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In this paper, we prove the existence of a spherical 𝑡-design formed by adding extra points to 
an arbitrarily given point set on the sphere and, subsequently, deduce the existence of nested 
spherical designs. Estimates on the number of required points are also given. For the case that 
the given point set is a spherical 𝑡1-design such that 𝑡1 < 𝑡 and the number of points is of optimal 
order 𝑡𝑑1 , we show that the upper bound of the total number of extra points and given points for 
forming nested spherical 𝑡-design is of order 𝑡2𝑑+1. A brief discussion concerning the optimal order 
in nested spherical designs is also given.

1. Introduction and motivation

In function approximation on the 𝑑-dimensional unit sphere 𝕊𝑑 , approaches such as hyperinterpolation [25], multiscale analysis 
[14], localized systems [19,24], and spherical framelets [29,30] all rely on exact quadrature rules for spherical harmonics. Gener-

ally, the approximation error decreases as the degree of spherical harmonics applied increases. On the other hand, quadrature rules 
of spherical harmonics with higher degrees typically require more points. Consequently, the number of points in quadrature rules 
becomes the main factor of computational and storage efficiency for fine approximation. Apart from the number of points of quadra-

ture rules, another factor that incurs storage burden is the non-nested structures of quadrature rules. For framelet systems such as 
those in [29,30], it is required to form approximation successively using spherical harmonics from lower to higher degrees. For each 
degree, the framelet systems utilize quadrature rules that are exact for that degree (including lower degrees) but not higher ones 
since they do not need excessive points for exact integration. However, unlike data on Euclidean domains such as signals, images, 
and videos that are defined on the regular grids with easy down- and up-sampling operations (dyadic operations), in most commonly 
used quadrature rules on the sphere such as the Gauss–Legendre tensor product rule [15], the point sets for spherical harmonics of 
lower degree are not contained in the point sets of higher degree, that is, the point sets of different degrees are not nested. Thus, in 
each phase of computation, with respect to a certain degree, one has to apply a different quadrature rule, which results in separate 
(extra) storage in spherical signal processing.

Among all quadrature rules on the sphere, one of the most well-known ones is the so-called spherical designs [3], thanks to its deep 
theoretical connections and wide practical impacts in many fields such as approximation theory, statistics for experimental design, 
combinatorics, geometry, coding theory, and so on. The concept of spherical design was first introduced by Delsarte, Goethals, and 
Seidel [11] in 1977. In detail, a set 𝑁 ∶= {𝑥1, … , 𝑥𝑁} 1 of 𝑁 -points on 𝕊𝑑 ∶= {𝑥 ∈ℝ𝑑+1 | |𝑥| = 1} is a spherical 𝑡-design if
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∫
𝕊𝑑

𝑃 (𝑥)𝑑𝜇𝑑 (𝑥) =
1
𝑁

𝑁∑
𝑖=1

𝑃 (𝑥𝑖)

for all polynomials 𝑃 with 𝑑 + 1 variables and 𝑡 degree, where 𝜇𝑑 is the normalized Lebesgue measure of 𝕊𝑑 such that 𝜇𝑑 (𝕊𝑑 ) = 1
and | ⋅ | is the Euclidean norm of ℝ𝑑+1. One of the fundamental research topics on spherical 𝑡-design is to find the theoretical upper 
bounds for the minimal number of points 𝑁 =𝑁(𝑑, 𝑡) for a spherical 𝑡-design. A lower bound of 𝑁 =𝑁(𝑑, 𝑡) is provided in [11]

stating that

𝑁(𝑑, 𝑡) ≥
⎧⎪⎪⎨⎪⎪⎩

(
𝑑 + 𝑘

𝑑

)
+
(
𝑑 + 𝑘− 1

𝑑

)
if 𝑡 = 2𝑘,

2
(
𝑑 + 𝑘

𝑑

)
if 𝑡 = 2𝑘+ 1.

This implies that 𝑁(𝑑, 𝑡) ≥ 𝑐𝑑𝑡
𝑑 , where 𝑐𝑑 is a constant depending only on 𝑑. The upper bound of 𝑁(𝑑, 𝑡) is subsequently proved in 

[27], [2], and [17] that 𝑁(𝑑, 𝑡) ≤ 𝐶𝑑𝑡
𝐶𝑑4 , 𝑁(𝑑, 𝑡) ≤ 𝐶𝑑𝑡

𝐶𝑑3 , and 𝑁(𝑑, 𝑡) ≤ 𝐶𝑑𝑡
(𝑑2+𝑑)∕2, respectively, for some constant 𝐶𝑑 depending 

on 𝑑 and some fixed constant 𝐶 . It is also conjectured in [17] that 𝑁(𝑑, 𝑡) ≤ 𝐶𝑑𝑡
𝑑 . The upper bound is improved in [6] by showing 

that 𝑁(𝑑, 𝑡) ≤ 𝐶𝑑𝑡
2𝑑(𝑑+1)∕(𝑑+2) based on the Brouwer fixed point theorem. The conjecture is eventually proved in [4] by applying the 

Brouwer degree theory. This concludes that 𝑡𝑑 is the optimal order of the spherical 𝑡-design. In [5], the existence of well-separated 
spherical 𝑡-designs with optimal order is further shown.

Another closely related notion is the finite sequences in ℂ𝑑 named projective 𝑡-designs [16] (also called spherical (𝑡, 𝑡)-designs [28]). 
For finite sequences in which vectors are all unit norms, such designs have several equivalent characterizations stating that these 
designs are finite sequences that give equality in the Welch bounds, induce unit norm tight frames in the space of symmetric 𝑡-tensors 
on ℂ𝑑 , and integrate all homogeneous 𝑡-degree polynomials in 𝑧 and �̄� on the complex unit sphere by taking discrete sums as in 
spherical 𝑡-designs [28]. Consequently, results from tight frame completion [8, Proposition 21] (see also [12,21]) can be used to 
discuss the number of extra vectors for extending a given finite sequence to a projective 𝑡-design, which is similar to the problem 
of extending a given point set to a spherical 𝑡-design. For unit norm finite sequences in ℝ𝑑 , the vectors integrate all homogeneous 
2𝑡-degree (and all 2𝑠 degrees, 2 ≤ 2𝑠 < 2𝑡) polynomials on the real unit sphere by taking discrete sums. However, for 𝑡 > 1, it is 
impossible for these sequences to be equivalently characterized as tight frames in certain spaces of symmetric tensors [28, Example 
4.1]. Thus, results from frame completion can not be applied to the real case unless 𝑡 = 1.

For a 𝑡1-design  with 𝑡1 < 𝑡, if it can be extended into a 𝑡-design by adding another point set  , then we say that these 𝑡1-design 
 and 𝑡-design  ∪ are nested. Given the above discussion, it is natural to ask the following questions.

Q1) Do nested spherical designs exist?

Q2) If nested spherical designs exist, then how many points are needed to extend a 𝑡1-design (𝑡1 < 𝑡) to a 𝑡-design?

Q3) What is the optimal order for the number of points needed to extend a 𝑡1-design (𝑡1 < 𝑡) to a 𝑡-design?

To the best of our knowledge, such a concept of nested spherical designs and the above theoretical questions on nested spherical 
designs have not been considered in the literature. In this paper, we answer the first two questions completely and briefly discuss 
Q3.

For Q1, given a spherical 𝑡1-design 𝑀 ∶= {𝑦1, … , 𝑦𝑀} ⊂ 𝕊𝑑 with 𝑡1 < 𝑡, we prove that for sufficiently large 𝑁 , there exist a point 
set 𝑁 = {𝑥1, … , 𝑥𝑁} ⊂ 𝕊𝑑 such that 𝑁 ∪𝑀 is a spherical 𝑡-design, which leads to the nested spherical designs 𝑀 ⊂ (𝑁 ∪𝑀 ). 
In fact, we prove a stronger statement with the given point set being an arbitrary point set 𝑀 ⊂ 𝕊𝑑 . The proof of this statement is 
a simple extension of the result in [4].

For Q2, we provide more precise estimates of 𝑁 . The estimates of 𝑁 are based on the estimates of the linear functionals on a 
compact subset of polynomial spaces. Eventually, we conclude that for a spherical 𝑡1-design 𝑀 with the optimal order 𝑀 ∼ 𝑡𝑑1 , an 
upper bound of the minimal 𝑁 +𝑀 is of order 𝑡2𝑑+1 for the nested extension 𝑁 ∪𝑀 to be a spherical 𝑡-design with 𝑡1 < 𝑡.

In contrast to the optimal order 𝑡𝑑 for a spherical 𝑡-design, our result for Q2 shows that an upper bound of 𝑁+𝑀 is of order 𝑡2𝑑+1. 
It is interesting to know whether there exists any (non-trivial) nested spherical 𝑡-design of optimal order 𝑡𝑑 . For Q3, we conjecture 
that the optimal order of 𝑁 +𝑀 is 𝑡𝑑 given some 𝑡1-designs of order 𝑡𝑑1 and give a brief discussion on the case where the constants 
in the orders are required to be identical.

This paper is organized as follows. Preliminaries are provided in Section 2. Existence, estimates, and a discussion of optimal order 
are given in Section 3, 4, and 5, respectively. Conclusion and final remarks are given in Section 6. Some proofs are provided in the 
Appendix.

2. Preliminaries

Let 𝑡 ∶= 𝑡(𝕊𝑑 ) be the Hilbert space of polynomials 𝑃 on 𝕊𝑑 of degree at most 𝑡 such that

𝑃 (𝑥)𝑑𝜇𝑑 (𝑥) = 0,
2

∫
𝕊𝑑
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and equipped with the usual inner product

⟨𝑃 ,𝑄⟩ ∶= ∫
𝕊𝑑

𝑃 (𝑥)𝑄(𝑥)𝑑𝜇𝑑 (𝑥).

𝑡 is a finite dimension space spanned by the (real-valued) spherical harmonics ([23,6,10])

{𝑌𝓁,𝑘 |𝓁 = 1,… , 𝑡, 𝑘 = 1,… ,𝐷(𝓁, 𝑑)},

where 𝐷(𝓁, 𝑑) is defined as

𝐷(𝓁, 𝑑) ∶=
⎧⎪⎨⎪⎩
2𝓁 + 𝑑 − 1
𝓁 + 𝑑 − 1

(
𝓁 + 𝑑 − 1

𝓁

)
if 𝓁 ≥ 1,

1 if 𝓁 = 0.

We use 𝐷𝑡 to denote the dimension of 𝑡. Note that 
∑𝓁

𝑖=0𝐷(𝑖, 𝑑) =𝐷(𝓁, 𝑑 + 1) [26] and thus 𝐷𝑡 =
∑𝑡

𝑖=1𝐷(𝑖, 𝑑) =𝐷(𝑡, 𝑑 + 1) − 1. The 
0-degree spherical harmonic 𝑌0,1 ≡ 𝜔

−1∕2
𝑑

is not included in 𝑡 with

𝜔𝑑 ∶= ∫
𝕊𝑑

𝑑𝜆𝑑 (𝑥) =
2𝜋(𝑑+1)∕2

Γ((𝑑 + 1)∕2)
,

where Γ is the usual Gamma function and 𝜆𝑑 is the (unnormalized) Lebesgue measure of 𝕊𝑑 . Note that 𝜔𝑑 is the surface area of 𝕊𝑑

and 𝑑𝜇𝑑 = 𝜔−1
𝑑
𝑑𝜆𝑑 . Moreover, the 𝑌𝓁,𝑘 ’s are orthonormal with respect to the inner product

(𝑃 ,𝑄) ∶= ∫
𝕊𝑑

𝑃 (𝑥)𝑄(𝑥)𝑑𝜆𝑑 (𝑥) = 𝜔𝑑 ⋅ ⟨𝑃 ,𝑄⟩.
In this paper, the 𝐿1-, 𝐿2- and 𝐿∞-norms with respect to 𝜆𝑑 are denoted as ‖ ⋅ ‖1, ‖ ⋅ ‖2 and ‖ ⋅ ‖∞, respectively.

The addition formula of spherical harmonics [23] states that

𝐷(𝓁,𝑑)∑
𝑘=1

𝑌𝓁,𝑘(𝑥)𝑌𝓁,𝑘(𝑦) =
𝐷(𝓁, 𝑑)
𝜔𝑑

𝑃𝓁,𝑑 (⟨𝑥, 𝑦⟩), 𝑥, 𝑦 ∈ 𝕊𝑑 , (1)

where 𝑃𝓁,𝑑 is the Legendre polynomial of 𝓁-degree and dimension 𝑑, and ⟨𝑥, 𝑦⟩ is the usual inner product for 𝑥, 𝑦 ∈ ℝ𝑑+1. It is 
straightforward to verify that

𝑘𝑡(𝑥, 𝑦) ∶= 𝜔𝑑

𝑡∑
𝓁=1

𝐷(𝓁,𝑑)∑
𝑘=1

𝑌𝓁,𝑘(𝑥)𝑌𝓁,𝑘(𝑦), 𝑥, 𝑦 ∈ 𝕊𝑑 ,

is a reproducing kernel of 𝑡 under ⟨⋅, ⋅⟩. We obtain from (1) that

𝐷(𝓁,𝑑)∑
𝑘=1

(
𝑌𝓁,𝑘(𝑦)

)2 = 𝐷(𝓁, 𝑑)
𝜔𝑑

, 𝑦 ∈ 𝕊𝑑 ,

by setting 𝑥 = 𝑦 and using 𝑃𝓁,𝑑 (1) ≡ 1.

For any 𝓁-degree spherical harmonics 𝑄, we have the orthonormal expansion

𝑄 =
𝐷(𝓁,𝑑)∑
𝑘=1

(𝑄,𝑌𝓁,𝑘)𝑌𝓁,𝑘.

Therefore,

|𝑄(𝑥)|2 ≤ 𝐷(𝓁,𝑑)∑
𝑘=1

(𝑄,𝑌𝓁,𝑘)2
𝐷(𝓁,𝑑)∑
𝑘=1

(
𝑌𝓁,𝑘(𝑦)

)2 = ‖𝑄‖22𝐷(𝓁, 𝑑)
𝜔𝑑

, 𝑥 ∈ 𝕊𝑑 ,

and thus

‖𝑄‖∞ ≤ ‖𝑄‖2(𝐷(𝓁, 𝑑)
𝜔𝑑

)1∕2
. (2)

By the Riesz representation theorem, for each point 𝑥 ∈ 𝕊𝑑 , there exists a unique polynomial 𝐺𝑥 ∈ 𝑡 such that

⟨𝐺𝑥,𝑄⟩ =𝑄(𝑥) for all 𝑄 ∈ 𝑡. (3)
3

By the reproducing kernel, such a 𝐺𝑥 is explicitly given by
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𝐺𝑥(⋅) = 𝜔𝑑

𝑡∑
𝓁=1

𝐷(𝓁,𝑑)∑
𝑘=1

𝑌𝓁,𝑘(𝑥)𝑌𝓁,𝑘(⋅) = 𝑘𝑡(𝑥, ⋅). (4)

Then it is obvious that 𝑁 = {𝑥1, … , 𝑥𝑁} ⊂ 𝕊𝑑 is a spherical 𝑡-design if and only if

𝐺𝑥1
+⋯+𝐺𝑥𝑁

= 0.

The gradient of a differentiable function 𝑓 ∶ℝ𝑑+1 →ℝ is denoted by

𝜕𝑓

𝜕𝑥
∶=

(
𝜕𝑓

𝜕𝜉1
,… ,

𝜕𝑓

𝜕𝜉𝑑+1

)
, 𝑥 = (𝜉1,… , 𝜉𝑑+1).

For a polynomial 𝑄 ∈ 𝑡, we define the spherical gradient by

∇𝑄(𝑥) ∶= 𝜕

𝜕𝑥

(
𝑄

(
𝑥|𝑥|

))
.

The 𝑖th component of ∇𝑄 is denoted as ∇𝑖𝑄 ∶= 𝜕𝑄

𝜕𝜉𝑖
, 1 ≤ 𝑖 ≤ 𝑑 + 1. Note that ∫𝕊𝑑 |∇𝑄(𝑥)|𝑑𝜇𝑑 (𝑥) is a norm on 𝑡.

For a partition  ∶= {𝑅1, … , 𝑅𝑁}, where 𝑅𝑖 ⊂ 𝕊𝑑 are closed sets such that ∪𝑁
𝑖=1𝑅𝑖 = 𝕊𝑑 and 𝜇𝑑 (𝑅𝑖 ∩𝑅𝑗 ) = 0 for all 1 ≤ 𝑖 < 𝑗 ≤𝑁 , 

it is called area-regular if 𝜇𝑑 (𝑅𝑖) = 1∕𝑁 for all 1 ≤ 𝑖 ≤𝑁 and the partition norm of  is denoted as

‖‖ ∶= max
𝑅∈ diam(𝑅),

where diam(𝑅) is the maximum geodesic distance between two points in 𝑅. Each member 𝑅𝑖 of  is called a cell of .

We say that 𝑁 is of order ℎ(𝑡1, 𝑡, 𝑑) for some function ℎ depending on 𝑡1, 𝑡, 𝑑 if 𝑁 = 𝐶𝑑 ⋅ℎ(𝑡1, 𝑡, 𝑑) for some constant 𝐶𝑑 depending 
only on 𝑑 but not the others. The notion 𝑁 ∼ 𝑡𝑑 indicates equivalence relation 𝐶1𝑡

𝑑 ≤ 𝑁 ≤ 𝐶2𝑡
𝑑 with constants 𝐶1, 𝐶2 possibly 

depending on 𝑑 but not 𝑡.

3. Existence of nested spherical designs

In this section, we prove the existence of a spherical 𝑡-design containing an arbitrarily prescribed point set 𝑀 = {𝑦1, … , 𝑦𝑀} ⊂
𝕊𝑑 , which implies the existence of nested spherical designs.

We first state a fundamental theorem from the Brouwer degree theory [9, Theorem 1.2.9] and some key results from [4]. Our 
proof of the existence of nested spherical designs relies on such results.

Theorem A ([9]). Let 𝑓 ∶ℝ𝑛 →ℝ𝑛 be a continuous mapping and Ω ⊂ℝ𝑛 be an open bounded subset with boundary 𝜕Ω such that 0 ∈Ω. 
If ⟨𝑥, 𝑓 (𝑥)⟩ > 0 for all 𝑥 ∈ 𝜕Ω, then there exists 𝑥 ∈Ω satisfying 𝑓 (𝑥) = 0.

Since 𝑡 is a finite-dimensional space with a norm: ∫𝕊𝑑 |∇𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥), 𝑃 ∈ 𝑡, we can consider a subset Ω of 𝑡 defined by

Ω ∶=
⎧⎪⎨⎪⎩𝑃 ∈  𝑡

||||| ∫
𝕊𝑑

|∇𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥) < 1
⎫⎪⎬⎪⎭ . (5)

Then Ω is open and bounded in 𝑡 containing 0 and

𝜕Ω=
⎧⎪⎨⎪⎩𝑃 ∈  𝑡

||||| ∫
𝕊𝑑

|∇𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥) = 1
⎫⎪⎬⎪⎭ . (6)

One can apply Theorem A to Ω and deduce the following result.

Corollary A ([4]). Suppose 𝐹 ∶ 𝑡 → (𝕊𝑑 )𝑁 with 𝐹 (𝑃 ) = (𝑥1(𝑃 ), … , 𝑥𝑁 (𝑃 )) is a continuous mapping such that for all 𝑃 ∈ 𝜕Ω,

𝑁∑
𝑖=1

𝑃 (𝑥𝑖(𝑃 )) =

⟨
𝑁∑
𝑖=1

𝐺𝑥𝑖(𝑃 ), 𝑃

⟩
> 0.

Then there exists a spherical 𝑡-design in 𝕊𝑑 consisting of 𝑁 points.

Indeed, if such an 𝐹 exists, then one can define a composition mapping

𝑓 =𝐿◦𝐹 ∶ 𝑡 → 𝑡
4

with 𝐿 ∶ (𝕊𝑑 )𝑁 → 𝑡 being given by 𝐿(𝑥1, … , 𝑥𝑁 ) =𝐺𝑥1
+⋯ +𝐺𝑥𝑁

. Then,
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⟨𝑃 ,𝑓 (𝑃 )⟩ = 𝑁∑
𝑖=1

𝑃 (𝑥𝑖(𝑃 ))

for each 𝑃 ∈ 𝑡. Thus, applying Theorem A to the mapping 𝑓 , the vector space 𝑡, and the subset Ω defined by (5), we obtain that 
𝑓 (𝑄) = 0 for some 𝑄 ∈ 𝑡. Hence, by (3), the components of 𝐹 (𝑄) = (𝑥1(𝑄), … , 𝑥𝑁 (𝑄)) form a spherical 𝑡-design in 𝕊𝑑 consisting of 
𝑁 points.

The proofs of [4, Lemma 1, Theorem 1] give the following key result on the existence of 𝑓 =𝐿◦𝐹 and the estimate of ⟨𝑃 , 𝑓 (𝑃 )⟩ =∑𝑁

𝑖=1 𝑃 (𝑥𝑖(𝑃 )), which concludes that the optimal order of a spherical 𝑡-design is 𝑡𝑑 .

Theorem B ([4]). There exist two constants 𝐶𝑑 and 𝑟𝑑 depending only on 𝑑 for each 𝑑 ∈ ℕ and a continuous mapping 𝐹 ∶ 𝑡 → (𝕊𝑑 )𝑁
with 𝐹 (𝑃 ) = (𝑥1(𝑃 ), … , 𝑥𝑁 (𝑃 )) such that when 𝑁 ≥ 𝐶𝑑𝑡

𝑑 , we have

𝑁∑
𝑖=1

𝑃 (𝑥𝑖(𝑃 )) >𝑁

(
1

6
√
𝑑

𝑟𝑑

3𝑡
−

𝑟𝑑

18
√
𝑑𝑡

)
= 0, ∀𝑃 ∈ 𝜕Ω. (7)

However, to prove the existence of nested spherical designs, we need a theorem that is slightly different from Theorem B. In 
Theorem B, the constant 18 of 𝑟𝑑

18
√
𝑑𝑡

is directly related to the constant 𝐶𝑑 and one can see from the proof of in [4] that changing 

𝐶𝑑 would not affect the first term 1
6
√
𝑑

𝑟𝑑

3𝑡 . Thus, we can assume a larger constant 𝐶1,𝑑 ∶= 2𝐶𝑑 , which is still a constant that is only 
related to 𝑑, and as a result, the constant 18 becomes 36. We have the following modified theorem.

Theorem 1. There exist two constants 𝐶1,𝑑 and 𝐶2,𝑑 depending only on 𝑑 for each 𝑑 ∈ ℕ and a continuous mapping 𝐹 ∶ 𝑡 → (𝕊𝑑 )𝑁 with 
𝐹 (𝑃 ) = (𝑥1(𝑃 ), … , 𝑥𝑁 (𝑃 )) such that when 𝑁 ≥ 𝐶1,𝑑 𝑡

𝑑 , we have

𝑁∑
𝑖=1

𝑃 (𝑥𝑖(𝑃 )) >𝑁𝐶2,𝑑 𝑡
−1 > 0, ∀𝑃 ∈ 𝜕Ω. (8)

The proof of Theorem 1 is almost a verbatim proof of [4, Theorem 1] with only some modifications of constants. For completeness, 
we include it in the Appendix. Using Theorem 1, we can prove the following result for a spherical 𝑡-design containing an arbitrarily 
prescribed point set.

Theorem 2. Let 𝑡 ∈ ℕ and 𝑀 = {𝑦1, … , 𝑦𝑀} ⊂ 𝕊𝑑 be a set of 𝑀 points on the sphere. Then, for sufficiently large 𝑁 , there exists a point 
set 𝑁 = {𝑥1, … , 𝑥𝑁} ⊂ 𝕊𝑑 such that the union 𝑁 ∪𝑀 is a spherical 𝑡-design.

Proof. By Corollary A, it is sufficient to consider the existence of a continuous map 𝐹 ∶ 𝑡 → (𝕊𝑑 )𝑁 with 𝐹 (𝑃 ) = (𝑥1(𝑃 ), … , 𝑥𝑁 (𝑃 ))
such that its composition with a continuous mapping 𝐿′ ∶ (𝕊𝑑 )𝑁 → 𝑡

(𝑥1,… , 𝑥𝑁 )
𝐿′
→𝐺𝑥1

+⋯+𝐺𝑥𝑁
+𝐺𝑦1

+⋯+𝐺𝑦𝑀
,

i.e. 𝑔 ∶=𝐿′◦𝐹 ∶ 𝑡 → 𝑡 satisfies

𝑁∑
𝑖=1

𝑃 (𝑥𝑖(𝑃 )) +
𝑀∑
𝑗=1

𝑃 (𝑦𝑗 ) = ⟨𝑃 , 𝑔(𝑃 )⟩ =⟨
𝑁∑
𝑖=1

𝐺𝑥𝑖(𝑃 ), 𝑃

⟩
+

⟨
𝑀∑
𝑗=1

𝐺𝑦𝑖
, 𝑃

⟩
> 0,

for all 𝑃 ∈ 𝜕Ω with Ω being defined as in (5).

From Theorem 1, for 𝑁 ≥ 𝐶1,𝑑 𝑡
𝑑 , there exists a continuous mapping 𝐹 ∶ 𝑡 → (𝕊𝑑 )𝑁 with 𝐹 (𝑃 ) = (𝑥1(𝑃 ), … , 𝑥𝑁 (𝑃 )) such that

𝑁∑
𝑖=1

𝑃 (𝑥𝑖(𝑃 )) =

⟨
𝑁∑
𝑖=1

𝐺𝑥𝑖(𝑃 ), 𝑃

⟩
>𝑁𝐶2,𝑑 𝑡

−1 > 0, ∀𝑃 ∈ 𝜕Ω.

Since 𝜕Ω is a compact subset of 𝑡, the quantity

inf
𝑃∈𝜕Ω

⟨
𝑀∑
𝑗=1

𝐺𝑦𝑖
, 𝑃

⟩
is finite and we denote it as 𝑚. Thus, when 𝑁 is sufficiently large, we have⟨

𝑁∑
𝑖=1

𝐺𝑥𝑖(𝑃 ), 𝑃

⟩
+

⟨
𝑀∑
𝑗=1

𝐺𝑦𝑖
, 𝑃

⟩
>𝑁𝐶2,𝑑 𝑡

−1 +𝑚> 0,
5

for all 𝑃 ∈ 𝜕Ω, which completes the proof. □
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The existence of nested spherical designs, as shown by the following corollary, follows directly from Theorem 2.

Corollary 1. Let 𝑡1, 𝑡 ∈ℕ be two integers such that 𝑡1 < 𝑡 and 𝑀 = {𝑦1,… , 𝑦𝑀} ⊂ 𝕊𝑑 be a spherical 𝑡1-design. Then, for sufficiently large 
𝑁 , there exists a point set 𝑁 = {𝑥1, … , 𝑥𝑁} ⊂ 𝕊𝑑 such that 𝑁 ∪𝑀 is a spherical 𝑡-design.

4. Estimates of nested spherical designs

As indicated in the previous section, to estimate the number of required points for extending a given point set 𝑀 ∶= {𝑦1, … , 𝑦𝑀}
to a spherical 𝑡-design, we need to estimate the quantity inf𝑃∈𝜕Ω

⟨∑𝑀

𝑗=1𝐺𝑦𝑖
, 𝑃

⟩
from below. Since

||||||
⟨

𝑀∑
𝑗=1

𝐺𝑦𝑖
, 𝑃

⟩|||||| ≤ 𝜔−1
𝑑

‖‖‖‖‖‖
𝑀∑
𝑗=1

𝐺𝑦𝑖

‖‖‖‖‖‖2 ‖𝑃‖2,
it can be reduced to the estimates of the 𝐿2-norms of 𝑃 ∈ 𝜕Ω and 

∑𝑀

𝑗=1𝐺𝑦𝑖
with arbitrary 𝑀 .

First, for ‖𝑃‖2, we have the following estimate.

Lemma 1. For any 𝑃 ∈ 𝜕Ω, it holds that

‖𝑃‖2 ≤√
𝑑 + 1
𝑑

𝜔𝑑𝐷(𝑡+ 1, 𝑑 + 1).

Proof. For an 𝓁-degree spherical harmonic 𝑌𝓁,𝑘, the components of ∇𝑌𝓁,𝑘 are linear combinations of spherical harmonics of degree 
𝓁 + 1 and 𝓁 − 1 ([13, Chapter 12, (12.3.2)]). Hence, for a 𝑡′-degree polynomial 𝑃 ∈ 𝑡, we have ∇𝑖𝑃 =

∑𝑡′+1
𝑗=0 𝑄𝑖,𝑗 , where 𝑄𝑖,𝑗

is either zero or a spherical harmonic of degree 𝑗. Note that by the orthonormality of the spherical harmonics, we also have ‖∇𝑖𝑃‖22 =∑𝑡′+1
𝑗=0 ‖𝑄𝑖,𝑗‖22.

Applying the interpolation inequality and (2), we obtain

‖∇𝑖𝑃‖2 ≤ ‖∇𝑖𝑃‖1∕21 ‖∇𝑖𝑃‖1∕2∞ ≤ ‖∇𝑖𝑃‖1∕21

⎛⎜⎜⎝
𝑡′+1∑
𝑗=0

‖𝑄𝑖,𝑗‖∞⎞⎟⎟⎠
1∕2

≤ ‖∇𝑖𝑃‖1∕21

⎛⎜⎜⎝
𝑡′+1∑
𝑗=0

‖𝑄𝑖,𝑗‖2(𝐷(𝑗, 𝑑)
𝜔𝑑

)1∕2⎞⎟⎟⎠
1∕2

≤ ‖∇𝑖𝑃‖1∕21

⎛⎜⎜⎝
𝑡′+1∑
𝑗=0

‖𝑄𝑖,𝑗‖22⎞⎟⎟⎠
1∕4 ⎛⎜⎜⎝

𝑡′+1∑
𝑗=0

𝐷(𝑗, 𝑑)
𝜔𝑑

⎞⎟⎟⎠
1∕4

= ‖∇𝑖𝑃‖1∕21 ‖∇𝑖𝑃‖1∕22

(
𝐷(𝑡′ + 1, 𝑑 + 1)

𝜔𝑑

)1∕4

≤ ‖∇𝑖𝑃‖1∕21 ‖∇𝑖𝑃‖1∕22

(
𝐷(𝑡+ 1, 𝑑 + 1)

𝜔𝑑

)1∕4
.

Thus, we deduce that

𝑑+1∑
𝑖=1

‖∇𝑖𝑃‖2 ≤(
𝐷(𝑡+ 1, 𝑑 + 1)

𝜔𝑑

) 1
2
𝑑+1∑
𝑖=1

‖∇𝑖𝑃‖1.
Note that

𝜔−1
𝑑

𝑑+1∑
𝑖=1

‖∇𝑖𝑃‖1 = ∫
𝕊𝑑

𝑑+1∑
𝑖=1

|∇𝑖𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥) ≤ (𝑑 + 1)1∕2 ∫
𝕊𝑑

|∇𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥). (9)

Combined with (9) and the Poincaré inequality on 𝕊𝑑 [20], that is, ‖𝑃‖22 ≤ 𝑑−1
∑𝑑+1

𝑖=1 ‖∇𝑖𝑃‖22, we obtain for all 𝑃 ∈ 𝜕Ω,

‖𝑃‖2 ≤ 𝑑−1∕2

(
𝑑+1∑
𝑖=1

‖∇𝑖𝑃‖22
)1∕2

≤ 𝑑−1∕2
𝑑+1∑
𝑖=1

‖∇𝑖𝑃‖2
−1∕2

(
𝐷(𝑡+ 1, 𝑑 + 1)

) 1
2
𝑑+1∑
6

≤ 𝑑
𝜔𝑑 𝑖=1

‖∇𝑖𝑃‖1
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≤ 𝑑−1∕2
(
𝐷(𝑡+ 1, 𝑑 + 1)

𝜔𝑑

) 1
2
𝜔𝑑 (𝑑 + 1)1∕2 ∫

𝕊𝑑

|∇𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥)
=
√

𝑑 + 1
𝑑

𝜔𝑑𝐷(𝑡+ 1, 𝑑 + 1),

which completes the proof. □

Remark 1. We can regard 
√

𝑑+1
𝑑

𝜔𝑑𝐷(𝑡+ 1, 𝑑 + 1) as an estimate of one of the equivalence constants between the norm ‖𝑃‖2 and 
the norm ∫𝕊𝑑 |∇𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥) on 𝑡.

Next, we estimate ‖‖‖∑𝑀

𝑗=1𝐺𝑦𝑖

‖‖‖2. Recall that 𝐷𝑡 =𝐷(𝑡, 𝑑 + 1) − 1.

Lemma 2. For 𝑀 = {𝑦1, … , 𝑦𝑀} ⊂ 𝕊𝑑 and {𝐺𝑦𝑖
| 𝑦𝑖 ∈𝑀} ⊂ 𝑡, it holds that

‖‖‖‖‖‖
𝑀∑
𝑗=1

𝐺𝑦𝑖

‖‖‖‖‖‖2 ≤𝑀
√
𝜔𝑑𝐷𝑡. (10)

Moreover, if 𝑀 is a spherical 𝑡1-design with 𝑡1 < 𝑡, then

‖‖‖‖‖‖
𝑀∑
𝑗=1

𝐺𝑦𝑖

‖‖‖‖‖‖2 ≤𝑀

√
𝜔𝑑 (𝐷𝑡 −𝐷𝑡1

). (11)

Proof. By (4), the square of 𝐿2-norm of 
∑𝑀

𝑗=1𝐺𝑦𝑖
is

‖‖‖‖‖‖
𝑀∑
𝑗=1

𝐺𝑦𝑖

‖‖‖‖‖‖
2

2

= 𝜔2
𝑑

𝑡∑
𝓁=1

𝐷(𝓁,𝑑)∑
𝑘=1

(
𝑀∑
𝑗=1

𝑌𝓁,𝑘(𝑦𝑗 )

)2

. (12)

When 𝑀 happens to be a spherical 𝑡1-design with 𝑡 ≥ 𝑡1, it reduces to

‖‖‖‖‖‖
𝑀∑
𝑗=1

𝐺𝑦𝑖

‖‖‖‖‖‖
2

2

= 𝜔2
𝑑

𝑡∑
𝓁=𝑡1+1

𝐷(𝓁,𝑑)∑
𝑘=1

(
𝑀∑
𝑗=1

𝑌𝓁,𝑘(𝑦𝑗 )

)2

. (13)

Now, by the Cauchy–Schwartz inequality, we have

𝑡∑
𝓁=1

𝐷(𝓁,𝑑)∑
𝑘=1

(
𝑀∑
𝑗=1

𝑌𝓁,𝑘(𝑦𝑗 )

)2

≤𝑀

𝑀∑
𝑗=1

𝑡∑
𝑙=1

𝐷(𝓁,𝑑)∑
𝑘=1

𝑌 2
𝓁,𝑘(𝑦𝑗 )

=𝑀2
∑𝑡

𝓁=1𝐷(𝓁, 𝑑)
𝜔𝑑

=𝑀2 𝐷𝑡

𝜔𝑑

.

(14)

Similarly, we have

𝑡∑
𝓁=𝑡1+1

𝐷(𝓁,𝑑)∑
𝑘=1

(
𝑀∑
𝑗=1

𝑌𝓁,𝑘(𝑦𝑗 )

)2

≤𝑀2

∑𝑡

𝓁=𝑡1+1
𝐷(𝓁, 𝑑)

𝜔𝑑

=𝑀2
𝐷𝑡 −𝐷𝑡1

𝜔𝑑

. (15)

Therefore, the inequalities (10) and (11) hold. □

Remark 2. The estimate (14) is essentially the upper bound of the quantity 𝐴𝐿,𝑁 in [26, Theorem 3], where 𝐿, 𝑁 correspond to our 

𝑡, 𝑀 , respectively, and the upper bound differs by a constant 𝑀2. In fact 𝐴𝑡,𝑀 (𝑀 ) = ‖‖‖ 1
𝑀

∑𝑀

𝑗=1𝐺𝑦𝑖

‖‖‖22.

⟨∑ ⟩

7

By Lemmas 1 and 2, we have the following estimate for inf𝑃∈𝜕Ω
𝑀

𝑗=1𝐺𝑦𝑖
, 𝑃 .
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Lemma 3. For 𝑀 = {𝑦1, … , 𝑦𝑀} ⊂ 𝕊𝑑 and {𝐺𝑦𝑖
| 𝑦𝑖 ∈𝑀} ⊂ 𝑡, it holds that

inf
𝑃∈𝜕Ω

⟨
𝑀∑
𝑗=1

𝐺𝑦𝑖
, 𝑃

⟩
≥ −𝑀

√
𝑑 + 1
𝑑

𝐷(𝑡+ 1, 𝑑 + 1)𝐷𝑡.

Moreover, if 𝑀 is a spherical 𝑡1-design with 𝑡1 < 𝑡, then,

inf
𝑃∈𝜕Ω

⟨
𝑀∑
𝑗=1

𝐺𝑦𝑖
, 𝑃

⟩
≥ −𝑀

√
𝑑 + 1
𝑑

𝐷(𝑡+ 1, 𝑑 + 1)(𝐷𝑡 −𝐷𝑡1
).

We are now able to state the existence of extensions to spherical 𝑡-designs with estimates of the required numbers of points.

Theorem 3. Let 𝑡 ∈ ℕ, 𝐶1,𝑑 , 𝐶2,𝑑 be constants as in Theorem 1, and 𝐶3,𝑑 ∶=
√

𝑑+1
𝑑

. For any given 𝑀 = {𝑦1, … , 𝑦𝑀} ⊂ 𝕊𝑑 and

𝑁 ≥max
(
𝐶1,𝑑 𝑡

𝑑 ,𝐶−1
2,𝑑𝐶3,𝑑𝑀𝑡

√
𝐷(𝑡+ 1, 𝑑 + 1)𝐷𝑡

)
, (16)

there exists 𝑁 = {𝑥1, … , 𝑥𝑁} ⊂ 𝕊𝑑 such that 𝑁 ∪𝑀 is a spherical 𝑡-design. Moreover, if 𝑀 is a spherical 𝑡1-design with 𝑡1 < 𝑡, then 
the lower bound of 𝑁 becomes

𝑁 ≥max
(
𝐶1,𝑑 𝑡

𝑑 ,𝐶−1
2,𝑑𝐶3,𝑑𝑀𝑡

√
𝐷𝑡 −𝐷𝑡1

√
𝐷(𝑡+ 1, 𝑑 + 1)

)
. (17)

Proof. By Theorem 2 and Lemma 3, we have that⟨
𝑁∑
𝑖=1

𝐺𝑥𝑖(𝑃 ), 𝑃

⟩
+

⟨
𝑀∑
𝑗=1

𝐺𝑦𝑖
, 𝑃

⟩
>𝑁𝐶2,𝑑 𝑡

−1 −𝐶3,𝑑𝑀
√
𝐷(𝑡+ 1, 𝑑 + 1)𝐷𝑡 ≥ 0

implying the existence of spherical 𝑡-design formed by 𝑁 ∪𝑀 . This gives the bound of 𝑁 in (16). The bound 𝑁 in (17) for the 
case of 𝑀 being a spherical 𝑡1-design is similar. □

By the result of Theorem 3, we have the following corollary giving the order of 𝑁 for nested spherical designs.

Corollary 2. Let 𝑀 ∶= {𝑦1, … , 𝑦𝑀} be a spherical 𝑡1-design of optimal order 𝑡𝑑1 and 𝑡1 < 𝑡. Then 𝑁 +𝑀 is of order at most 𝑡2𝑑+1 for the 
existence of 𝑁 ∶= {𝑥1, … , 𝑥𝑁} such that 𝑁 ∪𝑀 is a spherical 𝑡-design.

Proof. Since 𝐷(𝑡, 𝑑) ∼ (𝑡 + 1)𝑑−1 [26], (𝑡 + 1)𝑑−1 ∼ (𝑡 − 1)𝑑−1 ∼ 𝑡𝑑−1, and 𝐷𝑡 = 𝐷(𝑡, 𝑑 + 1) − 1 < 𝐷(𝑡, 𝑑 + 1) ∼ 𝑡𝑑 , we have √
𝐷(𝑡+ 1, 𝑑 + 1)𝐷𝑡 ≤ 𝐶𝑡𝑑 for some constant 𝐶 and by Theorem 3, we deduce that

(𝑁 +𝑀) ∼𝑀𝑡
√
𝐷(𝑡+ 1, 𝑑 + 1)𝐷𝑡 +𝑀 ≤ 𝐶1(𝑡𝑑 ⋅ 𝑡 ⋅ 𝑡𝑑 + 𝑡𝑑 ) ≤ 𝐶2𝑡

2𝑑+1,

where 𝐶1, 𝐶2 are constants depending only on 𝑑. □

5. Discussion on the optimal order

In contrast to the optimal order 𝑡𝑑 for a spherical 𝑡-design, our result in Corollary 2 shows that an upper bound of the minimal 
𝑁 +𝑀 in arbitrary nested spherical 𝑡-designs with the 𝑡1-design 𝑀 of order 𝑡𝑑1 is of order 𝑡2𝑑+1. This is, of course, a rough estimate. 
Moreover, the properties of 𝑡1-designs are not involved. Following the setting in general spherical 𝑡-designs where the constant in 
the orders are identical for all 𝑡, it is thus natural to conjecture that the following statement is true.

Conjecture. For any 𝑡1, 𝑡 ∈ ℕ such that 𝑡1 < 𝑡, there exist some spherical 𝑡1-designs of order 𝑡𝑑1 such that they can be extended to a spherical 
𝑡-design of order 𝑡𝑑 . Moreover, the constants (not depending on 𝑡1 and 𝑡 but 𝑑) in the orders are identical for any 𝑡 and 𝑡1 satisfying 𝑡1 < 𝑡.

If we specify the relation between 𝑡1 and 𝑡, we can show that the problem actually becomes trivial. In fact, we have the following 
proposition.

Proposition 1. Given 𝑚 = 𝑝∕𝑞 ∈ℚ, 𝑚 > 1, for any 𝑡1, 𝑡 ∈ ℕ such that 𝑚𝑡1 = 𝑡, there exist some spherical 𝑡1-designs of order 𝑡𝑑1 such that 
they can be extended to a spherical 𝑡-design of order 𝑡𝑑 . Moreover, the constants (not depending on 𝑡1 and 𝑡 but 𝑑 and 𝑚) in the orders are 
identical for any 𝑡 and 𝑡1 satisfying 𝑚𝑡1 = 𝑡.

Proof. Let 𝐶 ∶= 𝑞𝑑𝐶𝑑 with 𝐶𝑑 as in Theorem B. We start from a 𝑡-design with 𝑁 = 𝐶𝑡𝑑 points (the existence is guaranteed by 
Theorem B). Note that it is also a 𝑡1-design with 𝑁 = 𝑚𝑑𝐶𝑡𝑑1 points. Thus, to obtain a 𝑡-design of which the order has the same 
8

constant, we need to extend this 𝑡-design into another 𝑡-design with 𝑚𝑑𝐶𝑡𝑑 points. Note that 𝑁∕𝑞𝑑 = 𝐶𝑑𝑡
𝑑 is also large enough to 
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guarantee a 𝑡-design. Since the union of 𝑡-designs is still a 𝑡-design, we add a 𝑡-design with 𝑁∕𝑞𝑑 points (𝑝𝑑 − 𝑞𝑑 ) times. This gives 
a 𝑡-design with 𝑚𝑑𝐶𝑡𝑑 points. In this way, the order for both 𝑡1 and 𝑡 are the same as 𝑡𝑑1 and 𝑡𝑑 , respectively, while the constant is 
always 𝑚𝑑𝐶 . □

Note that the assumption 𝑚 ∈ ℚ is natural since both 𝑡1, 𝑡 are integers. Compared with Proposition 1, the difficulty in proving 
the conjecture is that we need to find an identical constant for orders 𝑡𝑑1 and 𝑡𝑑 without specifying the relation 𝑚𝑡1 = 𝑡, 𝑚 ∈ℚ, 𝑚 > 1
but only the general condition 𝑡1 < 𝑡. As a result, the dependency of 𝑚 in the constants should be removed. On the other hand, both 
Corollary 2 and the conjecture are stated for any pair of 𝑡1, 𝑡 such that 𝑡1 < 𝑡 without further specification. Compared with Corollary 2

in which the constant in the order 𝑡2𝑑+1 is larger than the constant in 𝑡𝑑 , the conjecture requires not only a smaller order (𝑡𝑑 < 𝑡2𝑑+1) 
but also zero difference between the constants. Hence, the conjecture is more restricted and thus could be more difficult to prove.

We remark that in practice, one would seek not only the optimal order but also the least possible constant in the order. Nonethe-

less, the same constant in the optimal order and the stated existence result in Proposition 1 gives some evidence and guidance for 
numerical experiments in practice: one may set an identical constant to find nested spherical 𝑡-designs with multi-nested structure, 
e.g. 𝑡1 = 2𝑡2 = 4𝑡3 =⋯, and that each 𝑡𝑖-design is of order 𝑡𝑑

𝑖
and is contained in the 𝑡𝑖−1-design.

6. Conclusion and final remarks

We have shown the existence and estimates of required points to form a spherical 𝑡-design given a fixed set of points. Consequently, 
in the case that the given point set is a spherical 𝑡1-design with 𝑡1 < 𝑡 and the number of given points is of optimal order 𝑡𝑑1 , we 
provide an upper bound of the minimal total number of given points and required points, which is of order 𝑡2𝑑+1 .

Nonetheless, these results do not conclude the optimal order of nested spherical designs. Corollary 2 is stated for a given arbitrary 
spherical 𝑡1-design (of optimal order 𝑡𝑑1 ) that leads the estimate of order 𝑡2𝑑+1 of 𝑁 +𝑀 . The estimate is pessimistic and can be 
regarded as a worst-case estimate. On the other hand, we have further discussed a conjecture concerning the constants in the optimal 
orders of 𝑡1 and 𝑡-designs. We show that a proposition derived from the conjecture with an extra condition is trivial. However, it 
could be difficult to confirm or reject the original conjecture.

Finally, Theorem 2 suggests an notion of optimality which requires an 𝑡1-design to have the minimum value of ⟨∑𝑀

𝑗=1𝐺𝑦𝑖
, 𝑃 ⟩

on 𝜕Ω among all 𝑡1-designs. It remains to investigate (at least numerically) whether properties of spherical designs such as being 
well-separated or well-conditioned [1] lead to better estimates or fewer points in numerical experiments.
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Appendix A. Theorems

For the sake of being self-contained, as in [4], here we state some other theorems that will be used in the following proofs.

Theorem C ([7,18]). For each 𝑁 ∈ ℕ, there exists an area-regular partition  = {𝑅1, … , 𝑅𝑁} with ‖‖ ≤ 𝐵𝑑𝑁
−1∕𝑑 for some constant 

𝐵𝑑 large enough.

Theorem D ([22]). There exists a constant 𝑟𝑑 such that for each area-regular partition  = {𝑅1, … , 𝑅𝑁} with ‖‖ < 𝑟𝑑

𝑚
, each collection 

of points 𝑥𝑖 ∈𝑅𝑖(𝑖 = 1, … , 𝑁), and each polynomial 𝑃 of total degree 𝑚, the inequality

1
2 ∫
𝕊𝑑

|𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥) ≤ 1
𝑁

𝑁∑
𝑖=1

|𝑃 (𝑥𝑖)| ≤ 3
2 ∫
𝕊𝑑

|𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥)
holds.

Theorem E ([4, Corollary 1]). For each area-regular partition  = {𝑅1, … ,𝑅𝑁} with ‖‖ < 𝑟𝑑

𝑚+1 , each collection of points 𝑥𝑖 ∈ 𝑅𝑖(𝑖 =
1, … , 𝑁), and each polynomial 𝑃 of total degree 𝑚,

1√ |∇𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥) ≤ 1
𝑁∑|∇𝑃 (𝑥𝑖)| ≤ 3

√
𝑑 |∇𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥).
9

3 𝑑
∫
𝕊𝑑

𝑁
𝑖=1

∫
𝕊𝑑
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Appendix B. Proof of Theorem 1

Proof. For 𝑑, 𝑡 ∈ ℕ, take 𝐶1,𝑑 > (108𝐵𝑑∕𝑟𝑑 )𝑑 , where 𝐵𝑑 is as in Theorem C and 𝑟𝑑 is as in Theorem D and 𝑁 ≥ 𝐶1,𝑑 𝑡
𝑑 . We take an 

area-regular partition  = {𝑅1, … , 𝑅𝑁} with

‖‖ ≤𝐵𝑑𝑁
−1∕𝑑 <

𝑟𝑑

108𝑑𝑡
(B.1)

from Theorem C. For each 𝑖 = 1, … , 𝑁 , we choose an arbitrary �̃�𝑖 ∈ 𝑅𝑖. Define 𝑈 ∶ 𝑡 × 𝕊𝑑 → ℝ𝑑+1 such that 𝑈 (𝑃 , 𝑤) = ∇𝑃 (𝑤)
ℎ𝜀(|∇𝑃 (𝑤)|)

where 𝜀 = 1
6
√
𝑑

and

ℎ𝜀(𝑢) ∶=

{
𝑢 if 𝑢 > 𝜀,

𝜀 otherwise.

For each 𝑖 = 1, … , 𝑁 , define 𝑤𝑖 ∶ 𝑡 × [0, ∞) → 𝕊𝑑 be the map satisfying the differential equation

𝑑

𝑑𝑠
𝑤𝑖(𝑃 , 𝑠) =𝑈 (𝑃 ,𝑤𝑖(𝑃 , 𝑠)) (B.2)

with the initial condition

𝑤𝑖(𝑃 ,0) = �̃�𝑖

for each 𝑃 ∈ 𝑡. Each mapping 𝑤𝑖 has its values in 𝕊𝑑 by the definition of spherical gradient. By the fact that the mapping 𝑈 (𝑃 , 𝑤)
is Lipschitz continuous in both 𝑃 and 𝑤, each 𝑤𝑖 is well defined and continuous in both 𝑃 and 𝑠, where the metric on 𝑡 is given by 
the inner product.

The mapping 𝐹 ∶ 𝑡 → (𝕊𝑑 )𝑁 is defined as

𝐹 (𝑃 ) = (𝑥1(𝑃 ),… , 𝑥𝑁 (𝑃 )) ∶=
(
𝑤1(𝑃 ,

𝑟𝑑

3𝑡
),… ,𝑤𝑁 (𝑃 ,

𝑟𝑑

3𝑡
)
)
. (B.3)

By definition, 𝐹 is continuous on 𝑡. It remains to show that there exists a constant 𝐶2,𝑑 depending on 𝑑 such that

𝑁∑
𝑖=1

𝑃 (𝑥𝑖(𝑃 )) >𝑁𝐶2,𝑑 𝑡
−1 > 0, ∀𝑃 ∈ 𝜕Ω. (B.4)

Fix 𝑃 ∈ 𝜕Ω, i.e.,

∫
𝕊𝑑

|∇𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥) = 1.

For brevity we write 𝑤𝑖(𝑠) to replace 𝑤𝑖(𝑃 , 𝑠). The Newton-Leibniz formula gives

1
𝑁

𝑁∑
𝑖=1

𝑃 (𝑥𝑖(𝑃 )) =
1
𝑁

𝑁∑
𝑖=1

𝑃 (𝑤𝑖(𝑟𝑑∕3𝑡))

= 1
𝑁

𝑁∑
𝑖=1

𝑃 (�̃�𝑖) +

𝑟𝑑∕3𝑡

∫
0

𝑑

𝑑𝑠

[
1
𝑁

𝑁∑
𝑖=1

𝑃 (𝑤𝑖(𝑠))

]
𝑑𝑠.

(B.5)

In the remainder of this proof, we will estimate the value|||||| 1𝑁
𝑁∑
𝑖=1

𝑃 (�̃�𝑖)
||||||

from above and the value

𝑑

𝑑𝑠

[
1
𝑁

𝑁∑
𝑖=1

𝑃 (𝑤𝑖(𝑠))

]
from below for each 𝑠 ∈ [0, 𝑟𝑑∕3𝑡].

We obtain|||| 1 𝑁∑
𝑃 (�̃�𝑖)

|||| = |||| 𝑁∑
𝑃 (�̃�𝑖) − 𝑃 (𝑥)𝑑𝜇𝑑 (𝑥)

|||| ≤ 𝑁∑ |𝑃 (�̃�𝑖) − 𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥)

10

||𝑁 𝑖=1 || ||| 𝑖=1 ∫𝑅𝑖

||| 𝑖=1
∫
𝑅𝑖
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≤ ‖‖
𝑁

𝑁∑
𝑖=1

max
𝑧∈𝕊𝑑∶dist(𝑧,�̃�𝑖)≤‖‖|∇𝑃 (𝑧)|,

where dist(𝑧, �̃�𝑖) denotes the geodesic distance between 𝑧 and �̃�𝑖. Hence, for 𝑧𝑖 ∈ 𝕊𝑑 such that dist(𝑧𝑖, �̃�𝑖) ≤ ‖‖ and

|∇𝑃 (𝑧𝑖)| = max
𝑧∈𝑆𝑑∶dist(𝑧,�̃�𝑖)≤‖‖|∇𝑃 (𝑧)|,

we have|||||| 1𝑁
𝑁∑
𝑖=1

𝑃 (�̃�𝑖)
|||||| ≤

‖‖
𝑁

𝑁∑
𝑖=1

|∇𝑃 (𝑧𝑖)|.
Define another area-regular partition ′ = {𝑅′

1, … , 𝑅′
𝑁
} by 𝑅′

𝑖
=𝑅𝑖 ∪{𝑧𝑖}. It is obvious that ‖′‖ ≤ 2‖‖. Combined with (B.1), 

we have ‖′‖ ≤ 𝑟𝑑∕(54𝑑𝑡). Using the inequality in Theorem E to the partition ′ and the collection of points 𝑧𝑖, we have|||||| 1𝑁
𝑁∑
𝑖=1

𝑃 (�̃�𝑖)
|||||| ≤ 3

√
𝑑‖‖∫

𝕊𝑑

|∇𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥) < 𝑟𝑑

36
√
𝑑𝑡

(B.6)

for any 𝑃 ∈ 𝜕Ω. On the other hand, the differential equation (B.2) implies

𝑑

𝑑𝑠

[
1
𝑁

𝑁∑
𝑖=1

𝑃 (𝑤𝑖(𝑠))

]
= 1

𝑁

𝑁∑
𝑖=1

|∇𝑃 (𝑤𝑖(𝑠))|2
ℎ𝜀(|∇𝑃 (𝑤𝑖(𝑠))|)

≥ 1
𝑁

∑
𝑖∶|∇𝑃 (𝑤𝑖(𝑠))|≥𝜀 |∇𝑃 (𝑤𝑖(𝑠))|

≥ 1
𝑁

𝑁∑
𝑖=1

|∇𝑃 (𝑤𝑖(𝑠))|− 𝜀.

(B.7)

Since |||| ∇𝑃 (𝑤)
ℎ𝜀(|∇𝑃 (𝑤)|) |||| ≤ 1

for each 𝑤 ∈ 𝕊𝑑 , it follows again from (B.2) that ||| 𝑑𝑤𝑖(𝑠)
𝑑𝑠

||| ≤ 1 and therefore

dist(�̃�𝑖,𝑤𝑖(𝑠)) ≤ 𝑠.

For each 𝑠 ∈ [0, 𝑟𝑑∕3𝑡], define another partition ′′ = {𝑅′′
1 , … , 𝑅′′

𝑁
} given by 𝑅′′

𝑖
=𝑅𝑖 ∪ {𝑤𝑖(𝑠)}. By (B.1), we have

‖′′‖ < 𝑟𝑑

108𝑑𝑡
+

𝑟𝑑

3𝑡
,

and thus we can apply Theorem E to the partition ′′ and the collection of points 𝑤𝑖(𝑠). This and inequality (B.7) imply

𝑑

𝑑𝑠

[ 1
𝑁

𝑃 (𝑤𝑖(𝑠))
] ≥ 1

𝑁

𝑁∑
𝑖=1

|∇𝑃 (𝑤𝑖(𝑠))|− 1
6
√
𝑑

≥ 1
3
√
𝑑
∫
𝕊𝑑

|∇𝑃 (𝑥)|𝑑𝜇𝑑 (𝑥) − 1
6
√
𝑑
= 1

6
√
𝑑

(B.8)

for each 𝑃 ∈ 𝜕Ω and 𝑠 ∈ [0, 𝑟𝑑∕3𝑡].
Finally, equation (B.5) and inequalities (B.6) and (B.8) yield

𝑁∑
𝑖=1

𝑃 (𝑥𝑖(𝑃 )) >𝑁

(
1

6
√
𝑑

𝑟𝑑

3𝑡
−

𝑟𝑑

36
√
𝑑𝑡

)
> 0, ∀𝑃 ∈ 𝜕Ω. (B.9)

Let 𝐶2,𝑑 ∶=
𝑟𝑑

36
√
𝑑

. □
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