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Abstract

In this paper, we compare two optimization algorithms using full Hessian and
approximation Hessian to obtain numerical spherical designs through their vari-
ational characterization. Based on the obtained spherical design point sets, we
investigate the approximation of smooth and non-smooth functions by spherical
harmonics with spherical designs. Finally, we use spherical framelets for denois-
ing Wendland functions as an application, which shows the great potential of
spherical designs in spherical data processing.
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1 Introduction

Nowadays, the rapid growth of computing power, the massive explosion of data, and
the fast advance of modern information technologies have built a new era of artificial
intelligence (AI). Especially in deep learning, deep neural networks are used to process
extremely large and complex data. Though AI-trained models have many benefits, they
require significant computing resources, which can be a challenge for processing certain
types of structured data or for certain applications. For example, data in ImageNet
[1] are images that can be viewed as samples from a high-dimensional manifold, social
network data [2] are with high-dimensional features on a graph-structure domain,
data fed into the large language models (LLMs) are typical text type that needs to
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be vectorized [3]. How to properly represent such data so that one can process them
efficiently is the key to their successful applications. One common way is to use the
normalization technique for high-dimensional data. Once normalized, they can be
viewed as data on the d-dimensional unit sphere Sd := {x ∈ Rd+1 | ∥x∥ = 1}, where
∥·∥ is the Euclidean norm. Besides these data from normalization, many data from
the real world are actually spherical data, e.g., navigation and geology data, cosmic
microwave background data, panoramic images and videos, etc. Therefore, spherical
data processing plays an important role in deep learning as well as many other areas
[4–8].

Spherical designs, as one of the very crucial types of point configurations on the
sphere, play a very important role in spherical data processing. The increasing demand
of processing spherical data has led to increased interest in exploring spherical designs
for real-world applications. Delsarte, Goethals, and Seidel established the concept of
spherical designs [9] in 1977, where a finite point set XN := {x1, . . . ,xN} ⊂ Sd is said
to be a spherical t-design if for any polynomial p : Rd+1 → R of degree at most t, the
quadrature rule holds:

1

N

N∑
i=1

p(xi) =
1

ωd

∫
Sd
p(x) dµd(x) ∀p ∈ Πt. (1)

Here, µd(x) denotes the surface measure on Sd such that µd(Sd) := ωd = 2π
d+1
2

Γ( d+1
2 )

is

the surface area of Sd with Γ(z) :=
∫∞
0
xz−1e−xdx and Πt := Πt(Sd) is the space of

spherical polynomials on Sd with degree at most t. As we can see, a spherical t-design is
an equal weight polynomial-exact quadrature rule in Πt space, which is a set of points
“nicely” distributed on the unit sphere. Spherical designs have significant applications
in approximation theory, geometry, and combinatorics. For example, the best packing
problems, the minimal energy problems, the optimal configurations related to Smale’s
7th Problem, and so on. We refer to a very nice comprehensive survey of Bannai and
Bannai [10] for the past five decades of research on spherical designs. Recently, it
has been applied in image reconstruction and signal recovery [11–14]. By leveraging
the properties of spherical designs, one can develop efficient algorithms for processing
spherical data, which can have a wide range of applications in areas such as computer
vision, geophysics, and astrophysics.

The existence of spherical t-designs is a deep theoretical problem that has yielded
many profound mathematical results. Delsarte et al. [9] gave the lower bound of a
spherical t-design on the number of points N for any degree t ∈ N+ on Sd: N ≥ O(td).
Seymour and Zaslavsky [15] proved (non-constructive) that a spherical t-design exists
for any t if N is sufficiently large. Wagner [16] proposed the feasible upper bounds

with N = O(tCd4

). Korevaar and Meyers [17] provided spherical t-designs exist in
N = O(td(d+1)/2) and conjectured that N = O(td). Bondarenko, Radchenko and
Viazovska [18] verified that spherical t-designs indeed exists for N ≥ cdt

d points, where
cd is constant controlled by d. Furthermore, they showed thatXN can be well-separated
in the sense that the minimal separation distance δXN

:= min1≤i<j≤N ∥xi − xj∥ is of
order O(N−1/d) [19].
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Besides the theoretical development, numerical algorithms to produce spherical
designs are of great importance for spherical data processing. Computing spherical t-
designs can be regarded as non-linear equations and optimization problems. We refer
to [13, 20–30] for some of the work on numerical spherical designs. In this paper
and in what follows, we pay attention to spherical t-designs on the most important
case d = 2, i.e., the 2-sphere S2. Sloan and Womersley [23] presented the variational
characterization of spherical t-design as a nonnegative quantity AN,t(XN ) given by

AN,t(XN ) :=
4π

N2

t∑
ℓ=0

ℓ∑
m=−ℓ

∣∣∣∣∣
N∑
i=1

Y m
ℓ (xi)

∣∣∣∣∣
2

− 1, (2)

where Y m
ℓ is spherical harmonic with degree ℓ and order m. They proved important

properties about the connection of spherical t-designs and AN,t. One is that XN is a
spherical t-design if and only if AN,t = 0 (cf. Theorem 3 in [23]), which is the equivalent

form with Weyl sums [9, 23] satisfying
∑N

i=1 Y
m
ℓ (xi) = 0, ℓ = 1, . . . , t and m =

−ℓ, . . . , ℓ. Hence, finding spherical t-designs can be regarded as solving a nonlinear
and nonconvex minimization problem:

min
XN⊂S2

AN,t(XN ). (3)

Based on the quantity AN,t, Gräf and Potts [31] computed numerical spherical t-
designs using nonequispaced fast spherical Fourier transforms (NFSFTs) and manifold

optimization techniques for t up to 1000 with N ≈ t2

2 points. Following [23, 31],
Xiao and Zhuang [13] used the trust-region method with NFSFTs to achieve t up to
3200 numerically. Numerical results in these papers showed that these methods can
approximate spherical t-designs with high accuracy.

In this paper, we further investigate the numerical spherical t-designs in sev-
eral aspects. First, to solve (3), we consider the restart-conjugate gradient method
with line search strategy (LS-RCG) in Algorithm 1 and compare it with the trust-
region with preconditioned conjugate gradient method (TR-PCG) presented in [13].
Based on algorithms of LS-RCG and TR-PCG , we use two types of point sets on
S2 as initial point sets for computing spherical t-designs and comparing the two algo-
rithms in terms of total iterations, square-root and ℓ∞-error of AN,t(XN ). With the
obtained spherical t-design point sets, we test their performance in function approxi-
mation with functions from the combinations of normalized Wendland functions as well
as functions with discontinuity. Moreover, we further investigate the applications of
spherical t-designs in the construction of spherical (semi)-tight framelets for spherical
image/signal denoising.

The paper is organized as follows. In Section 2, we present the algorithms for com-
puting spherical t-designs and provide numerical results for different approaches to
compare their performance. In Section 3, we introduce an approximation algorithm
using spherical-design point sets and present results for projecting smooth and non-
smooth functions onto the sphere. In Section 4, we discuss the application of spherical
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design point sets in semi-discrete spherical framelet systems and thresholding tech-
niques. We demonstrate how these systems can be used for spherical data processing.
The conclusion is given in Section 5.

2 Spherical designs from optimizations

In this section, we discuss the use of a line-search algorithm with a restart conjugate
gradient technique (LS-RCG) for solving the nonlinear and nonconvex minimization
problem in (3). We apply such an algorithm to obtain spherical t-designs with various
initial point sets and compare them with the trust-region method with preconditioned
conjugate gradient method (TR-PCG) in [13].

2.1 Line search with restart conjugate gradient method

A continuously differentiable function f : Rn → R, the gradient of f at x is defined as

∇f := [∂1f(x), . . . , ∂nf(x)]
⊤
, (4)

and the Hessian of f is defined as a n× n symmetric matrix with elements

[H(f)]ij :=
[
∇2f

]
ij
:= ∂i∂jf(x), 1 ≤ i, j ≤ n, (5)

where ∂i is the partial derivative with respect to the ith coordiante of x. For the
general nonlinear and nonconvex optimization problem:

min
x∈Rd

f(x), (6)

there are mainly two global convergence approaches: one is the line search, and the
other is the trust region. The trust region with preconditioned conjugate gradient
method (TR-PCG) for spherical designs was discussed in [13]. We refer to [32–34] for
the discussion of trust-region and conjugate gradient methods. In this paper, we use
the line search approach with the restart-CG method.

The iterative scheme using the conjugate gradient (CG) method for solving (6)
is given by xk+1 = xk + αkdk, where x0 is a starting point, αk is determined by
a line search strategy, and dk is a search direction. The first seach direction d0 is
commonly set as d0 = −g0 := −∇f(x0). Consecutive dk is recursively defined as
dk+1 = −gk+1+βkdk with gk := ∇f(xk) and a scalar βk that can be determined with
many choices. The conjugate gradient method was originally proposed by Hestenes
and Stiefel [35] in the 1950s. Without using the restart strategy, the conjugate gradient
method is only linearly convergent [36]. The restart strategy is used to periodically
refresh the algorithm by erasing old information that may be redundant. It can lead
to n-step quadratic convergence, that is, ∥xk+n − x∥ = O(∥xk − x∥2) [37]. Fletcher
and Reeves [38] extended the CG method for unconstrained nonlinear optimization
with restart strategy and exact line search, which is the first nonlinear CG method.
In 1967, Daniel [39] proposed a choice of update parameter βk that required the
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evaluation of the Hessian in CG method. In this paper, we use βk =
g⊤
k+1Bk+1dk

d⊤
k Bk+1dk

for

updating βk with restart criterial g⊤k gk+1 being small, where Bk can be the exact or
approximation Hessian, see Aglorithm 1. For more discussion on restart procedures
for the conjugate gradient method, we refer to [40, 41]. For αk, we use the commonly
used Newton-Raphson method for the line search strategy, see Algorithm 2.

Algorithm 1 Line search with restart conjugate gradient method (LS-RCG)

Input: x0: initial point set; t: degree;Kmax: maximum iterations; r: restart orthogonal
value; ε1: termination tolerance;
Initialize k = 0, f0 = AN,t(x0), g0 = ∇f0, −d0 = g0, B0 ≈ H(f0).

1: while k ≤ Kmax and ∥gk∥ > ε1 do
2: compute step size αk from Algorithm 2
3: xk+1 = xk + αkdk, fk+1 = AN,t(xk+1), gk+1 = ∇fk+1 and Bk+1 ≈ H(fk+1)
4: if ∥gk+1∥ ≤ ε then
5: break
6: end if
7: if g⊤k gk+1 ≥ r∥gk∥2 then
8: dk+1 = −gk+1

9: else

10: βk =
g⊤
k+1Bk+1dk

d⊤
k Bk+1dk

and dk+1 = −gk+1 + βkdk

11: end if
12: k = k + 1
13: end while
Output: minimizer x∗ = xk ⊂ S2.

2.2 Spherical harmonics and spherical designs

For each spherical coordinate (θ, ϕ) ∈ [0, π] × [0, 2π), it is associated with a point
x := x(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ) ∈ S2. For each ℓ ∈ N0 and m = −ℓ, · · · , ℓ,
the spherical harmonic Y m

ℓ : S2 → C can be expressed as

Y m
ℓ (x) = Y m

ℓ (θ, ϕ) :=

√
2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pm
ℓ (cos θ)eimϕ,

where Pm
ℓ : [−1, 1] → R is the associated Legendre polynomial with form Pm

ℓ (z) :=
(1 − z2)

m
2

dm

dzm (Pℓ(z)) and the Legendre polynomial Pℓ : [−1, 1] → R is with form

Pℓ(z) =
1

2ℓℓ!
dℓ

dzℓ [(z
2 − 1)ℓ]. Note that Y 0

0 = 1/
√
4π. The collection {Y m

ℓ | ℓ ∈ N0, |m| ≤
ℓ} forms a complete set of orthonormal bases for the Hilbert space of square-integrable
functions L2(S2) := {f : S2 → C |

∫
S2 |f(x)|

2dµ2(x)}, where the L2-inner product

is defined by ⟨f, g⟩L2(S2) :=
∫
Sd f(x)g(x)dµ2(x) for f, g ∈ L2(S2). The orthogonality

⟨Y m
ℓ , Y m′

ℓ′ ⟩L2(S2) = δmm′δℓℓ′ holds for ℓ, ℓ′ ∈ N0, |m| ≤ ℓ, |m′| ≤ ℓ′. Here δij is the
Kronecker delta. With such an orthonormal basis, for any f ∈ L2(S2), it can be
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Algorithm 2 Line search strategy

Input: xk: current step point set; dk: descent direction; Imax: maximum iterations;
ε2: termination tolerance;
Initialize n = 0, d = dk, fn = AN,t(xk), gn = ∇AN,t(xk), En = H(AN,t(xk)),

αn =
g⊤
n d

d⊤End
.

1: while n ≤ Imax do
2: xn+1 = xn + αnd and fn+1 = f(xn+1)
3: if fn+1 − fn > 0 then
4: αn+1 = cαn, where c ∈ (0, 1)
5: else
6: gn+1 = g(xn+1) and En+1 = H(fn+1)

7: if
|g⊤

n+1d|
∥gn+1∥∥d∥ < ε2 then

8: break
9: end if

10: αn+1 = αn − g⊤
n+1d

d⊤En+1d

11: end if
12: n = n+ 1
13: end while
Output: αn ∈ R.

represented as f =
∑∞

ℓ=0

∑ℓ
m=−ℓ f̂

m
ℓ Y

m
ℓ with f̂mℓ := ⟨f, Y m

ℓ ⟩L2(S2). Moreover, Πt

is the linear span of the orthonormal basis {Y m
ℓ : ℓ ∈ N0, ℓ ≤ t, |m| ≤ ℓ} with

dimΠt = (t+ 1)2.
In terms of (θ, ϕ), AN,t(XN ) can be regarded as a function of 2N variables. In fact,

we can identify the point set XN = {x1, . . . ,xN} ⊂ S2 as

XN := (θ,ϕ) := (θ1, . . . , θN , ϕ1, . . . , ϕN ) (7)

with θ = (θ1, . . . , θN ), ϕ = (ϕ1, . . . , ϕN ), and xi := xi(θi, ϕi) being the i-th point
determined by its spherical coordinate satisfying (θi, ϕi) ∈ [0, π] × [0, 2π). The varia-
tional characterization AN,t(XN ) in (2) can be written as a smooth function of 2N
variables:

AN,t(XN ) = AN,t(θ,ϕ) =
4π

N2

t∑
ℓ=0

ℓ∑
m=−ℓ

∣∣∣∣∣
N∑
i=1

Y m
ℓ (θi, ϕi)

∣∣∣∣∣
2

− 1. (8)

The spherical t-design point set XN can be obtained by solving (8) using Algorithm 1
with the target function f := AN,t(θ,ϕ). As discussed in [13], the key is the fast
evaluations of AN,t, ∇AN,t, and H(AN,t). By [13, Theorems 2.2 and 2.3], they can be
evaluated through the fast spherical harmonic transforms with arithmetic complexity
of order O(t2 log2 t + N log2( 1ϵ )), where ϵ is prescribed accuracy of the approximate
algorithms [42–45].
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Moreover, the Hessian H(AN,t) = H1 + H2 is the sum of a diagonal matrix H1

and a rank-one matrix H2, see [13, Theorem 2.3]. In Algorithm 1, for Bk, it is not
necessary to be the exact full Hessian. One can use an approximation version of the
Hessian for Bk, e.g., H2.

2.3 Numerical spherical designs from two different approaches

In this section, based on LS-RCG in Algorithm 1 and TR-PCG from [13, Algorithm
2.1] to solve (3), we get numerical spherical t-designs1. We use two types of point sets
on S2 as initial point sets for computing spherical t-designs with the setting as follows.

1. Spiral points (SP). To generate spiral points xn = (θn, ϕn) on S2 for n = 1, . . . , N ,
we set

θn := arccos

(
2n− (N + 1)

N

)
, ϕn := π(2n− (N + 1))φ−1,

where φ = 1+
√
5

2 is the golden ratio, refer to [46] which is Fibonacci spiral on the
sphere, same on the setting of the initial distribution of spiral points in [31].

2. Uniformly distributed points (UD). To generate uniformly distributed points on
unit sphere S2, we need to make sure that for each surface area dµ = sin θdθdϕ
contain the same number of points. Thus by [47], we generate random variables
kn ∈ (0, 1) and pn ∈ (0, 1) for n = 1, . . . , N , then we have

θn := arccos (1− 2kn) , ϕn := 2πpn.

We deal with point set XN ⊂ S2 from the beginning by fixing the first point x1 =
(0, 0) ∈ XN be the north pole point and the second point x2 = (θ2, 0) ∈ XN be on
the prime meridian. Then we let XN = (θ2, . . . , θN , ϕ3, . . . , ϕN )⊤ = [ΘN−1,ΦN−2]

⊤.
We show in Tables 1 and 2 for various degrees t with N = (t + 1)2, including

the performance of different methods with the full Hessian H(AN,t) = H1 +H2 and
the approximation Hessian H2 (the rank-one matrix) under different point sets. We
compare the results of different initial point sets and the efficiency and accuracy of
different approaches in the two methods.

In terms of the accuracy of function values AN,t(XN ) and ∇AN,t(XN ) in the
two algorithms, TR-PCG and LS-RCG have similar performance (both up to order
12 accuracy). In terms of the total iteration K, TR-PCG uses significantly fewer
iterations than those of LS-RCG. The LS-RCG uses a lot of iterations in the line-search
step while TR-PCG’s main time-consuming step is on the step of finding the trust
regions. In terms of the accuracy of using full Hessian and approximation Hessian, there
are not many differences between these two approaches. However, in both methods,
approximation Hessian takes fewer steps compared to full Hessian. Generally, full
Hessian is a bit better than the approximation Hessian in accuracy. In terms of the
point sets, from Tables 1 and 2, one can see that structured initial point sets SPs use
significantly less iterations than those of the randomly distributed initial point sets
UDs.

1All numerical experiments in this paper are conducted in MATLAB R2023a on a macOS Sonoma system’s
iMac (Retina 5K, 27-inch, 2020) with Intel Core i5 10500 CPU and 32 GB DDR4 memory.
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Table 1 Computing of spherical t-designs by different approaches from SPD point sets. In
point sets XN , SPD means generated by SP. K is the total iterations in Algorithms (Alg). H
represents the type of Hessian (full or approximation).

XN Alg H t N K
√

AN,t(XN ) ∥∇AN,t(XN )∥∞

SPD LS-RCG Full

10 121 3551 3.95E-12 1.79E-14
20 441 4111 1.64E-12 1.25E-14
30 961 5484 1.49E-12 7.01E-15
40 1681 7360 1.35E-12 6.77E-15
50 2601 10397 1.60E-12 6.34E-15
60 3721 11663 1.09E-12 4.27E-15
70 5041 13409 1.39E-12 4.50E-15
80 6561 13709 1.55E-12 5.63E-15
90 8281 16380 1.27E-12 4.11E-15
100 10201 18866 1.01E-12 3.11E-15

SPD LS-RCG Appr

10 121 3652 3.95E-12 1.87E-14
20 441 4180 1.64E-12 1.19E-14
30 961 5336 1.49E-12 7.08E-15
40 1681 7270 1.35E-12 4.99E-15
50 2601 10399 1.60E-12 6.49E-15
60 3721 11670 1.09E-12 4.38E-15
70 5041 13486 1.39E-12 4.15E-15
80 6561 13419 1.55E-12 2.64E-15
90 8281 16546 1.27E-12 2.59E-15
100 10201 18867 1.01E-12 3.53E-15

SPD TR-PCG Full

10 121 169 3.94E-12 2.44E-14
20 441 379 1.71E-12 9.44E-16
30 961 480 1.49E-12 9.64E-16
40 1681 727 1.34E-12 8.77E-16
50 2601 764 1.58E-12 9.39E-15
60 3721 939 1.08E-12 2.67E-15
70 5041 1355 1.39E-12 9.78E-16
80 6561 1235 1.54E-12 1.13E-15
90 8281 1371 1.26E-12 6.89E-16
100 10201 1699 1.00E-12 8.51E-16

SPD TR-PCG Appr

10 121 200 3.95E-12 7.77E-16
20 441 377 1.65E-12 6.03E-16
30 961 458 1.49E-12 9.76E-16
40 1681 649 1.35E-12 9.74E-16
50 2601 743 1.58E-12 1.07E-14
60 3721 906 1.08E-12 2.83E-15
70 5041 1037 1.39E-12 1.37E-15
80 6561 1121 1.54E-12 6.45E-16
90 8281 1385 1.26E-12 8.76E-16
100 10201 1461 1.00E-12 9.97E-16
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Table 2 Computing of spherical t-designs by different approaches from SUD point set. In
point sets XN , SUD means generated by UD. K is the total iterations in Algorithms (Alg).
H represents the type of Hessian (full or approximation).

XN Alg H t N K
√

AN,t(XN ) ∥∇AN,t(XN )∥∞

SUD LS-RCG Full

10 121 3633 3.38E-12 1.85E-14
20 441 5167 1.96E-12 9.65E-15
30 961 7232 1.79E-12 6.88E-15
40 1681 8814 1.54E-12 9.50E-15
50 2601 20221 1.64E-12 5.85E-15

SUD LS-RCG Appr

10 121 3701 4.28E-12 1.96E-14
20 441 5233 1.79E-12 1.32E-14
30 961 6595 1.81E-12 6.80E-15
40 1681 8811 1.60E-12 4.86E-15
50 2601 14260 1.57E-12 5.92E-15

SUD TR-PCG Full

10 121 316 4.16E-12 2.92E-15
20 441 794 1.98E-12 9.15E-16
30 961 847 1.72E-12 3.17E-15
40 1681 1546 1.57E-12 2.57E-15
50 2601 1660 1.44E-12 1.74E-14

SUD TR-PCG Appr

10 121 234 3.87E-12 7.54E-16
20 441 567 1.80E-12 1.19E-15
30 961 765 1.59E-12 3.18E-15
40 1681 849 1.61E-12 1.91E-15
50 2601 1151 1.47E-12 2.71E-14

Based on these tables, we further show the initial point sets and related spherical
t-design point sets in Figures 1 and 2 by choosing t = 50 and N = (t + 1)2 for SP
and UD. One can see that the SP initial point set is well distributed already and the
pattern of the final spherical design does not change much from such an SP initial
point set. On the other hand, one can see that the final spherical design of the UD
point set is well distributed compared to its initial stage.

3 Function approximation with spherical designs

In this section, we study the approximation of functions using polynomials with the
obtained spherical designs.

3.1 Polynomial spaces projection

First, we consider the orthogonal projection on Πt. Given a spherical data
{(xi, f(xi)) |xi ∈ XN} from some spherical signal f : S2 → R in L2(S2) and a spheri-
cal t-design XN obtained above, the spherical signal f can be projected on Πt through
orthogonal projection. That is, f = f0 + f1 as

f(xi) =

t∑
ℓ=0

ℓ∑
m=−ℓ

ĉmℓ Y
m
ℓ (θi, ϕi) + f1(xi), (9)
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(a) SP point set 3D. Left: Initial. Right: Final
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(b) SP point set 2D. Left: Initial. Right: Final

Fig. 1 Numerical simulation of spherical initial point sets (left column) as input point sets and
related spherical t-design point sets (right column) as output point sets based on TR-PCG for t = 50
and N = (t+ 1)2 on S2. (a) on sphere. (b) equirectangular projection.

where f0(x) =
t∑

ℓ=0

ℓ∑
m=−ℓ

ĉmℓ Y
m
ℓ (θ, ϕ) ∈ Πt, and the residual f1 /∈ Πt. Here we let

f̂mℓ := ⟨f, Y m
ℓ ⟩. To obtain f0, i.e., the coefficient set ĉ = {ĉmℓ : ℓ = 0, . . . , t, |m| ≤ ℓ},

we can use the least squares method through the minimization problem

min
f0∈Πt

∥f − f0∥, (10)

where f := f |XN
and f0 := f0|XN

are the vector representations of f and f0 on XN ,
respectively. To solve (10), by using matrix representation f0 = Ytĉ, where Yt is the
N×(t+1)2 matrix determined by (Y m

ℓ (xi))xi∈XN ;|ℓ|≤t,|m|≤ℓ, the least squares problem
in (10) can be solved through the following equation:

Y∗
t (w ⊙Ytĉ) = Y∗

t (w ⊙ f) (11)
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(a) UD point set 3D. Left: Initial. Right: Final
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(b) UD point set 2D. Left: Initial. Right: Final

Fig. 2 Numerical simulation of spherical initial point sets (left column) as input point sets and
resulted spherical t-design point sets (right column) as output point sets based on TR-PCG for t = 50
and N = (t+ 1)2 on S2. (a): on sphere. (b): equirectangular projection.

with wight w, where ⊙ is the Hadamard entrywise product operator. It can be done by
using the CG method for the equation Ax = b with A = Y∗

t diag(w)Yt, x = ĉ and b =
Y∗

t (w⊙f). See Algorithm 3. For convenience, we acquiesce weight functionW (XN ) :=
w in corresponding operation (Y∗

t ·) on arbitrary point set XN in Algorithm 3.

3.2 Approximation of spherical functions obtained from
Wendland functions

Next, we consider the approximation of some spherical functions using polynomials
with different point sets. The functions are the combinations of normalized Wendland
functions from a family of compactly supported radial basis functions (RBF). Let
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Algorithm 3 Projection by Conjugate Gradient Algorithm

Input: t: polynomial degree; XN : spherical point set; W : weight function of XN ;
Kmax: maximum iterations; ε: termination tolerance;
Initialize x = 0, k = 0, r0 = Y∗

t (w ⊙ f), A = Ytdiag(w)Yt.
1: while ∥rk+1∥ > ε and k ≤ Kmax do
2: if k = 0 then
3: p1 = r0
4: else
5: pk+1 = rk + ∥rk∥2

∥rk−1∥2 pk
6: end if
7: compute step size α = ∥rk∥2

p⊤
k+1Apk+1

8: xk+1 = xk + αpk+1 and rk+1 = rk − αApk+1

9: k = k + 1
10: end while
Output: x∗ ∈ Rn.

(t)+ := max{t, 0} for t ∈ R. The original Wendland functions are

ϕ̃k(t) :=



(1− t)2+, k = 0,

(1− t)4+(4t+ 1), k = 1,

(1− t)6+(35t
2 + 18t+ 3)/3, k = 2,

(1− t)8+(32t
3 + 25t2 + 8t+ 1), k = 3,

(1− t)10+ (429t4 + 450t3 + 210t2 + 50t+ 5)/5, k = 4.

The normalized (equal area) Wendland functions are

ϕk(t) := ϕ̃k

( t

δk

)
, δk :=

(3k + 3)Γ(k + 1
2 )

2 Γ(k + 1)
, k ≥ 0.

The Wendland functions ϕk(t) pointwise converge to the Guassian when k → ∞,
refer to [48]. Thus the main change as k increases is the smoothness of f . Let z1 :=
(1, 0, 0), z2 := (−1, 0, 0), z3 := (0, 1, 0), z4 := (0,−1, 0), z5 := (0, 0, 1), z6 := (0, 0,−1)
be regular octahedron vertices and define [49]

fk(x) :=

6∑
i=1

ϕk(∥zi − x∥), k ≥ 0. (12)

The paper [49] has proved that fk ∈ Hk+ 3
2 (S2), where Hσ(S2) := {f ∈ L2(S2) :

∞∑
ℓ=0

∑
|m|≤ℓ

(1 + ℓ)2σ|f̂mℓ |2 <∞} is the Sobolev space with the smooth parameter σ > 1.

The function fk has limited smoothness at the centers zi and at the boundary of each

12



cap with center zi. These features make fk relatively difficult to approximate at these
locations, especially for small k.

Given a point set XN with weight w (not necessary quadrature point sets), we can
sample fk on XN as a spherical signal v : XN → R, and compute the projection v1 and
residual r = v−v1 based on Algorithm 3, where we set the maximum iterationsKmax =
1000 and termination tolerance ε = 2.2204e-16 (floating-point relative accuracy of
MATLAB). To check whether the point sets have good approximation properties for
such functions, we use the relative projection L2-error defined by

err(v1, v) =
∥v − v1∥

∥v∥
=

∥r∥
∥v∥

.

We show the results in Table 3 under the setting of input polynomial degree T = t
2

and weight W = w on Algorithm 3, and set input polynomial degree T = t
2 and

weight W =
√
w on Algorithm 3 to obtain Table 4. For comparing the initial points,

we set SP and UD with equal weight w ≡ 4π
N . The spherical design point sets are

equal-weight quadrature rules. Also in Tables 3 and 4, we give the results of spherical
t-designs with degree t ≈ 200, 400 and N ≈ (t + 1)2 in different initial points: Spiral
points (SP), uniformly distributed points (UD), Icosahedron vertices mesh points (IV),
and HEALpix points (HL). ((SP, SPD), (UD, SUD), (IV, SID), and (HL, SHD) are
the initial point set and final spherical t-design point set via TR-PCG, respectively).
SID means generated by IV, and SHD means generated by HL) For more details on
these point sets, we refer to [13]. We shall mention that the paper [13] has shown the
partial results for t ≈ 200 in Table 3.

Table 3 Relative L2-errors err(fT , fk) for Wendland functions f0, . . . , f4 approximated

by ΠT functions under the setting T = t
2
and W = w on Algorithm 3.

t N QN f0 f1 f2 f3 f4
200 40401 SP 5.64E-04 3.19E-06 5.25E-08 3.39E-09 3.21E-09
200 40401 SPD 5.78E-04 3.20E-06 5.25E-08 1.69E-09 8.92E-11
400 160801 SP 1.49E-04 2.05E-07 1.47E-09 1.33E-09 1.45E-09
400 160801 SPD 1.49E-04 2.06E-07 8.61E-10 7.39E-12 2.28E-12

200 40401 UD 6.09E-04 3.07E-06 8.50E-08 8.71E-08 8.53E-08
200 40401 SUD 6.99E-04 3.51E-06 5.63E-08 1.79E-09 1.07E-10
400 160801 UD 1.22E-04 1.86E-07 8.07E-08 8.55E-08 9.02E-08
400 160801 SUD 1.68E-04 2.19E-07 1.23E-09 9.33E-10 1.02E-09

201 40962 IV 8.12E-04 3.32E-06 5.28E-08 4.57E-09 6.10E-08
201 40962 SID 6.15E-04 3.11E-06 5.08E-08 1.64E-09 8.74E-11
403 163842 IV 2.05E-04 2.14E-07 3.98E-09 3.88E-09 5.59E-08
403 163842 SID 1.80E-04 2.18E-07 8.81E-10 7.46E-12 2.29E-12

220 49152 HL 5.98E-04 2.28E-06 3.18E-08 8.68E-09 8.28E-09
220 49152 SHD 5.98E-04 2.28E-06 3.04E-08 8.11E-10 3.59E-11
442 196608 HL 1.46E-04 1.45E-07 8.19E-10 3.94E-10 3.11E-10
442 196608 SHD 1.46E-04 1.45E-07 4.89E-10 4.07E-12 2.39E-12
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Table 4 Relative L2-errors err(fT , fk) for Wendland functions f0, . . . , f4 approximated

by ΠT functions under the setting T = t
2
and W =

√
w on Algorithm 3.

t N QN f0 f1 f2 f3 f4
200 40401 SP 5.64E-04 3.19E-06 5.24E-08 1.69E-09 9.34E-11
200 40401 SPD 5.78E-04 3.20E-06 5.25E-08 1.69E-09 8.92E-11
400 160801 SP 1.49E-04 2.05E-07 8.58E-10 1.41E-11 1.32E-11
400 160801 SPD 1.49E-04 2.06E-07 8.61E-10 7.39E-12 2.25E-12

200 40401 UD 6.09E-04 3.07E-06 4.80E-08 1.89E-09 1.46E-09
200 40401 SUD 6.99E-04 3.51E-06 5.63E-08 1.79E-09 1.07E-10
400 160801 UD 1.22E-04 1.76E-07 9.04E-10 6.74E-10 6.49E-10
400 160801 SUD 1.68E-04 2.19E-07 8.95E-10 7.35E-12 1.34E-12

201 40962 IV 8.12E-04 3.32E-06 5.26E-08 1.71E-09 2.95E-10
201 40962 SID 6.15E-04 3.11E-06 5.08E-08 1.64E-09 8.74E-11
403 163842 IV 2.05E-04 2.14E-07 9.01E-10 2.45E-10 2.47E-10
403 163842 SID 1.80E-04 2.18E-07 8.81E-10 7.46E-12 2.29E-12

220 49152 HL 5.98E-04 2.28E-06 3.04E-08 8.12E-10 5.82E-11
220 49152 SHD 5.97E-04 2.28E-06 3.04E-08 8.11E-10 3.59E-11
442 196608 HL 1.46E-04 1.45E-07 4.89E-10 3.94E-10 3.11E-10
442 196608 SHD 1.46E-04 1.45E-07 4.89E-10 4.07E-12 2.38E-12

From Tables 3 and 4, all point sets give good approximation error but the point sets
with spherical t-design properties give a higher order of approximations. We display
the related figures of the projection v1 and residual r of above point sets for RBF f4
with degree t ≈ 200 under the setting of Table 3 in Figures 3 and 4. Comparing to
related tables and figures, we can see that projection errors of the initial point sets
under the setting of T = t

2 and W =
√
w are smaller than the setting of T = t

2 and
W = w, whereas the corresponding spherical t-designs point sets are almost the same
(at about 1E-14 difference, but the results of W =

√
w are a bit smaller) except SUD

at t = 400 showed that when W =
√
w provides the smaller projection error.

3.3 Denoising of Wendland functions by Projection

We then consider adding noise on Wendland function fk to observe the best polynomial
degree for projecting noisy function on S2 since we have known the property of fk.
We generate Wendland function fk on the spherical t-design point set XN with t =
400, N = (t+1)2 from SPD. Let fk,σ(XN ) = fk(XN )+Gσ(XN ) be the noisy Wendland
function generated by Gaussian white noise Gσ with noise level σ|fk|max. By applying
Algorithm 3 under the setting of maximum iterations Kmax = 1000 and termination
tolerance ε = 2.2204e-16 (floating-point relative accuracy of MATLAB), and choosing
projection degree t from 1 to 50, we have fk,σ = f + g, where f ∈ Πt and g /∈ Πt.
Consider σ taking from 0.05 to 0.2 with stepsize 0.025, then we test the projection
error of fk on S2 for k = 0, 1, 2, 3, 4. We show relative projection errors for functions
fk and f in Figure 5 and give the minimum error value for fk and f in Table 5.

We can see that the projection errors for fk and f descend rapidly and reach the
minimum value at certain degrees, then climb up slowly compared with the rate of
descent. The projection errors for fk,σ and f also descend rapidly for the same degree
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(a) SP (b) SPD (c) UD (d) SUD

Fig. 3 Numerical simulation of real part of Projection term (first row), residual term (middle row),
and the equirectangular projection of the residual (last row) for RBF f4 under the setting T = t

2

and W = w on Algorithm 3 for t = 200, N = (t+ 1)2.

(a) IV (b) SID (c) HL (d) SHD

Fig. 4 Numerical simulation of the real part of Projection term (first row), the residual term (middle
row), and the equirectangular projection of the residual (last row) for RBF f4 under the setting
T = t

2
and W = w on Algorithm 3 for t ≈ 200, N ≈ (t+ 1)2.
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but will converge to 0 slowly as the degree is sufficiently large. From Table 5, we obtain
the best projection degrees for projecting fk from noisy function fk,σ, which mostly
fall on 12 to 16. Thus, we can choose the appropriate spherical t-design point sets with
degree t at about 12 to 16.

Table 5 The minimum relative projection L2-error err(f, fk) along with corresponding
degree t (inside the parentheses) in different noise level σ.

σ f0 f1 f2 f3 f4
0.05 1.28E-02(24) 7.40E-03(16) 7.60E-03(16) 8.40E-03(16) 9.31E-03(16)

0.075 1.68E-02(24) 1.05E-02(16) 1.07E-02(14) 1.20E-02(14) 1.37E-02(16)

0.1 2.03E-02(20) 1.30E-02(14) 1.28E-02(12) 1.53E-02(14) 1.82E-02(16)

0.125 2.38E-02(20) 1.49E-02(12) 1.51E-02(12) 1.84E-02(12) 2.19E-02(14)

0.15 2.64E-02(16) 1.69E-02(12) 1.75E-02(12) 2.08E-02(12) 2.55E-02(14)

0.175 2.91E-02(16) 1.89E-02(12) 2.00E-02(12) 2.34E-02(12) 2.92E-02(14)

0.2 3.19E-02(16) 2.11E-02(12) 2.25E-02(12) 2.61E-02(12) 3.29E-02(14)

3.4 Approximation of non-smooth functions

Finally, instead of considering differentiable functions in Section 3.2, we consider here
non-smooth functions approximation with spherical designs. We define a Spherical 1D
function as follows

f1D :=

{
1, x ∈ D,
0, x /∈ D,

where D := {(θ, ϕ) | θ ∈ [0, π2 ], ϕ ∈ [0, 2π); (θ, ϕ) ∈ S2} is the northern hemisphere.
Similarly, we set T = t

2 and weight W = w, and T = t
2 and weight W =

√
w on

Algorithm 3 to obtain Table 6. We can see from Table 6, that the higher degree t, the
lower the error of the projection of spherical 1D function. Besides, there is no significant
difference between the two choices of weights. In addition, only a little refinement of
the error for point set SPD with degree t = 400 and SID with t = 201, 403 than their
corresponding initial point sets. We also display the example of projection in Figure 6.
One can see that the discontinuity of the function f1D along the equator brings the
main challenge for the polynomial approximation.

4 Spherical framelets for spherical signal processing
using spherical designs

In this section, we discuss the further application of spherical designs in spherical
framelet constructions and spherical signal processing. In general, given a group of
spherical design point sets, for a noisy function fσ with Gaussian white noise of noise
level σ|f |max, following the orthogonal projection procedure of Section 3.1, we have
fσ = f + g, where the projected function f ∈ ΠtJ and residual g /∈ ΠtJ . Notice that
both projected function f and residual g have noise. Then we use spherical t-design
point sets to decompose f by semi-discrete truncated spherical tight framelet system

16



1 8 15 22 29 36 43 50

0.01

0.13

0.26

0.38

0.51

0.63

0.76

0.88

(a) σ = 0.05

1 8 15 22 29 36 43 50

0.01

0.14

0.26

0.39

0.51

0.63

0.76

0.88

(b) σ = 0.1

1 8 15 22 29 36 43 50

0.02

0.14

0.26

0.39

0.51

0.64

0.76

0.88

(c) σ = 0.15

1 8 15 22 29 36 43 50

0.02

0.14

0.27

0.39

0.51

0.64

0.76

0.88

(d) σ = 0.2

1 8 15 22 29 36 43 50

0.01

0.10

0.19

0.27

0.36

0.44

0.53

0.62

(e) f0

1 8 15 22 29 36 43 50

0.01

0.11

0.22

0.33

0.43

0.54

0.65

0.75

(f) f1

1 8 15 22 29 36 43 50

0.01

0.12

0.24

0.36

0.47

0.59

0.70

0.82

(g) f2

1 8 15 22 29 36 43 50

0.01

0.13

0.25

0.37

0.49

0.62

0.74

0.86

(h) f3

1 8 15 22 29 36 43 50

0.01

0.13

0.26

0.38

0.51

0.63

0.76

0.88
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Fig. 5 Relative projection L2-error with err(f, fk) for k = 0, 1, 2, 3, 4 in different noise level σ. (a)-
(d) are the extracted view from σ = 0.05, 0.1, 0.15, 0.2, (e) − (i) are focusing on Wendland function
fk for k = 0, 1, 2, 3, 4.

FJ
J0
(η,Q). After that, we use threshold methods based on spherical caps to denoise

the framelet coefficients of f , and then we reconstruct the function by the denoised
coefficients to obtain fthr. Similarly, g is also being denosed to obtain gthr. Finally,
we get the denoised function Fthr = fthr + gthr. Below, we introduce the truncated
spherical framelet systems, the spherical caps, the thresholding techniques, and the
denoising experiments on Wendland functions.

4.1 Semi-discrete spherical framelet systems

First, we briefly introduce the semi-discrete spherical framelet systems based on
spherical harmonics and spherical design point sets.
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Table 6 Relative L2-errors err(fw, f1D ) and
err(f√w, f1D ) for projecting spherical 1D function.
fw and f√w represent the relative error with
functions on point sets along with corresponding
degree T = t

2
take weights W = w and W =

√
w,

respectively on Algorithm 3.

t N QN fw f√w

200 40401 SP 5.46E-02 5.46E-02
200 40401 SPD 5.46E-02 5.46E-02
400 160801 SP 3.89E-02 3.89E-02
400 160801 SPD 3.88E-02 3.88E-02

200 40401 UD 4.85E-02 4.85E-02
200 40401 SUD 5.21E-02 5.21E-02
400 160801 UD 3.52E-02 3.52E-02
400 160801 SUD 3.68E-02 3.68E-02

201 40962 IV 5.50E-02 5.50E-02
201 40962 SID 5.40E-02 5.40E-02
403 163842 IV 3.84E-02 3.84E-02
403 163842 SID 3.65E-02 3.65E-02

220 49152 HL 5.07E-02 5.07E-02
220 49152 SHD 5.07E-02 5.07E-02
442 196608 HL 3.56E-02 3.56E-02
442 196608 SHD 3.56E-02 3.56E-02

(a) IV

(b) SID

Fig. 6 Numerical simulation of real part of Projection term (left column), residual term (middle
column), and the equirectangular projection of the residual (right column) for spherical 1D function
under the setting T = t

2
and W =

√
w on Algorithm 3 for t = 403, N = 163842.
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We start with a filter bank η = {a; b1, . . . , bn} ⊂ l1(Z) := {h = {hk}k∈Z ⊂
C |

∑
k∈Z|hk| <∞} satisfying the partition of unity condition:

|â(ξ)|2 +
∑
s∈[n]

|b̂s(ξ)|2 = 1, ξ ∈ R. (13)

where for a filter (mask) h = {hk}k∈Z ⊂ C, its Fourier series ĥ is given by ĥ(ξ) :=∑
k∈Z hke

−2πikξ, for ξ ∈ R, and for a positive integer n, we denote [n] := {1, . . . , n}.
The quadrature (cubature) rule QNj

= (XNj
,wj) on S2 at scale j is a collection

of point set XNj
:= {xj,k | k ∈ [Nj ]} and weight wj := {wj,k | k ∈ [Nj ]}, where Nj

is the number of points at scale j. A quadrature rule QNj
is polynomial-exact up to

degree tj ∈ N0 if
∑Nj

k=1 wj,kp(xj,k) =
∫
S2 p(x)dµ2(x) for all p ∈ Πtj . We denote a

polynomial-exact quadrature rule of degree tj as QNj =: QNj ,tj . The spherical t-design
XN = {x1, . . . ,xN} forms a polynomial-exact quadrature rule QN,t := (XN ,w) of
degree t with weight w ≡ 4π

N . We consider Q := QJ+1
J0

:= {QNj ,tj : j = J0, . . . , J + 1}
be a set of polynomial-exact quadrature rules satisfying tj+1 = 2tj .

For a function f ∈ L1(R), its Fourier transform f̂ is defined by f̂(ξ) :=∫
R f(x)e

−2πixξdx. For a fixed fine scale J ∈ Z, we set

α̂(J+1)

(
ℓ

tJ+1

)
=


1 for ℓ ≤ tJ ,

0 for ℓ > tJ ,

(14)

and we recursively define α̂(j), β̂
(j)
s from α̂(j+1) by

α̂(j)

(
ℓ

tj

)
=α̂(j)

(
2

ℓ

tj+1

)
= â

(
ℓ

tj+1

)
α̂(j+1)

(
ℓ

tj+1

)
, (15)

β̂(j)
s

(
ℓ

tj

)
=β̂(j)

s

(
2

ℓ

tj+1

)
= b̂s

(
ℓ

tj+1

)
α̂(j+1)

(
ℓ

tj+1

)
, s ∈ [n], (16)

for j decreasing from J to J0. Then, we obtain

Ψ = {α(j), β(j)
s | j = J0, . . . , J ; s ∈ [n]}. (17)

Using the above Ψ and Q, we can define the truncated (semi-discrete) spherical
framelet system FJ

J0
(η,Q) from the spherical designs as

FJ
J0
(η,Q) := {φJ0,k | k ∈ [NJ0 ]} ∪ {ψ(s)

j,k | k ∈ [Nj+1], s ∈ [n]}Jj=J0
, (18)

where φj,k and ψ
(s)
j,k are defined by

φj,k(x) :=
√
wj

∑
(ℓ,m)∈Itj

α̂(j)

(
ℓ

tj

)
Y m
ℓ (xj,k)Y

m
ℓ (x), (19)
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ψ
(s)
j,k(x) :=

√
wj+1

∑
(ℓ,m)∈Itj+1

β̂(j)
s

(
ℓ

tj

)
Y m
ℓ (xj+1,k)Y

m
ℓ (x). (20)

The truncated system FJ
J0
(η,Q) is completely determined by the filter bank η and the

quadrature rules Q. It was shown in [13, Theorem 4.3] that FJ
J0
(η,Q) is a tight frame

for ΠtJ . That is, for all f ∈ ΠtJ , we have

f =

N0∑
k=1

vJ0,kφJ0,k +

J∑
j=J0

Nj∑
k=1

n∑
s=1

w (s)
j,kψ

(s)
j,k ,

where vj,k := ⟨f, φj,k⟩L2(S2) and w (s)
j,k := ⟨f, ψ(s)

j,k⟩L2(S2).
Therefore, we can use the spherical tight framelet system to decompose f

into framelet coefficient sequences {vj,k;w (s)
j,k : s = 1, . . . , n}. We then apply the

thresholding techniques for denoising the framelet coefficient sequence.

4.2 Spherical caps

Given a point set XN ⊂ S2, for each point x ∈ XN , We want to get geodesic infor-
mation for the connection of points on XNj . Naturally, we consider the spherical cap.
In one way, we can generate index sets of x based on radius nearest neighbor (rnn)
CR(x). To get this, we first define a spherical cap C(x, r) ⊂ S2 centred at x ∈ S2 with
radius r ∈ N0 by

C(x, r) := {y ∈ S2 : ∥x× y∥ ≤ r},

where ∥x× y∥ is the magnitude of the cross product of x and y. Then the boundary
of C(x, r) is

∂C(x, r) := {y ∈ S2 : ∥x× y∥ = r}.

Then for each point x ∈ XN , we have C(x, r) ∩ XN = {xi1 , . . . ,xis} being the s
points in XN that are within the cap C(x, r). We use CR(x) := {i1, . . . , is} to denote
such an index set for the rnn of x. Furthermore, we use CR(XN ) = {CR(x) : x ∈ XN}
to denote the collection of all such index sets. We show Figure 7 an example of a
spherical cap and the point set inside it.

Additionally, we can generate index sets of x ∈ XN based on k points nearest
neighbor (knn) CK(x) by finding k nearest points {xi1 , . . . ,xik} := C(x, k) ⊂ XN that
are most closed to x. We can use CK(x) := {i1, . . . , ik} to denote the corresponding
index set for x. Similarly, the index set collection CK(XN ) := {CK(x) : x ∈ XN}.

The neighborhood point sets given by C(x, r) or C(x, k) can be used in fine-tuned
denoising for spherical signal processing.
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(a) Partial view (b) General view

Fig. 7 Spherical caps (rnn-based) of a spherical 128-design point set XN = {x1, . . . ,xN} for N =
(t + 1)2 and t = 128. Here we select two points x1 and x600 and choose three different radius for
each of the two points. Left: Partial view (points outside caps are not shown). Right: General view
(points within and outside caps are shown).

4.3 Thresholding techniques

Given a noisy signal fσ with Gaussian white noise N(0, σ2), we have fσ = f + g with
f ∈ ΠtJ and residual g /∈ ΠtJ . Given the truncated spherical framelet system FJ

J0
(η,Q)

as in (18), since f ∈ ΠtJ , we have f =
∑N0

k=1 vJ0,kφJ0,k +
∑J

j=J0

∑Nj

k=1

∑n
s=1 w (s)

j,kψ
(s)
j,k ,

with coefficients vj,k := ⟨f, φj,k⟩ and w (s)
j,k := ⟨f, ψ(s)

j,k⟩.
For f , the coefficients need to be normalized first. we compute the energy norm

∥φj,k∥L2(S2) and ∥ψ(s)
j,k∥L2(S2) for s = 1, . . . , n, then the coefficients become

ṽj,k =
vj,k

∥φj,k∥L2(S2)
, w̃ (s)

j,k =
w (s)
j,k

∥ψ(s)
j,k∥L2(S2)

, s = 1, . . . , n.

Second, the coefficients can be processed with various thresholding techniques.
There are four ways for thresholding in this paper: Global hard (GH) and global
soft (GS) thresholding techniques and local hard (LH) and local soft thresholding

techniques. We represent {v̆j,k; w̆ (s)
j,k : s = 1, . . . , n} as global thresholds and {v̌j,k; w̌ (s)

j,k :
s = 1, . . . , n} as local thresholds.

The global hard threshold (GH) and the global soft (GS) threshold are given by

w̆ (s)
j,k =

{
w̃ (s)
j,k , |w̃ (s)

j,k | ≥ τ,

0, |w̃ (s)
j,k | < τ,

v̆j,k =

{
ṽj,k, |ṽj,k| ≥ τ,

0, |ṽj,k| < τ,
(21)

and

w̆ (s)
j,k =

{
w̃ (s)
j,k − sgn(w̃ (s)

j,k )σ, |w̃ (s)
j,k | ≥ τ,

0, |w̃ (s)
j,k | < τ,

v̆j,k =

{
ṽj,k − sgn(ṽj,k)σ, |ṽj,k| ≥ τ,

0, |ṽj,k| < τ,
(22)
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respectively, where τ = cσ is the threshold value and c is a constant.
The local hard (LH) spherical cap threshold and local soft (LS) spherical cap

threshold are introduced below. For each xj
k ∈ XNj , let it be the centroid of a spherical

cap C(xj
k,m) ⊂ S2, where m could be radius or number of points. We can find

point set XM (xj
k) := XMk

j
⊂ C(xj

k,m), where elements x ∈ XMk
j

are selected in

XNj by the index of Cm(XNj ), we assume that there are Mk
j points in XMk

j
. Now

we have the coefficients on spherical cap to xj
k, which are {ṽj,i : xi ∈ XMk

j
} and

{w̃ (1)
j,i , . . . , w̃ (n)

j,i : xi ∈ XMk
j+1

}, then we averaging each coefficients, which are

w̄ (s)
j,k =

1

Mk
j+1

Mk
j+1∑

i=1

|w̃ (s)
j,i |

2, s = 1, . . . , n, xi ∈ XMk
j+1

(23)

v̄j,k =
1

Mk
j

Mk
j∑

i=1

|ṽj,i|2, xi ∈ XMk
j
. (24)

We define

σ
(s)
j,k =

√
max{w̄ (s)

j,k − σ2, 0}, s = 1, . . . , n, (25)

σ′
j,k =

√
max{v̄j,k − σ2, 0}. (26)

Then we do the threshold value estimation, which is

τ
(s)
j,k =

cσ2

σ
(s)
j,k

, s = 1, . . . , n, (27)

τ ′j,k =
cσ2

σ′
j,k

, (28)

where c is a constant. The local hard (LH) shrinkage is given by

w̌ (s)
j,k =

{
w̃ (s)
j,k , |w̃ (s)

j,k | ≥ τ
(s)
j,k ,

0, |w̃ (s)
j,k | < τ

(s)
j,k ,

(29)

v̌j,k =

{
ṽj,k, |ṽj,k| ≥ τ ′j,k,

0, |ṽj,k| < τ ′j,k.
(30)

Similarly, the shrinkage for local soft (LS) thresholds is given by

w̌ (s)
j,k =

{
w̃ (s)
j,k − sgn(w̃ (s)

j,k )τ
(s)
j,k , |w̃ (s)

j,k | ≥ τ
(s)
j,k ,

0, |w̃ (s)
j,k | < τ

(s)
j,k ,

(31)
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v̌j,k =

{
ṽj,k − sgn(ṽj,k)τ ′j,k, |ṽj,k| ≥ τ ′j,k,

0, |ṽj,k| < τ ′j,k.
(32)

Finally, we need to denormalized the coefficients, which is

ẇ (s)
j,k = ẘ (s)

j,k ∥ψ
(s)
j,k∥L2(S2), s = 1, . . . , n, (33)

v̇j,k = v̊j,k∥φj,k∥L2(S2), (34)

where {̊vj,k; ẘ (1)
j,k , . . . , ẘ (n)

j,k } is one of thresholds (global hard, global soft, local hard and

local soft) we mentioned above. Thus, we obtain new coefficients {v̇j,k; ẇ (1)
j,k , . . . , ẇ (n)

j,k },
which has been denoised by local soft spherical cap threshold.

Following the procedure of the spherical framelet system, we reconstruct the

function with {v̇j,k; ẇ (1)
j,k , . . . , ẇ (n)

j,k }, which is

fthr(x) =

Nj∑
k=1

v̇j,kφj,k +

Nj+1∑
k=1

n∑
s=1

ẇ (s)
j,kψ

(s)
j,k . (35)

For g, on the point set xj
k ∈ XNj , both the hard and soft thresholds are similar to

f . That is, the global hard (GH) threshold is given as

gτ1(x
j
k) =

{
g(xj

k), |g(xj
k)| ≥ τ1,

0, |g(xj
k)| < τ1,

(36)

and the global soft (GS) threshold is given as

gτ1(x
j
k) =

{
g(xj

k)− sgn(g(xj
k))σ, |g(xj

k)| ≥ τ1,

0, |g(xj
k)| < τ1,

(37)

where τ1 = c1σ is the threshold value and c1 is a constant. The local hard (LH)
spherical cap threshold for xj

k ∈ XNj
uses XMk

j
⊂ C(xj

k,m), which is

gthr(x
j
k) =

{
g(xj

k), |g(xj
k)| ≥ τj,k,

0, |g(xj
k)| < τj,k,

(38)

where τj,k = c1σ
2√

max{ḡ(xj
k)−σ2,0}

and ḡ(xj
k) with the form

ḡ(xj
k) =

1

Mk
j

Mk
j∑

i=1

|g(xj
i )|

2, xj
i ∈ XMk

j
, (39)
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while the local soft (LS) spherical cap threshold for xj
k ∈ XNj uses XMk

j
⊂ C(xj

k,m),

which is

gthr(x
j
k) =

{
g(xj

k)− sgn(g(xj
k))τj,k, |g(xj

k)| ≥ τj,k,

0, |g(xj
k)| < τj,k.

(40)

Hence, we obtain gthr after local soft thresholding.

4.4 Denoising of Wendland function

In this section, we give some experiments to illustrate the efficiency of denoising. That
is, after projecting noisy function fσ with noise level σ on Πt space on spherical t-
design point sets, we have fσ = f + g. We use spherical t-design point sets along with
its equal weight quadrature rules for framelet decomposition and reconstruction on
S2. Finally, we apply the thresholds introduced in Section 4.3 for denoising. Therefore,
we have a new function Fthr = fthr + gthr.

Based on the spherical t-design point sets (collected by TR-PCG method) in [13]
and the experiments of the best polynomial degrees of projection errors of Wendland
functions in Section 3.2, we choose spherical tj-design point sets with degree tj =
16, 32, 64 both in SPD and SUD, tj = 11, 24, 49 in SID, and tj = 12, 26, 54 in SHD
(j = 1, 2, 3). Then we use XNJ

to project noisy data fσ = f4 + Gσ (generated by
normalized Wendland function f4 in (12) and Gaussian white noise Gσ with noise
level σ|f4|max and σ = [0.05 : 0.025 : 0.2]) on ΠtJ space with maximum degree tJ
(J = 3) by Algorithm 3 under the setting of maximum iterations Kmax = 1000 and
termination tolerance ε = 2.2204e-16 (floating-point relative accuracy of MATLAB) to
obtain fσ = f + g, then decompose and reconstruct using a 2-level spherical framelet
system FJ

J0
(η,Q) with four kinds of thresholds for denoising: global hard (GH), global

soft (GS), local hard (LH) and local soft (LS).
We use SNR for measuring original signal f4 and the rest of noise Fthr−f4, which is

SNR(f4, Fthr) := 10 log10(
∥f4∥

∥Fthr−f4∥ ) in different filter banks ηk for k = 1, 2, 3 (see [13,

Section 5.1]), and different point sets XNj
corresponding with degree tj . For finding

the suitable constants in Section 4.1, we do a lot experiments by changing the values of
c and c1 to see the variation of SNR(f4, Fthr), we give a general view for the behavior
of SNR in using η3 at σ = 0.05 in Figure 9. Then we set c = 2.5, c1 = 3 in GH and
LH, c = 1, c1 = 3 in GS and LS. For local thresholds, the spherical cap we take cap
layer orders i = 15, 22, 27 for filters η1, η2, η3, respectively. Notice that all the settings
of thresholds may not obtain the best values of SNR(f4, Fthr), but are the mildest
values. We show the results in Table 7 for different initial point sets of spherical t-
designs. In tables, we can see: SNR0 are the SNR(f4, fσ) for different σ values; For
each thresholding method, the first row to the third row are: SNR(f4, Fthr) values of
using η1, η2, η3, respectively.

As we can see from the tables, local threshold methods (especially local soft (LS))
are more beneficial than global thresholds, which are reasonable in construction. The
behavior of different filters is η3 > η2 > η1, which means the more high pass filters, the
better behavior in denoising. One interesting discovery is that the initial icosahedron
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Table 7 Wendland f4 denoising results

QNj
Thr σ 0.05 0.075 0.1 0.125 0.15 0.175 0.2

SPD

SNR0 13.63 10.11 7.61 5.67 4.09 2.75 1.59

GH
η1 18.51 15.72 13.90 13.08 12.50 11.99 11.51
η2 21.50 17.64 15.11 13.89 13.23 12.74 12.28
η3 23.25 19.13 15.75 14.31 13.55 13.09 12.67

GS
η1 19.10 16.45 14.65 13.26 12.13 11.21 10.43
η2 20.50 17.48 15.43 13.89 12.66 11.64 10.80
η3 21.29 18.09 15.90 14.24 12.93 11.86 10.98

LH
η1 19.94 16.97 15.29 14.29 13.80 12.84 12.27
η2 22.80 19.53 17.43 15.91 14.55 13.28 12.81
η3 24.36 21.04 18.82 17.15 15.52 13.89 13.21

LS
η1 20.67 18.06 16.42 15.21 14.19 13.24 12.31
η2 23.11 20.05 18.03 16.47 15.18 14.02 12.88
η3 24.48 21.25 19.03 17.30 15.82 14.49 13.19

SUD

SNR0 13.63 10.11 7.61 5.67 4.09 2.75 1.59

GH
η1 18.56 15.81 13.69 12.77 12.15 11.58 10.87
η2 21.57 17.80 14.74 13.61 13.07 12.50 11.90
η3 22.97 19.27 15.30 14.07 13.47 12.92 12.34

GS
η1 19.05 16.29 14.47 13.07 11.91 10.96 10.17
η2 20.44 17.40 15.30 13.71 12.45 11.43 10.58
η3 21.15 17.92 15.73 14.07 12.75 11.68 10.81

LH
η1 19.77 16.85 15.39 14.49 13.92 13.03 12.49
η2 22.51 19.34 17.25 15.82 14.51 13.36 12.68
η3 23.91 20.48 18.36 16.84 15.36 13.84 13.04

LS
η1 20.70 18.02 16.39 15.23 14.22 13.20 12.18
η2 22.98 19.98 17.95 16.38 15.09 13.90 12.70
η3 24.15 20.90 18.73 17.07 15.63 14.29 12.97

SID

SNR0 13.63 10.11 7.61 5.67 4.09 2.75 1.59

GH
η1 18.61 14.60 12.60 11.26 9.35 7.69 7.10
η2 22.22 18.39 15.40 12.96 10.18 8.32 7.69
η3 23.51 20.02 16.94 14.18 10.92 8.69 7.96

GS
η1 17.07 14.04 12.04 10.57 9.41 8.43 7.58
η2 18.62 15.37 13.12 11.42 10.06 8.94 7.98
η3 19.25 15.94 13.62 11.84 10.42 9.24 8.26

LH
η1 19.92 16.44 14.03 12.65 11.61 10.88 10.25
η2 23.44 19.98 17.43 15.78 14.30 13.10 11.94
η3 24.66 21.21 18.82 17.00 15.39 14.02 12.79

LS
η1 20.13 16.86 14.70 13.15 11.91 10.82 9.77
η2 23.34 19.90 17.44 15.51 13.90 12.43 11.05
η3 24.54 21.03 18.51 16.46 14.68 13.09 11.59

SHD

SNR0 13.58 10.05 7.55 5.62 4.03 2.69 1.53

GH
η1 17.83 14.74 12.29 10.17 8.97 8.14 7.52
η2 21.19 17.42 14.05 11.19 9.70 8.81 8.10
η3 22.70 18.63 15.29 11.95 10.09 9.16 8.41

GS
η1 17.02 14.04 12.03 10.52 9.32 8.33 7.51
η2 18.36 15.11 12.88 11.21 9.87 8.79 7.91
η3 18.93 15.61 13.31 11.57 10.18 9.04 8.11

LH
η1 19.54 15.86 14.02 12.60 11.40 10.32 9.34
η2 22.14 18.56 16.06 14.40 13.09 11.77 10.55
η3 23.23 19.69 17.16 15.25 13.85 12.55 11.25

LS
η1 19.91 16.68 14.64 13.07 11.76 10.60 9.50
η2 22.21 18.80 16.42 14.57 13.00 11.59 10.28
η3 23.21 19.70 17.22 15.26 13.59 12.07 10.64
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point sets of spherical t-designs (SID) starting from t = 49 (the smallest degree as
finest scale) are adapted with the local hard threshold (LH) with good performance
for noise level with σ = 0.05 to 0.1. Moreover, the initial spiral point sets of spherical
t-designs (SPD) are reliable in more general applications since we can generate it for
what we require with various relations of t and N . Figur 8 shows the behavior of
denoised and reconstructed functions.

(a) f4 (b) f0.05 (c) f

(d) g (e) Fthr (f) f4 − Fthr

Fig. 8 The behavior of denoising Wendland f0.05 by η3 with LS on SPD with tj = 16, 32, 64

Fig. 9 The general view for the behavior under different setting of c and c1 in denoising f0.05 by η3
on SPD for tj = 64, 32, 16 at cap layer order i = 27.
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5 Conclusions

In this paper, we present the line search with the restart conjugate gradient method
(LS-RCG) for obtaining numerical spherical t-design point sets. We also compare
the different approaches (LS-RCG and TR-PCG, full Hessian H and approximation
Hessian H2) from the results of their numerical spherical t-designs. In general, the
LS-RCG consumes a lot in the line search iterations, whereas the TR-PCG costs
fewer iterations in finding the trust regions. However, there are no significant differ-
ences in the accuracy of full Hessian and approximation Hessian. Then, we study the
approximation of spherical functions (Wendland functions with certain smoothness)
and non-smooth functions (spherical 1D function) by projecting them with orthogonal
polynomial using spherical t-designs point sets on S2. The results show that choosing
different weights and different types of spherical t-designs will affect the error accuracy
of projects. Moreover, we introduce the spherical signal processing based on the best
projection degree of polynomials in Wendland functions. We use spherical framelets in
[13] from spherical designs under four different types of thresholding techniques which
the fine-tuned spherical caps may demand. We show that all the point sets perform
well under the spherical framelets in the denoising procedure, indicating the spherical
designs have a great potential in spherical data processing.

Acknowledgments. The authors thank the anonymous reviewers for their con-
structive comments and valuable suggestions that greatly help the improvement of the
quality of this article. This work was supported in part by the Research Grants Coun-
cil of Hong Kong (Project no. CityU 11309122, CityU 11302023, and CityU 11301224)
and a grant from the Innovation and Technology Commission of Hong Kong (Project
no. MHP/054/22).

Declarations

• Funding. This work was supported in part by the Research Grants Council of Hong
Kong (Project no. CityU 11309122, CityU 11302023, and CityU 11301224) and a
grant from the Innovation and Technology Commission of Hong Kong (Project no.
MHP/054/22).

• Conflict of interest/Competing interests. The authors declare that they have no
conflict of interest and have no competing interests.

• Ethics approval and consent to participate. The authors claim the submitted work
is original and does not have been published elsewhere in any form or language.

• Consent for publication. The authors understand that Springer Nature reserves the
right to remove an article, chapter, book, or other content from its online platforms
at any time.

• Data availability. Not applicable.
• Materials availability. Not applicable.
• Code availability. Not applicable.
• Author contribution. The authors state that they contribute equally to this article.

27



References

[1] Deng, J., Russakovsky, O., Krause, J., Bernstein, M.S., Berg, A., Fei-Fei, L.:
Scalable multi-label annotation. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 3099–3102 (2014)

[2] Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering
to weave an information tapestry. Communications of the ACM 35(12), 61–70
(1992)

[3] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. Advances in neural
information processing systems 26 (2013)
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