
xk + sk, \tau k \geq \eta 1,

xk otherwise.

4: Choose \Delta k+1 satisfies

\Delta k+1 \in 

\left\{     
(0, \nu 1\Delta k], \tau k < \eta 1,

[\nu 1\Delta k,\Delta k], \tau k \in [\eta 1, \eta 2),

[\Delta k,min\{ \nu 2\Delta k,\Delta \} ], \tau k \geq \eta 2 and \| sk\| =\Delta k.

5: Update gk+1 =\nabla f(xk+1) and Bk+1 \approx (\scrH f)(xk+1). Set k= k+ 1.
6: \bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 

\bfO \bfu \bft \bfp \bfu \bft : minimizer x\ast .

(2.4) approximately (line 2) by the preconditioned conjugate gradient (PCG) algorithm given
in Algorithm 2.2 and updates (xk+1,\Delta k+1) from current (xk,\Delta k) according to the quantities
\tau k (lines 3--4). Algorithm 2.2 for solving the subproblem (2.4) is proposed by Steihaug [56]
based on a preconditioned and truncated conjugate gradient method. For more details and
how to choose the precondition matrix W , we refer to [14].

A well-known result regarding the convergence of Algorithm 2.1 is given as follows, which
shows that the sequence \{ xk\} \infty k=1 converges to a stationary point of f .

Theorem 2.1 (see [57]). Suppose that f :\BbbR d \rightarrow \BbbR is continuously differentiable on a bounded
level set L = \{ x \in \BbbR d | f(x) \leq f(x0)\} , the approximate Hessian Bk is uniformly bounded in
norm, and solution sk of the trust-region subproblem (2.4) is bounded with \| sk\| \leq \~\eta \Delta k, where
\~\eta > 0 is a constant. Then, the sequence gk of Algorithm 2.1 satisfies limk\rightarrow \infty gk = 0.

Regarding the computational time complexity of the trust-region method, the total cost of
Algorithm 2.1 includes the cost from the total outer iteration steps kwh (the while-loop in line
1) in Algorithm 2.1, where each outer iteration has the cost from the inner iteration steps kfor,i
(the for-loop in line 4) in Algorithm 2.2. The total number of iterations is KTR =

\sum kwh

i=1 kfor,i.
In each iteration of either inner or outer, the main cost comes from the evaluations of f ,
the gradient g = \nabla f , and the Hessian \scrH f (or its approximation). Denote Cf ,Cg,C\scrH their
computational time complexity, respectively. Then, the total computational time complexity
of Algorithm 2.1 is of order \scrO (KTR \cdot (Cf + Cg + C\scrH )). We proceed next to discuss the
minimization problem (2.1) under the setting of spherical t-design, i.e., f = AN,t, and its
related evaluations and complexity.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2078 YUCHEN XIAO AND XIAOSHENG ZHUANG

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bftwo .\bftwo PCG algorithm for trust-region subproblem (2.4)

\bfI \bfn \bfp \bfu \bft : xk: initial point; K\mathrm{m}\mathrm{a}\mathrm{x}: maximum iterations; \varepsilon k: kth termination tolerance; W :
precondition matrix. \| g\| W :=

\sqrt{} 
g\top Wg.

Initialize z0 = 0, g0 =\nabla f(xk), \gamma 0 = - d0 =W - 1g0, Bk \approx (\scrH f)(xk).
1: \bfi \bff \| g0\| < \varepsilon k \bft \bfh \bfe \bfn 
2: sk = z0
3: \bfe \bfl \bfs \bfe 
4: \bff \bfo \bfr j = 0,1, . . . ,K\mathrm{m}\mathrm{a}\mathrm{x} \bfd \bfo 
5: \bfi \bff d\top j Bkdj \leq 0 \bft \bfh \bfe \bfn 

6: find \rho > 0 s.t. \| zj + \rho dj\| W =\Delta k; Set sk = zj + \rho dj .
7: break
8: \bfe \bfn \bfd \bfi \bff 

9: Set \alpha j =
g\top 
j \gamma j

d\top 
j Bkdj

and zj+1 = zj + \alpha jdj .

10: \bfi \bff \| zj+1\| W \geq \Delta k \bft \bfh \bfe \bfn 
11: find \rho > 0 s.t. \| zj + \rho dj\| W =\Delta k; Set sk = zj + \rho dj .
12: break
13: \bfe \bfn \bfd \bfi \bff 
14: gj+1 = gj + \alpha jBkdj .
15: \bfi \bff \| gj+1\| W < \varepsilon k\| g0\| W \bft \bfh \bfe \bfn 
16: sk = zj+1.
17: break
18: \bfe \bfn \bfd \bfi \bff 

19: Set \gamma j+1 =W - 1gj+1, \beta j =
g\top 
j+1\gamma j+1

g\top 
j \gamma j

, dj+1 = - \gamma j+1 + \beta jdj .

20: \bfe \bfn \bfd \bff \bfo \bfr 
21: \bfe \bfn \bfd \bfi \bff 
\bfO \bfu \bft \bfp \bfu \bft : solution s\ast k.

2.2. Fast evaluations of \bfitA \bfitN ,\bfitt , \bfnabla \bfitA \bfitN ,\bfitt , and \bfscrH (\bfitA \bfitN ,\bfitt ). In what follows, we give details
on the evaluations of AN,t, \nabla AN,t, and \scrH (AN,t).

For \bfitx \in \BbbS 2, in terms of the spherical coordinate (\theta ,\phi )\in [0, \pi ]\times [0,2\pi ), we can represent it
as \bfitx =\bfitx (\theta ,\phi ) = (sin\theta cos\phi , sin\theta sin\phi , cos\theta )\in \BbbS 2. For each \ell \in \BbbN 0 :=\BbbN \cup \{ 0\} andm= - \ell , . . . , \ell ,
the spherical harmonic Y m

\ell can be expressed as

Y m
\ell (\bfitx ) = Y m

\ell (\theta ,\phi ) :=

\sqrt{} 
(2\ell + 1)

4\pi 

(\ell  - m)!

(\ell +m)!
Pm
\ell (cos\theta )e\mathrm{i}m\phi ,(2.5)

where Pm
\ell : [ - 1,1] \rightarrow \BbbR is the associated Legendre polynomial given by Pm

\ell (z) = ( - 1)m(1 - 
z2)

m

2
\mathrm{d}m

\mathrm{d}zmP\ell (z) for \ell \in \BbbN 0 and m= 0, . . . , \ell with P\ell : [ - 1,1]\rightarrow \BbbR being the Legendre polynomial

given by P\ell (z) =
1

2\ell \ell !
\mathrm{d}\ell 

\mathrm{d}z\ell [(z2 - 1)\ell ] for \ell \in \BbbN 0. We use the convention P - m
\ell := ( - 1)m (\ell  - m)!

(\ell +m)!P
m
\ell to

define Y m
\ell with negative m. Note that Y 0

0 = 1\surd 
4\pi 
. Then, we have \Pi t = span\{ Y m

\ell | (\ell ,m) \in \scrI t\} 
with the index set
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SPHERICAL FRAMELETS FROM SPHERICAL DESIGNS 2079

\scrI t := \{ (\ell ,m) | \ell = 0, . . . , t;m= - \ell , . . . , \ell \} .(2.6)

Moreover, \{ Y m
\ell | \ell \in \BbbN 0, | m| \leq \ell \} forms an orthonormal basis for the Hilbert space L2(\BbbS 2) :=

\{ f : \BbbS 2 \rightarrow \BbbC | 
\int 
\BbbS 2 | f(\bfitx )| 2d\mu 2(\bfitx ) <\infty \} of square-integrable functions on \BbbS 2, i.e., \langle Y m

\ell , Y m\prime 

\ell \prime \rangle =
\delta mm\prime \delta \ell \ell \prime , where the inner product is defined as \langle f1, f2\rangle :=

\int 
\BbbS 2 f1(\bfitx )f2(\bfitx )d\mu 2(\bfitx ) for f1, f2 \in 

L2(\BbbS 2) and \delta ij is the Kronecker delta. Consequently, any function f \in L2(\BbbS 2) has the

L2-representation f =
\sum \infty 

\ell =0

\sum \ell 
m= - \ell 

\^fm\ell Y
m
\ell , where \^fm\ell := \langle f,Y m

\ell \rangle is its spherical harmonic
(Fourier) coefficient with respect to Y m

\ell .
In terms of (\theta ,\phi ), AN,t(XN ) can be regarded as a function of 2N variables. In fact, we

can identify the point set XN = \{ \bfitx 1, . . . ,\bfitx N\} \subset \BbbS 2 as

XN := (\bfittheta ,\bfitphi ) := (\theta 1, . . . , \theta N , \phi 1, . . . , \phi N )(2.7)

with \bfittheta = (\theta 1, . . . , \theta N ), \bfitphi = (\phi 1, . . . , \phi N ), and \bfitx i := \bfitx i(\theta i, \phi i) being the ith point determined
by its spherical coordinate satisfying (\theta i, \phi i) \in [0, \pi ] \times [0,2\pi ). In what follows, we identify
\bfitx i = (\theta i, \phi i) if no ambiguity appears. Denote [N ] := \{ 1, . . . ,N\} to be the index set of size N .
Then, the variational characterization AN,t(XN ) in (1.2) can be written as a smooth function
of 2N variables:

AN,t(XN ) =AN,t(\bfittheta ,\bfitphi ) =
4\pi 

N2

\sum 
(\ell ,m)\in \scrI t

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
i\in [N ]

Y m
\ell (\theta i, \phi i)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

 - 1.(2.8)

For any point set XN and degree t, we have dim\Pi t = (t + 1)2 and the matrix \bfitY t :=
\bfitY t(XN ) := (Y m

\ell (\theta i, \phi i))i\in [N ],(\ell ,m)\in \scrI t
is of size N \times (t+ 1)2:

\bfitY t =

\left[     
Y 0
0 (\bfitx 1) Y  - 1

1 (\bfitx 1) Y 0
1 (\bfitx 1) \cdot \cdot \cdot Y t

t (\bfitx 1)

Y 0
0 (\bfitx 2) Y  - 1

1 (\bfitx 2) Y 0
1 (\bfitx 2) \cdot \cdot \cdot Y t

t (\bfitx 2)
...

...
...

. . .
...

Y 0
0 (\bfitx N ) Y  - 1

1 (\bfitx N ) Y 0
1 (\bfitx N ) \cdot \cdot \cdot Y t

t (\bfitx N )

\right]     .(2.9)

Its transpose of complex conjugate is \bfitY  \star 
t := \bfitY t(XN )

\top \in \BbbC (t+1)2\times N . Let \bfite := [1, . . . ,1]\top be a
vector of size N . We use \Re (\cdot ) to denote the (entrywise) operation of taking the real part of a
complex object (scalar, vector, or matrix).

We have the following theorem that summarizes the evaluations of AN,t and \nabla AN,t in a
concise matrix-vector form in terms of \bfitY t and \bfitY  \star 

t .

Theorem 2.2. Fix t\in \BbbN 0. Let AN,t be defined as in (2.8) and define

\^cm\ell =

N\sum 
i=1

Y m
\ell (\bfitx i), am\ell =

\sqrt{} 
\ell 2[(\ell + 1)2  - m2]

(2\ell + 1)(2\ell + 3)
, bm\ell =

\sqrt{} 
(\ell + 1)2(\ell 2  - m2)

(2\ell  - 1)(2\ell + 1)

for (\ell ,m) \in \scrI t+2 with the convention am - 1 = bmt+1 = bmt+2 = 0. Define vectors \^\bfitc 0 \in \BbbC (t+2)2 , \^\bfitd 0 \in 
\BbbC (t+1)2 and a diagonal matrix \bfitD \bfittheta as follows:

\^\bfitc 0 :=
8\pi 

N2
\cdot (\^cm\ell  - 1a

m
\ell  - 1  - \^cm\ell +1b

m
\ell +1)(\ell ,m)\in \scrI t+1

,

\^\bfitd 0 :=
8\pi 

N2
(im\^cm\ell )(\ell ,m)\in \scrI t

, \bfitD \bfittheta := diag

\biggl( 
1

sin\theta 1
, . . . ,

1

sin\theta N

\biggr) 
.
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2080 YUCHEN XIAO AND XIAOSHENG ZHUANG

Then, the AN,t and its gradient \nabla AN,t in matrix-vector forms are given by

AN,t(XN ) =
4\pi 

N2
\| \bfitY  \star 

t\bfite \| 2  - 1,(2.10)

\nabla AN,t(XN ) =\Re 
\biggl[ 
\bfitD \bfittheta \bfitY t+1\^\bfitc 0

\bfitY t
\^\bfitd 0

\biggr] 
.(2.11)

Proof. The matrix-vector form of AN,t in (2.10) directly follows from (2.8) and (2.9). To
rewrite the gradient of AN,t in the matrix-vector form, we have

\partial 

\partial \xi j
AN,t(XN ) =

8\pi 

N2
\Re 

\left[  \sum 
(\ell ,m)\in \scrI t

\left(  \sum 
i\in [N ]

Y m
\ell (\bfitx i)

\right)  \partial 

\partial \xi j
Y m
\ell (\bfitx j)

\right]  (2.12)

=
8\pi 

N2
\Re 

\left[  \sum 
(\ell ,m)\in \scrI t

\^cm\ell 
\partial 

\partial \xi j
Y m
\ell (\bfitx j)

\right]  ,
where \xi j \in \{ \theta j , \phi j\} . Based on the following formulae [59],

\partial 

\partial \theta 
Y m
\ell =

1

sin\theta 

\bigl[ 
am\ell Y

m
\ell +1  - bm\ell Y

m
\ell  - 1

\bigr] 
,

\partial 

\partial \phi 
Y m
\ell = imY m

\ell ,(2.13)

we can thus deduce that

\partial 

\partial \theta i
AN,t(XN ) =

8\pi 

N2
\cdot 1

sin\theta i
\Re 

\left[  \sum 
(\ell ,m)\in \scrI t+1

\bigl( 
\^cm\ell  - 1a

m
\ell  - 1  - \^cm\ell +1b

m
\ell +1

\bigr) 
Y m
\ell (\bfitx i)

\right]  ,(2.14)

\partial 

\partial \phi i
AN,t(XN ) =

8\pi 

N2
\Re 

\left[  \sum 
(\ell ,m)\in \scrI t

(im\^cm\ell )Y m
\ell (\bfitx i)

\right]  ,(2.15)

which imply the expressions of \nabla AN,t in (2.11). We are done.

The following theorem gives the evaluation of the Hessian in matrix-vector form.

Theorem 2.3. Retain notation in Theorem 2.2 and further define

\^\bfitd 1 :=
8\pi 

N2
\cdot (am\ell  - 1  - bm\ell +1)(\ell ,m)\in \scrI t+1

, \^\bfitd 2 :=
8\pi 

N2
\cdot (im \cdot 1\ell  - \ell )(\ell ,m)\in \scrI t+1

,

\^\bfitc 1 :=
8\pi 

N2
\cdot (\^cm\ell \cdot ( - m2))(\ell ,m)\in \scrI t

, \^\bfitc 2 :=
8\pi 

N2
\cdot (\^cm\ell \cdot \ell (\ell + 1))(\ell ,m)\in \scrI t

,

\^\bfitc 3 :=
8\pi 

N2
\cdot (im(\^cm\ell  - 1a

m
\ell  - 1  - \^cm\ell +1b

m
\ell +1))(\ell ,m)\in \scrI t+1

, \bfitC \bfittheta := diag(cot\theta 1, . . . , cot\theta N ).

Then, the Hessian \scrH (AN,t) can be written as

\scrH (AN,t) =\Re 
\biggl( \biggl[ 

\bfitF \bfittheta \bfittheta \bfitF \bfittheta \bfitphi 

\bfitF \bfitphi \bfittheta \bfitF \bfitphi \bfitphi 

\biggr] 
+

\biggl[ 
\bfitE \bfittheta 

\bfitE \bfitphi 

\biggr] \bigl[ 
\bfitE \top 

\bfittheta \bfitE \top 
\bfitphi 

\bigr] \biggr) 
,(2.16)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

4/
23

 to
 1

44
.2

14
.7

4.
18

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



SPHERICAL FRAMELETS FROM SPHERICAL DESIGNS 2081

where

\bfitE \bfittheta =\bfitD \theta \bfitY t+1
\^\bfitd 1 and \bfitE \bfitphi =\bfitY t

\^\bfitd 2,(2.17)

\bfitF \bfittheta \bfittheta =diag(\bfitD 2
\bfittheta \bfitY t\^\bfitc 1  - \bfitY t\^\bfitc 2  - \bfitC \bfittheta \bfitD \theta \bfitY t+1\^\bfitc 0),(2.18)

\bfitF \bfittheta \bfitphi =\bfitF \bfitphi \bfittheta =diag(\bfitD \bfittheta \bfitY t+1\^\bfitc 3), and \bfitF \bfitphi \bfitphi =diag(\bfitY t\^\bfitc 1).(2.19)

Proof. For the Hessian of AN,t, from (2.12), we have

\partial 2

\partial \xi j\partial \zeta l
AN,t(XN ) =

8\pi 

N2
\Re 

\left[  \sum 
(\ell ,m)\in \scrI t

\biggl( 
\partial 

\partial \xi j
Y m
\ell (\bfitx j)

\partial 

\partial \zeta l
Y m
\ell (\bfitx l) + \^cm\ell \delta jl

\partial 2

\partial \xi l\partial \zeta l
Y m
\ell (\bfitx l)

\biggr) \right]  
for \xi j \in \{ \theta j , \phi j\} and \zeta l \in \{ \theta l, \phi l\} . Hence, by definition, the Hessian can be written as in
(2.16), where each \bfitF \bfitxi \bfitzeta is a diagonal matrix and each \bfitE \bfitxi is a vector for \bfitxi ,\bfitzeta \in \{ \bfittheta ,\bfitphi \} de-
termined by \bfitE \bfitxi = ( 8\pi 

N2

\sum 
(\ell ,m)\in \scrI t

\partial 
\partial \xi l
Y m
\ell (\bfitx l))l\in [N ] \in \BbbC N\times 1 and \bfitF \bfitxi \bfitzeta = diag( 8\pi 

N2

\sum 
(\ell ,m)\in \scrI t

\^cm\ell \cdot 
\partial 2

\partial \xi l\partial \zeta l
Y m
\ell (\bfitx l))l\in [N ].

Now by (2.13), similar to the derivation of (2.14) and (2.15), we can deduce that

\bfitE \bfittheta =

\left(  8\pi 

N2

1

sin\theta l

\sum 
(\ell ,m)\in \scrI t+1

(am\ell  - 1  - bm\ell +1)Y
m
\ell (\bfitx l)

\right)  
l\in [N ]

,

\bfitE \bfitphi =

\left(  8\pi 

N2

\sum 
(\ell ,m)\in \scrI t

(im)Y m
\ell (\bfitx l)

\right)  
l\in [N ]

,

which are equivalent to (2.17).
Repeating applying (2.13), we have

\partial 2

\partial \theta 2
Y m
\ell =

\biggl[ 
m2

sin2 \theta 
 - \ell (\ell + 1)

\biggr] 
Y m
\ell  - cot\theta 

\partial 

\partial \theta 
Y m
\ell ,

\partial 2

\partial \phi 2
Y m
\ell = - m2Y m

\ell ,(2.20)

\partial 2

\partial \theta \partial \phi 
Y m
\ell =

\partial 2

\partial \phi \partial \theta 
Y m
\ell = im

\partial 

\partial \theta 
Y m
\ell =

1

sin\theta 

\bigl[ 
imam\ell Y

m
\ell +1  - imbm\ell Y

m
\ell  - 1

\bigr] 
.(2.21)

Hence, the lth diagonal entries of \bfitF \bfitxi \bfitzeta are given by

[\bfitF \bfittheta \bfittheta ]l,l =
8\pi 

N2

\sum 
(\ell ,m)\in \scrI t

\^cm\ell \cdot 
\biggl( 

m2

sin2 \theta l
Y m
\ell (\bfitx l) - \ell (\ell + 1)Y m

\ell (\bfitx l) - cot\theta l
\partial 

\partial \theta l
Y m
\ell (\bfitx l)

\biggr) 
,

[\bfitF \bfitphi \bfitphi ]l,l =
8\pi 

N2

\sum 
(\ell ,m)\in \scrI t

\^cm\ell \cdot ( - m2)Y m
\ell (\bfitx l),

[\bfitF \bfittheta \bfitphi ]l,l =
8\pi 

N2

\sum 
(\ell ,m)\in \scrI t+1

1

sin\theta l
[im(\^cm\ell  - 1a

m
\ell  - 1  - \^cm\ell +1b

m
\ell +1)]Y

m
\ell (\bfitx l),

which imply (2.18) and (2.19). This concludes the proof.
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2082 YUCHEN XIAO AND XIAOSHENG ZHUANG

2.3. Computational time complexity. Note that in Theorem 2.2, the coefficient vector
(\^cm\ell )(\ell ,m)\in \scrI t

=\bfitY  \star 
t\bfite and am\ell , b

m
\ell can be precomputed. Moreover, the vectors \^\bfitc k, \^\bfitd k and diagonal

matrices in Theorems 2.2 and 2.3 can be evaluated in the order of \scrO (t2 +N). Thanks to the
nice structure of \scrH (AN,t) = \scrH 1 + \scrH 2 in (2.16), where \scrH 1 is formed by diagonal matrices
and \scrH 2 is a rank one matrix, one only needs to implement the matrix-vector multiplication.
Moreover, in the trust-region algorithm, the exact Hessian is not required, an approximation
of the Hessian could be enough for the desired convergence. In such a case, one can either use
\scrH 1 or \scrH 2.

Regarding the evaluations involving \bfitY t,\bfitY 
 \star 
t , fast evaluations have been developed in terms

of spherical harmonic transforms (SHTs). We use the package developed by Kunis and Potts
[34], where it shows that the NFSFTs \bfity =\bfitY t(XN )\^\bfitc to obtain \bfity \in \BbbC N from a given vector \^\bfitc \in 
\BbbC (t+1)2 as well as its adjoint \^\bfitc =\bfitY t(XN ) \star \bfity can be done in the order of \scrO (t2 log2 t+N log2(1\epsilon ))
with \epsilon being a prescribed accuracy of the algorithms.

From above, we see that the evaluations of f = AN,t, the gradient g = \nabla AN,t, and the
Hessian \scrH (AN,t) only involve diagonal matrices, rank one matrices, NFSFTs \bfity = \bfitY t(XN )\^\bfitc ,
and their adjoints \^\bfitc =\bfitY t(XN ) \star \bfity . Therefore, the computational time complexity of Cf +Cg+
C\scrH is of order \scrO (t2 log2 t+N log2(1\epsilon )). Therefore, the trust-region algorithm in Algorithm 2.1
for computing the spherical t-design point set is with computational time complexity \scrO (KTR \cdot 
(t2 log2 t+N log2(1\epsilon ))).

3. Numerical spherical \bfitt -designs. In this section,1 we show that the numerical spherical
t-designs obtained from different initial point sets using Algorithm 2.1. For Algorithm 2.1, in
view of the rotation invariance property of the spherical-t design, we preprocess the initial point
set XN \subset \BbbS 2 by fixing the first point \bfitx 1 = (\theta 1, \phi 1) = (0,0) \in XN as the north pole point and
the second point \bfitx 2 = (\theta 2,0) \in XN on the prime meridian. Moreover, we set \varepsilon = 2.2204E-16
(floating-point relative accuracy of MATLAB) and K\mathrm{m}\mathrm{a}\mathrm{x} = 1E+7. We introduce four types of
initial point sets on \BbbS 2 as follows:

(I) Spiral points (SPs). The SPs \bfitx k = (\theta k, \phi k) on \BbbS 2 for k \in [N ] are generated by \theta k :=

arccos (2k - (N+1)
N ) and \phi k := \pi (2k  - (N + 1))/g, where g = 1+

\surd 
5

2 is the golden ratio
[58]. This is the Fibonacci spiral points on the sphere, the same as the initial SPs in
[25]. For the SP point sets, we set N =N(t) = (t+ 1)2 for large t\in \BbbN .

(II) Uniformly distributed (UD) points. We generate UD points on the unit sphere \BbbS 2
according to the surface area element d\mu 2 = sin\theta d\theta d\phi . By [62], we generate ki \in (0,1)
and si \in (0,1) uniformly for i \in [N ] and define \bfitx i = (\theta i, \phi i) by \theta i := arccos (1 - 2ki),
and \phi i := 2\pi si. For UD point sets, we set N =N(t) = (t+ 1)2 for t\in \BbbN .

(III) Icosahedron vertices (IVs) mesh points. An icosahedron has 12 vertices, 30 edges,
and 20 faces. The faces of the icosahedron are equilateral triangles. Icosahedron is a
polyhedron whose vertices can be used as the starting points for sphere tessellation.
After generating the IVs, one can get the triangular surface mesh of the Pentakis
dodecahedron. The number N of IV points must satisfy N =N(k) = 4k - 1\times 10+2 for
k \in \BbbN . In this paper, we fix the relation between t and N to be N \approx (t+1)2. That is,
we set t= t(N(k)) = \lfloor 

\surd 
4k - 1 \times 10 + 2 - 1\rfloor , where \lfloor \cdot \rfloor is the floor operator.

1All numerical experiments in this paper are conducted in MATLAB R2021b on a 64-bit Windows 10 Home
desktop computer with Intel Core i9 9820X CPU and 32GB DDR4 memory.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

4/
23

 to
 1

44
.2

14
.7

4.
18

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



SPHERICAL FRAMELETS FROM SPHERICAL DESIGNS 2083

(IV) HEALpix points (HLs). Hierarchical Equal Area isoLatitude Pixelation points [24]
are the isolatitude points on the sphere given by subdivisions of a spherical surface
which produce hierarchical equal areas. The number N of HL points must satisfy
N = N(k) = 12 \times (2k - 1)2 for k \in \BbbN . Similarly, by requiring N \approx (t + 1)2, we set
t= t(N(k)) = \lfloor 2k

\surd 
3 - 1\rfloor .

3.1. Spherical \bfitt -designs of Platonic solids. We first give a numerical example to show
the feasibility of the trust-region method (using the full Hessian \scrH (AN,t)) in Algorithm 2.1
to obtain the numerical spherical t-designs that are the famous regular polyhedrons of Pla-
tonic solids. We consider the construction of the regular tetrahedron, octahedron, and icosa-
hedron, which are known as the spherical 2-design of 4 points, the spherical 3-design of
6 points, and the spherical 5-design of 12 points, respectively. We generate three spiral
point sets with Nte = 4, Noc = 6, and Nic = 12, respectively. Then by Algorithm 2.1,
we reach x\ast = XNte

, XNoc
, and XNic

, respectively, with (1)
\sqrt{} 
AN,t(XNte

)= 2.04E-16 and
\| \nabla AN,t(XNte

)\| \infty =7.38E-16 for the tetrahedron spherical 2-design, where \| \cdot \| \infty denotes the
l\infty -norm; (2)

\sqrt{} 
AN,t(XNoc

)= 4.66E-13 and \| \nabla AN,t(XNoc
)\| \infty =2.37E-12 for the octahedron

spherical 3-design; and (3)
\sqrt{} 
AN,t(XNic

)= 2.83E-12 and \| \nabla AN,t(XNic
)\| \infty =2.86E-13 for the

icosahedron spherical 5-design. The initial point sets and final numerical spherical t-designs
are shown in Figure 1.

3.2. Spherical \bfitt -designs from four initial point sets. We list in Table 1 the informa-
tion, including degree t, number of points N , total number of iterations KTR,

\sqrt{} 
AN,t(XN ),

\| \nabla AN,t(XN )\| \infty , and time of running the Algorithm 2.1 with the four initial points sets, that
is, the SP points, the UD points, the IV points, and the HL points. The final point sets
are named as SPD, SUD, SID, and SHD, respectively. From Table 1, one can see that we
can reach significantly small values of

\sqrt{} 
AN,t(XN ) up to the order of 1E-12 as well as near

machine precision of \| \nabla AN,t\| \infty up to the order of 1E-16. The number of total iterations KTR

and the computational time increases when t increases.

(a) Initial SP: Nte = 4

(b) Final: Tetrahedron

(c) Initial SP: Noc = 6

(d) Final: Octahedron

(e) Initial SP: Nic = 12

(f) Final: Icosahedron

Figure 1. Numerical simulations of spherical t-design for Platonic solids on \BbbS 2 by using Algorithm 2.1.
Top view (left) and side view (right) for each initial SP point set and its resulted final point sets. (a) and (b):
Tetrahedron. (c) and (d): Octahedron. (e) and (f): Icosahedron.
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2084 YUCHEN XIAO AND XIAOSHENG ZHUANG

Table 1
Computing spherical t-designs by TR method from different initial point sets. We provide for each ini-

tial point sets (SP, UD, IV, HL) and each t,N , the number KTR of iterations to reach the final point sets
(SPD, SUD, SID, SHD) with their

\sqrt{} 
AN,t(XN ), \| \nabla AN,t(XN )\| \infty , \bfitepsilon t,N and the running time, respectively.

``s,m,h,d,mo"" stand for ``second, minute, hour, day, month"", respectively.

XN t N KTR

\sqrt{} 
AN,t(XN ) \| \nabla AN,t(XN )\| \infty \bfitepsilon t,N Time

16 289 264 2.15E-12 7.04E-16 6.43E-12 10.51 s
32 1089 567 1.51E-12 7.93E-16 3.33E-12 24.61 s
64 4225 1087 1.13E-12 1.27E-15 2.52E-12 2.01 m
128 16641 1929 1.55E-12 1.07E-15 2.91E-12 11.16 m
256 66049 3234 1.13E-12 1.39E-15 1.26E-11 32.50 m
512 263169 6049 1.18E-12 8.64E-15 5.55E-12 4.59 h
1024 1050625 9951 1.28E-12 3.80E-15 3.66E-12 1.02 d

SPD 2048 4198401 20592 2.53E-12 3.44E-15 3.95E-12 13.80 d
25 676 422 1.73E-12 6.84E-15 3.76E-12 15.38 s
50 2601 764 1.58E-12 9.39E-15 2.65E-12 46.52 s
100 10201 1699 1.00E-12 8.51E-16 3.09E-12 3.08 m
200 40401 2922 1.16E-12 2.30E-15 6.02E-12 26.85 m
400 160801 4980 1.09E-12 4.22E-15 7.66E-12 2.29 h
800 641601 8489 1.53E-12 4.18E-14 3.56E-11 21.74 h
1600 2563601 18274 1.70E-10 9.26E-14 2.52E-10 6.95 d
3200 10246401 22371 1.07E-09 2.22E-12 3.57E-08 2.07 mo

25 676 665 1.81E-12 8.49E-16 7.08E-12 41.39 s
50 2601 1660 1.44E-12 1.74E-14 4.23E-12 1.72 m
100 10201 3986 1.40E-12 2.15E-14 3.79E-12 8.90 m

SUD 200 40401 12494 1.73E-12 3.71E-14 5.81E-12 2.01 h
400 160801 24600 6.21E-12 7.32E-14 1.01E-11 12.26 h
800 641601 86972 2.04E-11 4.85E-13 4.65E-11 6.11 d
1000 1002001 118693 7.35E-12 4.07E-14 1.47E-11 11.54 d

11 162 71 1.17E-12 2.93E-15 2.13E-11 27.38 s
24 642 300 2.17E-12 5.84E-15 9.38E-12 53.56 s
49 2562 1001 1.58E-12 9.68E-15 5.08E-12 1.72 m
100 10242 1929 1.61E-12 1.23E-15 4.17E-12 5.24 m

SID 201 40962 3796 1.58E-12 3.65E-15 7.43E-12 32.61 m
403 163842 8344 1.57E-12 1.25E-15 7.98E-12 3.72 h
808 655362 22424 2.85E-12 2.44E-14 3.67E-11 2.04 d
1618 2621442 49262 1.32E-10 5.19E-14 1.64E-10 18.37 d

12 192 191 3.89E-12 1.71E-14 1.58E-11 8.79 s
26 768 407 2.58E-12 6.58E-16 5.59E-12 22.34 s
54 3072 725 1.68E-12 1.50E-15 3.45E-12 1.35 m
109 12288 1221 1.41E-12 8.80E-16 3.22E-12 3.42 m

SHD 220 49152 2045 1.54E-12 9.08E-16 5.86E-12 17.59 m
442 196608 3608 1.48E-12 3.48E-15 8.58E-12 1.99 h
885 786432 5757 1.39E-12 5.53E-15 4.20E-11 10.41 h
1772 3145728 9814 1.48E-12 1.04E-14 1.37E-10 4.61 d

Moreover, to test the accuracy of these final point sets, we consider the Gram matrix
\bfitG t = 4\pi 

N \bfitY  \star 
t (X \~N )\bfitY t(X \~N ). As we know \bfitG t = \bfI \in \BbbR (t+1)2\times (t+1)2 theoretically, where \bfI is

identity matrix, for certain X \~N being a spherical design. Numerically, \bfitG t \approx \bfI . So our goal

become to estimate the matrix 2-norm \| \bfitG t - \bfI \| = sup\^\bfitc \not =0
\| \bfitG t\^\bfitc  - \^\bfitc \| 

\| \^\bfitc \| using the obtained spherical
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SPHERICAL FRAMELETS FROM SPHERICAL DESIGNS 2085

Figure 2. The log-log plot of Time versusKTR\cdot t2 log2(t). Blue dots are data points of (KTR\cdot t2 log2(t),Time)
from Table 1. The red line is the fitted linear line. (Figure in color online.)

designs to see how close is \bfitG t to \bfI . Note that it is numerically infeasible to explicitly compute

\bfitG t and compare it with \bfI when t is large. Instead, we look at \| \bfitG t\^\bfitc  - \^\bfitc \| 
\| \^\bfitc \| =

\| 4\pi 

N
\bfitY  \star 

t (\bfitY t\^\bfitc ) - \^\bfitc \| 
\| \^\bfitc \| ,

which can be computed fast using NFSFT. Now in Table 1, for each point set XN being a
spherical t-design, we randomly (in the sense of normal distribution) generate 100 vectors \^\bfitc i,
i = 1, . . . ,100, with respect to \Pi \lfloor t/2\rfloor , according to the uniform distribution. For each \^\bfitc i, we

compute \epsilon i =
\| \bfitG \lfloor t/2\rfloor \^\bfitc i - \^\bfitc i\| 

\| \^\bfitc i\| and define \bfitepsilon t,N :=max\{ \epsilon i\} 100i=1 to estimate \| \bfitG \lfloor t/2\rfloor  - \bfI \| . We present

\bfitepsilon t,N in Table 1. The results show that \bfitG t is indeed very close to the identity matrix (up to
1E-12) using the obtained spherical design point sets. For a more theoretical study on such
a Gram matrix, we refer to [36] for the investigation of the general quadrature rules on the
sphere using the summability operator.

For the computational time complexity of Algorithm 2.1, from subsection 2.3, we know it
is of order \scrO (KTR \cdot (t2 log2(t)+N log2(1\epsilon ))). Since N \approx (t+1)2 in our setting, it is essentially
of order \scrO (KTR \cdot t2 log2(t)). To confirm this, from each row of Table 1, we have degree t, total
number KTR of iterations, and the Time (in seconds) to generate data points of the form
(KTR \cdot t2 log2(t),Time). Then, we use the log-log plot to show all data points and use linear
fitting to fit the data points. The result is plotted in Figure 2, where we can see the log-log
plot of the data points is close to the fitted straight line. This confirms that the computational
time complexity of Algorithm 2.1 does follow the order of \scrO (KTR \cdot t2 log2(t)).

3.3. Spherical \bfitt -designs for function approximation. Quadrature formulas with preas-
signed weights were studied and used in function approximation, e.g., [21, 22, 43, 44, 45].
With the obtained spherical t-design point sets, we can use them to approximate the function
as their discrete samples. We demonstrate below how this can be done for a special class of
functions, the Wendland functions, defined on the sphere.

A spherical signal is typically sampled from a function f : \BbbS 2 \rightarrow \BbbC on certain point set
XN = \{ \bfitx i | i \in [N ]\} , that is, one only has the sample points \{ (\bfitx i, f(\bfitx i)) | i \in [N ]\} . Note
that XN is not necessarily a spherical t-design point set. We would like to see how well it
can be approximated by a polynomial space \Pi T . This is equivalent to finding an fT \in \Pi T
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2086 YUCHEN XIAO AND XIAOSHENG ZHUANG

that solves the minimization problem: fT = argminp\in \Pi T
\| f | XN

 - p| XN
\| , where f | XN

:= \bfitf :=
[f(\bfitx 1), . . . , f(\bfitx N )]\top . Then we have f = fT + g with g = f  - fT being its residual. Note that
fT =

\sum 
(\ell ,m)\in \scrI T

\^cm\ell Y
m
\ell for some \^\bfitc := (\^cm\ell )(\ell ,m)\in \scrI T

. Hence, fT | XN
=: \bfitf T = \bfitY T (XN )\^\bfitc . The

minimization problem is equivalent to

min
\^\bfitc 

\| \bfitf  - \bfitY T \^\bfitc \| ,(3.1)

which can be solved by the least square method. In fact, to find \^\bfitc such that \bfitY T \^\bfitc = \bfitf ,
one usually uses a diagonal matrix \bfitW = diag(w1, . . . ,wN ) from some weight \bfw := w| XN

:=
\{ w1, . . . ,wN\} for the purpose of preconditioning. Define b := \bfitY  \star 

T\bfitW \bfitf and matrix A =
\bfitY  \star 

T\bfitW \bfitY T . Then, \bfitY T \^\bfitc = \bfitf can be solved by the normal equation: A\^\bfitc = b, which can be
done by the conjugate gradient (CG) method. See Algorithm 3.1. We remark that we do
not need to form A=\bfitY  \star 

T\bfitW \bfitY T explicitly but simply the matrix-vector realization A\^\bfitc , which
can be done fast through \bfitY  \star 

T (\bfitW (\bfitY T \^\bfitc )) using the fast spherical harmonic transforms that we
discussed in subsection 2.3.

In what follows, we set the maximum iterations K\mathrm{m}\mathrm{a}\mathrm{x} = 1000 and termination tolerance
\varepsilon = 2.2204E-16 in Algorithm 3.1. We use the relative projection l2-error (with Euclidean

norm), i.e., err(f, fT ) :=
\| \bfitf  - \bfitf T \| 

\| \bfitf \| , to measure how good the approximation is under different
kinds of point sets. We demonstrate our results with f to be the combinations of normalized
Wendland functions, which are a family of compactly supported radial basis functions (RBF).
Let (\xi )+ :=max\{ \xi ,0\} for \xi \in \BbbR . The original Wendland functions are

\~\phi k(\xi ) :=

\left\{                   

(1 - \xi )2+, k= 0,

(1 - \xi )4+(4\xi + 1), k= 1,

(1 - \xi )6+(35\xi 
2 + 18\xi + 3)/3, k= 2,

(1 - \xi )8+(32\xi 
3 + 25\xi 2 + 8\xi + 1), k= 3,

(1 - \xi )10+ (429\xi 4 + 450\xi 3 + 210\xi 2 + 50\xi + 5)/5, k= 4.

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone Projection by conjugate gradient algorithm

\bfI \bfn \bfp \bfu \bft : T : polynomial degree; XN : spherical point set; \bfw : weights of XN ; K\mathrm{m}\mathrm{a}\mathrm{x}: maximum
iterations; \varepsilon : termination tolerance;
Initialize x= 0, k= 0, r0 = b=\bfitY  \star 

T\bfitW \bfitf , A=\bfitY  \star 
T\bfitW \bfitY T with \bfitW =diag(\bfw ).

1: \bfw \bfh \bfi \bfl \bfe \| rk+1\| > \varepsilon and k\leq K\mathrm{m}\mathrm{a}\mathrm{x} \bfd \bfo 
2: \bfi \bff k= 0 \bft \bfh \bfe \bfn 
3: p1 = r0
4: \bfe \bfl \bfs \bfe 

5: pk+1 = rk +
\| rk\| 2

\| rk - 1\| 2 pk
6: \bfe \bfn \bfd \bfi \bff 

7: Compute \alpha = \| rk\| 2

p\top 
k+1Apk+1

. Set xk+1 = xk + \alpha pk+1 and rk+1 = rk  - \alpha Apk+1.

8: k= k+ 1
9: \bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 

\bfO \bfu \bft \bfp \bfu \bft : \^\bfitc =: x\ast \in \BbbC (T+1)2 .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPHERICAL FRAMELETS FROM SPHERICAL DESIGNS 2087

Table 2
Relative l2-errors err(fk, fT ) for Wendland functions f0, . . . , f4 approximated by \Pi T functions for T = t

2

and \bfw \equiv 4\pi 
N

in Algorithm 3.1 with different point sets.

t N QN f0 f1 f2 f3 f4

200 40401 SP 5.64E-04 3.19E-06 5.25E-08 3.39E-09 3.21E-09
200 40401 SPD 5.78E-04 3.20E-06 5.25E-08 1.69E-09 8.92E-11
200 40401 UD 6.09E-04 3.07E-06 8.50E-08 8.71E-08 8.53E-08
200 40401 SUD 6.99E-04 3.51E-06 5.63E-08 1.79E-09 1.07E-10
201 40962 IV 8.12E-04 3.32E-06 5.28E-08 4.57E-09 6.10E-08
201 40962 SID 6.15E-04 3.11E-06 5.08E-08 1.64E-09 8.74E-11
220 49152 HL 5.98E-04 2.28E-06 3.18E-08 8.68E-09 8.28E-09
220 49152 SHD 5.98E-04 2.28E-06 3.04E-08 8.11E-10 3.59E-11

The normalized (equal area) Wendland functions are \phi k(\xi ) := \~\phi k

\Bigl( 
\xi 
\Delta k

\Bigr) 
with \Delta k :=

(3k+3)\Gamma (k+ 1

2
)

2 \Gamma (k+1)

for k \geq 0. The Wendland functions \phi k(\xi ) pointwise converge to Guassian when k \rightarrow \infty 
[12]. Thus the main change as k increases is the smoothness of f . Let \bfitz 1 := (1,0,0),\bfitz 2 :=
( - 1,0,0),\bfitz 3 := (0,1,0),\bfitz 4 := (0, - 1,0),\bfitz 5 := (0,0,1),\bfitz 6 := (0,0, - 1) be regular octahedron
vertices and define (see [23])

fk(\bfitx ) :=

6\sum 
i=1

\phi k(\| \bfitz i  - \bfitx \| ), k\geq 0.(3.2)

The function fk is in W k+ 3

2 (\BbbS 2), where W \tau (\BbbS 2) := \{ f \in L2(\BbbS 2) :
\sum \infty 

\ell =0

\sum 
| m| \leq \ell (1+\ell )

2\tau | \^fm\ell | 2\} <
\infty \} is the Sobolev space with smooth parameter \tau > 1. The function fk has limited smoothness
at the centers \bfitz i and at the boundary of each cap with center \bfitz i. These features make fk
relatively difficult to be approximated in these regions, especially for small k.

For all initial point sets SP, UD, IV, HL, and their final point sets SPD, SUD, SID, SHD of
spherical t-designs with t= t(N) being determined in section 3, we set the input polynomial
degree T = t

2 and (equal) weight \bfw \equiv 4\pi 
N in Algorithm 3.1. Then for degree t \approx 200 and

N \approx (t+ 1)2, we show the projection errors err(fk, fT ) in Table 2 of the five RBF functions
f0, . . . , f4 defined in (3.2). We can see that the order of the errors decreases significantly from
 - 4 up to  - 11 with respect to k in fk for each of the final spherical t-design point sets, while
the order of the errors decreases from  - 4 up to  - 9 for the initial point sets. This experiment
demonstrates the superiority of spherical t-designs over normal structure point sets in terms
of function approximation.

4. Spherical framelets from spherical \bfitt -designs. In this section, we detail the construc-
tion and characterizations of the (semidiscrete) spherical framelet systems based on the spheri-
cal t-designs. A truncated system is then introduced and the fast spherical framelet transforms
in terms of the filter banks and the fast spherical harmonic transforms are then developed.

4.1. Construction and characterizations. Following the setting of the paper by Wang
and Zhuang [61] on framelets defined on manifolds, we first define the (semidiscrete) framelet
system on the sphere. Let functions \Psi := \{ \alpha ;\beta 1, . . . , \beta n\} \subset L1(\BbbR ) be associated with a filter
bank \eta := \{ a; b1, . . . , bn\} \subset l1(\BbbZ ) := \{ h = \{ hk\} k\in \BbbZ \subset \BbbC | 

\sum 
k\in \BbbZ | hk| < \infty \} with the following

relations:
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2088 YUCHEN XIAO AND XIAOSHENG ZHUANG

\^\alpha (2\xi ) = \^a(\xi )\^\alpha (\xi ), \^\beta s(2\xi ) =\^bs(\xi )\^\alpha (\xi ), \xi \in \BbbR , s\in [n],(4.1)

where for a function f \in L1(\BbbR ), its Fourier transform \^f is defined by \^f(\xi ) :=
\int 
\BbbR f(x)e

 - 2\pi \mathrm{i}x\xi dx,

and for a filter (mask) h= \{ hk\} k\in \BbbZ \subset \BbbC , its Fourier series \^h is given by \^h(\xi ) :=
\sum 

k\in \BbbZ hke
 - 2\pi \mathrm{i}k\xi 

for \xi \in \BbbR . The first equation of (4.1) is said to be the refinement equation with \alpha being the
refinable function associated with the refinement mask a (low-pass filter). The functions \beta s
are framelet generators associated with framelet masks bs (high-pass filter) for s \in [n], which
can be derived by extension principles [18, 50].

A quadrature (cubature) rule QNj
= (XNj

,\bfw j) on \BbbS 2 at scale j is a collection QNj
:=

\{ (\bfitx j,k,wj,k) | k \in [Nj ]\} \subset \BbbS 2\times \BbbR of point set XNj
:= \{ \bfitx j,k | k \in [Nj ]\} and weight \bfw j := \{ wj,k | k \in 

[Nj ]\} , where Nj is the number of points at scale j. We said that the quadrature rule QNj
is

polynomial-exact up to degree tj \in \BbbN 0 if
\sum Nj

k=1wj,kp(\bfitx j,k) =
\int 
\BbbS 2 p(\bfitx )d\mu 2(\bfitx ) for all p\in \Pi tj . We

call such a QNj
=:QNj ,tj to be a polynomial-exact quadrature rule of degree tj . The spherical

t-design XN = \{ \bfitx 1, . . . ,\bfitx N\} forms a polynomial-exact quadrature rule QN,t := (XN ,\bfw ) of
degree t with weight \bfw \equiv 4\pi 

N .
Now given a sequence \scrQ := \{ QNj ,tj\} j\geq J of spherical designs, we can define spherical

framelets \varphi j,k and \psi 
(s)
j,k for s\in [n] as follows:

\varphi j,k(\bfitx ) :=
\surd 
wj

\infty \sum 
\ell =0

\ell \sum 
m= - \ell 

\^\alpha 

\biggl( 
\lambda \ell ,m
tj

\biggr) 
Y m
\ell (\bfitx j,k)Y

m
\ell (\bfitx ),(4.2)

\psi 
(s)
j,k(\bfitx ) :=

\surd 
wj+1

\infty \sum 
\ell =0

\ell \sum 
m= - \ell 

\^\beta s

\biggl( 
\lambda \ell ,m
tj

\biggr) 
Y m
\ell (\bfitx j+1,k)Y

m
\ell (\bfitx )(4.3)

for \bfitx \in \BbbS 2, where wj =
4\pi 
Nj

and we set \lambda \ell ,m = \ell in this paper. The (semidiscrete) spherical

framelet system \scrF J(\Psi ,\scrQ ) from the spherical designs starting at a scale J \in \BbbZ is then defined
to be

\scrF J(\Psi ,\scrQ ) := \{ \varphi J,k : k \in [NJ ]\} \cup \{ \psi (s)
j,k : k \in [Nj+1], s\in [n]\} \infty j=J .(4.4)

By [61, Corollary 2.6], we immediately have the following characterization result for the
system \scrF J(\Psi ,\scrQ ) to be a tight frame for L2(\BbbS 2).

Theorem 4.1. Let \alpha \in L1(\BbbR ) be a band-limited function such that supp \^\alpha \subseteq [0, 12 ] and \Psi :=
\{ \alpha ;\beta s, . . . , \beta n\} \subset L1(\BbbR ) be a set of functions associating with a filter bank \eta := \{ a; b1, . . . , bn\} \subset 
l1(\BbbZ ) as in (4.1) . Let j \in \BbbZ and QNj ,tj = \{ (\bfitx j,k,wj,k \equiv wj =

4\pi 
Nj

) | k \in [Nj ]\} be the quadrature

rule determined by a spherical tj-design XNj
= \{ \bfitx j,1, . . . ,\bfitx j,Nj

\} \subset \BbbS 2 satisfying tj+1 = 2tj.
Define \scrF J(\Psi ,\scrQ ) as in (4.4). Let J0 \in \BbbZ be fixed. Then the following are equivalent:

(i) The framelet system \scrF J(\Psi ,\scrQ ) is a tight frame for L2(\BbbS 2) for all J \geq J0, that is,

f =
\sum NJ

k=1\langle f,\varphi J,k\rangle \varphi J,k +
\sum \infty 

j=J

\sum Nj+1

k=1

\sum n
s=1\langle f,\psi 

(s)
j,k\rangle \psi 

(s)
j,k for all f \in L2(\BbbS 2) and J \geq J0,

(ii) The generators in \Psi satisfy

lim
j\rightarrow \infty 

\bigm| \bigm| \bigm| \bigm| \^\alpha \biggl( \lambda \ell ,mtj
\biggr) \bigm| \bigm| \bigm| \bigm| = 1, \ell \geq 0, | m| \leq \ell ,(4.5) \bigm| \bigm| \bigm| \bigm| \^\alpha \biggl( \lambda \ell ,mtj+1

\biggr) \bigm| \bigm| \bigm| \bigm| 2 = \bigm| \bigm| \bigm| \bigm| \^\alpha \biggl( \lambda \ell ,mtj
\biggr) \bigm| \bigm| \bigm| \bigm| 2 + n\sum 

s=1

\bigm| \bigm| \bigm| \bigm| \^\beta s\biggl( \lambda \ell ,mtj
\biggr) \bigm| \bigm| \bigm| \bigm| 2 , \ell \geq 0, | m| \leq \ell , j \geq J0.(4.6)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

4/
23

 to
 1

44
.2

14
.7

4.
18

1 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y
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(iii) The refinable function \alpha satisfies (4.5) and the filters in \eta satisfy\bigm| \bigm| \bigm| \bigm| \^a\biggl( \lambda \ell ,mtj
\biggr) \bigm| \bigm| \bigm| \bigm| 2 + n\sum 

s=1

\bigm| \bigm| \bigm| \bigm| \^bs\biggl( \lambda \ell ,mtj
\biggr) \bigm| \bigm| \bigm| \bigm| 2 = 1 \forall \ell ,m\in \scrI j

\alpha ,\forall j \geq J0 + 1,(4.7)

where \scrI j
\alpha := \{ \ell \in \BbbN 0, | m| \leq \ell : \^\alpha (\lambda \ell ,m

tj
) \not = 0\} .

Proof. We need only show that the product rule holds for the spherical harmonics Y m
\ell 

since all other conditions in [61, Corollary 2.6] hold. We next use induction to prove that the
product of two spherical harmonics Y m

\ell and Y m\prime 

\ell \prime is in \Pi \ell +\ell \prime , that is, Y m
\ell Y m\prime 

\ell \prime \in \Pi \ell +\ell \prime and it
can be written as the linear combination of \{ Y \~m

\~\ell 
: \~\ell \leq \ell + \ell \prime , | \~m| \leq \~\ell \} . By the definition of Y m

\ell 

in (2.5), it suffices to show that the product of two associate Legendre polynomials Pm
\ell (z)

and Pm\prime 

\ell \prime (z) can be written as the linear combination of \{ P \~m
\~\ell 
(z) : \~\ell \leq \ell + \ell \prime ,m = 0, . . . , \ell \} for

z \in [ - 1,1]. That is,

Pm
\ell (z)Pm\prime 

\ell \prime (z) =
\sum 

0\leq \~\ell \leq \ell +\ell \prime 

\sum 
0\leq m\leq \~\ell 

cm\~\ell P
m
\~\ell 
(z), z \in [ - 1,1].(4.8)

We prove it by mathematical induction on \ell + \ell \prime . We omit z in Pm
\ell (z), Pm\prime 

\ell \prime (z), and P \~m
\~\ell 
(z) for

convenience.
For \ell + \ell \prime = 0, equation (4.8) trivially holds. Suppose (4.8) holds for \ell + \ell \prime = k \in \BbbN 0. We

next prove that (4.8) holds for \ell + \ell \prime = k+1. Without loss of generality, we can assume \ell \geq 2
(otherwise, we can prove it for \ell = 0,1 directly). By the recurrence formula of the associated
Legendre polynomial: (\ell  - m+ 1)Pm

\ell +1(z) = (2\ell + 1)zPm
\ell (z) - (\ell +m)Pm

\ell  - 1(z), we have

Pm
\ell P

m\prime 

\ell \prime =
2\ell  - 1

\ell  - m
zPm

\ell  - 1P
m\prime 

\ell \prime  - \ell  - 1 +m

\ell  - m
Pm
\ell  - 2P

m\prime 

\ell \prime .(4.9)

From the inductive hypothesis and P 0
1 (z) = z for z \in [ - 1,1], (4.9) can be written as

Pm
\ell P

m\prime 

\ell \prime = z
\sum 
\~\ell \leq k

\sum 
\~m\leq \~\ell 

c \~m\~\ell P
\~m
\~\ell 

+
\sum 

\~\ell \leq k - 1

\sum 
\~m\leq \~\ell 

d \~m
\~\ell 
P \~m
\~\ell 

(4.10)

=
\sum 

\~\ell \leq k - 1

\sum 
\~m\leq \~\ell 

c \~m\~\ell P
0
1P

\~m
\~\ell 

+
\sum 
\~m\leq k

c \~mk P
0
1P

\~m
k +

\sum 
\~\ell \leq k - 1

\sum 
\~m\leq \~\ell 

d \~m
\~\ell 
P \~m
\~\ell 

=
\sum 
\~\ell \leq k

\sum 
\~m\leq \~\ell 

e \~m\~\ell P
\~m
\~\ell 

+
\sum 

\~\ell \leq k+1

\sum 
\~m\leq \~\ell 

h \~m
\~\ell 
P \~m
\~\ell 

+
\sum 

\~\ell \leq k - 1

\sum 
\~m\leq \~\ell 

d \~m
\~\ell 
P \~m
\~\ell 

=
\sum 

\~\ell \leq k+1

\sum 
\~m\leq \~\ell 

a \~m
\~\ell 
P \~m
\~\ell 
,

where we use P 0
1P

m
\ell = 1

2\ell +1 [(\ell  - m+ 1)Pm
\ell +1 + (\ell +m)Pm

\ell  - 1] from the recurrence relation, and

a \~m
\~\ell 
, c \~m\~\ell , d

\~m
\~\ell 
, e \~m\~\ell , h

\~m
\~\ell 
are coefficients in different components. That is, (4.8) holds for \ell +\ell \prime = k+1.

Therefore, by mathematical induction, for every \ell , \ell \prime \in \BbbN 0, (4.8) holds for z \in [ - 1,1].
Hence, we complete the proof.

Remark 4.2. By the contract rule and the Wigner 3j-symbols [59], the product rule holds
but it is hard to tell what is the resulting degree of the product of two spherical harmonics.
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2090 YUCHEN XIAO AND XIAOSHENG ZHUANG

Besides, it is not explicitly proved in [61] for the product rule of spherical harmonics. Hence,
we provide an elementary proof here. By the product rule, given a spherical t-design XN =
\{ \bfitx 1, . . . ,\bfitx N\} , we immediately have

4\pi 

N

N\sum 
i=1

Y m
\ell (\bfitx i)Y m\prime 

\ell \prime (\bfitx i) = \langle Y m
\ell , Y m\prime 

\ell \prime \rangle = \delta \ell \ell \prime \delta mm\prime (4.11)

for all \ell + \ell \prime \leq t, | m| \leq \ell , | m\prime | \leq \ell \prime . This implies 4\pi 
N \bfitY  \star 

\lfloor t/2\rfloor (XN )\bfitY \lfloor t/2\rfloor (XN ) = \bfI (\lfloor t/2\rfloor +1)2 with \bfI k
being the identity matrix of size k.

4.2. Truncated spherical framelet systems. In practice, the infinite system \scrF J0
(\Psi ,\scrQ )

in Theorem 4.1 needs to be truncated at certain scale J1 \geq J0 and the filter bank \eta =
\{ a; b1, . . . , bn\} plays the key role in the decomposition and reconstruction of a discrete signal
on the sphere. We next discuss the truncated systems of spherical framelets for practical
spherical signal processing.

We first suppose that the filter bank \eta = \{ a; b1, . . . , bn\} is designed beforehand and it
satisfies the partition of unity condition:

| \^a(\xi )| 2 +
\sum 
s\in [n]

| \^bs(\xi )| 2 = 1, \xi \in \BbbR .(4.12)

For a fixed fine scale J \in \BbbZ , we set

\^\alpha (J+1)

\biggl( 
\lambda \ell ,m
tJ+1

\biggr) 
=

\Biggl\{ 
1 for \ell \leq tJ ,

0 for \ell > tJ ,
(4.13)

and following (4.1), we recursively define \^\alpha (j), \^\beta 
(j)
s from \^\alpha (j+1) by

\^\alpha (j)

\biggl( 
\lambda \ell ,m
tj

\biggr) 
=\^\alpha (j)

\biggl( 
2
\lambda \ell ,m
tj+1

\biggr) 
= \^a

\biggl( 
\lambda \ell ,m
tj+1

\biggr) 
\^\alpha (j+1)

\biggl( 
\lambda \ell ,m
tj+1

\biggr) 
,(4.14)

\^\beta (j)s

\biggl( 
\lambda \ell ,m
tj

\biggr) 
=\^\beta (j)s

\biggl( 
2
\lambda \ell ,m
tj+1

\biggr) 
=\^bs

\biggl( 
\lambda \ell ,m
tj+1

\biggr) 
\^\alpha (j+1)

\biggl( 
\lambda \ell ,m
tj+1

\biggr) 
, s\in [n],(4.15)

for j decreasing from J to J0. Then, we obtain

\Psi = \{ \alpha (j), \beta (j)s | j = J0, . . . , J ;s\in [n]\} .(4.16)

Let \scrQ :=\scrQ J+1
J0

:= \{ QNj ,tj : j = J0, . . . , J + 1\} be the set of polynomial-exact quadrature rules
truncated from the original infinite sequence of spherical tj-designs satisfying tj+1 = 2tj .

With the above \Psi and \scrQ , we can define the truncated (semidiscrete) spherical framelet
system \scrF J

J0
(\eta ,\scrQ ) from the spherical designs as

\scrF J
J0
(\eta ,\scrQ ) := \{ \varphi J0,k | k \in [NJ0

]\} \cup \{ \psi (s)
j,k | k \in [Nj+1], s\in [n]\} Jj=J0

,(4.17)

where the \varphi j,k and \psi 
(s)
j,k are modified as
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\varphi j,k(\bfitx ) :=
\surd 
wj

\sum 
(\ell ,m)\in \scrI tj

\^\alpha (j)

\biggl( 
\lambda \ell ,m
tj

\biggr) 
Y m
\ell (\bfitx j,k)Y

m
\ell (\bfitx ),(4.18)

\psi 
(s)
j,k(\bfitx ) :=

\surd 
wj+1

\sum 
(\ell ,m)\in \scrI tj+1

\^\beta (j)s

\biggl( 
\lambda \ell ,m
tj

\biggr) 
Y m
\ell (\bfitx j+1,k)Y

m
\ell (\bfitx ).(4.19)

Note that in the notation \scrF J
J0
(\eta ,\scrQ ), we emphasize on the role of the filter bank \eta . The system

\scrF J
J0
(\eta ,\scrQ ) is completely determined by the filter bank \eta and the quadrature rules \scrQ . We have

the following result regarding the tightness of \scrF J
J0
(\eta ,\scrQ ) and its relation to \Pi tJ .

Theorem 4.3. Let \scrF J
J0
(\eta ,\scrQ ) be the truncated spherical framelet system defined as in (4.17)

and assume that the filter bank \eta satisfies the partition of unity condition (4.12) with supp\^a\subseteq 
[0, 14 ] and supp\^bs \subseteq [0, 12 ] for s\in [n]. Define \scrV j := span\{ \varphi j,k | k \in [Nj ]\} and \scrW j := span\{ \psi (s)

j,k | k \in 
[Nj+1], s\in [n]\} . Then the following results hold:

(i) \Pi tJ = \scrV J+1 and thus f =
\sum NJ+1

k=1 \langle f,\varphi J+1,k\rangle \varphi J+1,k for any f \in \Pi tJ .
(ii) The decomposition and reconstruction relation \scrV j+1 = \scrV j +\scrW j holds for j = J0, . . . , J .
(iii) The truncated spherical framelet system \scrF J

J0
(\eta ,\scrQ ) is a tight frame for \Pi tJ . That is,

for all f \in \Pi tJ , we have f =
\sum N0

k=1 vJ0,k\varphi J0,k +
\sum J

j=J0

\sum Nj

k=1

\sum n
s=1 w(s)

j,k\psi 
(s)
j,k , where

vj,k := \langle f,\varphi j,k\rangle and w(s)
j,k := \langle f,\psi (s)

j,k\rangle .
Proof. By (4.13), we have \scrV J+1 \subseteq \Pi tJ . One the other hand, for f \in \Pi tJ , we have

f =
\sum 

(\ell ,m)\in \scrI tJ+1

\^fm\ell Y
m
\ell =

\sum 
(\ell ,m)\in \scrI tJ+1

\^fm\ell | \^\alpha (J+1)(
\lambda \ell ,m
tJ+1

)| 2Y m
\ell .

We next show that the last equation above implies f =
\sum NJ+1

k=1 vJ+1,k\varphi J+1,k \in \scrV J+1. In fact,
more generally, by the orthogonality of Y m

\ell for any f \in L2(\BbbS 2), we have vj,k = \langle f,\varphi j,k\rangle =\sum 
(\ell ,m)\in \scrI tj

\^fm\ell 
\=\^\alpha (j)(\lambda \ell ,m

tj
)
\surd 
wjY

m
\ell (\bfitx j,k). Together with that QNj ,tj is a polynomial-exact quad-

rature rule of degree tj and \^\alpha (j)(\lambda \ell ,m

tj
)\equiv 0 for \ell > tj - 1 in view of (4.13) and supp\^a\subseteq [0, 12 ], we

can deduce that

Nj\sum 
k=1

vj,k\varphi j,k =
\sum 

(\ell ,m)\in \scrI tj

\sum 
(\ell \prime ,m\prime )\in \scrI tj

\^fm\ell 
\=\^\alpha (j)

\biggl( 
\lambda \ell ,m
tj

\biggr) 
\^\alpha (j)

\biggl( 
\lambda \ell \prime ,m\prime 

tj

\biggr) 
\scrU \ell \prime ,m\prime 

\ell ,m (QNj ,tj )Y
m\prime 

\ell \prime 

=
\sum 

(\ell ,m)\in \scrI tj

\^fm\ell | \^\alpha (j)

\biggl( 
\lambda \ell ,m
tj

\biggr) 
| 2Y m

\ell ,

where we use \scrU \ell \prime ,m\prime 

\ell ,m (QNj ,tj ) :=
\sum Nj

k=1wjY
m
\ell (\bfitx j,k)Y

m\prime 

\ell \prime (\bfitx j,k) = \delta \ell \ell \prime \delta mm\prime . Item (i) is proved.
For item (ii), by definition, we obviously have \scrV j +\scrW j \subseteq \scrV j+1. For the other direction,

similarly to above, for any f \in L2(\BbbS 2), we can deduce that
\sum Nj+1

k=1 w(s)
j,k\psi 

(s)
j,k =

\sum 
(\ell ,m)\in \scrI tj+1

\^fm\ell 

| \^\beta (j)s (\lambda \ell ,m

tj
)| 2Y m

\ell . Then, by (4.12), (4.14), and (4.15), we have
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2092 YUCHEN XIAO AND XIAOSHENG ZHUANG

Nj+1\sum 
k=1

vj+1,k\varphi j+1,k =
\sum 

(\ell ,m)\in \scrI tj+1

\^fm\ell 

\bigm| \bigm| \bigm| \bigm| \^\alpha \biggl( \lambda \ell ,mtj+1

\biggr) \bigm| \bigm| \bigm| \bigm| 2 Y m
\ell 

=
\sum 

(\ell ,m)\in \scrI tj+1

\^fm\ell 

\bigm| \bigm| \bigm| \bigm| \^\alpha \biggl( \lambda \ell ,mtj+1

\biggr) \bigm| \bigm| \bigm| \bigm| 2
\Biggl( \bigm| \bigm| \bigm| \bigm| \^a\biggl( \lambda \ell ,mtj+1

\biggr) \bigm| \bigm| \bigm| \bigm| 2 + n\sum 
s=1

\bigm| \bigm| \bigm| \bigm| \^bs\biggl( \lambda \ell ,mtj+1

\biggr) \bigm| \bigm| \bigm| \bigm| 2
\Biggr) 
Y m
\ell 

=
\sum 

(\ell ,m)\in \scrI tj

\^fm\ell 

\bigm| \bigm| \bigm| \bigm| \^\alpha \biggl( \lambda \ell ,mtj
\biggr) \bigm| \bigm| \bigm| \bigm| 2 Y m

\ell +

n\sum 
s=1

\sum 
(\ell ,m)\in \scrI tj+1

\^fm\ell 

\bigm| \bigm| \bigm| \bigm| \^\beta s\biggl( \lambda \ell ,mtj
\biggr) \bigm| \bigm| \bigm| \bigm| 2 Y m

\ell 

=

Nj\sum 
k=1

vj,k\varphi j,k +

Nj+1\sum 
k=1

n\sum 
s=1

w(s)
j,k\psi 

(s)
j,k .

Therefore, we have \scrV j+1 \subseteq \scrV j +\scrW j for all j = 0, . . . , J . Item (ii) holds.
Item (iii) directly follows from items (i) and (ii). This completes the proof.

4.3. Fast spherical framelet transforms. We next turn to the fast spherical framelet
transforms (SFmTs) for the decomposition and reconstruction of a signal on the sphere \BbbS 2
using the truncated system \scrF J

J0
(\eta ,\scrQ ).

For a vector \^\bfitc = (\^cm\ell )(\ell ,m)\in \scrI tj+1
, define the downsampling operator \downarrow j by \^\bfitc \downarrow j := (\^cm\ell )(\ell ,m)\in \scrI tj

.

Similarly, for a vector \^\bfitc = (\^cm\ell )(\ell ,m)\in \scrI tj
, define the upsampling operator \uparrow j+1 by \^\bfitc \uparrow j+1:=

(\^cm\ell )(\ell ,m)\in \scrI tj+1
with \^cm\ell = 0 for \ell > tj .

We have the following theorem regarding the decomposition of reconstruction using the
truncated spherical framelet system \scrF J

J0
(\eta ,\scrQ ).

Theorem 4.4. Given a truncated system \scrF J
J0
(\eta ,\scrQ ) as in Theorem 4.3. Define

\bfitv j := (vj,k)k\in [Nj ] \in \BbbC Nj , \bfitw 
(s)
j := (wj,k)k\in [Nj+1] \in \BbbC Nj+1 ,(4.20)

\^\bfita j :=
\Bigl( 
\^a
\Bigl( \lambda m\ell 
tj+1

\Bigr) \Bigr) 
(\ell ,m)\in \scrI tj+1

, \^\bfitb 
(s)
j :=

\Bigl( 
\^bs

\Bigl( \lambda m\ell 
tj+1

\Bigr) \Bigr) 
(\ell ,m)\in \scrI tj+1

(4.21)

for j = J0, . . . , J . Let wj := 4\pi 
Nj

. Then, for j = J0, . . . , J , we have the one-level framelet

decomposition that obtains \{ \bfitv j ,\bfitw 
(s)
j | s\in [n]\} from \bfitv j+1:

\bfitv j =
\surd 
wj\bfitY tj

\Bigl[ 
[(
\surd 
wj+1\bfitY 

 \star 
tj+1

\bfitv j+1)\odot \=\^\bfita j ] \downarrow j
\Bigr] 
,(4.22)

\bfitw 
(s)
j =

\surd 
wj+1\bfitY tj+1

\biggl[ 
(
\surd 
wj+1\bfitY 

 \star 
tj+1

\bfitv j+1)\odot \=\^\bfitb 
(s)

j

\biggr] 
, s\in [n],(4.23)

and the one-level framelet reconstruction of \bfitv j+1 from \{ \bfitv j ,\bfitw 
(s)
j | s\in [n]\} :

\bfitv j+1 =
\surd 
wj+1\bfitY tj+1

\Biggl[ 
[
\surd 
wj\bfitY 

 \star 
tj\bfitv j ] \uparrow j+1 \odot \^\bfita j +

n\sum 
s=1

[(
\surd 
wj+1\bfitY 

 \star 
tj+1

\bfitw 
(s)
j )\odot \^\bfitb 

(s)
j ]

\Biggr] 
,(4.24)

where the symbol \odot denotes the Hadamard entrywise product operator.
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Proof. Given f \in \Pi tJ , by item (i) of Theorem 4.3, it is uniquely determined by its Fourier
coefficient sequence \^fm\ell , i.e., f =

\sum 
(\ell ,m)\in \scrI tJ

\^fm\ell Y
m
\ell , and we can represent it in \scrV J+1 as f =\sum NJ+1

k=1 vJ+1,k\varphi J+1,k, which is associated with the spherical t-design point set XNJ+1
. Define

\^\bfitf j := ( \^fm\ell )(\ell ,m)\in \scrI tj
and \^\bfitalpha j := (\^\alpha (j)(\lambda m\ell /tj))(\ell ,m)\in \scrI tj

for j = J0, . . . , J + 1 with the convention

that \^fm\ell = 0 for (\ell ,m) /\in \scrI tJ .
By (4.14) and (4.15), we have

vj,k =
\sum 

(\ell ,m)\in \scrI tj

\^fm\ell 
\=\^\alpha (j)

\biggl( 
\lambda \ell ,m
tj

\biggr) 
\surd 
wjY

m
\ell (\bfitx j,k)

=
\sum 

(\ell ,m)\in \scrI tj

\^fm\ell 
\=\^a

\biggl( 
\lambda \ell ,m
tj+1

\biggr) 
\=\^\alpha (j)

\biggl( 
\lambda \ell ,m
tj+1

\biggr) 
\surd 
wjY

m
\ell (\bfitx j,k).

This implies that

\bfitv j+1 =
\surd 
wj+1\bfitY tj+1

( \^\bfitf j+1 \odot \=\^\bfitalpha j+1), \bfitv j =
\surd 
wj\bfitY tj

\Bigl[ 
[( \^\bfitf j+1 \odot \^\bfitalpha j+1)\odot \=\^\bfita j ] \downarrow j

\Bigr] 
,(4.25)

where we use wj = 4\pi 
Nj

. Note that, by \^\alpha (j)(\lambda \ell ,m

tj+1
) \equiv 0 for \ell > tj and the polynomial-exact

quadrature rule QNj+1
of degree tj+1, we have

[
\surd 
wj+1\bfitY 

 \star 
tj+1

\bfitv j+1]| \scrI tj
= [wj+1\bfitY 

 \star 
tj+1

\bfitY tj+1
( \^\bfitf j+1 \odot \=\^\bfitalpha j+1)]| \scrI tj

= ( \^\bfitf j+1 \odot \=\^\bfitalpha j+1)| \scrI tj
,

where | \scrI tj
denotes the restriction on the index set \scrI tj . Consequently, replacing the above

expression of ( \^\bfitf j+1 \odot \=\^\bfitalpha j+1) into \bfitv j in (4.25), we have (4.22). Similarly, we have \bfitw 
(s)
j =

\surd 
wj+1\bfitY tj+1

[(
\surd 
wj+1\bfitY 

 \star 
tj+1

\bfitv j+1)\odot \=\^\bfitb 
(s)

j ]. Hence, we obtain the one-level framelet decomposition.

For the reconstruction, by (4.22) and supp\^a \subseteq [0, 14 ], we have [
\surd 
wj\bfitY 

 \star 
tj\bfitv j ] \uparrow j+1 \odot \^\bfita j =

([
\surd 
wj+1\bfitY 

 \star 
tj+1

\bfitv j+1]\odot \=\^\bfita j)\odot \^\bfita j = [
\surd 
wj+1\bfitY 

 \star 
tj+1

\bfitv j+1]\odot [\=\^\bfita j \odot \^\bfita j ]. Similarly, (
\surd 
wj+1\bfitY 

 \star 
tj+1

\bfitw 
(s)
j )\odot 

\^\bfitb 
(s)
j = [

\surd 
wj+1\bfitY 

 \star 
tj+1

\bfitv j+1]\odot [\=\^\bfitb 
(s)

j \odot \^\bfitb 
(s)
j ]. Consequently, by the partition of unity condition in

(4.12) and the support constrains of \^a,\^bs (supp\^a\subset [0, 14 ], supp
\^bs \subset [0, 12 ]), we have [

\surd 
wj\bfitY 

 \star 
tj\bfitv j ]

\uparrow j+1 \odot \^\bfita j +
\sum n

s=1[(
\surd 
wj+1\bfitY 

 \star 
tj+1

\bfitw 
(s)
j ) \odot \^\bfitb 

(s)
j ] = [

\surd 
wj+1\bfitY 

 \star 
tj+1

\bfitv j+1] \odot ([\=\^\bfita j \odot \^\bfita j ] +
\sum n

s=1[
\=\^\bfitb 
(s)

j \odot 
\^\bfitb 
(s)
j ]) = \^\bfitf j+1 \odot \^\bfitalpha j+1. Now (4.24) follows from (4.25), which completes the proof.

Based on Theorem 4.4, we have the pseudo-code of multilevel spherical framelet transforms
as in Algorithms 4.1 and 4.2. Since each step in the decomposition or reconstruction involves
only the fast spherical harmonic transforms or the down- and up-sampling operators, the
computational time complexity of the multilevel spherical framelet transforms is of order
\scrO (t2 log2(t) +N log2(1\epsilon )).

The procedure of spherical framelet decomposition and reconstruction is illustrated in
Figure 3.

5. Spherical framelets for spherical signal denoising. In this section, we provide numer-
ical experiments for illustrating the efficiency and effectiveness of spherical signal denoising
using the spherical framelet systems developed in section 4.
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2094 YUCHEN XIAO AND XIAOSHENG ZHUANG

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bfone Multilevel spherical framelet transforms: Decomposition

\bfI \bfn \bfp \bfu \bft : \{ QNj ,tj = (XNj
,wj =

4\pi 
Nj

)\} J+1
j=J0

: polynomial-exact quadrature rules; \bfitf J+1 = f | XNJ+1
:

samples of f \in \Pi tJ on the spherical point set XNJ+1
; \eta : filter bank.

Initialize \^\bfitf \bfitJ +\bfone =wj+1\bfitY 
 \star 
tJ+1

\bfitf J+1.

1:\bff \bfo \bfr j from J to J0 \bfd \bfo 
2: \bff \bfo \bfr s from 1 to n \bfd \bfo 

3: \bfitw 
(s)
j =

\surd 
wj+1\bfitY tj+1

[ \^\bfitf j+1 \odot 
\=\^\bfitb 
(s)

j ].

4: \bfe \bfn \bfd \bff \bfo \bfr 

5: \^\bfitf j = [ \^\bfitf j+1 \odot \=\^\bfita j ]\downarrow j .
6: \bfe \bfn \bfd \bff \bfo \bfr 

7: \bfitv J0
=
\surd 
wJ0

\bfitY tJ0

\^\bfitf J0
.

\bfO \bfu \bft \bfp \bfu \bft : \{ \bfitv J0
,\bfitw 

(s)
j | j = J0, . . . J ;s\in [n]\} .

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bffour .\bftwo Multilevel spherical framelet transforms: Reconstruction

\bfI \bfn \bfp \bfu \bft : \{ QNj ,tj = (XNj
, wj =

4\pi 
Nj

)\} J+1
j=J0

: polynomial-exact quadrature rules; \{ \bfitv J0
,\bfitw 

(s)
j | j =

J0, . . . J ;s\in [n]\} : coefficient sequences; \eta : filter bank.
Initialize \^\bfitf \bfitJ \bfzero 

=
\surd 
wJ0

\bfitY tJ0
\bfitv J0

.
1: \bff \bfo \bfr j from J0 to J \bfd \bfo 

2: \^\bfitf j+1 = \^\bfitf j\uparrow j+1 \odot \=\^\bfita j

3: \bff \bfo \bfr s from 1 to n \bfd \bfo 

4: \^\bfitf j+1 = \^\bfitf j+1 + [
\surd 
wj+1\bfitY 

 \star 
tj+1

\bfitw 
(s)
j ]\odot \^\bfitb 

(s)
j .

5: \bfe \bfn \bfd \bff \bfo \bfr 
6: \bfe \bfn \bfd \bff \bfo \bfr 

7: \bfitf \bfitJ +\bfone =wj+1\bfitY tJ+1
\^\bfitf J+1.

\bfO \bfu \bft \bfp \bfu \bft : \bfitf J+1: samples of f \in \Pi tJ on the spherical point set XNJ+1
;

a \star \downarrow processing \uparrow a

a \star \downarrow + \uparrow a

b \star processing b

input + output

b \star processing b

Figure 3. Two-level framelet filter bank decomposition and reconstruction based on the filter bank \eta =
\{ a; b1, . . . , bn\} . Here the node with respect to b (or b \star ) runs from b1 to bn while the node with respect to \oplus sums
all bs, s\in [n].

5.1. Three framelet systems. We first discuss the ingredients for the system \scrF J
J0
(\eta ,\scrQ ).

For \scrQ = \{ QNj ,tj\} J+1
j=J0

= \{ (XNj
,wj =

4\pi 
Nj

)\} J+1
j=J0

, it is the set of spherical designs obtained in
section 3 satisfying tj+1 = 2tj . For \eta , we construct three different filter banks \eta 1, \eta 2, and \eta 3
with 1, 2, and 3 high-pass filters, respectively.
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SPHERICAL FRAMELETS FROM SPHERICAL DESIGNS 2095

2/18/361/361/10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) η1 = {â; b̂1}
2/14/161/361/10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) η2 = {â; b̂1, b̂2}
0 1/16 3/16 1/4 3/8 1/2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) η3 = {â; b̂1, b̂2, b̂3}

Figure 4. Filter banks \eta 1, \eta 2, \eta 3 on [0, 1
2
].

(1) The filter bank \eta 1 = \{ a; b1\} is determined by \^a := \chi [ - 3

16
, 1
8
]; 1

16
, 1

16
and \^b1 := \chi [ 1

8
, 9

16
]; 1

16
, 1

16
.

Note that supp\^a\subset [0, 14 ].

(2) The filter bank \eta 2 = \{ a; b1, b2\} is determined by the same \^a as in item (1), and \^b1 :=
\chi [ 1

8
, 3
8
]; 1

16
, 1
8
and \^b2 := \chi [ 3

8
,1]; 1

8
, 1
8
.

(3) The filter bank \eta 3 = \{ a; b1, b2, b3\} is determined by the same \^a as in item (1), and
\^b1 := \chi [ 1

8
, 5

16
]; 1

16
, 1

16
, \^b2 := \chi [ 5

16
, 7

16
]; 1

16
, 1

16
, and \^b3 := \chi [ 7

16
, 9

16
]; 1

16
, 1

16
.

Here the bump function \chi [cL,cR];\epsilon L,\epsilon R is the continuous function supported on [cL - \epsilon L, cR+\epsilon R]
as defined in [28, 61] and is given by

\chi [cL,cR];\epsilon L,\epsilon R(\xi ) :=

\left\{           
0, \xi \leq cL  - \epsilon L or \xi \geq cR + \epsilon R,

sin(\pi 2 \nu (
\xi  - cL+\epsilon L

2\epsilon L
)), cL  - \epsilon L < \xi < cL + \epsilon L,

1, cL + \epsilon L \leq \xi \leq cR  - \epsilon R,

cos(\pi 2 \nu (
\xi  - cR+\epsilon R

2\epsilon R
)), cR  - \epsilon R < \xi < cR + \epsilon R,

where cL, cR are control points, \epsilon L, \epsilon R are shape parameters, \nu (t) is the elementary function
[17] such that \nu (t) = t4(35 - 84t+ 70t2  - 20t3) for 0 < t < 1, \nu (t) = 1 for t \geq 1, and \nu (t) = 0
for t < 0. Note that \nu (t) satisfies \nu (t) + \nu (1  - t) = 1. Each filter bank \eta k corresponds to
a truncated tight framelet system \scrF J

J0
(\eta k,\scrQ ) on the sphere. We show in Figure 4 the filter

banks \eta k for k = 1,2,3. It can be verified that | \^a(\xi )| 2 +
\sum n

s=1| \^bs(\xi )| 2 = 1 for \xi \in [0, 12 ], which
implies (4.12).

5.2. Denoising procedure. We next discuss the denoising procedure for a given noisy
signal f\sigma using the spherical framelet systems. Given a noisy function f\sigma = fo+G\sigma on XNJ+1

,
where fo is an unknown ground truth and G\sigma is the Gaussian white noisy, we project it onto
\Pi tJ (using Algorithm 3.1) to obtain f\sigma = f + g such that f \in \Pi tJ is the projection part and
g = f\sigma  - f is the residual part. Note that all f\sigma , f, g are sampled on XNJ+1

. We then use the
spherical tight framelet system \scrF J

J0
(\eta ,\scrQ ) to decompose f (more precisely, \bfitf J+1 = f | XNJ+1

;

see Algorithm 4.1) into the framelet coefficient sequences \{ \bfitv J0
\} \cup \{ \bfitw (s)

j | j = J0, . . . , J ;s\in [n]\} .
We apply the thresholding techniques for denoising the framelet coefficient sequences \bfitw 

(s)
j of

f and the residual g. After that, we apply the framelet reconstruction (Algorithm 4.2) to
the denoised framelet coefficient sequences and obtain the denoised reconstruction signal fthr
(cf. Figure 3). Finally, together with the denoised residual gthr, we can obtain a denoised
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2096 YUCHEN XIAO AND XIAOSHENG ZHUANG

signal f\sigma ,thr = fthr + gthr. To quantify the performance of the framelet denoising, we use the
signal-to-noise ratio (SNR) and peak signal-to-noise ratio (PSNR) to measure the quality of
denoising.

We next detail the denoising procedure of f and g for obtaining fthr and gthr.

Given the framelet coefficient sequence \bfitw 
(s)
j = (w(s)

j )k\in [Nj+1], note that w(s)
j,k is associ-

ated with the point \bfitx j+1,k. We first normalize it according to the norm \| \psi (s)
j,k\| L2(\BbbS 2) by

\~w(s)
j,k = w(s)

j /\| \psi (s)
j,k\| L2(\BbbS 2). In practice, such a norm \| \psi (s)

j,k\| L2(\BbbS 2) can be computed by setting all

coefficient sequences in \{ \bfitv J0
\} \cup \{ \bfitw (s)

j | j = J0, . . . , J ;s \in [n]\} to be 0 except w(s)
j = 1, applying

the framelet reconstruction Algorithm 4.2 obtaining a reconstruction signal with respect to

\psi 
(s)
j,k , and calculating its l2-norm to obtain \| \psi (s)

j,k\| L2(\BbbS 2). We then perform the local-soft (LS)

thresholding method which updates \~w(s)
j,k to be

\v w(s)
j,k =

\Biggl\{ 
\~w(s)
j,k  - sgn(\~w(s)

j,k)\tau 
(s)
j,k,r, | \~w(s)

j,k| \geq \tau 
(s)
j,k,r,

0, | \~w(s)
j,k| < \tau 

(s)
j,k,r,

(5.1)

where \tau 
(s)
j,k,r is a thresholding value determined by

\tau 
(s)
j,k,r =

c \cdot \sigma 2\sqrt{} 
(\=w(s)

j,k,r  - \sigma 2)+

(5.2)

with c being a constant that is tuned by hand to optimize the performance. Here, \=w(s)
j,k,r

is the average of the coefficients near \~w(s)
j,k determined by a spherical cap C(\bfitx , r) := \{ \bfity \in 

\BbbS 2 : \| \bfitx \times \bfity \| \leq r\} of radius r and centered at \bfitx = \bfitx j+1,k. The symbol \times denotes cross
product. More precisely, we can obtain the neighborhood \scrN j+1,k,r of \bfitx j+1,k in C(\bfitx j+1,k, r) as

\scrN j+1,k,r :=XNj+1
\cap C(\bfitx j+1,k, r). Then, \=w(s)

j,k,r =
1

| \scrN j+1,k,r| 
\sum 

i:\bfitx i\in \scrN j+1,k,r
| \~w(s)

j,i | 2, where | \scrN j+1,k,r| 
denotes the cardinality of the set \scrN j+1,k,r. After the thresholding procedure, we denormalize

\v w(s)
j,k to obtain the updated coefficient w(s)

j,k = \v w(s)
j,k \cdot \| \psi 

(s)
j,k\| L2(\BbbS 2). Finally, framelet reconstruction

is applied to the updated coefficient sequences.
Similarly, the LS thresholding method for g is

gthr(\bfitx J+1,k) =

\Biggl\{ 
g(\bfitx J+1,k) - sgn(g(\bfitx J+1,k))\tau J+1,k, | g(\bfitx J+1,k)| \geq \tau J+1,k,r,

0, | g(\bfitx J+1,k)| < \tau J+1,k,r.
(5.3)

where \tau J+1,k,r = c1\cdot \sigma 2\surd 
(\=g(\bfitx J+1,k) - \sigma 2)+

with \=g(\bfitx J+1,k) =
1

| \scrN J+1,k,r| 
\sum 

i:\bfitx i\in \scrN J+1,k,r
| g(\bfitx j+1,i)| 2. Then,

we obtain gthr after the LS thresholding.
In practice, the neighborhood \scrN j+1,k,r of \bfitx j+1,k in XNj+1

can be found through the nearest
neighborhood search algorithm (rnn-search). During our numerical experiments, we choose
different radius r for \scrN j+1,k,r according to ri =

\rho i

(tj+1+1)2 , where \rho i is a constant for the ith
spherical cap layer, which roughly gives points near the center within the layer defined by the
boundary \partial C(\bfitx , ri) of C(\bfitx , ri). After running some tests, we set \rho i = 13.84 \cdot i. With the above
definition, we can precompute the set \scrN ri(XN ) = \{ \scrN ri(\bfitx k) := \{ \bfitx \in C(\bfitx k, r) \cap XN\} | k \in [N ]\} 
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SPHERICAL FRAMELETS FROM SPHERICAL DESIGNS 2097

(a) Partial view (b) General view

Figure 5. Spherical caps (rnn-search) from an SPD spherical 64-design point set. (a) Partial view with
points inside the caps. (b) Full view with all caps and points.

for some fixed i\in \BbbN and for a given point set XN to speed up the LS thresholding process. In
Figure 5, we shows an example of a spherical cap boundary \partial C(\bfitx , ri) for i= 15,22,27 which
centroids are \bfitx =\bfitx 1 = (0,0,1)\top and \bfitx =\bfitx 500 = (0.3018, - 0.5854,0.7525)\top , respectively, from
a SPD spherical 64-design point set; see Table 1.

Note that the denoising procedure can be modeled as a solution to the following optimiza-
tion problem:

min
fthr\in \Pi tJ

,gthr\in (\Pi tJ
)\bot 

1

2
\| f\sigma  - fthr  - gthr\| 22 + \| \Gamma f\scrW fthr\| 1 + \| \Gamma ggthr\| 1,(5.4)

where \scrW is the framelet transform operator associated with \scrF J
J0
(\eta ,\scrQ ), and \Gamma f and \Gamma g are

the diagonal weight operators associated with (5.1) and (5.3), respectively. We refer to
[8, 38, 39, 46] and many references therein for more details on the study of related \ell 1-
optimization models.

We next consider the denoising of two types of data: the ETOPO1 data and the spherical
images.

5.3. ETOPO. We next discuss the denoising of the ETOPO1 data [1]. It is an elevation
dataset of the earth, which includes the elevation information on \BbbS 2 sampled on a grid XE

of 10800 \times 21600 points. The ETOPO1 is a spherical geometry data formed by an equally
distributed position. That is, the grid is given by XE := \{ (\theta i, \phi j) \in [0, \pi ] \times [0,2\pi ) | i =
1, . . . ,10800, j = 1, . . . ,21600\} with \theta i = (i - 1)\Delta , \phi j = (j - 1)\Delta and \Delta = \pi 

10800 . For a spherical
point set XN , we can easily resample the ETOPO1 data on XE to a data on XN by finding the
\bfitx (\theta ,\phi )\in XN with respect to the nearest ETOPO1 index according to i\bfitx = \lceil \phi 

\Delta \rceil and j\bfitx = \lceil \theta 
\Delta \rceil ,

where \lceil \cdot \rceil is the ceiling operator. Thus, for a given XNJ+1
, we can obtain a ETOPO1 data on

XNJ+1
by fo(\bfitx ) = ETOPO1(i\bfitx , j\bfitx ), \bfitx \in XNJ+1

, where ETOPO1(i, j) denotes the (i, j)-entry
of the ETOPO1 data.

We generate the noisy ETOPO1 data f\sigma = fo + G\sigma fo
on XNJ+1

with noise level \sigma fo =
\sigma | f0| \mathrm{m}\mathrm{a}\mathrm{x} for \sigma \in \{ 0.050,0.075, . . . ,0.175,0.200\} . Given a group of spherical t-design point sets
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2098 YUCHEN XIAO AND XIAOSHENG ZHUANG

XNj
(SPD) with degrees t0 = 256, t1 = 512, t2 = 1024, we have the spherical framelet system

\scrF J
J0
(\eta ,\scrQ ) (J0 = 0, J = 1) with \eta = \eta 3. We do a lot of experiments to fix c= c1 = 0.6 and the

spherical cap layer orders i = 12 in the cap radius ri. After the denoising procedure as de-
scribed in subsection 5.2, we obtained a denoised signal f\sigma ,thr. We use SNR(fo, f\sigma ,thr) =

10 log10(
\| fo\| 

\| f\sigma ,thr - fo\| ) for measuring the quality of denoising. The results are presented in
Table 3.

From Table 3, we can see that the behavior of the denoising procedure shows that \eta 3 >
\eta 2 > \eta 1, and it does increase the SNR of the denoised signal up to 11.6 dB. We demonstrate
in Figure 6 the figures for the ground truth signal fo, its noisy version f\sigma for \sigma = 0.05, and
the reconstruction denoised signal f\sigma ,thr. The SNR of the final denoised data \eta 3 is 5.98 dB
greater than that of the initial noisy data SNR0. We further show in Figure 7 the framelet

coefficient sequences \{ \bfitv 0,\bfitw 
(s)
j | j = 0,1;s = 1,2,3\} of f in the projection decomposition of

f\sigma = f + g for some f \in \Pi tJ with tJ = 512 by the truncated system \scrF J
J0
(\eta ,\scrQ ). One can see

Table 3
ETOPO1 denoising results with respect to different noise level \sigma with filter bank \eta 3. The row SNR0 is the

initial SNR between f\sigma and fo. The row \eta i is the final SNR(fo, f\sigma ,thr) with respect to the denoising using the
filter bank \eta i, i= 1,2,3.

\sigma 0.05 0.075 0.1 0.125 0.15 0.175 0.2

SNR0 \bfone \bfsix .\bfthree \bfeight \bfone \bftwo .\bfeight \bffive \bfone \bfzero .\bfthree \bfsix \bfeight .\bffour \bftwo \bfsix .\bfeight \bfthree \bffive .\bffive \bfzero \bffour .\bfthree \bffour 

\eta 1 22.23 20.27 18.88 17.85 17.06 16.42 15.85
\eta 2 22.34 20.38 18.97 17.91 17.09 16.44 15.88
\eta 3 \bftwo \bftwo .\bfthree \bfsix \bftwo \bfzero .\bffour \bfone \bfone \bfnine .\bfzero \bfone \bfone \bfseven .\bfnine \bffive \bfone \bfseven .\bfone \bftwo \bfone \bfsix .\bffour \bffive \bfone \bffive .\bfnine \bftwo 

(a) fo (b) fσ (c) fσ,thr

Figure 6. The behavior of denoising ETOPO1 f\sigma for \sigma = 0.05 by \eta 3 on SPD with t0 = 256, t1 = 512, t2 =
1024. Top 3: north view. Bottom 3: south view.
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Figure 7. The 2-levels framelet decomposition for ETOPO f\sigma with \sigma = 0.05 by \eta 3 on SPD with t0 = 256, t1 =
512, t2 = 1024. \bfitw 

(s)
j is with respect to the sth high pass filter at the jth level decomposition. \bfitv 0 is with respect

to the low-pass filter decomposition in the coarsest level.

that the coefficient sequence \bfitw 
(s)
j for j = 0,1;s = 1,2,3 do contain significant noise from the

original data. This confirms the effectiveness of using the multiscale system to extract noise
from noisy data on the sphere.

5.4. Spherical images. We finally discuss the denoising of spherical images. For a given
gray scale image IMG (pixel value range in [0,255]) of size m\times n, similar to the ETOPO1,
we identify it as a spherical data on the grid XG = \{ (\theta i, \phi j) : i = 1, . . . ,m, j = 1, . . . , n\} \subset 
[0, \pi ] \times [0,2\pi ) with \theta i = (i  - 1)\Delta \theta , \phi j = (j  - 1)\Delta \phi and \Delta \theta = \pi 

m , \Delta \phi = 2\pi 
n . For a spherical

point sets XN , we can easily resample the image data on XG to a data on XN by finding the
\bfitx (\theta ,\phi ) \in XN with respect to the nearest image index by i\bfitx = \lceil \phi 

\Delta \theta 
\rceil and j\bfitx = \lceil \theta 

\Delta \phi 
\rceil . Thus,

for a given XNJ+1
, we can obtain a spherical image data on XNJ+1

by fo(\bfitx ) = IMG(i\bfitx , j\bfitx ),
\bfitx \in XNJ+1

, where IMG(i, j) is the (i, j)-entry of the image.
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We use 512\times 512 pixels classical images Barbara, Boat, Mandrill, Hill, and Man as the
input data to generate spherical image data fo by the above procedure; see Figure 8. Given
spherical t-design point sets XNj

(SPD) corresponding to degree t0 = 256, t1 = 512, t2 =
1024. Let J0 = 0 and J = 1. The noisy spherical image data f\sigma = f0 + G\sigma \cdot 255 on XNJ+1

with \sigma \in \{ 0.05,0.075, . . . ,0.175,0.2\} . We have the spherical framelet system \scrF J
J0
(\eta ,\scrQ ) with

filter banks \eta = \eta 3 (since \eta 1, \eta 2 do not perform as good as \eta 3, we omit their results for
spherical images) and LS thresholding method with the setting of c = 0.6, c1 = 0.5 and the
spherical cap layer order i = 23. We apply the denoising procedure as above to obtain
the denoised signal f\sigma ,thr. We use PSNR to measure the quality of image denoising, which

is PSNR(fo, f\sigma ,thr) := 10 log10(
2552

\mathrm{M}\mathrm{S}\mathrm{E}) and MSE is the mean squared error which defined as

MSE= 1
NJ+1

\sum 
\bfitx \in XNJ+1

| fo(\bfitx ) - f\sigma ,thr(\bfitx )| 2. We show the results in Table 4.

From the table, we conclude that the (semidiscrete) spherical tight framelets with LSthresh-
old method based on spherical t-design point sets do provide effective results in denoising and
reconstruction.

Table 4
Images denoising results. For each images, the first row is PSNR0 := PSNR(fo, f\sigma ), and the second row is

PSNR(fo, f\sigma ,thr) value using \eta 3.

Image \sigma 0.05 0.075 0.1 0.125 0.15 0.175 0.2

Barbara PSNR0 \bftwo \bfsix .\bfthree \bffour \bftwo \bftwo .\bfeight \bfone \bftwo \bfzero .\bfthree \bfone \bfone \bfeight .\bfthree \bfeight \bfone \bfsix .\bfseven \bfnine \bfone \bffive .\bffour \bffive \bfone \bffour .\bftwo \bfnine 
\eta 3 \bfthree \bfzero .\bfeight \bffour \bftwo \bfeight .\bffive \bfsix \bftwo \bfseven .\bfzero \bfseven \bftwo \bffive .\bfnine \bfseven \bftwo \bffive .\bfone \bftwo \bftwo \bffour .\bffour \bffive \bftwo \bfthree .\bfeight \bfseven 

Boat PSNR0 \bftwo \bfsix .\bfzero \bftwo \bftwo \bftwo .\bffive \bfzero \bftwo \bfzero .\bfzero \bfzero \bfone \bfeight .\bfzero \bfsix \bfone \bfsix .\bffour \bfeight \bfone \bffive .\bfone \bffour \bfone \bfthree .\bfnine \bfeight 
\eta 3 \bfthree \bfone .\bffour \bffive \bftwo \bfnine .\bfthree \bfnine \bftwo \bfseven .\bfnine \bfzero \bftwo \bfsix .\bfsix \bfsix \bftwo \bffive .\bfsix \bftwo \bftwo \bffour .\bfseven \bffour \bftwo \bffour .\bfzero \bffive 

Mandrill PSNR0 \bftwo \bfeight .\bfone \bfeight \bftwo \bffour .\bfsix \bfsix \bftwo \bftwo .\bfone \bfsix \bftwo \bfzero .\bftwo \bftwo \bfone \bfeight .\bfsix \bfthree \bfone \bfseven .\bfthree \bfzero \bfone \bfsix .\bfone \bffour 
\eta 3 \bfthree \bfzero .\bffour \bfthree \bftwo \bfseven .\bfnine \bfzero \bftwo \bfsix .\bftwo \bfthree \bftwo \bffive .\bfzero \bfzero \bftwo \bffour .\bfzero \bfeight \bftwo \bfthree .\bffour \bfzero \bftwo \bftwo .\bfeight \bfnine 

Hill PSNR0 \bftwo \bfsix .\bfseven \bfzero \bftwo \bfthree .\bfone \bfseven \bftwo \bfzero .\bfsix \bfeight \bfone \bfeight .\bfseven \bffour \bfone \bfseven .\bfone \bffive \bfone \bffive .\bfeight \bfone \bfone \bffour .\bfsix \bffive 
\eta 3 \bfthree \bfone .\bfseven \bfone \bftwo \bfnine .\bfsix \bfsix \bftwo \bfeight .\bftwo \bfone \bftwo \bfseven .\bfone \bfsix \bftwo \bfsix .\bfthree \bfnine \bftwo \bffive .\bfeight \bfone \bftwo \bffive .\bfthree \bffive 

Man PSNR0 \bftwo \bfsix .\bffive \bfone \bftwo \bftwo .\bfnine \bfnine \bftwo \bfzero .\bffour \bfnine \bfone \bfeight .\bffive \bffive \bfone \bfsix .\bfnine \bfseven \bfone \bffive .\bfsix \bfthree \bfone \bffour .\bffour \bfseven 
\eta 3 \bfthree \bftwo .\bfone \bfeight \bftwo \bfnine .\bfnine \bfseven \bftwo \bfeight .\bffour \bfsix \bftwo \bfseven .\bftwo \bfeight \bftwo \bfsix .\bfthree \bffive \bftwo \bffive .\bfsix \bfone \bftwo \bffive .\bfzero \bftwo 

(a) Barbara (b) Boat (c) Mandrill (d) Hill (e) Man

Figure 8. Project images by spherical 1024-design point set (SPD) on \BbbS 2. Top: original image. Bottom:
spherical image.
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6. Conclusions and final remarks. In this paper, starting from numerically solving a
minimization problem, we use a variational characterization of the spherical t-design AN,t to
find spherical t-designs with large value t using the trust-region method. We use the obtained
spherical t-designs for function approximation and build spherical tight framelet systems.
Especially, we construct truncated spherical tight framelet systems for discrete spherical signal
processing. Several numerical experiments demonstrate the efficiency and effectiveness of our
spherical framelet systems in processing signals or images on the sphere. We remark that
the truncated systems are not studied in [61], which plays the key role for discrete signal
processing here. Compared to [25], we use the trust-region method instead of the line-search
method and do not need to refer to the manifold versions of the gradient and Hessian.

The polynomial-exactness of the spherical t-designs plays a key role in the construction of
spherical tight framelet systems and their truncated versions. The fast framelet transforms
and the multiscale structure of the framelet systems provide efficient separation of noise from
the noisy spherical signals. As one can see from our numerical experiments, the noise spreads
in both f and g in the decomposition f\sigma = f + g. In practice, one can only process f up to
certain polynomial approximation space \Pi t by the truncated system, while the part g could
be spread over the higher frequency spectrum. The noise might not be well-suppressed in the
part g in our denoising procedure. We shall consider in the future the further improvement
of the denoising of g. Moreover, the quadrature rule sequence \scrQ is not nested in general. It
would be nice to have nested quadrature rule sequences for spherical tight framelets in view
of the multilevel structure of the traditional framelet systems on the Euclidean domain for
the usual image processing (of grid data).

Acknowledgments. We would like to thank anonymous reviewers for their valuable com-
ments and suggestions that greatly helped us to improve the presentation of this paper.
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