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Permutation Equivariant Graph Framelets for
Heterophilous Graph Learning

Jianfei Li , Ruigang Zheng , Han Feng , Ming Li , Member, IEEE, and Xiaosheng Zhuang

Abstract— The nature of heterophilous graphs is significantly
different from that of homophilous graphs, which causes difficul-
ties in early graph neural network (GNN) models and suggests
aggregations beyond the one-hop neighborhood. In this article,
we develop a new way to implement multiscale extraction via
constructing Haar-type graph framelets with desired properties
of permutation equivariance, efficiency, and sparsity, for deep
learning tasks on graphs. We further design a graph framelet
neural network model permutation equivariant graph framelet
augmented network (PEGFAN) based on our constructed graph
framelets. The experiments are conducted on a synthetic dataset
and nine benchmark datasets to compare the performance
with other state-of-the-art models. The result shows that our
model can achieve the best performance on certain datasets of
heterophilous graphs (including the majority of heterophilous
datasets with relatively larger sizes and denser connections) and
competitive performance on the remaining.

Index Terms— Graph framelets/wavelets, graph neural net-
works (GNNs), heterophily, permutation equivariance.

I. INTRODUCTION

GRAPHS are ubiquitous data structures for a variety
of real-life entities, such as traffic networks, social

networks, citation networks, and chemoinformatics and bioin-
formatics networks. With the abstraction via graphs, many
real-world problems that are related to networks and com-
munities can be cast into a unified framework and solved by
exploiting its underlying rich and deep mathematical theory
as well as tremendously efficient computational techniques.
In recent years, graph neural networks (GNNs) for graph
learning, such as node classification [1], link prediction [2],
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and graph classification [3], have demonstrated their powerful
learning ability and achieved remarkable performance [4],
[5], [6], [7], [8]. In the particular field of node classifica-
tion, many GNN models follow the homophily assumption,
that is, the majority of edges connect nodes from the same
classes (e.g., researchers in a citation network tend to cite
each other from the same area), yet graphs with heterophily,
that is, the majority of edges connect nodes from different
classes [9], do exist in many real-world scenarios. A typical
example is in a cyber network where a phishing attacker
usually sends fraudulent messages to a large population of
normal users (victims) in order to obtain sensitive information.
We refer to [10] and [11] for the limitations of early GNNs on
homophilous graphs and a recent survey paper [9] on GNNs
for heterophilous graphs.

Heterophilous graphs differ from homophilous graphs not
only spatially in terms of distribution beyond the one-hop
neighborhood but also spectrally with larger oscillation in
terms of the frequency distribution of graph signals under
the graph Laplacian. Such properties bring challenges to
learning on heterophilous graphs and demand new GNNs the
ability to extract intrinsic information in order to achieve high
performance. To enhance the influence of nodes from the same
classes that are outside of one-hop neighborhoods, one com-
mon approach is based on the multihop aggregation to leverage
information of k-hop neighborhoods, k ≥ 2. Its effectiveness
for heterophilous graphs is emphasized and theoretically veri-
fied in [12]. A common way to perform multihop aggregation
is to utilize the powers of the adjacency matrix. Repeatedly
applying Laplacian smoothing many times, prompted by using
higher powers of adjacency matrix, can result in a convergence
of vertex features within each connected component of the
graph toward uninformative or identical values, a phenomenon
referred to as oversmoothing [10], [13]. Moreover, they may
lead to dense matrices and cause computation and storage
burdens. To seek further improvement, it is thus desirable to
consider an alternative spatial resolution of graphs other than
the k-hop neighborhood. To answer this question, we work
on the theory of wavelet/framelet systems on graphs, which
brings a notion of scale on graphs and wavelets/framelets
corresponding to such scales. In this article, we introduce and
integrate a dedicated graph framelet system so as to perform
multiscale extraction on graphs.

Actually, classical wavelets/framelets in the Euclidean
domains, see, e.g., [14], [15], are well-known examples of
multiscale representation, which have been extended to irreg-
ular domains such as graphs and manifolds under similar
principles in recent years, see, e.g., [16], [17], [18], [19].
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Some graph wavelets/framelets systems are also proposed and
applied in GNNs for node and graph classifications [20],
[21], [22]. When the graph is reordered, it is natural to
expect the produced wavelets/framelets to be reordered in
the same way for robust learning. However, most of the
graph wavelets/framelets do not possess such a property of
permutation equivariance, that is, up to certain permutations,
the constructed graph wavelet/framelet systems should be the
“same” regardless of the underlying node orderings. The work
on Haar-type graph wavelets/framelets [17], [20], [23], [24],
[25] is “piecewise constant” functions on graphs that depend
on a given tree with certain underlying node ordering. If new
orderings are given, though the underlying graph and graph
data are the same, the newly resulting graph wavelets/framelets
are no longer the same. Without the property of permutation
equivariance, the network outputs could vary with respect to
graph reordering and thus lead to instability of the GNNs.

In this article, we provide a novel and general method to
construct Haar-type graph framelets having the permutation
equivariance property, which further implies the permutation
equivariance of our graph framelet neural network model
permutation equivariant graph framelet augmented network
(PEGFAN). Our Haar-type graph framelets are constructed
spatially with respect to a hierarchical structure on the under-
lying graph. Scales in such systems correspond to the levels in
the hierarchical structure in which higher levels are associated
with larger groups of nodes. Multiscale extractions via such
graph framelets are regarded as alternatives and supplements
for the usual multihop aggregations. Moreover, we show that
our graph framelets possess sparse representation property,
which leads to the sparsity property of the orthogonal pro-
jection matrix (framelet matrix) formed by stacking those
framelet vectors at certain scales. This is in contrast to the
high powers of adjacency matrices and their nonsparse nature.
Furthermore, we apply our graph framelets in the neural
network architecture design by using the framelet matrices
at different scales as well as the adjacency matrices to form
multichannel input and perform multiscale extraction through
attention and concatenation. The state-of-the-art node classifi-
cation accuracies on several benchmark datasets validate the
effectiveness of our model.

In summary, the contribution of this article is as follows:
1) we propose a novel and general method to construct
Haar-type graph framelets that have properties of permutation
equivariance, sparse representation, efficient computation, and
so on; 2) we apply our Haar-type graph framelet system to
extract multiscale information and integrate it into a GNN
architecture; and 3) we demonstrate the effectiveness of our
model for node classification on synthetic and benchmark
datasets via extensive comparisons with several state-of-the-
art GNN models.

II. RELATED WORK

A. Node Classification on Heterophilous Graphs

Early work on node classification includes [1], [26], [27],
which are some of the earliest examples of spectral and
spatial GNNs. GEOM-GCN [28] is the first work that aims at
heterophilous graphs. Topology augmentation graph convolu-
tional network (TA-GCN) [29] is proposed under the guidance
of a neighborhood class consistency (NCC) metric. To enhance

the performance of GNNs on the heterophily datasets, conv-
agnostic GNN (CAGNN) [30] is developed by learning the
neighbor effect for each node. From the relation-based fre-
quency point of view, relation-based frequency adaptive GNN
(RFA-GNN) [31] aims to adaptively pick up signals of dif-
ferent frequencies in each corresponding relation space in
the message-passing process. In [12], a set of key designs
is discussed, which can boost learning under heterophily.
To counter the limit imposed by node-level assortativity
(homophily), in [32], a computation graph with proximity
and structural information is proposed, which is converted
from the input graph. A new generalized PageRank [33],
which is jointly optimized with node features and topolog-
ical information extraction, works for graphs regardless of
homophily or heterophily. Two novel fully differentiable and
inductive rewiring layers are introduced in [34] to mitigate the
problems of oversmoothing, oversquashing, and underreaching
on both homophilous and heterophilous graphs. Adopting
a homophily-oriented deep heterogeneous graph rewiring
method to increase the meta-paths subgraph homophily ratio,
heterogeneous GNN (HGNN) [35] improves the performance
on heterophilous graphs. In [36], a random-edge dropping
mechanism for increasing heterophily of graphs is proposed,
aiming at enhancing fairness in GNNs’ predictions. We refer
to [9] for a comprehensive review of GNNs for graphs with
heterophily.

B. Multihop Aggregation in GNNs

Papers of [12], [37], [38], and [39] are GNNs that adopt
hidden layer concatenation and multihop aggregation and
involve the powers of adjacency matrices. Thus, they resem-
ble each other in terms of the neural network architecture.
The difference is that works [37], [38] mainly deal with
homophilous datasets. On the other hand, with emphasis on
the heterophilous setting, the work [12] theoretically shows the
importance of concatenation of aggregation beyond the one-
hop neighborhood, with an addition on the importance of ego-
and neighbor-embedding separation. Such a nonlocal neigh-
borhood aggregation is also emphasized in [27] and [37]. The
current state-of-the-art model feature selection GNN (FSGNN)
[39] is different from the previous ones by, in our interpre-
tation, viewing the semi-supervised setting as a supervised
setting in which multihop aggregation is regarded as input
of different feature channels from different hops and were
not applied in the following layers. As a result, its network
architecture basically consists of a mix-hop [38] layer and fully
connected layers with attention weights for different channels
being applied before the concatenation. It is worth mentioning
that a recent work [40] on large-scale heterophilous node
classification is very similar to [39], in which input channels
were limited to the zero-hop and the one-hop.

C. Graph Wavelets/Framelets

Papers of [16], [17], [18], [20], [23], [24], [41], and [25] are
work of graph wavelets/framelets in which [16] and [18] are
spectral-type and the rest are Haar-type. A framelet system
differs from the classical (orthogonal) wavelet system by
being a frame in a Hilbert space and offering redundant
representation. The Haar-type wavelet system in [41] is defined
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for different nodes as centers. In [17], [20], [23], [24], and
[25], graph wavelets/framelets are defined under a given tree
and they differ in the interpretation and generation of the tree.
In [23], it is applied to trees from graphs. In [17], the tree is
represented as a filtration on [0, 1], and the wavelet system
is equivalent to an orthogonal basis of tree polynomials.
Similar to [17], the trees are further generalized to hierarchical
partitions of [0, 1]2 in [24] and apply to directed graphs,
and a Haar-type wavelet system for directed graphs is thus
constructed. To further generalize [24], [42], the constructions
of Haar-type framelet systems on any compact set in Rd is
considered under a given hierarchical partition and adapt the
construction of directed graph framelets to such cases [25].

III. PERMUTATION EQUIVARIANT GRAPH FRAMELETS

In this section, we develop Haar-type graph framelet sys-
tems and the binary Haar graph framelets, with properties of
tightness, sparsity, efficiency, and permutation equivariance,
which yield robustness and effective algorithms for the model
PEGFAN to be introduced in Section IV. All proofs of the
main results in this article are postponed to Appendix A.

A. Preliminaries

Let G = (V, E) be a graph, where V = {v1, . . . , vn} is the
vertex set containing n vertices (or equivalently, we simply
identify V = {1, 2, . . . , n}) and E ⊂ V × V is the edge set of
ordered pairs (i, j). The adjacency matrix A : V × V → R of
G is a matrix of size n × n such that its (i, j)-entry ai j is the
weight on edge (i, j) and ai j = 0 if (i, j) /∈ E . We consider
only undirected graphs in this article, i.e., A⊤ = A. We denote
Ã := D−1/2 AD−1/2 with D being the diagonal degree matrix
of G, whose diagonal elements defined as di i =

∑n
j=1 ai j .

A signal f = [ f1, . . . , fn]
⊤ on the graph is defined as f :

V → R with ℓ2 norm ∥ f ∥2
=

∑n
i=1 | fi |

2 < ∞. All such
ℓ2 signals on G form a Hilbert space L2(G) under the usual
inner product. A collection {em : m ∈ [M]} ⊂ L2(G) is a
tight frame of L2(G) if f =

∑M
m=1⟨ f , em⟩em for all f ∈

L2(G), where ⟨·, ·⟩ is the inner product, and we denote [M] :=
{1, . . . ,M}. We denote the i th column vector and row vector
of a matrix M, by M :i and M i :, respectively.

For K ≥ 2, we call a sequence PK := {V j : j = 1, . . . , K }
of sets as a K -hierarchical clustering of V if each V j := {s3 ⊂
V : dim(3) = j} is a partition of V , i.e., V = ∪3s3, and
V j is a refinement of V j−1, where we use the index vector
3 = (λ1, . . . ,λ j ) ∈ N j to encode position, level j , and
parent–children relationship, of the clusters s3. Fig. 1 gives an
example of a K -hierarchical clustering. Let us denote V1 =

{s(1) = V = {1, 2, . . . , 8}}. Then, according to parent–children
relationship in Fig. 1, we have V2 = {s(1,1), s(1,2)}, where
s(1,1) = {1, . . . , 4} and s(1,2) = {5, . . . , 8}. Similarly, we have
V3 = {s(1,1,1), s(1,1,2), s(1,2,1), s(1,2,2)}, where s(1,1,1) = {1, 2},
s(1,1,2) = {3, 4}, s(1,2,1) = {5, 6}, and s(1,2,2) = {7, 8}, and thus,
s(1,1,1,1) = {1} and s(1,1,1,2) = {2}. Here, dim(3) denotes the
length of the index vector. If s3 ∈ V j is a parent, then the
index vectors of its children are appended with an integer,
i.e., (3, i), indicating its i th child, and thus, the child is
denoted by s(3,i) ∈ V j+1. Then, we have the parent–children
relationship s(3,i) ⊂ s3. We denote the number of children
of s3 by L3. Unless specified, we consider K -hierarchical

Fig. 1. (a) Graph framelets (bottom) with respect to G1 and (b) hierarchical
partition P4 (middle). The blue points in (c) are the values of graph framelets
on each node. (c) Height of blue points represents the value of graph framelets
ψ3 (eight subfigures). The blue points are above the corresponding nodes if
values are positive and below otherwise.

clustering PK with VK = {{1}, . . . , {n}} and V1 = {[n]} being
a singleton, i.e., PK is a tree.

In classical wavelet/framelet theory, an important concept is
the multiresolution analysis (MRA). One of the most important
ideas is to find a sequence of subspaces {V j } ⊂ L2(R)
such that V j ⊂ V j+1 and ∪ j∈ZV j = L2(R). If there exists
φ(t) ∈ V0 such that {φ(t − b)}b∈Z forms an orthonormal basis
of V0 and f (t) ∈ V j if and only if f (2t) ∈ V j+1, then we can
find a mother wavelet ψ(t) such that {2 j/2ψ(2 j t − b)} j,b∈Z
forms an orthonormal basis for L2(R). For example, if φ(t) =
χ[0,1)(t) and ψ(t) = φ(2t) − φ(2t − 1), then the resulting
wavelet is the so-called Haar wavelet. However, the translation
and dilation operators are not naturally defined for graph
signals. Fortunately, if we look at the support of Haar wavelets,
we can find that the union of the support of elements in W j :=

{2 j/2ψ(2 j t − b)}b∈N is equal to R for a fixed j and the collec-
tion of the support of elements in W j+1 is a refinement of that
of W j+1. Hence, these supports actually form a hierarchical
partition. Based on this observation, a natural way to define
translations on the graph is to generalize hierarchical partitions
to the graph, see [19], [25]. For example, when mapping
each node in a graph to an interval on [0, 1], then based
on the hierarchical partition on [0, 1], graph framelets can be
constructed similarly as classical Haar wavelet [25]. In the
following, we provide general conditions in Theorem 1 for
constructing Haar graph framelets based on a K -hierarchical
clustering.

B. Main Construction
Given PK , we define the unit scaling vectors φ3 (similar

to scaling functions for V j ’s on an MRA) iteratively from
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dim(3) = K to dim(3) = 1. When dim(3) = K , each cluster
(node) s3 contains only one vertex in graph G (see Fig. 1),
and thus, we define φ3 = I :i , where i ∈ s3 ⊂ V and I :i
is the i th column of the identity matrix I ∈ Rn×n . When
dim(3) < K , we define

φ3 :=
∑
ℓ∈[L3]

p(3,ℓ)φ(3,ℓ) (1)

where p3 = [p(3,1), . . . , p(3,L3)]
⊤
∈ RL3 and ∥ p3∥ = 1.

Obviously, φ3 is with support suppφ3 = s3 and ∥φ3∥ = 1.
For framelet vectors on the graph, we define ψ (3,m), m ∈ [M3]

for some M3 ∈ N by

ψ (3,m) :=
∑
ℓ∈[L3]

(B3)m,ℓφ(3,ℓ) (2)

from some matrices B3 ∈ RM3×L3 . Theorem 1 characterizes
when φ3 and ψ (3,m) form a tight frame of L2(G).

Theorem 1 (General Characterization): Let PK be a
K -hierarchical clustering on a graph G. Then, the matrices
B3 and vectors p3 satisfy B3B⊤3B3 = B3, B3 p3 = 0 ,
and Rank(B3) = L3 − 1 for all 3 with dim(3) = j0, . . . , K
if and only if for any j0 ∈ [K ], the collection F j0(PK ) :=

{φ3 : dim(3) = j0} ∪ {ψ3 : dim(3) = j}Kj= j0+1 defined
by (1) and (2) is a tight frame of L2(G).

We remark that Theorem 1 provides a more general suffi-
cient and necessary condition than that in [19], for all graph
framelets having the form (1) and (2) to be a tight frame. When
we use the Haar graph framelets to extract frequency features
of graph signals, general graph wavelets/framelets [see (1)
and (2)] can be viewed as multiscale representation systems in
which the notion of “scale” is different from the usual k-hop
neighborhood in graphs and serve as an alternative to capture
long-range information.

Besides, the given PK in the proposed construction is not
specified. The advantage of the generality of this definition is
that there is no constraint on how PK is generated: one can
use the edges solely or combine the edges and node features to
generate PK and so on. Thus, this provides great potential in
theories and applications. As shown in experiments, clustering
graph nodes based only on adjacency matrices are capable of
providing nice graph framelets that help improve the learning
abilities of neural networks on node classification tasks.

The following example shows a close relationship between
our framelet systems and the traditional Haar graph basis.

Example 1 (Path Graph and Haar Basis): Given a path
graph G1 with eight nodes V = {1, 2, . . . , 8}. If we choose
hierarchical clustering P4 = {V1,V2,V3,V4} with V1 =

{s(1)}, V2 = {s(1,1), s(1,2)}, V3 = {s(1,1,1), s(1,1,2), s(1,2,1), s(1,2,2)},
V4 = {s(1,1,1,1), s(1,1,1,2), s(1,1,2,1), s(1,1,2,2), s(1,2,1,1), s(1,2,1,2),
s(1,2,2,1), s(1,2,2,2)}, and p3 = [(1/(2)1/2), (1/(2)1/2)]⊤ and
B3 = [(1/(2)1/2),−(1/(2)1/2)] for all 3 (note that each
parent has exactly two children L3 = 2), then the graph
framelet system F j0(PK ) with K = 4 as in Theorem 1 is
a Haar basis for any j0 ∈ [K ] (see Fig. 1 for illustration).

Based on the general conditions in Theorem 1, we further
investigate the specific structure of B3. We give the follow-
ing proposition that completely characterizes the structure of
matrices B3 in Theorem 1.

Proposition 1: Let p be a unit vector of length L ≥ 1, that
is, ∥ p∥ = 1. Assume that B ∈ RM×L with M ≥ L − 1 is
a matrix such that B p = 0 and Rank(B) = L − 1. Then,

B B⊤B = cB for some constant c if and only if B⊤B = c(I−
p p⊤). In particular, if c ̸= 0, then P := [ p, (1/(c)1/2)B⊤]
satisfies P P⊤ = I .

Proposition 1 shows that B3 is from the (matrix) splitting
of a rank L − 1 matrix I − p3 p⊤3. Notice that the role of
elements in p3 in (1) is to give weights to each cluster
s(3,ℓ). One typical scenario is that each child cluster is of
equal importance, which means that the vector p3 is a vector
with all equal elements. On the other hand, it could be too
involved to use matrix splitting techniques [43], [44], [45],
[46] for obtaining the matrix B3. We next show that we can
obtain matrices B3 by simply permuting a fixed vector w such
that each of its elements appears with equal chance. Under
this hypothesis of equal importance and equal chance, in the
following result, we introduce a binary Haar graph framelet
system by a careful design of the matrices B3 and p3. The
word binary here is chosen since each nonzero coefficient
of high-frequency framelets in (2) only takes from {1,−1}
(without normalization). We show that such graph framelet
systems F j0(PK ) have many desirable properties, including
permutation equivariance.

For each pair (ℓ1, ℓ2) with 1 ≤ ℓ1 < ℓ2 ≤ L3, define a
vector wm

3 of size L3 × 1 by

(
wm
3

)
τ
=


1
√

L3
, τ = ℓ1

−1
√

L3
, τ = ℓ2

0, otherwise

(3)

where m := m(ℓ1, ℓ2, L3) := ((2L3−ℓ1)(ℓ1−1)/2)+ℓ2−ℓ1
is ranging from 1 to M3 := (L3(L3 − 1)/2) for all possible
pairs (ℓ1, ℓ2) with 1 ≤ ℓ1 < ℓ2 ≤ L3. Note that wm

3 has only
two nonzero entries locating at the ℓ1th and ℓ2th positions,
respectively. Such wm

3 will be used as the mth row of the
matrix B3.

Corollary 1 (Binary Haar Graph Framelets): Let PK
be a K -hierarchical clustering on a graph G. Let p3 =
(1/(L3)1/2)1 be a constant vector of size L3 × 1 and B3 :=

[w1
3, . . . ,w

M3

3 ]
⊤ with wm

3 being given as in (3). Define
F j0(PK ) as in Theorem 1. Then, F j0(PK ) is a tight frame
for L2(G) for any j0 ∈ [K ].

Remark 1: In fact, the framelets obtained in Example 1
belong to binary Haar graph framelets (see Fig. 1 for illustra-
tion). The matrix B3 is formed by permuting 1 and −1 of the
specific type of vectors w = [1,−1, 0, . . . , 0] to all possible
positions. In fact, more general types of vectors w can be
served to form the matrix B3 through permutations.

We next focus on the sparsity, efficiency, and permutation
equivariance of the binary Haar graph framelets constructed
in Corollary 1.

C. Sparsity

Notice that if each row of the matrix B3 is sparse, then
the produced ψ(3,m) is also sparse. For the binary Haar graph
framelets, each row of B3 only contains two nonzero values.
If L j := maxdim(3)= j L3, then it is easy to see that the number
∥ψ (3,m)∥0 of nonzero entries of ψ (3,m) satisfies ∥ψ (3,m)∥0 ≤

2L j+1, for all dim(3) = j . When the hierarchical clustering
is balanced and dim(3) is large, high-level framelets ψ (3,m)
are well-localized and thus sparse.
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Besides the sparsity of the framelets, we also want to know
when the framelet coefficients of a signal are sparse, which
is the desired property of sparse representation of framelets.
Different coefficients represent different scales. The sparse
representation property plays an important role in feature
extraction and representation for classification tasks. In node
classification, piecewise constant signals, e.g., one-hot label
encoding, are of great importance in practice due to their
simplicity [47]. Hence, it is valuable to study the framelet
coefficients of the piecewise constant signals. Let F j0(PK ) :=

{φ3, dim(3) = j0} ∪ {ψ3, dim(3) = j}Kj= j0+1 =: {ui }
MG
i=1 be

a binary Haar graph framelet system with MG elements and
define f̂ ∈ RMG to be the framelet coefficient vector with its
i th element ( f̂ )i := ⟨ f , ui ⟩ for a signal f . In what follows,
we denote F := [u1, . . . , uMG ] to be the matrix representa-
tion of the graph framelet system F j0(PK ). Then, f̂ = F⊤ f .
We have the following result regarding the sparsity of f̂ .

Theorem 2 (Binary Haar Graph Framelet Transform Pre-
serving Sparsity): Let F j0(PK ) be a binary Haar graph
framelet system defined as in Corollary 1. Assume that
maxdim(3)>0 L3 ≤ h. Then, for a signal f ∈ Rn , the framelet
coefficient vector f̂ satisfies ∥ f̂ ∥0 ≤ (K − 1)(h − 1)∥ f ∥0.

Remark 2: If for all 3, we have L3 = h for some
integer h ≥ 2, then K = O(logh n) and, hence, ∥ f̂ ∥0 =

∥ f ∥0 · O(h logh n), which shows that our binary Haar graph
transform preserves sparsity for sparse signals. In fact, the total
number MG of elements in F j0(PK ) in this case is of order
O(nh). When ∥ f ∥0 ≪ n, we see that ∥ f̂ ∥0 ≪ O(nh) = MG .
Theorem 2 can be extended to other type of matrices B3 that
is row-wise sparse.

D. Efficiency
Graph Fourier basis based on graph Laplacian is of great

importance in GNNs. However, the computational complexity
and space complexity of generating graph Fourier basis could
be as large as O(n3) and O(n2), respectively. Hence, these
reasons prevent it from being more flexible in practice when
n is large and the graph Laplacian is not sparse. On the other
hand, when using our binary Haar graph framelets, we have an
efficient way to compute our framelets as well as the framelet
coefficient vector via sparse computation. For the rest of this
article, when we discuss computational complexity, we assume
that all matrix/vector operations are done by using sparse
operations, i.e., the operations are evaluated only on nonzero
entries.

Theorem 3: Let h > 1 be a positive integer. Assume that
the K -hierarchical clustering PK satisfies n = O(hK−1) with
h := maxdim(3)>0 L3. For j0 ∈ [K ], let F = [u1, . . . , uMG ]

be the framelet matrix with respect to the binary Haar graph
framelet system F j0(PK ) as given in Corollary 1. Then, for all
j0 ∈ [K ], the number MG of framelet vectors in F j0(PK ) is
of order O(nh), the computational complexity of generating
all um , m = 1, . . . ,MG , in F is of order O(nh logh n), and
the total number nnz(F) of nonzero entries in F is of order
O(nh logh n).

Remark 3: In practice, h is usually small (e.g., 2, 4,
or 8), and hence, F is a sparse matrix. Theorem 3 shows
that our binary Haar graph framelet systems are efficient in
processing datasets with large graphs. Moreover, the framelet
coefficient vector f̂ can be computed with the computational
complexity of order O(nh) as well. See Theorem 5 for the fast

Fig. 2. Partition permutation. Consider the graphs G1 and P4 in Fig. 1.
Let us permute the order of children of s(1,1,1) = {1, 2} in P4 only while
keeping other part of P4, p3, and B3. The original framelet is given by
ψ (1,1,1) [with respect to s(1,1,1)] and the new framelet is given by ψ̃ (1,1,1)
[with respect to s̃(1,1,1)]. (a) s(1,1,1) of P4. (b) Permute children of s(1,1,1).
(c) ψ (1,1,1). (d) ψ̃ (1,1,1).

decomposition and reconstruction algorithms using our graph
framelet systems.

E. Permutation Equivariance

Fix G = (V, E) and PK . Denote our construction of graph
framelets in Theorem 1 byA, where it is provided with a graph
G and a corresponding hierarchical partition PK and then
builds the graph framelet system, i.e., A(G,PK ) = F j0(PK ).
Let π : V → V be a reordering (relabeling and bijection) of
V = {1, 2, . . . , n}, i.e., π is with respect to a node permutation
on [n] with π(V ) = {π(1), . . . , π(n)}. We denote π(G) =
(π(V ), π(E)) with π(E) := {(π(i), π( j)) : (i, j) ∈ E}. The
corresponding signal f on the graph G is reordered to be
π( f ) under the newly ordered graph π(G). In other words,
given a π , there exists a permutation matrix Pπ of size n× n
such that π( f ) = Pπ f . For each node permutation π , the
construction A is called (node) permutation equivariant if
A(π(G),PK ) = π(A(G,PK )), where π(um) = Pπum for
um ∈ F j0(PK ).

Note that PK is a tree and that the children nodes in
a parent–children subtree are ordered according to the last
integer in the index vectors 3. The order of nodes in such
subtrees and the order of nodes in V are separately defined.
This means that a reordering of nodes in V does not affect
the order in subtrees in PK and vice versa. On the other
hand, the reordering of tree nodes 3 may result in different
graph framelets. Fig. 2 shows a simple example. Thus, it is
necessary to analyze the relationship of the graph framelets
under such types of permutations. We say that πp is a partition
permutation on PK if the permutation is on the children of
each tree node 3 only. For each partition permutation πp,
the construction A is called partition permutation equivariant
if A(G, πp(PK )) = πp(A(G,PK )), that is, there exists a
permutation π∗ on [MG] associated with πp such that for each
um ∈ F j0(PK ), πp(um) = cm uπ∗(m) for some cm ∈ {−1,+1}.
We have the following theorem regarding the permutation
equivariance on both node and partition permutations.

Theorem 4: Let A(G,PK ) be the construction of the binary
Haar graph framelet systems in Corollary 1 for j0 ∈ [K ]. Then,
the following three statements hold.
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Fig. 3. Neural network architecture. The input is the feature matrix X . The network operations are determined by the underlying adjacency matrix A and
the constructed binary Haar graph framelet system {F0, . . . , FK−1}. The operator N(·) is defined as normalizing each row of any given matrix.

1) For any node permutation π , we have A(π(G),PK ) =

π(A(G,PK )).
2) For any partition permutation πp, we have

A(G, πp(PK )) = πp(A(G,PK )).
3) For any node permutation π and partition permutation

πp, we have A(π(G), πp(PK )) = πp(π(A(G,PK ))) =

π(πp(A(G,PK ))).
Remark 4: Theorem 4 shows that our binary framelet sys-

tem F j0(PK ) is permutation equivariant when reordering node
or the tree indices. By applying Theorem 4, we show that our
proposed graph framelet neural network model PEGFAN has
the property of permutation equivariance. See Proposition 2 in
Section IV.

Permutation equivariance is a subtle property that most
of the GNNs in the literature possess since they generally
employ operation that only involves the adjacency matrices,
the graph Laplacians, summation, and concatenation. Nonethe-
less, there are works [48], [49] that theoretically investigate
the permutation equivariance of general and specific GNNs,
which is highly related to the graph classification and the
importance of the topic of the expressiveness of GNNs [50],
[51] as permutation is one of the most basic types of iso-
morphism on graphs. In this article, we confine ourselves to
the output consistency that permutation equivariance derives
as this is coherent to our context of node classification. On the
contrary, graph wavelets/framelets, especially Haar-type graph
wavelets/framelets, are more complicatedly generated mathe-
matical tools and the discussion of such property is missing
in both the mathematical literature and the recent works of
GNNs that apply graph wavelets/framelets. In some of the
works of Haar-type graph wavelets/framelets [20], [23], [24],
it is obvious that the permutation equivariance is violated if
there are no further constraints.

IV. GRAPH FRAMELET NEURAL NETWORKS

We introduce the graph framelet neural network model that
integrates our constructed binary Haar graph framelets, which
we call PEGFAN, see Fig. 3.

Semi-supervised learning is characterized by involving both
unlabeled and labeled data to infer a discriminative function f .
In contrast, in supervised learning, only labeled data are uti-
lized in obtaining f . In a (semi-supervised) node classification
task, we assume that the first l nodes are labeled. Each

Fig. 4. Demonstration of statistical performance comparison. (a) Results in
Table I. (b) Results in Table II.

node i ∈ V is associated with a feature vector xi ∈ Rn f

and a one-hot yi ∈ Rnc indicating the ground truth of labels,
where n f and nc are the numbers of features and classes,
respectively. Stacking these vectors gives a feature matrix
X ∈ Rn×n f and a label matrix Y ∈ Rn×nc (the first l elements
are given labels and the rest part has no label and need to
be predicted). Suppose that there are nC channels, associating
a series of matrices X1, X2, . . . , XnC for each channel, and
X i ∈ Rn×di , 1 ≤ i ≤ nC . Our model is a two-layer neural

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on September 05,2024 at 00:43:20 UTC from IEEE Xplore.  Restrictions apply. 



11640 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

TABLE I
CLASSIFICATION ACCURACY ON SYNTHETIC DATASET WITH FEATURES

SAMPLED FROM 6(−0.75+ 0.5 c)+ ξ , WHERE
ξ ∼ N (0, 1), c ∈ {0, 1, 2, 3}

TABLE II
CLASSIFICATION ACCURACY ON SYNTHETIC DATASET WITH FEATURES

SAMPLED FROM (−0.75+0.5 c)+ξ , WHERE ξ ∼ N (0, 1), c ∈ {0, 1, 2, 3}

network, which is defined as

H1 =
nC

∥
i=1

αi ·N(X i W i ) (4)

Ŷ = softmax(ReLU(H1)W) (5)

where ∥ denotes the concatenation operation, αi are trainable
attention weights satisfying αi ∈ (0, 1) and

∑
i αi = 1, N(·)

is the row normalization operation, and W i ∈ Rdi×nh and
W ∈ RnC nh×nc are trainable parameters. Our model comprises
several input channels at the beginning and, subsequently,
several fully connected layers. Therefore, it is easy to be
extended with more layers. As usual, we minimize the cross
entropy of the labeled nodes using the first l columns of Ŷ
and Y .

Given the binary Haar graph framelet system F j0(PK ),
we also use 8 j = (φ3)dim(3)= j ∈ RN j×n and 9 j =

(ψ (3,m))dim(3)= j,m∈[M3]
∈ RM j×n to be the matrix represen-

tations of the scaling vectors and framelet vectors at scale j ,
respectively. We denote F0(M) := 8⊤1 81 M and F j (M) :=

9⊤j 9 j M, 1 ≤ j ≤ K − 1. For our model PEGFAN, we select
three options for {X1, . . . , XnC } of feature matrices for graphs
with homophily and heterophily.

For homophilous graphs, we have three types.
1) Type a: nC = 1 + K , {X, F0(X), F1(X), . . . ,

FK−1(X)}.
2) Type b: nC = 1 + r + K , {X, ÃX, Ã2 X, . . . , Ãr X,

F0(X), F1(X), . . . , FK−1(X)}.
3) Type c: nC = 1 + r + K , {X, ÃX, Ã2 X, . . . , Ãr X,

F0( ÃX), F1( ÃX), . . . , FK−1( ÃX)}.
For heterophilous graphs, we have three types.
1) Type a: nC = 1 + K , {X, F0(X), F1(X), . . . ,

FK−1(X)}.

2) Type b: nC = 1 + r + K , {X, AX, A2 X, . . . , Ar X,
F0(X), F1(X), . . . , FK−1(X)}.

3) Type c: nC = 1 + r + K , {X, AX, A2 X, . . . , Ar X,
F0(AX), F1(AX), . . . , FK−1(AX)}.

With the permutation equivariance of our graph Haar
framelets, now we can formally state the permutation equiv-
ariance of our graph framelet neural network model PEGFAN.

Proposition 2: Let G = (V, E) be a graph with feature
matrix X , adjacency matrix A, and a K -hierarchical parti-
tion PK . Let P be a permutation matrix with respect to a
node permutation π on V . If the permuted feature matrix
P X , adjacency matrix P AP⊤, and binary Haar graph framelet
system π(A(G,PK )) are used in forming Type a, b, and c
channels for PEGFAN, then the new output Ŷ P differs from
the original one by a permutation matrix, i.e., Ŷ P = PŶ .

Remark 5: In contrast to our PEGFAN, the model
FSGNN [39] adopts the two-layer network model with the
following three options of input channels.

1) Homophily: nC = 1+ r , {X, ÃX, Ã2 X, . . . , Ãr X}.
2) Heterophily: nC = 1+ r , {X, AX, A2 X, . . . , Ar X}.
3) All: nC = 1 + 2r , {X, AX, ÃX, A2 X, Ã2 X, . . . ,

Ar X, Ãr X}.
As shown in Fig. 3, our network model differs from

existing GNNs using graph wavelets/framelets in the sense
that we fully utilize the multiscale property of our Haar
graph framelets as well as the powers of the adjacency
matrix as the multichannel inputs. In such a way, short-
range information and long-range information of the graph are
fully exploited for the training of the network model. On the
contrary, neural network architectures of other existing GNNs
using graph wavelets/framelets are similar to classical spectral
GNNs, which are essentially different from ours in exploiting
multiscale information.

V. EXPERIMENTS

A. Experiment on Synthetic Dataset

In [52], it has been theoretically shown that for a linear
classifier, using Arw := D−1 A to aggregate features has a
lower probability of misclassifying under the condition that
the “neighborhood class distributions” are distinguishable.
To elaborate, it assumes that for each node i of class yi = c,
the neighbors of i are sampled from a distribution Dyi , and
the distribution Dc’s are different. For heterophilous graphs,
it is possible to fit the aforementioned condition as long as for
each node of some class, the connection pattern with nodes
from each class is different from the patterns of nodes of a
different class. In other words, using simple neighborhood
aggregation such as ArwX in GNNs still has the chance to
achieve good performance for heterophilous graphs and the
experiments in [52] has empirically validated this statement.

Following their observation, we are interested in how
the neighborhood distribution Dc affects the performance
of FSGNN and PEGFAN. We follow the way in [52] and
generate four-class heterophilous graphs with 3000 nodes,
fixed Gaussian features, and different neighborhood class
distributions. The proportion of training, validation, and test
set was set to 48%, 32%, and 20%, respectively. We compare
the performance of PEGFAN with FSGNN to demonstrate
the ability of multiscale extraction when our binary Haar
graph framelet system is added. To emphasize the difference
between graph framelets and K -hop aggregation, we excluded
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the feature matrix channel X in the overall channels. A hyper-
parameter γ ∈ [0, 1] indicates the tendency to sample edges
from uniform neighborhood class distribution. Consequently,
larger γ results in more indistinguishable neighborhood class
distributions. Implementation details are the same as shown
in this section for the benchmark datasets except that the
hyperparameter search range is reduced and h is set to 4, 8,
and 12 (cf. Theorem 3). More details of the synthetic dataset
experiment are given in Appendix C.

Table I [see also Fig. 4(a)] collects the results from the
experiment following the procedure defined in Appendix C.
Table II [see also Fig. 4(b)] contains the results of replacing
features sampled Gaussian distributions with closer means,
which are more similar for different classes and more difficult
to classify.

B. Comments on the Synthetic Dataset Experiment
For the synthetic dataset, it can be seen from Tables I

and II that in most of the cases, the performance decreases
with respect to γ in all cases (if γ → 1, then the graph is
close to the case of being generated by uniform neighborhood
class distribution). However, in Table I, Type b channels input,
in which graph framelets project the original feature matrix X ,
show a large improvement compared with FSGNN. In some
cases, the increment can reach over 10%. This evidently
shows the effectiveness of multiscale extractions via graph
framelets when combined with adjacency matrix aggregations.
There are also drawbacks, which can be seen from the results
of Type a channels input in both tables. It shows that the
results are sensitive to hyperparameter h and that using graph
framelets alone is not enough. Indeed, we chose a rather simple
and unsupervised way to generate hierarchical clustering.
This process altered the representation of the connectivity
among nodes and caused a loss of information. Therefore,
it is better to combine fine-scale information using one-to-
three-hop aggregation and coarse-scale projection via graph
framelets. However, the performance of Type a channels
has less variation across different γ ’s and is better when
γ is closed to 1. It is also obvious that the neighborhood
distributions affect our model performance for Type b and
Type c given the theory in [52], in which the model accuracy
decreased as the neighborhood distributions approached the
same and indistinguishable uniform distribution. As for Type
c channels in both tables, the channels are affected by the
adjacency matrix before multiscale extraction, and thus, they
perform similarly compared with FSGNN. In Table II, since it
is more difficult to correctly classify nodes, Type b channels
gain less improvement compared to Table I.

C. Experiments on Benchmark Datasets
We conducted experiments on nine datasets, including

three homophilous citation networks and six heterophilous
datasets, and followed the public data splits provided in [28].
We define the density of a graph as ∥A∥0/n2, which is the
proportion between the number of nonzero terms in A and
the numbers of terms of A. The statistics is summarized
in the top rows of Table III. To generate a series of parti-
tions for each dataset, we applied sknetwork.hierarchy.Ward
and sknetwork.hierarchy.cut_balanced from python package
scikit-network1 to form intermediate clusters and control the

1https://scikit-network.readthedocs.io/en/v0.26.0/

hyperparameter h in Theorem 3. h is set to 4 and 8 and the
values are indicated in Table III. Once new partition V ′′ of
clusters is formed from a graph G ′ = (V ′, A′), we define
as follows the new adjacency matrix A′′ to form the graph
G ′′ = (V ′′, A′′) for next level clustering:

A′′i j =

n′∑
p=1

n′∑
q=p+1

A′pq δ(ID(p), i)δ(ID(q), j)

where #V ′ = n′, #V ′′ = m ′, ID(p) and ID(q) are the indices
of clusters that nodes p and q belong to, and δ(a, b) takes
1 when a = b. For heterophilous graphs, we iterate for a few
steps until the final graph has less than h = 4 or h = 8 nodes.
For Pubmed, when h = 4, we constrained the number of steps
of generating hierarchical clustering to be 6 so as to reduce
input channels.

As for the implementation of the neural network,2 we
adopted the publicly released code of FSGNN3 for integrating
the graph framelet projections as detailed in our PEGFAN
model. We use the same optimizer, hidden layer size, and so
on, as those in FSGNN, and hence, the details are omitted.
We noticed that the outcome of FSGNN was a bit different
from those reported in [39] when we tried to reproduce the
results. Therefore, we did a separate grid search for FSGNN
and the results had slight changes. For our model, we set r
of input channels to 3. Results of other models (Mixhop [38],
GEOM-GCN [28], GCNII [53], H2GCN-1 [12], WRGAT [32],
and GPRGNN [33]) are cited from [39] and the results of some
of the top rows are omitted, which are not among the models
with a relatively superior performance. All results are collected
in Table III.

As a brief comparison, Table IV (see also Fig. 5) summa-
rizes the average, maximum, and minimum training time of our
model and FSGNN on Chameleon and Squirrel over 108 sets
of hyperparameters shown in Table VI. Each training consists
of ten individual training, each of which is on a single data
split. All experiments in this article were conducted using an
RTX 3090 graphics card.

D. Comments on Benchmark Dataset Experiments
We provide in Table III not only the performance of many

state-of-the-art models but also their performance on both the
homophilous and heterophilous graph datasets (nine datasets
in total).

As pointed out in Section I, traditional models are usually
with the underlying assumption of homophily. They perform
well for homophilous graph datasets. One can clearly see
from Table III that the best performances for the three typical
homophilous datasets (Cora, Citeseer, and Pubmed) are given
by GEOM-GCN, GCNII, and GPRGNN. For the homophilous
datasets, their nature of being homophilous does not neces-
sitate the need for further multiscale information, and thus,
our method has a similar performance. The same drawback
is shown in the results of synthetic data, where the results
of Type a channels are not superior and sensitive to the
hyperparameter h. It empirically shows that to use framelets
alone, it is required to form sufficiently large clusters at the
beginning of forming hierarchical partitions.

2https://github.com/zrgcityu/PEGFAN
3https://github.com/sunilkmaurya/FSGNN/
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TABLE III
DATASET STATISTICS, CLASSIFICATION ACCURACY, AND STANDARD DEVIATION. BEST IN BOLD AND SECOND BEST IN BLUE

TABLE IV
TRAINING TIME OVER 108 CONFIGURATIONS OF HYPERPARAMETERS.

NUMBER OF CHANNELS: FSGNN (r = 3): 4, FSGNN (r = 8): 9, AND
OURS (TYPE C, h = 4): 13 (CHAMELEON) AND 14 (SQURRIEL)

While models, such as GEOM-GCN, GCNII, and
GPRGNN, perform well in those homophilous datasets, they
do not give the best performance for the other six heterophilous
datasets. The models that give the best performance for
heterophilous datasets are FSGNN and our PEGFAN.

Now, between FSGNN and our PEGFAN, from the above
discussion, we only need to focus on the six heterophilous
datasets: Texas, Wisconsin, Cornell, Actor, Chamelon, and
Squirrel. We would like to emphasize that we follow the most
common way that uses the public data splits in [28]. The
proportions of train–validation–test splits are all 48%, 32%,
and 20%, respectively. These six datasets can be considered
as three groups discussed as follows.

The first group is the datasets of Texas, Wisconsin, and
Cornell. They are similar datasets with a small number of
nodes, edges, and features. Since the test sets are only 20%
of the graph, they contain at most 51 nodes. A correctly
predicted node accounts for at least 1.9% of accuracy. Hence,
we can say that experiments on such datasets are relatively and
statistically insignificant. Most of the models have very similar
performance with at most seven nodes wrongly predicted.
Nonetheless, we chose to follow the common conduct and
report the results for completeness. PEGFAN is best for
Cornell and ranks second for Texas. FSGNN is best for
Wisconsin and Texas and ranks third for Cornell. The best

Fig. 5. Demonstration of training time comparison. (a) Chamemleon dataset.
(b) Squirrel dataset.

or second-best performances of FSGNN and PEGFAN are
without much difference. Since the number of nodes is too
small, it is not reasonable to say that one is better than the
other.

The second group is simply the dataset Actor. It is a large
dataset with 7600 nodes. However, for this Actor dataset,
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all models, including Mixhop, GEOM-GCN, and GCNII,
do not give reasonable performance. They only give very
low accuracy about 35%. The best performance is given by
the model WRGAT. For this dataset, it is not reasonable to
compare the performance among different methods.

The last group is the datasets of Chameleon and Squirrel.
They are both big datasets in terms of nodes and edges. We can
see that PEGFAN performs the best. Being heterophilous
makes it necessary to gather multiscale information, and
denser graphs facilitate forming better series of partitions and
thus better graph framelets. This is also consistent with the
empirical results of the synthetic dataset since, as shown
in [52], the neighborhood distributions of Chameleon and
Squirrel are distinguishable enough for different classes, while
other heterophilous datasets either are small datasets that suffer
from bias or do not fit such a condition.

Moreover, to compare the overall performance of each
method on the nine benchmark datasets, we take the average
of the performance of each method over the nine datasets.
The average score of each method is given in the second last
column (Avg.) of Table III. Our method with respect to h =
8 and Type c (the last row) ranks first among the comparing
methods. In general, our Type c methods outperform other
methods with high average overall performance (see the last
column of Table III for the ranking of each method).

VI. CONCLUSION

This article proposes a novel and general method to con-
struct Haar-type framelets on graphs that are permutation
equivariant. It aims to serve as an alternative and supple-
ment for multihop aggregations using powers of adjacency
matrices. The results show that combining graph framelets
and multihop aggregation increases the performance of node
classification on heterophilous graphs in both synthetic and
real-world data. Moreover, compared with using multihop
aggregation alone, in the synthetic case, our model shows
significant increases against the deterioration of neighborhood
distribution and results show consistency between the synthetic
and benchmark datasets in terms of the patterns of neighbor-
hood distribution. The overall results validate the capability
of our graph framelets to extract multiscale information under
certain conditions and its superior performance. We would
also like to mention that choosing a more sophisticated
way to generate the hierarchical partitions has the potential
to produce better graph framelets, which will be a future
experimental direction to be explored. In addition, theoretical
investigations on the impact of the heterophily ratio on the
expressive capabilities of framelet-based GNNs are expected.
Such studies could inspire more advanced GNNs tailored
for heterophilous graphs. Building on our work, it would be
beneficial to theoretically and empirically explore the potential
interplay between key issues such as homophily versus het-
erophily, oversmoothing, and oversquashing, all through the
lens of graph wavelets/framelets. We plan to delve into these
significant directions in our subsequent research efforts.

APPENDIX

A. Proofs of Theoretical Results
Proof of Theorem 1: We denote 8 j = {φ3}dim(3)= j

and 9 j = {ψ (3,m)}dim(3)= j,m∈[M3]
. Let V j := span8 j and

W j := span9 j . Note that supports of φ3 and φ3′ are disjoint
if 3 ̸= 3′, so are ψ (3,m) and ψ (3′,m ′). Hence, by definition and
∥ p3∥ = 1, we can see that 8 j forms an orthonormal basis
of V j for each j . Thus, in [19, Lemma 1], the conditions
B3B⊤3B3 = B3, B3 p3 = 0 , and Rank(B3) = L3 − 1 are
equivalent to that V j+1 = V j ⊕ W j and {φ3}dim(3)= j ∪

{ψ (3,m)}dim(3)= j,m∈[M3]
is a tight frame of V j+1. Iteratively,

for j0 < j , we deduce that V j0 ⊕ W j0 ⊕ · · · ⊕ W j−1 = V j
and 8 j0 ∪ 9 j0 ∪ · · · ∪ 9 j−1 is a tight frame for V j if and
only if matrices B3 and vectors p3 satisfy B3B⊤3B3 = B3,
B3 p3 = 0 , and Rank(B3) = L3−1 for all 3 with dim(3) =
j0, . . . , j . Now, the conclusion of the theorem follows by
letting j = K and noting that F j0(PK ) = 8 j0∪9 j0∪· · ·∪9K−1
as well as VK = L2(G). □

Proof of Proposition 1: If B⊤B = c(I − p p⊤), then
B B⊤B = cB by direct computation and in view of B p = 0.
Conversely, if B B⊤B = cB for some constant c, then,
by B(B⊤B) = cB = cB(I − p p⊤) and p⊤(I − p p⊤) = 0,

we have
[ p⊤

B
]
(B⊤B−c(I − p p⊤)) = 0. Consequently, by the

full rank property of the matrix
[

p, B⊤
]
, we conclude that

B⊤B = c(I − p p⊤). The particular part is followed by
direction evaluation. We are done. □

Proof of Corollary 1: We only need to show that B3

and p3 satisfy B3B⊤3B3 = B3, B3 p3 = 0 , and
Rank(B3) = L3 − 1. Obviously, B3 p3 = 0 . Define A3 :=
[ p3, B⊤3]⊤. By direct evaluations, one can show that the
columns of A3 satisfy ∥[A3]:ℓ1∥ = 1 and their inner product
⟨[A3]:ℓ1 , [A3]:ℓ2⟩ = 0 for all ℓ1 ̸= ℓ2, that is, A⊤3A3 = I ,
where I is the identity matrix of size L3. Consequently,
we deduce that B⊤3B3 = A⊤3A3− p3 p⊤3 = I− p3 p⊤3, which
then implies that B3B⊤3B3 = B3(I − p3 p⊤3) = B3 in view
of B3 p3 = 0. Now, Rank(B3) = L3 − 1 directly follows
from that A3 is of full column rank and B3 p3 = 0. We are
done. □

Proof of Theorem 2: We first consider the sparsity of
⟨I :1,ψ (3,m)⟩, m = 1, . . . ,M3. Notice that only when the
node 1 ∈ s3, can the term ⟨I :1,ψ (3,m)⟩ be nonzero. Thus,
without loss of generality, we assume that 1 ∈ s3. Thus,
by our construction in Corollary 1, at most h − 1 framelets
ψ (3,m) that make ⟨I :1,ψ (3,m)⟩ ̸= 0. For each j , only one
cluster s3 of V j = {s3 : dim(3) = j} contains node 1. Thus,
F⊤ I :1 has at most (h − 1)(K − 1) nonzero entries. Similar
results hold for I :i . Hence, for f = [ f1, . . . , fn]

⊤, it is easy
to show that ∥ f̂ ∥0 = ∥F⊤ f ∥0 = ∥

∑
i∈[n], fi ̸=0 F⊤ I :i∥0 ≤∑

i∈[n], fi ̸=0 ∥F⊤ I :i∥0 ≤ (h − 1)(K − 1)∥ f ∥0. □
For generating framelets, we use Algorithm 1 [see (1)

and (2)]. Its efficiency is discussed in Theorem 2.
Proof of Theorem 3: Note that we have n ≤ ChK−1 and

#V j = #{3 : dim(3) = j} ≤ Ch j−1 for some fixed constant
C > 0. Moreover, M3 = (L3(L3 − 1)/2) ≤ (h(h − 1)/2).
Therefore, there is no more than C(h j0−1

+
∑K−1

j= j0(1/2)h(h−
1)h j−1) = O(nh) elements in the binary graph Haar framelet
system F j0(PK ) for any j0 ∈ [K ]. By (1) and (2), we have

φ⊤3 := p⊤3

 φ⊤(3,1)
...

φ⊤(3,L3)

,
 ψ⊤(3,1)

...

ψ⊤(3,M3)

 := B3

 φ⊤(3,1)
...

φ⊤(3,L3)

. (6)

By our construction, there is at most hK− j nonzero entries
for each φ3 and at most 2 · hK− j−1 nonzero entries for each
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Algorithm 1 Generating Framelets
Input: Node set V , Partition PK , Vectors { p3}, Matrices
{B3}, j0
initialize F j0(PK ) = ∅, φ3 = I :i for any s3 = {i}.
for j = 2 to j0 − 1 do

for 3 ∈ {3 : dim(3) = j} do
φ3 :=

∑
ℓ∈[L3] p(3,ℓ)φ(3,ℓ)

for m = 1 to M3 do
ψ (3,m) :=

∑
ℓ∈[L3](B3)m,ℓφ(3,ℓ)

update F j0(PK )← F j0(PK )∪{φ3,ψ (3,m),m=1,...,M3
}

Output: F j0(PK )

ψ (3,m) for dim(3) = j . Hence, the number of nonzero entries
of F is at most C(hK− j0 · h j0−1

+
∑K−1

j= j0 2 hK− j−1
· (h(h −

1)/2) · h j−1) ≤ C(K − 1)hK
= O(nh logh n). Fix 3, which

has size dim(3) = j . Then, (9) implies at most h · hK− j−1

multiplication operations and (h − 1) · hK− j−1 addition oper-
ations needed for φ3.For computing 9(3,m), m = 1, . . . ,M3,
we need at most 2 · hK− j−1

· (h(h − 1)/2) multiplication
operations and hK− j−1

· (h(h − 1)/2) addition operations.
Notice that #V j ≤ Ch j−1. To compute the nonzero entries
of φ3 and ψ (3,m) for all dim(3) = j and m = 1, . . . ,M3,
from the above computation, one can see that it needs at most
2C(hK− j−1

· h · h j−1
+2hK− j−1

·(h(h−1)/2)·h j−1) = 2C ·hK

evaluations of multiplications and additions. Hence, in total,
to compute the nonzero entries of φ3 and ψ (3,m) for all
dim(3) = j0, . . . , K−1 and m = 1, . . . ,M3, it needs at most
2C

∑K−1
j=1 (h

K− j−1
· h · h j−1

+2hK− j−1
·(h(h−1)/2) ·h j−1) =

2C(K − 1)hK
= O(nh logh n) evaluations of multiplications

and additions. □
Before showing the proof of Theorem 4, we want to give

some comments on permutations. Notice that the construction
of p3 and B3 only depends on L3. Hence, under node
permutation (π or Pπ ), it means that we have the following
relationship between original φ3 and φ∗3, ψ3 and ψ∗3:

(
φ∗3

)⊤
: = p⊤3

 φ⊤(3,1)
...

φ⊤(3,L3)

Pπ (7)


(
ψ∗(3,1)

)⊤
...(

ψ∗(3,M3)

)⊤
 : = B3

 φ⊤(3,1)
...

φ⊤(3,L3)

Pπ . (8)

Under partition permutation πp, fixing 3 (there exists a
permutation matrix Q3 with respect to πp at 3), we have
the following relationship between original φ3 and φ∗3, and
ψ3 and ψ∗3:

(
φ∗3

)⊤
: = p⊤3 Q3

 φ⊤(3,1)
...

φ⊤(3,L3)

 (9)


(
ψ∗(3,1)

)⊤
...(

ψ∗(3,M3)

)⊤
 : = B3 Q3

 φ⊤(3,1)
...

φ⊤(3,L3)

. (10)

Proof of Theorem 4: Let 83 := [φ(3,1), . . . ,φ(3,L3)]
⊤ and

93 := [ψ (3,1), . . . ,ψ (3,M3)
]
⊤. Since the scaling vectors φ⊤3 =

p⊤383 are defined iteratively for dim(3) decreasing from K
to 1 through (1) and the framelets ψ (3,m) are given by 93 =

B383, we only need to prove the permutation equivariance
properties for each 3.

For Item 1), note that by (1) and Corollary 1, φ(3,ℓ) : V →
R only depends on G, PK , and p3 = (1/(L3)1/2)1. For any
node permutation π , PK is determined by the index vectors
3 according to a tree structure and is independent of the node
permutation π . Moreover, the vectors p3 are fixed constants.
Hence, iteratively, after node permutation π acting on graph G,
the new scaling vector φπ(3,ℓ) : π(V)→ R is given by φπ(3,ℓ) =
Pπφ(3,ℓ), where Pπ is the permutation matrix with respect
to π . Consequently, the new 8π

3 and 9π
3 on the permuted

graph π(G) are given by 8π
3 = 83Pπ and 9π

3 = B38
π
3 =

B383Pπ = 93Pπ . This implies the conclusion in Item 1).
For Item 2), given a partition permutation πp acting on PK ,

we denote πp(PK ) the hierarchical clustering with respect to
such a πp. Let 3̃ := πp(3) be the permuted index vector
πp(PK ) from the index vector 3 in PK . Since the partition
permutation acts on the children of each 3 only, we have
πp(3, ℓ) = (3̃, π3(ℓ)) for some permutation π3 on [L3].
Then, the matrix 83̃ is

83̃ :=

[
φ(3̃,π3(1)), . . . ,φ(3̃,π3(L3))

]⊤
= Pπ383

with Pπ3 being the permutation matrix with respect to π3.
Then, in view of p⊤3Pπ3 = p⊤3, the permuted scaling vector
φ3̃ is given by(

φ3̃
)⊤
=

(
φπp(3)

)⊤
= p⊤3

(
Pπ383

)
=

(
p⊤3Pπ3

)
83 = p⊤383 = φ⊤3

that is, the new scaling vectors in {φ3̃ : dim(3̃) = j} are
simply the recording of {φ3 : dim(3) = j} under πp for
j = 0, . . . , K . Thus, all scaling vectors are invariant (up to
index permutation) under the partition permutation πp. Now,
for the framelet vectors ψ (3,m), by (2), we have

93̃ = B383̃ = B3Pπ383.

We claim that there exist M3×M3 permutation matrix R3 and
sign matrix S3 = diag(c1, . . . , cM3

) with all ci ∈ {−1,+1}
such that B3Pπ3 = S3R3B3. Then, we have

93̃ = B3Pπ383 = S3R3B383 = S3R393

which then concludes Item 2). Noting that B3Pπ3 is to reorder
the columns of B3 and regardless the sign, all elements appear
in each column with the same times and 1 (or −1) appears in
rows of B3 once. In other words, (B3Pπ3)r : = w

⊤P⊤r Pπ3 ,
which is to permute w = [1,−1, 0, . . . , 0]⊤ (up to a constant)
with respect to P⊤r Pπ3 . Since Rank(B3) = L−1 and B31 =
0, we have Pw ∈ span{Pmw}

M3

m=1 for any permutation matrix
P . Thus, for any r , there exists exactly one j ∈ [M3] such
that (B3Pπ3)r : = w⊤P⊤r Pπ3 = cw⊤P⊤j where c is either
1 or −1. Hence, the claim holds. This completes the proof of
Item 2).

The proof of Item 3) is a direct consequence of
Items 1) and 2). □

Proof of Proposition 2: From Item 1) of Theorem 4, we see
that the corresponding permuted versions of 81 and 9 j are
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81 P and 9 j P . Thus, F j (P X) = P F j (X), F j (P AP⊤
P X) = P F j (AX), F j (P ÃP⊤P X) = P F j ( ÃX) for
j = 0, . . . , K − 1. It is obvious that the remaining chan-
nels also differ by a permutation matrix P . Since the row
normalization and the softmax function are applied row-wise
and the activation function is applied element-wise, it is
straightforward to see that Ŷ P = PŶ . □

B. Fast Decomposition and Reconstruction Algorithms
Given a K -hierarchical clustering PK , we consider graph

Haar framelet transform between V j+1 and V j ⊕ W j . Define
x(3,ℓ) := ⟨ f ,φ(3,ℓ)⟩ and y(3,m) := ⟨ f ,ψ (3,m)⟩ for a given
graph signal f . The transform algorithm is to evaluate x(3,ℓ)
and y(3,m) effectively. Let C3 ∈ RL3×(1+M3) be a matrix
satisfying C3

( p⊤3
B3

)
= I ∈ RL3×L3 . Then, work [19, Lemma 1]

and (1) and (2) imply that
φ⊤3
ψ⊤(3,1)
...

ψ⊤(3,M3)

 : =
(

p⊤3
B3

) φ⊤(3,1)
...

φ⊤(3,L3)

 (11)

 φ⊤(3,1)
...

φ⊤(3,L3)

 : = C3


φ⊤3
ψ⊤(3,1)
...

ψ⊤(3,M3)

. (12)

For the decomposition algorithm, we are given a signal f ∈
V j+1, which means that

f =
∑

dim(3)= j

∑
ℓ∈[L3]

x(3,ℓ)φ(3,ℓ).

By (11), we have

f =
∑

dim(3)= j

∑
ℓ∈[L3]

x(3,ℓ)φ(3,ℓ)

=

∑
dim(3)=j

∑
ℓ∈[L3]

x(3,ℓ)

(C3)ℓ,1φ3+
∑

m∈[M3]

(C3)ℓ,m+1ψ (3,m)


=

∑
dim(3)= j

φ3

∑
ℓ∈[L3]

x(3,ℓ)(C3)ℓ,1

+

∑
dim(3)= j

∑
m∈[M3]

ψ (3,m)

∑
ℓ∈[L3]

x(3,ℓ)(C3)ℓ,m+1

=

∑
dim(3)= j

x3φ3 +
∑

dim(3)= j

∑
m∈[M3]

y(3,m)ψ (3,m) (13)

where we can represent the decomposition of f with respect
to each 3 as[

x3, y(3,1), . . . , y(3,M3)

]
=

[
x(3,1), x(3,2), . . . , x(3,L3)

]
C3. (14)

Conversely, if we have f ∈ V j ⊕W j , which means that

f =
∑

dim(3)= j

x3φ3 +
∑

dim(3)= j

∑
m∈[M3]

y(3,m)ψ (3,m)

then, by (11), for the reconstruction from V j ⊕ W j to V j+1,
we have

f =
∑

dim(3)= j

x3φ3 +
∑

dim(3)= j

∑
m∈[M3]

y(3,m)ψ (3,m)

=

∑
dim(3)= j

∑
ℓ∈[L3]

(r3)ℓφ(3,ℓ)

=

∑
dim(3)= j

∑
ℓ∈[L3]

x(3,ℓ)φ(3,ℓ) (15)

where

r3 = x3 p⊤3 + y⊤3B3, with y3 =
[
y(3,1), . . . , y(3,M3)

]⊤
(16)

and x(3,ℓ) := (r3)ℓ.

Algorithm 2 Fast Framelet Decomposition
Input: PK , {x3 : dim(3) = j0}, {C3}, j1
initialize f̂ = ∅.
for j = j0 − 1 to j1 do

for 3 ∈ {3 : dim(3) = j} do
[x3, y(3,1), · · · , y(3,M3)] ←

[x(3,1), x(3,2), · · · , x(3,L3)]C3

update f̂ ← f̂ ∪ {x3, y(3,m),m = 1, . . . ,M3}

Output: F j0(PK )

Algorithm 3 Fast Framelet Reconstruction
Input: PK , {x3 : dim(3) = j0} ∪ {y(3,m) : dim(3) =
j0,m ∈ [M3]}, { p3,C3}, j1
initialize f = ∅.
for j = j0 + 1 to j1 do

for 3 ∈ {3 : dim(3) = j} do
r3 = x3 p⊤3 + y⊤3B3

for ℓ = 1 to L3 do
x(3,ℓ)← (r3)ℓ

update f ← f ∪ {x(3,ℓ)}ℓ∈[L3]
Output: f

Hence, by using (14) iteratively from VK , given a framelet
system F j0(PK ) and a graph signal f , we get the coefficient
vector f̂ consisting of coefficients from

f 7→ {x3 : dim(3) = j0} ∪ {y3 : dim(3) = j}K−1
j= j0+1 (17)

with respect to V j0 ⊕W j0 ⊕ · · · ⊕WK−1. In the reconstruction
process, we iteratively obtain the representation of f in VK
from coefficient vector f̂

{x3 : dim(3) = j0} ∪ {y3 : dim(3) = j}K−1
j= j0+1 7→ f (18)

with respect to V j0 ⊕W j0 ⊕ · · · ⊕WK−1.
From the above discussion, we observe that decomposition

and reconstruction algorithms do not need to form the full
framelet system explicitly, but p3, B3, and C3, which implies
efficiency in general applications that apply our framelet
system.

Theorem 5: Under the same assumption as in Corollary 1,
the decomposition algorithm to obtain the framelet coefficient
vector f̂ from f and the reconstruction algorithm to obtain
the graph signal f from f̂ , as described in (17) and (18), are
both with a computational complexity of order O(nh).

Proof of Theorem 5: A fast decomposition algorithm is
given by (13), which computes f̂ iteratively. In order to
get x3 and y(3,m) for f̂ , we need to compute

∑
ℓ∈[L3]
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Fig. 6. CCNS on the synthetic graphs with different hyperparameters γ . (a) γ = 0. (b) γ = 0.2. (c) γ = 0.4. (d) γ = 0.6. (e) γ = 0.8. (f) γ = 1.

x(3,ℓ)(C3)ℓ,t = (q⊤3C3)t , where t = 1, . . . ,M3+ 1, ℓ ∈ [L3]
and q3 := [x(3,1), . . . , x(3,L3)]

⊤ [see (14)]. Note that for
our binary graph Haar framelet system F j0(PK ), the matrix
C3 in (11) is given by C3 = [ p3, B⊤3] and each row of
B3 has only two nonzero elements. Hence, for a given 3
with dim(3) = j , since L3 ≤ h and M3 ≤ (h(h − 1)/2),
the number of nonzero elements in C3 is no more than
h+ 2 · (h(h− 1)/2). Therefore, the computational complexity
for obtaining q⊤3C is of the same order as h+2 · (h(h−1)/2).
In total, observing that #{3 : dim(3) = j} ≤ h j−1, to get the
full f̂ , the computational complexity is of order the same as∑K−1

j=1 (h + 2 · (h(h − 1)/2))h j−1
= O(nh).

Fast reconstruction algorithm [see (15)], which computes f
from f̂ , only needs to compute r3 iteratively. Let Y3 :=

[x3, y⊤3]
⊤
∈ RM3+1 and P3 :=

( p⊤3
B3

)
. Then, P3 = C⊤3

and r3 = Y⊤3P3. Following a similar calculation as for
the fast decomposition algorithm, it is not hard to see
that the computation complexity is of

∑K−1
j=1 h j−1(h + 2 ·

(h(h − 1)/2)) = O(nh). □

C. Experiment Details on the Synthetic Dataset
A theoretical characterization of graphs, given in [52],

explains when GCN fails to produce acceptable performance.
We follow and modify in [52, Algorithm 2] to generate
synthetic data.

The key idea of the algorithm is to generate edges of nodes
in a graph such that the intraclass and interclass similarities are
properly controlled. The intraclass and interclass similarity are
defined by Definition 1. Cross-class neighborhood similarity
(CCNS) measures how close the patterns of connections of
nodes between two classes are. In our experiment, we gen-
erate graphs with 3000 nodes for which assign labels from
C = {0, 1, 2, 3} randomly. It means that we have nc =

4 classes. We generate edges according to Algorithm 4. The
distributions that control CCNS are designed based on the
uniform distribution and a prescribed distribution {Dc : c ∈ C}.
The distributions {Dc : c ∈ C} can be found in Table V.

TABLE V
DISTRIBUTION D4

Integer N is set to be 45 000. The hyperparameter γ ∈
{0, 0.2, 0.4, 0.6, 0.8, 1} indicates the probability of sampling
neighbors from uniform distributions other than the predefined
distributions that are much more distinguishable for different
classes. When γ is small, vertices of the neighborhood are
more likely to be sampled according to {Dc : c ∈ C},
and when γ is large, it is more likely to sample from the
indistinguishable uniform distribution. As a result, when γ

becomes larger, the uniform distribution has more impact on
CCNS, and thus, the metric becomes more similar between
classes. We evaluate CCNSs on the generated graphs and show
heatmaps in Fig. 6. It is clear that, when γ = 0, CCNS is
dominated by {Dc : c ∈ C}, and since D0 is more similar
to D2 than D1, we get s(0, 1) = 0.367 ≤ 0.686 = s(0, 2).
Finally, when γ = 1, all CCNSs are almost 0.91. Notice
that in Algorithm 4, we slightly modify the algorithm in [52].
Since we generate graphs with only nodes initialized, when
r ≤ γ , we sample label c from all labels C, instead of
C − {yi } used in [52]. Table VI shows the hyperparameter
search range for the experiments of FSGNN and PEGFAN on
the synthetic data, where {WDsca,LRsca,WDfc1,WDfc2,LRfc}

are the weight decay coefficient of attention weights, the
learning rate of attention weights, the weight decay coefficient
of the first fully connected layer, weight decay coefficient of
the second fully connected layer, and the learning rate of the
fully connected part, respectively.

Definition 1 (Cross-Class Neighborhood Similarity [52]):
Given graph G and node labels yi ∈ {0, 1, . . . , nc − 1} for
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TABLE VI
HYPERPARAMETER SEARCH RANGE

i ∈ V , the metric between classes c and c′ is s(c, c′) =
(1/|Vc||Vc′ |)

∑
i∈Vc, j∈Vc′ cos⟨d(i), d( j)⟩, where Vc := {i ∈ V :

yi = c} and d(i) ∈ Rnc is a vector with elements defined by
#{ j : (i, j) ∈ E, y j = c} for any c ∈ {0, 1, . . . , nc − 1}.

Features on graph nodes are from R700, with each ele-
ment randomly generated according to Gaussian distribution
6(−0.75+0.5c)+ ξ (Table I) or (−0.75+0.5c)+ ξ (Table II)
independently, where ξ ∼ N (0, 1) and c is the label.

Algorithm 4 See [52]
Input: Nodes V , Integer N , Distribution matrix {Dc : c ∈
C}, labels C = {c}nc−1

i=0 , γ
initialize E = ∅ and k = 0;
while k ≤ N do

Sample i ∈ V and r ∈ [0, 1] uniformly
Obtain the label yi ∈ C of node i

if r ≤ γ then
Sample a label c from C uniformly

else
Sample a label c from C according to distribution

Dyi

Sample node j from class c uniformly
if (i, j) /∈ E then

update E ← E ∪ (i, j)
update k ← k + 1

Output: G = (V, E)
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