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A B S T R A C T

With the increasing availability of multimodal educational data, there is a growing need to effectively integrate
and exploit multiple data sources to enhance student engagement prediction accuracy. In this work, we
propose a framework that combines multimodal data, including visual, textual and acoustic modalities that
reflect the students’ personalities, their demographic information, their learning behavior and attention, with
graph learning techniques. Specifically, 3D Haar semi-tight framelet transforms are developed to capture
the inter-modal relationships and model the complex interactions within the multimodal data. Subsequently,
we introduce a novel module for adaptive graph structure learning based on the spectrum of multimodal
data, which takes into consideration the distinct contributions of low-pass and high-pass framelet coefficients
by adaptively weighing their impact. By addressing a standard semi-supervised node classification problem,
we successfully achieve the objective of student engagement prediction. The experiment evaluations on a
real-world educational dataset demonstrate the effectiveness of the proposed approach, achieving superior
performance compared to state-of-the-art methods. Our experimental studies demonstrate the importance
of multimodal graph learning in accurately predicting student engagement and its potential to enhance
educational outcomes.
. Introduction

Student engagement prediction has emerged as a crucial area of
esearch within the field of educational data mining and learning
nalytics [1–3]. With the increasing availability of digital educational
latforms and online learning environments, accurately predicting and
nderstanding student engagement levels has become essential for
mproving educational outcomes and delivering personalized interven-
ions [4–6]. By leveraging diverse data sources, including academic
erformance, online behavior, social interactions, and physiological
ignals, researchers have employed various machine learning and data
ining techniques to develop predictive models [7,8]. To further en-
ance the accuracy and effectiveness of student engagement prediction,
t is imperative to incorporate multimodal-based models that leverage
ultiple data sources, such as visual, textual, and acoustic modalities,

eflecting their personality, demographic information, learning behav-
or and attention, to capture a holistic view of students’ engagement
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patterns and facilitate a more comprehensive understanding of their
learning experiences [9–11].

Multimodal graph learning is an emerging field that explores the
fusion of multiple modalities in the context of graph data [12], re-
ceiving extensive attention in various domains such as disease pre-
diction [13–17], recommender systems [18–20], time-series anomaly
detection [21], sentiment analysis [22], computer vision (CV)
[23–25] and natural language processing (NLP) [26–28]. It aims to
leverage the rich information present in different modalities to enhance
graph analysis, representation learning, and downstream tasks [29].
This interdisciplinary area combines techniques from graph mining,
machine learning, computer vision, natural language processing, and
signal processing to tackle the challenges associated with integrating
and exploiting diverse data sources. By capturing inter-modal rela-
tionships, multimodal graph learning enables a more comprehensive
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understanding of complex systems, such as social networks, multime-
dia data, biological networks, and sensor networks. It encompasses
various research directions, including multimodal fusion, graph-based
modeling, transfer learning, attention mechanisms, and deep learning
architectures tailored for multimodal graph data. Despite the promising
advancements in multimodal graph learning, the focus on its applica-
tion in student engagement prediction remains limited. Therefore, there
exists a significant opportunity for further exploration and research to
harness the benefits of multimodal graph learning to improve student
engagement prediction models, as one of the primary goals of this work.

In this study, within the context of student engagement prediction,
we propose a novel multimodal graph learning framework by devel-
oping a 3D Haar semi-tight framelet (3D-HaarFrame) transform.
The proposed 3D-HaarFrame facilitates an efficient representation
of multimodal data by decomposing its tensor form into a set of co-
efficients at different scales and directions. This decomposition allows
for the extraction of relevant features and patterns from the unified
multimodal data while achieving data compression and reducing re-
dundancy. Additionally, 3D-HaarFrame enables multiscale analysis
that mines information at different frequency bands and effectively
promotes the exploration of both global trends and fine-grained de-
tails in multimodal data. Moreover, based on 3D-HaarFrame, we
propose a spectrum-based graph structure learning module, in which
the contribution of low-pass and high-pass framelet coefficients is
adaptively adjusted, to learn the inter-modal relationships and complex
interactions within the spectral-aware embeddings. By leveraging these
components, our proposed framework enhances the accuracy of student
engagement prediction, as verified convincingly based on extensive
experimental studies on a real-world multimodal educational dataset,
compared with several baselines.

In summary, as our main technical contributions, the proposed
framework of the 3D Haar semi-tight framelet offers several advantages
in the context of multimodal graph learning and student engagement
prediction:

• Effective representation: 3D-HaarFrame provides an efficient
representation of multimodal data by decomposing it into a set
of coefficients with different scales and orientations. This de-
composition allows for the extraction of relevant features and
patterns from the data while achieving data compression and
reducing redundancy. It enables a compact representation of the
multimodal data, facilitating efficient processing and analysis.

• Multiscale analysis: 3D-HaarFrame supports the multiscale
analysis of multimodal data by capturing information at differ-
ent scales1 Its associated transforms decompose the data into
framelet coefficients at different scales. By analyzing the framelet
coefficients at different scales, it is possible to identify and ex-
tract key information from the data. The multiscale analysis
is particularly beneficial for understanding and modeling com-
plex relationships and interactions within the data, enabling a
comprehensive exploration of student engagement patterns.

• Inter-modal relationship mining: 3D-HaarFrame allows for
the capture of inter-modal relationships within multimodal data.
By decomposing the data into different frequency bands, it en-
ables the exploration of correlations and dependencies between
modalities at different scales. This ability to analyze inter-modal
relationships is crucial for understanding the complex interactions
between different data sources and leveraging the complementary
information provided by each modality.

1 Multiscale analysis refers to the decomposition of signals, images, 3D
ata, or even high-dimensional data into a set of components, each capturing
ifferent levels of detail or information. Wavelets/framelets are commonly
sed in multiscale analysis to achieve such a purpose [30].
2

• Robustness to noise: 3D-HaarFrame has inherent noise-robust
properties due to its sparsity-promoting nature. It effectively sup-
presses noise and irrelevant information by concentrating energy
in a small number of coefficients, allowing for more reliable
and robust analysis of the multimodal data. This robustness is
particularly advantageous when dealing with noisy or incomplete
data commonly encountered in real-world educational settings.

The remainder of this paper is organized as follows: Section 2
provides a concise overview of the relevant works pertaining to mul-
timodal learning with graphs and student engagement prediction. In
Section 3, we present a comprehensive exposition of our proposed
methodology, commencing with a detailed explanation of the 3D Haar
Semi-Tight Framelet employed in the study. Subsequently, we delve
into the graph structure learning techniques leveraged to effectively
capture inter-modal relationships and intricately model the complex
interactions intrinsic to the data. In Section 4, we detail the experiments
that were conducted to verify the effectiveness of our proposed method.
Finally, we conclude this paper and discuss future work in Section 5.

2. Related works

2.1. Multimodal learning with graphs

Multimodal learning with graphs (MLG) has witnessed significant
progress in recent years since researchers have increasingly recognized
the power of incorporating multiple modalities (text/video/images/
audio, etc.) with graph information into a unified framework that lever-
ages the rich information present in each modality and their possible
relationship. In relation to its application, MLG receives extensive atten-
tion in the area of recommender systems, disease prediction, NLP and
CV. For example, MMGCN [18] introduces a class of multimodal graph
neural network recommendation models that address these issues.
Their model enhances the representation learning process by creating
fine-grained bipartite graphs for each modality based on the original
user-item bipartite graph. Subsequently, modality-specific graph repre-
sentation learning is performed on each bipartite graph, followed by the
fusion of structured information, self-information, and inter-modality
information through a joint layer. Motivated by MMGCN, MGAT [19]
further improves the model by introducing a recommendation model
based on a multimodal graph attention network. MKGAT [20] develops
a multimodal knowledge graph attention model-driven recommenda-
tion system, utilizing a multimodal knowledge graph. In the context of
medical big data analysis, some scholars have explored the application
of GNNs for modeling multimodal medical data and have made efforts
to develop multimodal learning with graphs for disease prediction.
Holzinger et al. [29] highlight the significant role of graph neural
networks in facilitating multi-modal causability by enabling the direct
definition of causal connections between features through graph struc-
tures. MGNN [31] constructs bipartite graphs connecting patients with
different modal pathological data, such as gene expression and copy
number variation. They employed independent graph neural networks
for representation learning under each modality and predicted the
survival rate of cancer patients by incorporating clinical data represen-
tations. In addition, MLG enables more comprehensive representations,
improved feature extraction, semantic relationship modeling, cross-
modal fusion, and interpretability, leading to enhanced performance
in tasks within the CV and NLP domains [12,32]. For instance, Saqur
et al. [23] proposed the use of neurosymbolic graphs to capture the
close relationships between the hidden concepts of different modalities
in visual question answering tasks. MM-GNN [33] introduces a visual
question answering model based on multimodal graph neural networks.
They utilized three different subgraphs, representing visual, semantic,
and numerical information, to capture the diverse aspects of a given
image. By employing three types of graph network aggregators, they fa-
cilitated the exchange of information between different modalities and
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updated vertex representations. Mafla et al. [34] propose a GCN-based
multimodal reasoning graph model for fine-grained image classification
and retrieval tasks. In the field of social media analysis, MGCN [24]
constructs graph data from textual content and visual conveyance
content in news reports.

Within the domain of machine learning, both multimodal learning
and multiview learning stand as key concepts. Although they are de-
fined differently, their underlying similarities are evident. Specifically,
data from various ‘‘modalities’’ can be interpreted as different ‘‘views’’
of the same underlying phenomenon.2 In a broader sense, multiview
learning which focuses on the challenge of learning from data char-
acterized by multiple, distinct feature sets, has received significant
attention in recent years. For example, [35] introduces a multi-view
graph learning method that uses adaptive label propagation tailored
for semi-supervised classification. This method integrates techniques
like latent factor extraction, graph sparsification, and label propagation
into a unified framework. [36] introduces a new graph convolution
framework for anomaly detection in multiview-attributed networks.
On the other hand, there is a growing trend to utilize graph-based
techniques for multiview clustering. For instance, [37] employs a sparse
graph learning technique to derive a consistent, sparsely structured
similarity matrix from numerous views, which subsequently aids in
multiview spectral clustering. Further contributions in [38,39] outline
graph learning-centered multiview clustering strategies, which not only
are able to construct a pivotal similarity graph within a spectral em-
bedding domain (as opposed to the conventional feature space), they
also facilitate clustering through the concurrent learning of spectral
embedding matrices and low-rank tensor representation.

2.2. Student engagement prediction

Student (or learner) engagement prediction is a challenging under-
taking [4], compounded by the lack of unanimous consensus on the
precise definition of student engagement [5]. Instead, there exist vari-
ous interpretations of this concept. Nevertheless, amidst these divergent
definitions, it is commonly accepted that engagement is a multifaceted
overarching construct encompassing behavioral, emotional, cognitive,
and agentic dimensions [1–3]. The availability of multimodal cor-
pora for student engagement prediction remains limited [6], impeding
progress in the development of automated engagement predictive mod-
els that could assist teachers and tutors in obtaining a more accurate
assessment of student engagement during courses and/or tutorials. In
particular, the authors of [40] use machine learning approaches to
assess visible engagement during classroom instruction, with a specific
focus on students’ attentive behavior. Maimaiti et al. [41] employ an
activity theory perspective to comprehensively examine student disen-
gagement in web-based video-conferencing supported online learning
environments. In [42], Bayesian networks are applied for modeling
student engagement, incorporating contextual factors to refine predic-
tive models. The authors of [43] examine empirically the influence of
lecturer-student exchange on student engagement and their propen-
sity to prematurely withdraw from university. Furthermore, Davies
et al. [44] conduct a case study to investigate student engagement with
simulations, elucidating the impact of interactive learning environ-
ments on student involvement. The authors of [45] uncover meaningful
classifications of student types and previously unclear patterns of stu-
dent engagement based on the understanding of students’ learning
behavior in online courses by exploring alternative learning analytic
approaches and visual representations. It should be noted that, how-
ever, these existing works predominantly operate within unimodal
frameworks, only focusing on specific data modality (visual or textual).
By solely relying on single-modal information, these approaches may

2 In this work, we narrow our focus to a specific facet of the concept
multimodal’.
3
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overlook valuable insights that could be derived from multimodal data
sources, leading to potential limitations in the accuracy and robust-
ness of engagement prediction models. Sümer et al. [46] conduct a
multimodal engagement analysis using existing computer vision meth-
ods to classify engagement from facial videos (i.e., audio and visual
recordings of secondary school classes). However, their framework does
not consider the relationship between different modalities. Technically,
student engagement prediction using multimodal learning with graphs
offers distinct advantages: (i) it enables the integration of diverse data
modalities, such as visual, textual, and acoustic modality, allowing for
a comprehensive representation of student engagement; (ii) it leverages
the interconnections and interdependencies among modalities through
graph structures that help capture complex relationships and interac-
tions, contributing to accuracy improvement in student engagement
prediction.

Summary. In our work, the use of graph-based methods is mo-
ivated by the desire to fully capture the underlying relationships
mong students as well as the complex correlation between different
odalities. As aforementioned, numerous studies have delved into
ultimodal learning with graphs, albeit for varied tasks and contexts.
hese studies essentially share a similar rationale for adopting graph-
entric approaches. To the best of our knowledge, our research is
he first effort that employs a multimodal graph learning approach
pecifically for predicting student engagement. Within our framework,
raph-based techniques are pivotal in understanding and leveraging
he ties and interdependencies between modalities and in uncovering
atent relationships/interactions among students. By integrating these
lements, rather than solely focusing on a single modality without the
nsights offered by graphs, we achieve a better learning representation
or students’ learning behavior. This enhanced representation, as our
xperiments confirm (see Section 4), markedly improves the accuracy
f student engagement predictions.

. Methods

.1. Notation

In this section, we provide a concise overview of the notations
ommonly used throughout the content. Let R represent the set of all
eal numbers, Z represent the set of integers, C represent the set of
ll complex numbers, respectively. For a number 𝑎 ∈ C, 𝑎̄ denotes
ts complex conjugate. Let 𝐗 =

[

𝑥1, 𝑥2,… , 𝑥𝑁
]

represent the raw
multi-modal features of 𝑁 students and 𝐘 =

[

𝑦1, 𝑦2,… , 𝑦𝑁
]

denote
he corresponding labels. For each student 𝑖 with 𝑀 modalities, we
efine 𝑥𝑖 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑥1𝑖 , 𝑥

2
𝑖 ,… , 𝑥𝑀𝑖 ) as the concatenation of 𝑥1𝑖 , 𝑥

2
𝑖 ,… , 𝑥𝑀𝑖 ,

here 𝑥𝑚𝑖 ∈ R𝑑𝑚 represents the 𝑚th modality of the student 𝑖. Let
𝑚 =

[

𝑥𝑚1 , 𝑥
𝑚
2 ,… , 𝑥𝑚𝑁

]

∈ R𝑑𝑚×𝑁 represent the features of the 𝑚th
odality. Then, a student-based population graph 𝐺 = (𝑉 ,𝐸,𝐗) can be

onstructed for (node-level) engagement prediction, where the node set
= {𝑣𝑖}𝑁𝑖=1 represents the set of students and the edges in 𝐸 = {𝑒𝑖𝑗 =

𝑣𝑖, 𝑣𝑗 )𝑁𝑖,𝑗=1} stand for the connections between each pair of students
nodes). Let 𝐀 ∈ R𝑁×𝑁 denote the adjacency matrix, in which 𝐴𝑖𝑗 ∈ 𝐀
epresents the edge weight of 𝑒𝑖𝑗 ∈ 𝐸. Generally, we use  to represent
3D-tensor. Specifically, we define similar notations such as  ⋅ and ̃

n subsequent sections where they are utilized with special concerns.
n addition, 𝑆𝑖𝑚(⋅, ⋅) represents the similarity function between two
ectors, while 𝑉 𝑒𝑐(⋅) signifies the vectorization operation.

.2. Overall framework

In this part, we overview the proposed multimodal graph learning
ramework based on 3D-HaarFrame for student engagement predic-
ion. As shown in Fig. 1, the framework comprises four key modules
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Fig. 1. Schematic of the proposed framework.
• Modality-specific feature extraction (MFE). Given 𝐗 and 𝐗𝑚 de-
fined in Section 3.1, for each modality (visual/textual/acoustic
etc.), a specified tool/model is used to conduct feature extraction,
leading to 𝐗̂𝑚 ∈ R𝑑𝑚×𝑁 . To form a unified 3-D tensor, we trans-
form each modal feature {𝐗̂𝑚}𝑀𝑚=1 to {𝐗̃𝑚}𝑀𝑚=1 with the identical
dimension 𝑑 through the transform matrices {𝑊 (𝑚) ∈ R𝑑×𝑑𝑚}𝑀𝑚=1.

• 3D-HaarFrame construction. Given a 3D-tensor  ∈ R𝑁×𝑑×𝑀 ,
of which the 𝑠th horizontal slice  (𝑠, ∶, ∶) = [𝑥̃1𝑠 , 𝑥̃

2
𝑠 ,… , 𝑥̃𝑀𝑠 ] ∈

R𝑑×𝑀 (𝑠 = 1, 2,… , 𝑁) contains all the extracted multi-modal fea-
tures for student 𝑠, we construct 3D-HaarFrame that efficiently
converts  to a frequency domain with low-pass and high-pass
framelet coefficients.

• Spectrum-based graph structure learning (SGL). The objective
of graph structure learning is to identify an appropriate adja-
cency matrix 𝐀 that significantly aids in solving the problems
of student engagement prediction. By treating the low-pass and
high-pass framelet coefficients as signals in the spectral domain,
we carefully consider their different contributions by incorpo-
rating adaptive weighting mechanisms to assess their impact
on the learning graph structure. This enables us to effectively
capture the structural characteristics of multimodal data, leading
to 𝐺 = (𝑉 ,𝐸,𝐗), to facilitate graph representation learning in
downstream tasks.

• Model optimization. This module aims at solving a joint optimiza-
tion problem by simultaneously optimizing the semi-supervised
node classification loss and the regularization induced by SGL.

3.3. Modality-specific feature extraction

As an initial step, different feature extraction methods are em-
ployed for each modality to obtain initial feature representations, as
the refined inputs for the following 3D-HaarFrame module. Techni-
cally, there are many choices for modality-specific feature extraction.
For example, for visual modality (images/videos), one can use the
Openface toolkit [47], the pre-trained MA-Net [48], the pre-trained
VGG-Face [49], ResNet-50 [50] or their combination equipped with
a complex deep network architecture. For acoustic modality, OpenS-
mile [51] or the pre-trained wav2vec [52] can be utilized for audio
feature extraction. For textural modality, the pre-trained BERT [53]
or its follow-up improvements like pre-trained RoBERTa [54] or pre-
trained DeBERTa [55] can be used. We note that, if the given data
source contains video, we select frame-wise images based on a slid-
ing window, producing a sequence of image-based visual data inputs
(see for example the experimental setup detailed in our experiments).
Formally, for a given modality, i.e., 𝐗𝑚 ∈ R𝑑𝑚×𝑁 , in which 𝑚 denotes
visual/textural/acoustic modality, the goal of MFE lies in finding the
initial feature representation 𝐗̂𝑚 ∈ R𝑑𝑚×𝑁 :

𝐗̂𝑚 ∶= 𝙼𝙵𝙴(𝐗𝑚;𝛩 ), (1)
4

𝑚

where 𝛩𝑚 denotes the collection of weights to be fine-tuned for the
specific feature extractor.

Then, we transform each modal feature {𝐗̂𝑚}𝑀𝑚=1 to {𝐗̃𝑚}𝑀𝑚=1 with
the identical dimension 𝑑 through the transform matrices {𝑊 (𝑚) ∈
R𝑑×𝑑𝑚}𝑀𝑚=1, that is,

𝐗̃𝑚 ∶= 𝑊 (𝑚)𝐗̂𝑚 ∈ R𝑑×𝑁 , (2)

which finally produces a 3D-tensor  ∈ R𝑁×𝑑×𝑀 with the 𝑚th frontal
slice expressed by  (∶, ∶, 𝑚) ∶= (𝐗̃𝑚)T (𝑚 = 1, 2,… ,𝑀) and the 𝑠th
frontal slice expressed by  (𝑠, ∶, ∶) ∶= [𝑥̃1𝑠 , 𝑥̃

2
𝑠 ,… , 𝑥̃𝑀𝑠 ] ∈ R𝑑×𝑀 (𝑠 =

1, 2,… , 𝑁). So far, the obtained 3D-tensor  ∈ R𝑁×𝑑×𝑀 contains all the
necessary components for the construction of the 3D Haar semi-tight
framelet, as detailed in the subsequent section.

3.4. Construction of 3D-HaarFrame

Given a 3D-tensor  ∈ R𝑁×𝑑×𝑀 , we next detail the
3D-HaarFrame that efficiently converts  to a frequency domain
with low-pass and high-pass framelet coefficients, 𝑎, 𝑏𝑟 , 𝑟 = 1,… , 13,
each of which is also a 3D-tensor in R𝑁×𝑑×𝑀 , where the
3D-HaarFrame is determined by a filter bank 𝙳𝙷𝙵3 = {𝑎, 𝑏1,… , 𝑏13}
of 3D filters. The filter 𝑎 is the Haar low-pass filter while the other 13
filters are high-pass filters.

A 3D filter (mask)  = { (𝑘)}𝑘∈Z3 ∶ Z3 → R is a sequence of
filter taps (real/complex numbers) on Z3. Using 𝜹, we denote the Dirac
sequence such that 𝜹(0) = 1 and 𝜹(𝑘) = 0 for all 𝑘 = (𝑘1, 𝑘2, 𝑘3) ∈ Z3∖{0}.
For 𝛾 = (𝛾1, 𝛾2, 𝛾3) ∈ Z3, we also use the notation 𝜹𝛾 to stand for the
sequence 𝜹(⋅ − 𝛾), i.e., 𝜹𝛾 (𝛾) = 1 and 𝜹𝛾 (𝑘) = 0 for all 𝑘 ∈ Z3∖{𝛾}.
For filters 𝑎, 𝑏1,… , 𝑏𝐿, we say that a filter bank {𝑎; 𝑏1,… , 𝑏𝐿} is a
(3-dimensional dyadic) framelet filter bank if

∑

𝑘∈Z3

𝑎(𝛾 + 2𝑘)𝑎(𝑛 + 𝛾 + 2𝑘) +
𝐿
∑

𝑟=1

∑

𝑘∈Z3

𝑏𝑖(𝛾 + 2𝑘)𝑏𝑖(𝑛 + 𝛾 + 2𝑘) = 1
8
𝜹(𝑛), (3)

For all 𝛾 ∈ {0, 1}3 and for all 𝑛 ∈ Z3, note that

{0, 1}3 = {(0, 0, 0), (1, 0, 0),… , (1, 1, 1)} = [0, 1]3 ∩ Z3

is the set of 8 vertex points in the unit cube [0, 1]3. The filter 𝑎 is
typically a lowpass filter satisfying ∑

𝑘 𝑎(𝑘) = 1 while 𝑏𝑖’s are the
highpass filters satisfying ∑

𝑘 𝑏𝑖(𝑘) = 0. Such a filter bank {𝑎; 𝑏1,… , 𝑏𝐿}
corresponds to a framelet system {𝜑;𝜓1,… , 𝜓𝐿} through refinement
relations. For more details, please refer to [30].

Now we construct a 3D directional Haar filter bank 𝙳𝙷𝙵03 =
{𝑎, 𝑏1,… , 𝑏𝐿} that satisfies Eq. (3). Consider

𝑎𝐻 ∶= 1
8
(

𝜹(0,0,0) + 𝜹(0,0,1) + 𝜹(0,1,0) + 𝜹(0,1,1) + 𝜹(1,0,0) + 𝜹(1,0,1)

+𝜹(1,1,0) + 𝜹(1,1,1)
)

to be the 3-dimensional Haar low-pass filter. Now, for any two different
vertex points 𝛾 , 𝛾 in the unit cube [0, 1]3, we place + 1 ,− 1 at each of
1 2 8 8
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𝑏𝑥 = 1
4 (𝜹(1,0,0) − 𝜹(0,0,0)), 𝑏𝑦 = 1

4 (𝜹(0,1,0) − 𝜹(0,0,0)), 𝑏𝑧 = 1
4 (𝜹(0,0,1) − 𝜹(0,0,0)),

𝑏𝑥𝑦 =
√

2
8 (𝜹(1,1,0) − 𝜹(0,0,0)), 𝑏𝑥,𝑦 =

√

2
8 (𝜹(1,0,0) − 𝜹(0,1,0)), 𝑏𝑥𝑧 =

√

2
8 (𝜹(1,0,1) − 𝜹(0,0,0)),

𝑏𝑥,𝑧 =
√

2
8 (𝜹(1,0,0) − 𝜹(0,0,1)), 𝑏𝑦𝑧 =

√

2
8 (𝜹(0,1,1) − 𝜹(0,0,0)), 𝑏𝑦,𝑧 =

√

2
8 (𝜹(0,1,0) − 𝜹(0,0,1)),

𝑏𝑥𝑦𝑧 = 1
8 (𝜹(1,1,1) − 𝜹(0,0,0)), 𝑏𝑥𝑦,𝑧 = 1

8 (𝜹(1,1,0) − 𝜹(0,0,1)), 𝑏𝑥,𝑦𝑧 = 1
8 (𝜹(1,0,0) − 𝜹(0,1,1)),

𝑏𝑥𝑧,𝑦 = 1
8 (𝜹(1,0,1) − 𝜹(0,1,0)).

Box I.
e
i
a

Fig. 2. Directional Haar tight framelet filter banks in 𝑝 = 1, 2, 3 respectively, where
each line connecting two vertices 𝛾1 , 𝛾2 ∈ {0, 1}𝑝 represents a high-pass filter 𝑏𝑖 ∶=
−𝑝(𝜹𝛾1 − 𝜹𝛾2 ).

hese two vertices, respectively, and the corresponding high-pass filter
s given by 1

8 (𝜹𝛾1 −𝜹𝛾2 ). After collecting all such filters, we have the set
𝑏1,… , 𝑏𝐿} ∶= { 1

8 (𝜹𝛾1 − 𝜹𝛾2 ) ∶ 𝛾1, 𝛾2 ∈ {0, 1}3 and 𝛾1 < 𝛾2} of highpass
ilters. Here 𝛾1 < 𝛾2 is understood in the sense of lexicographical order.
hen, we have in total 𝐿 =

(23
2

)

= 28 high-pass filters. It was shown
n [56] (see also [57,58] for the generalization) that

𝙷𝙵03 = {𝑎𝐻 , 𝑏1,… , 𝑏28}

s a tight framelet filter bank such that all the highpass filters 𝑏1,… , 𝑏𝐿
ave only two taps and exhibit 13 directions in dimension 3. We
emark that such types of filter banks exist any dimension 𝑝 ≥ 1. In
articular, for 𝑝 = 1, the tight framelet filter bank is just the standard
aar orthogonal wavelet filter bank DHF1 ∶= {𝑎𝐻 , 𝑏} with 𝑎𝐻 =

1
2

(

𝜹0 + 𝜹1
)

and 𝑏 = 1
2

(

𝜹0 − 𝜹1
)

. For 𝑝 = 2, the corresponding tight
ramelet filter bank reduces to the directional Haar tight framelet filter
ank DHF2 ∶= {𝑎𝐻 , 𝑏1,… , 𝑏6} in [59]. See Fig. 2 for an illustration of
he directional Haar tight framelet filter banks in dimension 𝑝 = 1, 2, 3,
espectively.

In practice, we employ the UDFmT (undecimated discrete framelet
ransforms) for the decomposition and reconstruction of a 3D tensor.
y considering filters with the same direction, the 28 high-pass filters

n 𝙳𝙷𝙵03 can be regrouped to 13 filters as a 3D Haar semi-tight filter bank
s follows:

𝙷𝙵3 = {𝑎𝐻 ; 𝑏𝑥, 𝑏𝑦, 𝑏𝑧, 𝑏𝑥𝑦, 𝑏𝑥,𝑦, 𝑏𝑥𝑧, 𝑏𝑥,𝑧, 𝑏𝑦𝑧, 𝑏𝑦,𝑧, 𝑏𝑥𝑦𝑧, 𝑏𝑥𝑦,𝑧, 𝑏𝑥,𝑦𝑧, 𝑏𝑥𝑧,𝑦}

here (see the equation in Box I).
or simplicity, we use 𝙳𝙷𝙵3 = {𝑎; 𝑏1,… , 𝑏13} to denote the above filter
ank with 13 high-pass filters. We call the filter bank 𝙳𝙷𝙵3 as our 3D-
aarFrame. Note that the filter bank 𝙳𝙷𝙵3 satisfies the partition of
nity condition:

∑

𝑘∈Z3

𝑎(𝛾 + 2𝑘)𝑎(𝛾 + 2𝑘) +
13
∑

𝑟=1

∑

𝑘∈Z3

𝑏𝑟(𝛾 + 2𝑘)𝑏𝑟(𝛾 + 2𝑘) = 1
8
. (4)

Now we discuss the decomposition and reconstruction of the 3D-
tensor  using our 3D-HaarFrame. For a 3D filter  , we denote 
5



the (circular) convolution of  with the 3D filter  , i.e.,  ∶=  ⋆ 
with

ℎ(𝑘) ∶=
∑

𝑘′∈Z3

̃ (𝑘′ − 𝑘) ⋅  (𝑘′), 𝑘 = (𝑘1, 𝑘2, 𝑘3), 𝑘′ = (𝑘′1, 𝑘
′
2, 𝑘

′
3) ∈ Z3,

where the above ̃ is considered the periodic extension of  . Note
that ℎ ∈ R𝑁×𝑑×𝑀 is a 3D tensor. Consequently, using the filter bank
𝙳𝙷𝙵3, we can decompose  to 1 low-pass filter coefficient tensor 𝑎
and 13 high-pass framelet coefficient tensors  𝑏𝑟 , 𝑟 = 1,… , 13. Thanks
to Eq. (4), the decomposition set {𝑎, 𝑏𝑖 , 𝑖 = 1,… , 13} of 3D tensors
can be used to reconstruct  perfectly through

𝑎 ⋆ 𝑎̄ +
13
∑

𝑟=1
 𝑏𝑟 ⋆ 𝑏̄𝑟 =  ,

where for a filter  , the filter ̄ is defined as ̄ (𝑘) =  (−𝑘), 𝑘 ∈ Z3. ⋆
stands for the convolution operation. The set {𝑎, 𝑏𝑟 , 𝑟 = 1,… , 13}
is the one-level decomposition of  . For multi-level decomposition,
the input  is then replaced by 𝑎 and the filter bank is upsampled,
iteratively. Please refer to [60] for the detailed implementation of the
UDFmT based on the 𝙳𝙷𝙵3.

Robustness property of 𝟹𝙳 − 𝙷𝚊𝚊𝚛𝙵𝚛𝚊𝚖𝚎. Theoretically, the 3D-
HaarFrame is a tight framelet system that can be represented as an
operator  satisfying T = 𝐈. When the 3D tensor  is perturbed by a
noise tensor , the decomposition of  + results in the framelet co-
efficient (+). Compared to the original framelet coefficient ( ),
it is evident that ‖( +) −( )‖2 = ‖()‖2 = ⟨T,⟩ =
⟨,⟩ = ‖‖

2, in view of the tightness of system . Hence, if noise
 is minimal, the coefficient alteration remains correspondingly slight,
underscoring the inherent robustness of the framelet representation.
For a deeper theoretical exploration concerning the stability and robust-
ness of the framelet system, we direct readers to [30] for more in-depth
theoretical analysis on the stability/robustness of framelet system. To
further validate the robustness of the whole framework we developed
in this work, we provide empirical verification in Section 4.7.

3.5. Spectrum-based graph structure learning

Based on the obtained framelet coefficients 𝑎, 𝑏𝑟 , 𝑟 = 1,… , 13,
ach of which is also a 3D-tensor in R𝑁×𝑑×𝑀 , reflecting the spectrum
nformation of the multimodal data tensor  ∈ R𝑁×𝑑×𝑀 , we propose

method for graph structure learning, termed SGL. Technically, one
of the key points for graph structure learning lies in the design of an
appropriate metric function characterizing the similarity between dif-
ferent subjects/instances. In [13], a straightforward yet efficient metric
function is proposed that can be learned jointly with the graph neural
networks (GNN) used for downstream node classification objective:

𝐀𝑖𝑗 = 𝑆𝑖𝑚(ℎ𝑖, ℎ𝑗 ) = cos(𝐖𝐴ℎ𝑖, 𝐖𝐴ℎ𝑗 ) (5)

where 𝐖𝐴 is a learnable weight matrix and 𝐀𝑖𝑗 is computed as the
weighted cosine similarity between student 𝑖 and 𝑗, ℎ𝑖 and ℎ𝑗 represent
the embedding vector for student (subject) 𝑖 and student (subject) 𝑗,

respectively.
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However, the metric function defined in Eq. (5) does not consider
the different role of the low-pass coefficient tensor 𝑎 and the col-
ection of low-pass coefficient tensors  𝑏𝑖 , 𝑖 = 1,… , 13. Under this

consideration, we respectively concretize the embedding ℎ𝑖 according
to the low-pass components and high-pass components. Formally, we
formulate ℎlow and ℎhigh𝑟 (𝑟 = 1,… , 13) by vectorizing 𝑎 and  𝑏𝑞 , 𝑖 =
𝑞,… , 13, respectively, as follows:

ℎlow𝑖 ∶= 𝑉 𝑒𝑐(𝑎(𝑖, ∶, ∶)) ∈ R1×𝑑𝑀 , 𝑖 = 1, 2,… , 𝑁, (6)
high𝑟
𝑖 ∶= 𝑉 𝑒𝑐( 𝑏(𝑖, ∶, ∶)) ∈ R1×𝑑𝑀 , 𝑖 = 1, 2,… , 𝑁, (7)

hich yields ℎ𝑖 ∈ R1×𝑑𝑀 as follows:

𝑖 ∶= 𝜑(ℎlow𝑖 , ℎhigh1𝑖 ,… , ℎhigh13𝑖 ),

here 𝜑 is a user-defined aggregation function such as mean, max/min,
oncatenate, or multi-layer perception (MLP).

In practice, it is common for a realistic adjacency matrix to exhibit
haracteristics of sparsity and non-negativity. In our case, the adja-
ency matrix 𝐀 represents a dense graph with elements 𝐀𝑖𝑗 bounded
ithin the range of [−1,1], which can be computationally demanding.
herefore, similar to [13], we employ a graph sparsification trick to
ransform 𝐀 into a non-negative sparse graph, utilizing a threshold
arameter 𝜃. This process involves several steps. Firstly, we normalize
he range of 𝐀 into [0,1]. Subsequently, we assign a value of zero to
he elements in 𝐀 that are smaller than the threshold 𝜃. Lastly, we scale
he non-zero elements in 𝐀 from the interval [𝜃, 1] to [0, 1]. This simple
rick effectively selects neighboring nodes that possess link weights
reater than 𝜃 for each student. In our practical implementation (see
he experiments in Section 4), we set 𝜃 to 0.5. The node classification
erformance (i.e., student engagement prediction accuracy) replies
eavily on graph structure 𝐀. It is verified in [61] that the constraint
n the sparsity, connectivity, and smoothness of the learned graph is
lso important for adaptive graph learning. Therefore, in this work, we
lso consider these constraints to regularize the graph learning process.
s for the smoothness constraint, we define a framelet-based Dirichlet
nergy using the obtained low-pass and high-pass coefficients, referring
o Eqs. (6) and (7):

𝑠𝑚ℎ(𝐀,𝐇) ∶= 𝛼
𝑁2

𝑁
∑

𝑖,𝑗=1
𝐀𝑖𝑗

‖

‖

‖

ℎlow𝑖 −ℎlow𝑗
‖

‖

‖

2

2
+
(1 − 𝛼)
13𝑁2

13
∑

𝑟=1

𝑁
∑

𝑖,𝑗=1
𝐀𝑖𝑗

‖

‖

‖

ℎhighr𝑖 −ℎhighr𝑗
‖

‖

‖

2

2
,

(8)

where 𝛼 is the hyper-parameter used to balance the weighting of
low-pass and high-pass framelet coefficients.

Furthermore, to avoid a trivial solution (i.e., 𝐀 = 𝟎), additional
regularization terms are imposed on 𝐀 [61], i.e.,

𝑐𝑜𝑛(𝐀) ∶= −
𝛽
𝑁

𝟏⊤ log(𝐀 ⋅ 𝟏) + 𝛾
𝑁2

‖𝐀‖2𝐹 , (9)

where 𝛽 and 𝛾 are two hyper-parameters to balance the regularization
terms.

Finally, the objective of SGL is defined as:

𝚂𝙶𝙻(𝐀,𝐇) ∶= 𝑠𝑚ℎ(𝐀,𝐇) + 𝑐𝑜𝑛(𝐀). (10)

The primary objective in graph structure learning for node-level
predictive tasks is to train a graph structure learner based on 𝚂𝙶𝙻(𝐀,𝐇),
which yields an appropriate graph structure. This refined structure is
then utilized by the GNN classifier to perform message passing and
generate node representations and predictions. The aim of SGL is to
produce optimal graph structures that lead to satisfactory classification
performance by the GNN classifier. In essence, the training of the GNN
classifier with SGL can be viewed as a nested optimization problem,
6

which is discussed in detail in the subsequent section.
3.6. Optimization

Based on the framelet coefficients 𝐇, which represent the given
graph signal, and the learned sparse graph structure 𝐀, graph neural
networks can be employed to generate predictive results 𝑌𝐺𝑁𝑁 =
𝑁𝑁(𝐀,𝐇). It should be noted that all students, both in the training
nd testing sets, are considered in generating the student-population
raph. Therefore, we formulate the prediction of student engagement
s a semi-supervised node classification task, which can be expressed
n a general form as follows:

𝐺𝑁𝑁 (𝑌 , 𝑌𝐺𝑁𝑁 ) =
∑

𝑡𝑟𝑎𝑖𝑛

Cross-entropy(𝑌𝐺𝑁𝑁 , 𝑌 ).

ubsequently, the model is trained using a joint optimization objective
hat integrates the primary (task-aware) loss with the regularization
onstraint of SGL.:

= 𝜆1𝐺𝑁𝑁 (𝑌 , 𝑌𝐺𝑁𝑁 ) + 𝜆2𝚂𝙶𝙻(𝐀,𝐇). (11)

here 𝜆1 and 𝜆2 are two regularization factors weighting the contribu-
ion of 𝐺𝑁𝑁 and 𝚂𝙶𝙻, respectively.

. Experiments

In this section, we provide an experimental study to verify the
ffectiveness of our proposed method for student engagement predic-
ion. To begin with, we introduce a benchmark educational dataset
ith multimodal data collected in the ‘‘in-the-wild’’ online environment
f Zoom. Furthermore, several GNN-based existing methods are intro-
uced, followed by a demonstration of the experiment results and an
xtensive discussion. Then, details of our experimental setup, includ-
ng data preprocessing, the setting of the hyper-parameters, etc., are
resented. In addition, we conduct ablation studies to further validate
he role of the key modules of our proposed framework. We implement
ll experiments in Python 3.8.13 with PyTorch on one NVIDIA® Tesla
100 GPU with 6912 CUDA cores and 80 GB HBM2 mounted on an
PC cluster.

.1. Dataset

To evaluate the effectiveness of our proposed method, we em-
loy the RoomReader3 dataset [10] as a benchmark including over
h of video and audio recordings, capturing the interactions of 118

articipants across 30 sessions that take place in the online envi-
onment of Zoom. The RoomReader dataset consists of multimodal,
ultiparty conversational interactions that simulate a collaborative

nline student-tutor scenario, where audios, videos, as well as tran-
criptions are recorded accordingly. The dataset focuses on measuring
ff-task/on-task engagement, with the instructor leading the given
ask. Additionally, it contains extensive engagement annotations, group
ohesion measures, and supplementary information about the partici-
ants, such as personality test results. Notably, the student participants
n the corpus have been continuously annotated for engagement using

unique continuous scale, allowing for the detailed examination of
ngagement dynamics. This rich collection of data allows for a com-
rehensive analysis and exploration of various aspects of the tutorial
essions and participant characteristics, fitting well with the task of
tudent engagement prediction. Furthermore, this multimodal corpus
rovides questionnaires that measure engagement and group cohesion,
ollected from annotators, tutors, and the participants themselves, and
lso offers a variety of supplementary data, such as personality tests and
ehavioral assessments. To date, the RoomReader corpus stands out
s a valuable openly-accessible dataset that examines the multimodal
ndicators of conversational engagement and the behavioral facets of

3 https://sigmedia.tcd.ie/.

https://sigmedia.tcd.ie/
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Fig. 3. A screenshot from [10]: Example of a session collected in the RoomReader corpus, where the cropped videos of participants, participant-level and session-level audios,
ASR-generated and rich manually-corrected transcriptions are recorded.
collaborative interaction in online learning environments. It is expected
to serve as a significant resource that enables researchers to explore nu-
merous potential areas, including multimodal, multiparty conversations
in online settings, intelligent education techniques and applications,
and multimodal human–robot interactions (HRI), etc. [10] (see Fig. 3).

4.2. Baselines

To undertake a comprehensive performance comparison, we com-
pare the proposed method with various existing works from different
families or with different application purposes. We select four baselines:
ConvLSTM [62], TEMMA [63], EnsModel [64], Bootstrap [65] which
have already been employed for engagement prediction. However,
these four methods do not consider graph-based learning and only con-
sider single modality in algorithm implementation. On the other hand,
there is a lack of existing literature that investigates the task of student
engagement prediction specifically utilizing the RoomReader dataset.
To evaluate extensively the effectiveness of our proposed method, we
conduct a comparative analysis against several specific baseline mod-
els that have exhibited exceptional performance in disease prediction
tasks, such as PopGCN [66], EV-GCN [67], MMGL [13]. It should
be noted that we re-implement all these baselines to fit the basic
requirements of the RoomReader dataset. Basic information and their
source code repositories are introduced as follows:

• ConvLSTM [62]: ConvLSTM uses CNN and LSTM networks to em-
power robots in calculating a singular engagement value during
their interactions with humans. These networks leverage standard
video streams, which are captured from the perspective of the
interacting robot. We obtain the source code which we utilize for
implementation and customization from the repository.4

• TEMMA [63]: In TEMMA, a convolutional neural network-
transformer encoder is proposed, which incorporates a trans
former-encoder with a self-attention mechanism. Its primary ob-
jective is to model the temporal dependency in the context

4 https://github.com/LCAS/engagement_detector.
7

of single modal affect recognition. We obtain the source code
that we utilize for implementation and customization from the
repository.5

• EnsModel [64]: The proposed methodology consists of three es-
sential (and general) stages: feature extraction, regression, and
model ensemble. Specifically, a combination of long short-term
memory (LSTM) and fully connected layers is employed to cap-
ture the temporal information and predict the engagement inten-
sity based on the extracted features, followed by a fusion strategy
applied to enhance the overall performance of the model. We
obtain the source code that we utilize for the implementation and
customization from the repository.6

• Bootstrap [65]: This method is proposed to predict the engage-
ment intensity value of a student when he or she is watch-
ing an online MOOCs video in various conditions. For problem-
solving, it maintains the framework of multi-instance learning
with the LSTM network and use the classical bootstrap aggrega-
tion method to perform the model ensemble. We obtain the source
code which we utilize for implementation and customization from
the repository7

• PopGCN [66]. PopGCN utilizes demographic information to con-
struct a population graph manually and then applies the GCN
model [68] to aggregate the imaging features of subjects for
classification purposes. We obtain the source code that we utilize
for implementation and customization from the repository.8

• EV-GCN [67]: In EV-GCN, the connections within the population
graph are computed using a learnable function that takes into
account non-imaging measurements. We obtain the source code
that we utilize for implementation and customization from the
repository.9

5 https://github.com/Sunner4nwpu/TEMMA.
6 https://github.com/AnshulSood11/Engagement-Level-Prediction.
7 https://github.com/kaiwang960112/EmotiW_2019_engagement_

regression.
8 https://github.com/parisots/population-gcn.
9 https://github.com/SamitHuang/EV_GCN.

https://github.com/LCAS/engagement_detector
https://github.com/Sunner4nwpu/TEMMA
https://github.com/AnshulSood11/Engagement-Level-Prediction
https://github.com/kaiwang960112/EmotiW_2019_engagement_regression
https://github.com/kaiwang960112/EmotiW_2019_engagement_regression
https://github.com/parisots/population-gcn
https://github.com/SamitHuang/EV_GCN
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• MMGL [13]: Compared with the aforementioned models, MMGL
has been recognized as a state-of-the-art (SOTA) multi-modal
graph learning framework (for disease prediction task). MMGL
uses a modal-aware representation learning (MARL) module for
mining modality-specific and modality-shared embeddings. Also,
MMGL incorporates an adaptive graph structure learning (AGL)
block that unveils the inherent relationships among subjects, facil-
itating the construction of an optimized graph structure tailored
for downstream tasks. Our proposed method is also motivated
from the general schematic of MMGL. The key differences lie
in the fact that we use the proposed 3D-HaarFrame and SGL
to replace the MARL and AGL modules, respectively (see Sec-
tion 3 for details). We obtain the source code that we utilize for
implementation and customization from the repository.10

• MM-DFN [69]: presents a graph-based multimodal fusion strat-
egy tailored for emotion recognition in multimodal conversation
(MERC). The graph structure is expertly designed to capture the
nuances of the intra-speaker context and the interdependencies
between modalities. Such a configuration ensures a seamless
incorporation of multi-modal data, while also synthesizing com-
prehensive contextual insights, even from long-distance sources.
To align with our specific problem formulation to predict student
engagement, we modify the original source code11 by feeding new
inputs derived from specialized pre-processing stages for students’
multimodal data, revising the training objective, and tailoring the
outputs accordingly.

• M3Net [70]: As the latest state-of-the-art (SOTA) model for the
MERC task, M3Net employs a multivariate multi-frequency mul-
timodal GNN for problem-solving. It delves deep into the intri-
cate relationships between various modalities and their contexts.
Moreover, it efficiently harnesses frequency data to discern and
highlight the contrasts and overlaps in emotional expressions.
In line with the modifications we make to MM-DFN [69], we
specifically tailor the original source code of M3Net12 to aptly
serve the task of student engagement prediction.

We note that ConvLSTM [62], TEMMA [63], EnsModel [64], Boot-
strap [65], PopGCN [66] perform on single modal data (i.e., visual
modality) and only PopGCN [66] uses the graph-based method by
manually constructing static graphs. In comparison, EV-GCN [67] and
MMGL [13] make use of multi-modal data, and they both consider
graph structure learning during the model’s training process. For the
methods which only use single modality, we select the visual modality
(i.e., image fragments obtained from the video data) from RoomReader.

4.3. Experimental setup

Data Preparation. In the RoomReader dataset, continuous anno-
tations for engagement are provided, where the engagement labels
range from [−2,2]. As demonstrated in [71], approximately 80.2%
of the samples correspond to highly engaged instances, of which the
annotated engagement values range from (1, 2], 18.3% to low engage-
ment with the annotated engagement values ranging from (0,1], 1.3%
to low disengagement with the annotated engagement values ranging
from (−1,0], and 0.2% to high disengagement with the annotated
engagement values ranging from [−2,−1]. This exhibits severe class
imbalance, which technically is out of the main scope and focus of
this research. To show the primary merits of our proposed method
for modality learning with graphs, without the potential influence of
the class imbalance challenge, which usually involves effective over-
sampling techniques and specific-designed (advanced) class-sensitive
loss functions, we study a simple and balanced two-class classification

10 https://github.com/SsGood/MMGL.
11 https://github.com/zerohd4869/MM-DFN.
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https://github.com/feiyuchen7/M3NET. o
task in our experiments. Specifically, from the 30 sessions, we only
randomly select 16 000 highly engaged instances (Class-I) and 16 000
low engagement samples (Class-II), and average the engagement scores
over 8 s, leading to 2000 highly engaged subjects and 2000 poorly
engaged subjects, respectively. This means that a student-population
graph with 4000 nodes will be constructed in the SGL module of
our proposed framework, by which a two-class semi-supervised node
classification task is to be solved. We note that the number of nodes
here does not represent the number of participants in the RoomReader
project because we have selected multiple samples for each participant.
Based on the averaged annotated labels and the time window size, we
select the associated visual (i.e., the facial image segment sequences
during the time window), textual (i.e., the transcripts), and acoustic
(i.e., the audio) modalities as multimodal inputs, consistent with the
formulation presented in Section 3.

Data Preprocessing. As aforementioned, ConvLSTM [62], TEMMA
63], EnsModel [64], and Bootstrap [65] use visual modality for
roblem-solving. In our experiments, similar to [71], we utilize the
ormalized eye gaze direction, location of the head, location of 3D
andmarks, and facial action units extracted via Open-Face [72] as the
nput features. Building upon the work presented in [10], which pro-
ides all the Open-Face features across all sessions in conjunction with
ultimodal data sources, we conduct experiments on ConvLSTM [62],
EMMA [63], EnsModel [64], and Bootstrap [65] using these features
s inputs. Specifically, for the PopGCN [66] approach, which focuses
olely on visual modality, we employ the selected image data to align
ith their algorithm implementation. Furthermore, for the remaining
aselines that involve graph construction or graph learning compo-
ents, we incorporate all the necessary modalities and re-implemented
heir models to predict student engagement.
Modality-specific Feature Extraction. The specification of the

re-trained model used for modality-specific feature extraction is es-
ential, as generally discussed in Section 3.3. In our practical algo-
ithm implementation, we employ advanced pre-trained models to
erform feature extraction for each modality, realizing Eq. (1). Specif-
cally, visual modality is processed using the pre-trained MA-Net [48],
hich yields 1024-dimensional frame-level facial features. The textural
odality utilizes the pre-trained DeBERTa [55], resulting in 1024-
imensional features. Lastly, the acoustic modality employs the pre-
rained wav2vec [52], generating 512-dimensional acoustic features.
Hyperparameter setting. During training, we use the Adam op-

imization scheme with a learning rate of 0.001 and a weight decay
f 1e−6. To alleviate the over-fitting problem, Dropout [73] is also
tilized with a rate of 𝑝 = 0.5. We set the unified dimension 𝑑 to 100
see Eq. (2)). For the hyper-parameter tuning, both 𝛽 and 𝛾 (see Eq. (9))
re tuned through the Hyperopt library [74]. Based on our empirical
xperience, both 𝜆1 and 𝜆2 (see Eq. (11)) are set to 1. As for the key
yperparameter 𝛼, determining the contribution of low-pass and high-
ass coefficients to the graph structure learning (see Eq. (8)), we select
∈ {0.1, 0.3, 0.5, 0.7, 0.9} and study in-depth the robustness of the model

n terms of the setting of 𝛼, as detailed later.

.4. Results and discussion

Table 1 presents the results of the performance comparison, which
hows clearly that our proposed method outperforms all the baselines in
lassification accuracy. The mean and standard deviation are obtained
ased on 5 independent trials. It is also evident that approaches em-
loying multi-modal techniques consistently outperform those relying
olely on a single modality. Moreover, the methods utilizing the strat-
gy of adaptive graph structure learning (i.e., Graph Type-‘Dynamic’),
amely EV-GCN, MMGL, MM-DFN and M3Net, demonstrate a signifi-
ant improvement in performance compared to those simply using a
euristic method of graph construction (i.e., Graph Type-‘Static’) . This

bservation confirms the advantage of learning graph structure over

https://github.com/SsGood/MMGL
https://github.com/zerohd4869/MM-DFN
https://github.com/feiyuchen7/M3NET
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Table 1
The performance comparison of student engagement prediction accuracy. N/A:
graph-based learning approach/strategy is not involved.

Method ACC. (%) Modal type Graph type

ConvLSTM [62] 76.50 ± 1.85 Single N/A
TEMMA [63] 80.90 ± 2.47 Single N/A
EnsModel [64] 75.30 ± 3.50 Single N/A
Bootstrap [65] 73.80 ± 3.35 Single N/A

PopGCN [66] 84.30 ± 2.15 Single Static
EV-GCN [67] 87.80 ± 3.32 Multiple Dynamic
MMGL [13] 88.86 ± 1.18 Multiple Dynamic
MM-DFN [69] 88.12 ± 2.24 Multiple Dynamic
M3Net [70] 89.36 ± 1.32 Multiple Dynamic

Haar-MGL (Ours) 90.18 ± 1.34 Multiple Dynamic

Table 2
Ablation study for Haar-MGL. N/A: graph-based learning approach/strategy is not
involved.

Candidates ACC. (%) Graph Type

Haar-MGL (full) 90.18 ± 1.34 Dynamic

MLP+SGL𝑟𝑒𝑓𝑖𝑛𝑒𝑑 82.12 ± 2.57 Dynamic
Concat.+SGL𝑟𝑒𝑓𝑖𝑛𝑒𝑑 81.56 ± 2.67 Dynamic
Haar-MGL𝑤∕𝑜 𝚂𝙶𝙻 86.37 ± 1.32 N/A
3D-HaarFrame+𝐺𝑝𝑜𝑝𝐺𝐶𝑁 84.50 ± 1.68 Static
3D-HaarFrame+𝐺𝑘𝑁𝑁 83.28 ± 2.35 Static

Fig. 4. Visualization of the performance comparison of PopGCN, EV-GCN, MMGL,
MM-DFN, M3Net, and Haar-MGL with labeled samples of different ratios.

using static ones, as they offer more appropriate graph topology and
benefits the down-stream graph representation learning task.

It is worth noting that the results presented in Table 1 were obtained
using a training/testing partition ratio of 70%/30%, with an additional
10% of samples from the training set reserved for validation pur-
poses. With a specific focus on GNN-based methods, namely PopGCN,
EV-GCN, MMGL, MM-DFN, M3Net, we also conduct a performance
comparison under varying training set sizes. Specifically, the label ratio
of samples was varied from 10% to 70%, and for each case, we com-
pared the test accuracy of PopGCN, EV-GCN, MMGL, MM-DFN, M3Net,
and Haar-MGL. As depicted in Fig. 4, our proposed Haar-MGL consis-
tently outperforms the other three baselines, even when the number of
training samples is limited. This observation suggests that Haar-MGL
achieves favorable performance in the context of semi-supervised node
classification.
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4.5. Ablation study

We conduct ablation studies to assess the effectiveness of the 3D
Haar semi-tight framelet transform (i.e., 3D-HaarFrame) for multi-
modal information fusion, and spectrum-based graph structure learning
(i.e., SGL). Specifically, the following candidates are considered in our
ablation experiments:

• MLP+SGL𝑟𝑒𝑓𝑖𝑛𝑒𝑑 : We replace 3D-HaarFrame with multi-layer
perceptron (MLP). In such a case, we need to modify SGL since
low-pass and high-pass framelet coefficients are not available if
the 3D-HaarFrame is removed. In practice, we simply use the
outputs from MLP to redefine the Dirichlet energy defined in (8),
where the framelet coefficient signal is changed by the feature
vector obtained by MLP;

• Concat.+SGL𝑟𝑒𝑓𝑖𝑛𝑒𝑑 : Similar to the above operation, we replace
3D-HaarFrame with a direct concatenation trick. As such, we
also need to convert SGL to the aforementioned SGL𝑟𝑒𝑓𝑖𝑛𝑒𝑑 ;

• Haar-MGL𝑤∕𝑜 𝚂𝙶𝙻: We remove the SGL module from Haar-MGL. In
such a case, instead of proceeding to the graph learning module,
we directly input the low-pass and high-pass framelet coefficients
produced by 3D-HaarFrame to a fully-connected classifier for
engagement prediction.

• 3D-HaarFrame+𝐺𝑝𝑜𝑝𝐺𝐶𝑁 : We replace SGL with the graph con-
struction method adopted in popGCN [66]. For this purpose, both
low-pass and high-pass framelet coefficients are treated as signals
(in the frequency domain) with an equal contribution to the graph
construction 𝐺𝑝𝑜𝑝𝐺𝐶𝑁 ;

• 3D-HaarFrame+𝐺𝑘𝑁𝑁 : We substitute SGL with a standard kNN
graph 𝐺𝑘𝑁𝑁 using the RBF kernel. Similar to the above, all the
framelet coefficients produced by 3D-HaarFrame are viewed as
regular inputs for building 𝐺𝑘𝑁𝑁 .

Table 2 summarizes the ablation study results for the aforemen-
tioned variants of Haar-MGL. It is clear that all the modified can-
didates have lower accuracy than the full model, verifying convin-
cingly the contribution of each module in Haar-MGL. Specifically,
‘‘MLP+SGL𝑟𝑒𝑓𝑖𝑛𝑒𝑑 ’’ and ‘‘Concat.+SGL𝑟𝑒𝑓𝑖𝑛𝑒𝑑 ’’ lead to poorer accuracy
than the other variants, which validates the effectiveness and contribu-
tion of 3D-HaarFrame for multimodal feature fusion. Interestingly,
‘‘Haar-MGL𝑤∕𝑜 𝚂𝙶𝙻’’ achieves favorable performance despite the ab-
sence of SGL, which again verifies the strength of 3D-HaarFrame,
as the primary contribution of this work. Moreover, both
‘‘3D-HaarFrame+𝐺𝑝𝑜𝑝𝐺𝐶𝑁 ’’ and ‘‘3D-HaarFrame+𝐺𝑘𝑁𝑁 ’’ exhibit a
decline in performance compared to ‘‘Haar-MGL𝑤∕𝑜 𝚂𝙶𝙻’’. This observa-
tion highlights the significance of selecting an adaptive way to update
the graph structure along with training the whole model, since an
inappropriate (fixed) graph structure can have detrimental effects on
the overall performance.

As previously discussed, ConvLSTM [62], TEMMA [63], EnsModel
[64], and Bootstrap [65] employ visual modality for problem-solving.
In our experiments, following the approach of [71], we use the Open-
Face features (i.e., normalized eye gaze direction, the location of the
head, the location of 3D landmarks, and facial action units) as in-
put features for ConvLSTM [62], TEMMA [63], EnsModel [64], and
Bootstrap [65]. To be consistent with this experimental setup and to
further verify the effectiveness of the ability of 3D-HaarFrame when
using only visual features, we consider another variant of Haar-MGL,
which removes the block of using pre-trained models (see the discus-
sion in Section 4.3) and directly uses the aforementioned Open-Face
features provided in the RoomReader corpus, i.e., Haar-MGL𝑠𝑖𝑛𝑔𝑙𝑒. Ta-
ble 3 compares the performance of Haar-MGL𝑠𝑖𝑛𝑔𝑙𝑒 and ConvLSTM [62],
TEMMA [63], EnsModel [64], Bootstrap [65]. It is clear that Haar-
MGL𝑠𝑖𝑛𝑔𝑙𝑒 outperforms the other four baselines. This observation implies
that the superior performance of Haar-MGL can be primarily attributed
to the utilization of 3D-HaarFrame and SGL. Overall, by showcasing
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Table 3
Performance comparison in the case of using only visual modality. N/A: graph-based
learning approach/strategy is not involved.

Method ACC. (%) Modal type Graph type

ConvLSTM [62] 76.50 ± 1.85 Single N/A
TEMMA [63] 80.90 ± 2.47 Single N/A
EnsModel [64] 75.30 ± 3.50 Single N/A
Bootstrap [65] 73.80 ± 3.35 Single N/A

Haar-MGL𝑠𝑖𝑛𝑔𝑙𝑒 85.40 ± 2.15 Single Dynamic

Fig. 5. Ablation study on Haar-MGL with different configurations of feature extractors
for visual and textual features.

Fig. 6. Performance comparison for evaluating the role of each loss.

the superior results compared to the other baselines and variants, the
findings of the ablating studies highlights convincingly the technical
contribution and effectiveness of our proposed framework.

It is worth noting that the Haar-MGL model employs the pre-
trained MA-Net [48], DeBERTa [55], and wav2vec [52] as feature
extractors for visual, textual, and acoustic modalities, respectively.
Technically, as highlighted in Section 3.3, there are multiple choices
for the configuration of the feature extractor for each modality. We
carry out ablation studies to assess how the employment of different
feature extractors influence the ultimate prediction accuracy. In the
literature, numerous pre-trained models exist for visual, textual, and
10
acoustic feature extraction, however our analysis focuses solely on the
widely used models detailed in Section 3.3. Regarding the acoustic
feature extractor, we are only able to deploy smoothly the original
source code for the pre-trained wav2vec [52]. Unfortunately, the code
for OpenSmile [51] failed to compile successfully in our experiments
due to unresolved bugs. Hence, this ablation study focuses solely on
various configurations combining visual and textual feature extractors.
We evaluate a total of nine configurations, yielding 9 distinct models:
Haar-MGL𝑖,𝑗 , where 𝑖 ∈ 1, 2, 3 corresponds to the ordered selection from
{MA-Net [48], VGG-Face [49], ResNet-50 [50]}, and 𝑗 ∈ 1, 2, 3 repre-
sents the choice among {DeBERTa [55], RoBERTa [54], BERT [53]}
accordingly. It should be noted that in Haar-MGL1, 1 matches the model
‘Haar-MGL (Ours)’ presented in Table 2. The accuracy of each model,
including their mean and standard deviation values, are plotted in
Fig. 5. Observably, the performance of Haar-MGL1,1 slightly surpasses
that of the other models. The least effective combination (using ResNet-
50 + BERT) achieves 89.72 ± 1.26, yet still outperforms the second-best
model, M3Net, as shown in Table 2. In summary, these ablation studies
consistently validate the superior efficacy and benefits of our proposed
framework.

4.6. Assessing the role of each loss

In Section 4.5, we have assessed the significance of graph struc-
ture learning by analyzing the performance of the variant model:
Haar-MGL𝑤∕𝑜 𝚂𝙶𝙻, which discards the loss term 𝚂𝙶𝙻 from the training
objective of Haar-MGL. However, understanding the individual impact
of each component within 𝚂𝙶𝙻 remains crucial. As a reminder, we
define 𝚂𝙶𝙻(𝐀,𝐇) ∶= 𝑠𝑚ℎ(𝐀,𝐇) + 𝑐𝑜𝑛(𝐀) ∶= 𝑠𝑚ℎ(𝐀,𝐇) − 𝛽

𝑁 𝟏⊤ log(𝐀 ⋅
𝟏) + 𝛾

𝑁2 ‖𝐀‖2𝐹 (see Section 3.5). In pursuit of this deeper understanding,
we conduct further experiments concentrating on:

• Haar-MGL1: This model variant is trained based on a refined
loss by excluding 𝑠𝑚ℎ from 𝚂𝙶𝙻. In such a case, 𝐀 is updated,
bypassing the similarity metric learning phase;

• Haar-MGL2: This refined model is trained by omitting 𝑐𝑜𝑛 (i.e.,
the last two terms) from 𝚂𝙶𝙻;

• Haar-MGL3: This is a variant emphasizing the role of 𝛽 = 0 by set-
ting its value to zero in 𝑐𝑜𝑛. Similar to the previous experiments,
𝛾 is tuned through the Hyperopt library [74];

• Haar-MGL4: Conversely, this variant considers 𝛾 = 0 in 𝑐𝑜𝑛,
while 𝛽 is tuned through the Hyperopt library [74].

As shown clearly in Fig. 6, Haar-MGL achieves superior perfor-
mance compared to the variant models tailored with specific loss
functions. Similar to the previous experiment setup, the mean and
standard deviation are obtained based on five independent trials. This
empirical evidence underscores the integral roles played by each com-
ponent of 𝚂𝙶𝙻. Coupled with insights from our prior ablation study on
Haar-MGL𝑤∕𝑜 𝚂𝙶𝙻 (see Table 2), it is evident that while graph structure
learning proves valuable, the design of the loss function necessitates
meticulous attention, especially considering constraints on the sparsity,
connectivity, and smoothness of the learned graph.

4.7. Robustness analysis

To empirically assess the robustness of the 𝟹𝙳 − 𝙷𝚊𝚊𝚛𝙵𝚛𝚊𝚖𝚎 sys-
tem (as highlighted in Section 3.4 from a theoretical viewpoint),
we carry out additional experiments to evaluate the robustness of
𝟹𝙳 − 𝙷𝚊𝚊𝚛𝙵𝚛𝚊𝚖𝚎 against varying levels of noise. Specifically, before the
decomposition phase of 𝟹𝙳 − 𝙷𝚊𝚊𝚛𝙵𝚛𝚊𝚖𝚎 (refer to Fig. 1), we introduce
additive white Gaussian noise  ∼  (0, 𝜎2) ∈ R𝑁×𝑑×𝑀 directly to the
3D-tensor  ∈ R𝑁×𝑑×𝑀 . Here, 𝜎 = 𝑝(max( ) −min( )), with 𝑝 selected
from the set 0.01, 0.03, 0.05, 0.08, 0.1, which indicates the extent of noise
introduced to  . In the experiments, we execute this experimental
design for both our proposed Haar-MGLmodel and the baseline MMGL,
which also employs a 3D-tensor representation in their framework. In
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Fig. 7. Performance demonstration for robustness analysis.

Fig. 7, we plot the accuracy of Haar-MGL and MMGL under varying
noise degrees. It is clear that Haar-MGL achieves superior robustness
to MMGL across these noise levels.

5. Conclusion and future work

In summary, in the context of the student engagement predic-
tion task, this paper develops a multimodal graph learning method
based on a 3D Haar semi-tight framelet for problem-solving. The pro-
posed 3D Haar semi-tight framelet transform is able to capture inter-
modal relationships and model complex interactions within multimodal
data. Additionally, we introduce an adaptive graph structure learn-
ing module that considers the different contributions of low-pass and
high-pass framelet coefficients by adaptively weighing their impact.
Through extensive experimental evaluations on a real-world educa-
tional dataset, we demonstrate that our approach achieves superior
performance compared to state-of-the-art methods, highlighting the
effectiveness of multimodal graph learning in accurately predicting
student engagement.

Limitations. We note that, even when executed on an HPC clus-
ter, the average training time of our method is roughly three hours,
a significant portion of which is consumed by hyperparameter tun-
ing using the Hyperopt library. Furthermore, the inference (testing)
time approaches 15 s. This suggests that adapting our method for
real-time systems, which require efficient operation with streaming
data in genuine educational environments, poses a substantial chal-
lenge. As educational systems become more interconnected, and as
lessons increasingly migrate online, processing real-time, streaming
data becomes vital. Another pertinent limitation is the method’s cur-
rent incapability to handle missing modality issues seamlessly. This is
pivotal as in real-world scenarios, not all modalities may be present
at all times. On the other hand, privacy concerns are another fron-
tier we must address, especially when working with video sources.
Video data can inadvertently lead to privacy breaches, notably the
unintended release of student portraits or other personally identifiable
information. Ensuring that our framework adopts stringent data han-
dling and protection protocols is crucial to mitigate these risks. Due
to the scarcity of benchmark datasets for multimodal-based student
engagement prediction, assessing the generalizability of our framework
across a wider range of datasets and benchmarks presents a challenge.
While the robustness of the 𝟹𝙳 − 𝙷𝚊𝚊𝚛𝙵𝚛𝚊𝚖𝚎 system has been evaluated
in Section 4.7, its performance in actual educational environments
with more complex uncertainties like missing frames and audio noise
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remains untested. Additionally, the relative scarcity of audio/text data
compared to image data presents a further challenge for implementing
our framework in real-world educational settings. Finally, for practical
application, deploying our proposed framework in an actual class-
room setting necessitates additional work in the development of a
comprehensive system and platform.

Future Work. Several paths for future research and exploration
exist: Firstly, an extension of our proposed framework to accommodate
multimodal data with incompleteness is essential. This incompleteness
may arise from diverse sources such as sensor damage, data corruption,
or human errors during recording. Incorporating robust methods to
handle and integrate incomplete multimodal data would be valuable.
Second, enhancing the explainability/interpretability of engagement
prediction models, and gaining insights into the specific contributions
of each modality, are crucial for understanding the underlying fac-
tors that contribute to student engagement. This understanding has
far-reaching implications on personalized learning, optimal resource
allocation, early intervention and targeted learning support. Moreover,
it is meaningful to develop advanced techniques for domain adap-
tation and transfer learning could enable the transfer of knowledge
learned from one setting to another, enhancing the generalizability
and scalability of student engagement prediction models. Additionally,
applying our proposed framework, particularly the components of 3D-
HaarFrame and SGL, to challenging multimodal data modeling tasks
in natural sciences and medicine would be highly desirable. Last, in our
subsequent project, we plan to offer pre-trained models for each modal-
ity and release crucial checkpoints that include these models at specific
stages. This will enable the creation of a demo that operates indepen-
dently of the original RoomReader data source, thereby alleviating the
need for extensive storage. Thereafter, we will enhance our coding by
dedicating additional engineering resources to the development of both
front-end and back-end systems and platforms.
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