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Abstract

Graph convolutional networks (GCNs) have emerged as powerful models for graph learning tasks, exhibiting promising
performance in various domains. While their empirical success is evident, there is a growing need to understand their essential
ability from a theoretical perspective. Existing theoretical research has primarily focused on the analysis of single-layer GCNs,
while a comprehensive theoretical exploration of the stability and generalization of deep GCNs remains limited. In this paper,
we bridge this gap by delving into the stability and generalization properties of deep GCNs, aiming to provide valuable insights
by characterizing rigorously the associated upper bounds. Our theoretical results reveal that the stability and generalization
of deep GCNs are influenced by certain key factors, such as the maximum absolute eigenvalue of the graph filter operators
and the depth of the network. Our theoretical studies contribute to a deeper understanding of the stability and generalization
properties of deep GCNs, potentially paving the way for developing more reliable and well-performing models.
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1 INTRODUCTION

RAPH-structured data is pervasive across diverse domains, including knowledge graphs, traffic networks, and social
Gnetworks to name a few [1], [2]. Several pioneering works [3], [4] introduced the initial concept of graph neural
networks (GNNSs), incorporating recurrent mechanisms and necessitating neural network parameters to define contraction
mappings. Concurrently, Micheli [5] introduced the neural network for graphs, commonly referred to as NN4G, over
a comparable timeframe. It is worth noting that the NN4G diverges from recurrent mechanisms and instead employs
a feed-forward architecture, exhibiting similarities to contemporary GNNs. In recent years, (contemporary) GNNs have
gained significant attention as an effective methodology for modeling graph data [6]-[11]. To obtain a comprehensive
understanding of GNNs and deep learning for graphs, we refer the readers to relevant survey papers for an extensive
overview [12]-[15].

Among the various GNN variants, one of the most powerful and frequently used GNNs is graph convolutional
networks (GCNs). A widely accepted perspective posits that GCNs can be regarded as an extension or generalization
of traditional spatial filters, which are commonly employed in Euclidean data analysis, to the realm of non-Euclidean
data. Due to its success on non-Euclidean data, GCN has attracted widespread attention on its theoretical exploration.
Recent works on GCNs includes understanding over-smoothing [16]-[19], interpretability and explainability [20]-[24],
expressiveness [25]-[27], and generalization [28]-[41]. In this paper, we specifically address the generalization of GCNs to
provide a bound on their generalization gap.

Investigating the generalization of GCNs is essential in understanding its underlying working principles and capabilities
from a theoretical perspective. However, the theoretical establishment in this area is still in its infancy. In recent work [36],
Verma and Zhang provided a novel technique based on algorithmic stability to investigate the generalization capability
of single-layer GCNs in semi-supervised learning tasks. Their results indicate that the stability of a single-layer GCN
trained with the stochastic gradient descent (SGD) algorithm is dependent on the largest absolute eigenvalue of graph filter
operators. This finding highlights the crucial role of graph filters in determining the generalization capability of single-layer
GCNs, providing guidance for designing effective graph filters for these networks. On the other hand, a number of prior
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studies have shown that deep GCNss possess greater expressive power than their single-layer counterparts. Consequently,
it is essential to extend the generalization results of single-layer GCNs to their multi-layer counterparts. This will help us
understand the effect of factors (e.g., graph filters, number of layers) on the generalization capability of deep GCNs.

In this paper, we investigate the generalization properties of deep GCNs. Building on the stability framework of [36],
we analyze the uniform stability of deep GCNs in semi-supervised learning, while developing a more refined theoretical
treatment suited to deep architectures. Our analysis reveals a strong connection between the generalization gap of deep
GCNs and the characteristics of the graph filter, particularly the number of layers. In particular, we show that when the
maximum absolute eigenvalue (or the largest singular value) of the graph filter operator remains invariant with respect to
graph size, the generalization gap diminishes asymptotically at a rate of O(1/1/m) as the training sample size m grows.
This result explains why normalized graph filters generally outperform non-normalized ones in deep GCNs. Furthermore,
our findings indicate that increasing depth can enlarge the generalization gap and consequently degrade performance,
thereby offering theoretical guidance for selecting an appropriate number of layers when designing deep GCNs. We
then empirically validate our theoretical results through experiments on three benchmark datasets: Cora, Citeseer, and
Pubmed, demonstrating strong consistency between theory and practice. In addition, we further discuss how our theoretical
framework extends to advanced architectures, including GCNII [42] and Graph Transformer [43], thereby highlighting its
broader applicability and its potential to inspire future theoretical studies on more complex GNN variants.

The key contributions of our paper are as follows:

e We establish the uniform stability of deep GCNs trained with SGD, thereby extending the earlier results on
single-layer GCNs presented in [36].

e We provide a rigorous upper bound for the generalization gap of deep GCNs and highlight the key factors that
govern their generalization ability. Moreover, we further discuss how our theoretical framework extends naturally
to advanced GNN architectures, including GCNII and Graph Transformer models.

e We conduct empirical studies on three benchmark datasets for node classification, which strongly validate our
theoretical findings regarding the influence of graph filters, as well as the depth and width of deep GCNss.

The remainder of this paper is organized as follows. In Section 2, an overview of prior studies on the generalization
of GCNs (or generic GNNSs) is presented, along with a comparative analysis highlighting the similarities and distinctions
between our work and previous research. Section 3 offers an exposition of the essential concepts. The primary findings
of this paper are given in Section 4. Experimental studies designed to validate our theoretical findings are presented in
Section 5. In Section 6, we discuss how our findings extend to advanced GNN architectures, including GCNII and Graph
Transformer models. Section 7 concludes the paper with additional remarks. The detailed proofs of our theoretical results
are deferred to the Appendix section.

2 RELATED WORK

Theoretical studies on the generalization capability of GCNs mainly employ three methodologies: Vapnik—Chervonenkis
(VC) dimension [30], [34], Rademacher complexity [31]-[35], and algorithmic stability [36], [37], [44], [45]. Other approaches
include PAC-Bayesian theory [38], [39], neural tangent kernels (NTKs) [40], [41], algorithm alignment [46], [47], and
methods from statistical physics and random matrix theory [48]. For a broader perspective, we refer readers to the recent
survey [49], which provides a comprehensive overview of generalization theory for message-passing GNNs.

VC-Dimension and Rademacher Complexity. Scarselli et al. [30] study the generalization capability of GNNs by
deriving upper bounds on the growth order of their VC-dimension. While VC-dimension is a classical tool for establishing
learning bounds, it does not capture the structure of the underlying graph. Similarly, [34] provides VC-dimension-based
error bounds for GNNSs, but the results are trivial and fail to reflect the benefits of degree normalization. To address
graph-specific effects, Esser et al. [34] analyze upper bounds using transductive Rademacher complexity (TRC), highlighting
how graph convolutions and network architectures influence generalization. Tang et al. [35] establish high-probability
generalization bounds for popular GNNs via TRC-based analysis of transductive SGD. However, their bounds scale with
the parameter dimension, limiting tightness for large models.

Algorithmic Stability. Beyond capacity-based measures, algorithmic stability serves as an important framework for
understanding GNN generalization. Building on the work of Hardt et al. [50], Verma and Zhang [36] show that one-layer
GCNs exhibit uniform stability and provide generalization bounds that scale with the largest absolute eigenvalue of
the graph filter operator. Extending this line, Liu et al. [44] analyze the stability of single-layer GCNs trained with
an SGD-proximal algorithm under ¢,-regularization, yielding a more refined theoretical understanding. These studies,
however, remain restricted to single-layer architectures. Cong et al. [51] examine GNNs under uniform transductive
stability, showing that deeper models improve stability and reduce generalization error, whereas our work adopts a
different stability formulation. Ng and Yip [37] investigate stability and generalization in two-layer GCNs under an
eigen-domain formulation, relying on spectral graph convolution [52]. Because this formulation requires computationally
expensive eigendecomposition of the graph Laplacian, it does not scale to large node-classification tasks. Within this
methodological line, the closest studies to ours are [36] and [37], but our analysis focuses on deep GCNs without assuming
a spectral-based formulation.
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Other Methodologies. Alternative perspectives on GNN generalization also exist. The pioneering work of [38] introduces
PAC-Bayesian analysis for GCNs and message-passing neural networks, later extended in [39] to provide tighter bounds
linked to the graph diffusion matrix. The NTK framework introduced by [40] enables analysis of infinitely wide GNNs
trained by gradient descent, with [41] extending this framework to multi-layer settings. However, NTK-based analyses
typically focus on graph classification rather than the more challenging transductive node-classification setting. Additional
work explores distinct theoretical frameworks, including topology-sampling techniques [53], analysis on large random
graphs [54], and NTK-based loss landscape analysis of wide GCNs [55]. For further perspectives, we refer readers to the
survey [56], which synthesizes emerging theoretical approaches to characterizing GNN capabilities.

3 PRELIMINARIES AND NOTATIONS

In this section, we describe the problem setup considered in this paper and review fundamental concepts of uniform
stability for training algorithms, which form the basis of our subsequent analysis. For clarity, we first summarize the main
symbols used in this paper in the table below.

TABLE 1
Frequently used notations.

Notation Description

g(L)  graph filter operator used in the considered deep GCNs
Cy the 2-norm of g(L), i.e., Cy := ||g(L)|2
Cx  Frobenius norm of the input feature X, i.e.,, Cx := || X|| ¢
K number of hidden layers of the considered deep GCNss
g, Vs parameters w.r.t the continuity of activation function o (-)
Vo  the derivative of activation function o (-)
oy, vy parameters w.r.t the continuity of the loss function £(-, -)
M the upper bound of loss function £(-, -)
As  the learning algorithm for deep GCNs trained on dataset S

m the number of samples in the trained dataset S
n the learning rate of As

T number of iterations for training .As using SGD
fm  the uniform stability of a learning algorithm As
Ox the indicator vector with respect to node x

é the indicator vector with respect to index ¢

X*)  the output feature matrix of the k-th layer
AX ) the variation of X(*) in two GCNs
W) the parameter matrix specific to the k-th layer

B upper bound for 2-norm of {W) ... W) w}
AW*)  the variation of W) in two GCNs
N A= {AWD AW Aw)

ng) the learnt W () trained after ¢ iterations
AW£k> the variation of ng) of two GCNis trained after ¢ iterations
N0, DO ={AWD AW Aw, )

3.1 Deep Graph Convolutional Networks

Let G = (V,&,A) denote an undirected graph with a node set V of size N, an edge set £ and the adjacency matrix
A € RVXN Asusual, L := D — A is denoted as its conventional graph Laplacian, where D € RV*¥ signifies the degree
diagonal matrix. Furthermore, g(L) € RV *¥ represents a graph filter and is defined as a function of L (or its normalized
versions). We denote by C, = ||g(L)||2 the maximum absolute eigenvalue of a symmetric filter g(L) or the maximum
singular value of an asymmetric g(L).

We denote by X = (x1,Xa,...,xy)" € RV*4 the input features (dy stands for input dimension) and X; € R% the
node feature of node j, while Cx = ||X||r represents the Frobenius norm of X. For the input feature X, a deep GCN with
g(L) updates the representation as follows:

XK = o(g(L)XEIWH), k=12, K,

where X(*) € RN*4 is the output feature matrix of the k-th layer with X(©) = X, the matrix W(*) € R%-1%dx represents
the trained parameter matrix specific to the k-th layer. The function o(-) denotes a nonlinear activation function applied
within the GCN model. For simplicity, we set a final output in a single dimension, that is, the final output label of N nodes
is given by

y = o(g(L)Xw), )

where y € RY and w € R9x.



As defined above, the deep GCN (1) with learnable parameters
0 ={wWh w? W w}

is a K + 1 layers GCN with K hidden layers and a final output layer, and in the case of K = 0, it degenerates into the
single-layer GCN studied in [36].

3.2 The SGD Algorithm
We denote by D the unknown joint distribution of input features and output labels. Let

S = {(5,u)}

be the training set i.i.d sampled from D and As be a learning algorithm for a deep GCN trained on &. For a deep GCN
model (1) with parameters § = {W® ... W) w}, denote As(x) = f(x/0s) = o (8, (L)X w) as the output of
node x, where g is the corresponding learned parameter and Jx is the indicator vector with respect to node x. For a loss
function £ : R x R — R, the generalization error or risk R(Ag) is defined by

R(As) = E, [ ((f(x]65),9)]

where the expectation is taken over z = (x,y) ~ D, and the empirical error or risk Remp (As) is
emp AS Zé X]|95 yj)

When considering a randomized algorithm Ag,

gen(As) = B4 | R(As) = Remp(As)| @

gives the generalization gap between the generalization error and the empirical error, where the expectation E 4 corresponds
to the inherent randomness of As.

In this paper, As is considered to be the algorithm given by the SGD algorithm. Following the approach employed in
[36], our analysis focuses solely on the randomness inherent in As arising from the SGD algorithm, while disregarding the
stochasticity introduced by parameter initialization. The SGD algorithm for a deep GCN (1) aims to optimize its empirical
error on a dataset S by updating parameters iteratively. For ¢ € N and considering the parameters 6;_; obtained after
t — 1 iterations, the t-th iteration of SGD involves randomly drawing a sample (x,y:) from the dataset S. Subsequently,
parameters 6 are iteratively updated as follows:

Or = 01—1 — nVol(f(xt|0—1), y1), ®)
with the learning rate 7 > 0.

3.3 Uniform Stability

For the sake of estimating the generalization gap €gen(As) of As, we invoke the notion of uniform stability of As as
adopted in [36], [57].
Let

i i—1 m
S\ :{(Xj7yj)}j:1U{(Xj7yj)}j:¢+1
be the dataset obtained by removing the ¢-th data point in S, and
7 i—1 m
St = {(Xj?yj)}jzl U {(X;vy:)} U {(Xjayj)}j:,‘_,_l

the dataset obtained by replacing the i-th data point in S. Then, the formal definition of uniform stability of a randomized
algorithm As is given in the following.

Definition 1 (Uniform Stability [36]). A randomized algorithm As = f(x|s) is considered to be ji,,-uniformly stable in
relation to a loss function ¢ when it fulfills the following condition:

[0, )] ~ Ealt(@ )] | < pim, @

where z = (x,y) ~ D, § = f(x]0s) and §' = f(x|05\:).

As shown in Definition 1, y,, indicates a bound on how much the variation of the training set S can influence the output
of Ag. It further implies the following property:

Ealt(3,9)] — Eal0(, )] | < 2tm, ©)

sup
S,z



where z = (x,y) ~ D, § = f(x]0s) and §' = f(x|0s:).
Moreover, it is shown that the uniform stability of a learning algorithm As can yield the following upper bound on the
generalization gap €gen (As).

Lemma 1 (Stability Guarantees [36]). Suppose that a randomized algorithm As is pi,,-uniformly stable with a bounded
loss function £. Then, with a probability of at least 1 — ¢, considering the random draw of S,z with § € (0,1), the
following inequality holds for the expected value of the generalization gap:

log 3

b

€gen(As) < 2t + (4mum + M)

2m

where M is an upper bound of the loss function ¢, i.e., 0 < £(-,-) < M.

4 MAIN RESULTS

This section presents an established upper bound on the generalization gap €gen(As) as defined in (2) for deep GCNs
trained using the SGD algorithm. Notably, this generalization bound, derived from a meticulous analysis of the comprehensive
back-propagation algorithm, demonstrates the enhanced insight gained through the utilization of SGD.

4.1 Assumptions
First, we make some assumptions about the considered deep GCN model (1), which are necessary to derive our results.

Assumption 1. The activation function o : R — R is assumed to satisfy the following:

1) a,-Lipschitz:

lo(2) —o(y)| < aclz —y|, Va,y eR.
2)  vy-smooth:
‘VU(Z‘) - vo—(y)‘ < V0|x - y|7 V%y eR.

3) o(0)=0.
With these assumptions, the derivative of o, denoted by Vo, is bounded, i.e., |Vo ()| < a,, and ||o(X)||r < oo || X[ F holds
for any matrix X. It can be easily verified that activation functions such as ELU and tanh satisfy the above assumptions.

Assumption 2. Let § and y be the predicted and true labels, respectively. We denote the loss function ¢ : [Ymin, Ymax] X
[Ymin, Ymax] = R by £(§,y). Similar to [37], we adopt the following assumptions for £.

1)  The loss function ¢ exhibits continuity with respect to the variables (¢, y) and possesses continuous differentiability
with respect to 3.
2) The loss function ¢ satisfies a,-Lipschitz with respect to :

|£(Q7 y) - E(g/> y)‘ < a€|g - :lj/‘, v yAu Q/7 ye [ymirn ymax]~
3) The loss function £ meets v,-smooth with respect to ¢:

ol . ol . A .
f(yay) - f(ylvy) < V£|£l/ - y/|7 v yvy/vy € [yminvymax]'
oy oy

With these assumptions, \g—g(gj, y)| < ap, and ¢ is bounded, i.e., 0 < 4(§,y) < M.

Assumption 3. The learned parameters {W) ... W) w1 during the training procedure with limited iterations
satisfies

max { WOz, [WE o, flwlf < B.

4.2 Generalization Gap

This section presents the main results of this paper. Under the assumptions made in Section 4.1, the bound on the
generalization gap of deep GCNs is provided in the following theorem.

Theorem 1 (Generalization gap for deep GCNs). Consider the deep GCN model, defined in equation (1), which comprises
K hidden layers and utilizes g(L) as the graph filter operator. The model is trained on S using SGD for T iterations.
Under Assumptions 1, 2 and 3 stated in Section 4.1, the following expected generalization gap is valid with a probability
of at least 1 — 8, where 6 € (0, 1):

€yen(As) sjﬁ{()(((m D +es) ") + 0y 14 } ©



where
k1 i=(vea —&-agy[,)(Baan)QKC’;C)Q(—i—a(g(Ba,,C’ YKl 2CQCX7 (7)
and

K-
Ko = vy (Ba,Cy C’2CX(Z j+1)(Ba,C, )) (8)

A fundamental correlation between the generalization gap and the parameters governing deep GCNss is induced by
Theorem 1. This correlation implies that the uniform stability of deep GCNSs, trained using the SGD algorithm, exhibits
an increase with the number of samples when the upper bound approaches zero as the sample size m tends to infinity.
Specifically, it is observed that if the value of Cy (presenting the largest absolute eigenvalue of a symmetric g(L) or the
maximum singular value of an asymmetric g(L)) remains unaffected by the size N, a generalization gap decaying at the
order of O(1/+/m) is obtained. To compare with the result in [36], let us discuss at length the role of g(L) and the hidden
layer number K on the generalization gap.

According to (7) and (8), k1 = O(CEK +2) and ko = O(CgK “). Therefore, the bound on the generalization gap of

deep GCNs in Theorem 1 is
1 [log 5
€gen(As) < W (O (CZT(K+1)) +M 25) . )

When K = 0, the GCN model (1) degenerates into the single-layer GCN model considered in [36]. At this point, according
to (9), we have

as) < - [o(czr) + ary |83 10
Egen( S)_ﬁ (g>+ T ’ ()
which is the same as the result of [36].

Remarks. Based on (9), we present certain observations regarding the impact of filter g(L) and the hidden layer number
K on the generalization capacity of deep GCNs in (1).

o Normalized vs. Unnormalized Graph Filters: We examine the three most commonly utilized filters: 1) g; (L) =
A +1,2) g(L) = D"Y/2AD"1/2 + 1, and 3) g3(L) = D~'A + L For the unnormalized filter g;, its maximum
absolute eigenvalue is bounded by O(N). Consequently, as the value of m approaches the magnitude to N, the
upper bound indicated by (9) tends towards O(NP) for some p > 0, leading to an impractical upper bound when
N become infinitely large. On the contrary, for two normalized filters go and g3, their largest absolute eigenvalues
are bounded and independent of graph size N. Therefore, both filters yield a diminishing generalization gap at a
rate of O( —) as m goes to infinity. This discovery underscores the superior performance of normalized filters over
unnormahzed counterparts in deep GCNs. This observation is consistent with the findings in [36], [37].

o Low-pass vs. High-pass Graph Filters: Our theoretical results are not restricted to the choice of g(L) as either a
low-pass or a hlgh—pass filter. To illustrate, consider two exponent1al filters with symmetric L: i) a low-pass filter
Glow(A) = 7% and ii) a high-pass filter ghignh(A) =1 — —ax’® , where a,b > 0. In this setting, it is straightforward
to verify that

[[gnign (L) [l2 < [[gow (L) ||z = 1.

Consequently, both filters lead to a vanishing generalization gap at the rate of O ( ) as m — oo.

o The Role of Parameter K: It is evident that, when the values of C;y and T are fixed, the upper bound (9) exhibits
an exponential dependence on parameter K. This observation 1mp11es that a larger value K leads to an increase in
the upper bound of the generalization gap, thereby offering valuable insights for the architectural design of deep
GCNe . This finding diverges from the ones presented in [36], [37], as these studies do not account for generic deep
GCNs and overlook the significance of the parameter K.

Furthermore, based on Theorem 1, we give a brief analysis of the impact of d; (width of the k-th layer) on the
generalization. Actually, the impact of dj, on the generalization is reflected in its impact on B. More specifically, let us
consider the case where parameters {W®) ... . W{X) w} belong to the set X¢, where

Xe = {W: W] <&},

ie., X is the collection of all matrices whose elements’ absolute values are all less than £. At this point, for W ¢

R4 -1%dr e have
sup  [WH|, < sup  [WH|p < &/di_1dy.
W) €X W €x,

Therefore, a larger dj, (i.e., width of the k-th layer) results in a larger upper bound of |[W )|y, which implies that a larger
dy, results in a larger B (see Assumption 3 in Section 4.1). Finally, Theorem 1 indicates that a larger B leads to a larger
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bound on the generalization gap, thus we conclude that a larger dy leads to a larger bound on the generalization gap. To
justify this argument, we add some experimental studies in Section 5. The empirical results are consistent with our analysis.

TABLE 2
Comparison of the generalization gap estimated based on uniform stability.

Reference Model Architecture Estimated Upper Bound of the Generalization Gap
1
[36] shallow ﬁ (O((l + nvzvacg)T> + ]\/[\/log2 3 )
) T—1 T—1 log 1
[37] shallow T (O <na¢agc2,T t;) c6,t 3:1;[+1(1 + nc;,,s)) + My —5% )
L log +
B shallow Jefo(cancin £+ 2 4oy 51}
1 T log L
Ours deep T O(((K + D)nra + 7If€2) ) + My =2

Note: m is the number of samples in the trained dataset; M is the upper bound of loss function £(-, -); n > 0 is the learning rate; 6 € (0, 1); T' is the number
of iterations for training As using SGD; C, represents the 2-norm of filter g(L); as, v, are two parameters w.r.t the continuity of activation function o (-); avg,

vy are two parameters w.r.t the continuity of the loss function £(-, ). c2,¢, ¢s,¢, ¢5,¢ > 0 (t = 0,1, ..., T) represent some specific parameters defined in [37].
Cpa = p(pzisl)kt (Be/A)B~P)/P where B, > 0 is a parameter related to loss function £(-,-), 1 < p < 2, A > 0 is the regularization parameter and A; > 0
is another regularization parameter dependent on A and ¢, as detailed in [44]. K is number of hidden layers of the considered deep GCNs; 1 and k2 are two

parameters as defined in (7) and (8).

Table 2 offers a concise summary of various upper bounds on the generalization gap, derived through the application
of uniform stability. From Table 2, we can see that all the works derive a generalization gap decaying at the order of
O(1/+/m). However, compared to the other three works which only consider shallow GCNs, our work explores the case
of deep GCNs. We should point out that the generalization of single-layer GCNs into deep GCNss is not trivial. To derive
the results for deep GCNs, we tackle two significant challenges that arise specifically in the context of deep GCNs, which
are unique to deep GCNs and are non-existent in single-layer models. The first challenge is the derivation of the gradient
of the final output with respect to the learnable parameters across multiple layers, which requires determining how the
gradient of the overall error of a GCN is shared among neurons in different hidden layers. In particular, in Appendix
A, we provide a recursive formula to compute the related gradients. The second challenge is the evaluation of gradient
variations between GCNs trained on different datasets. In the single layer case, since the input feature is the same, the
variation of the related gradient is only dependent on the variations of learnable parameters. While, in the case of deep
GCN:s, the variation of the related gradients is also dependent on the variations of the gradients of the final output with
respect to the hidden layer outputs. Please see Lemma 7 and its proof for details (see Appendix C).

4.3 Stability Upper Bound

In this subsection, we establish the uniform stability of SGD for deep GCNs, which is the key to further proving Theorem
1

Theorem 2 (Uniform stability of deep GCNs). Consider the deep GCNs defined by equation (1), which are trained on a
dataset S using the SGD algorithm for a total of T iterations and denoted as .As. Assume that Assumptions 1, 2 and 3
stated in Section 4.1 are satisfied. Then, Ags is iy, -uniformly stable, with p,,, satisfying the following condition:

cZ t—1
o < (14 (K + Dmr +m2) (11)

t=1
where
C:=(K+ l)naf(BaUCg)QKa?,C’ZC’)Z(,
k1 and k9 are defined by (7) and (8), respectively.

With a straightforward calculation, one can see that

1 T
pon < -0 (5 + e ) ),

which decays at the rate of % as m tends to infinity. Together with Lemma 1, it yields the result of Theorem 1.
Proof Sketch for Theorem 2. We prove Theorem 2 in the following two steps.

o Step 1: We begin by bounding the stability of deep GCNs with respect to perturbations in the learned parameters
caused by changes in the training set. The result is given in Lemma 2.

e Step 2: Next, we provide a bound for the perturbation of the learned parameters. The result is presented in Theorem
3.
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Consider As, a set of deepGCNs defined by (1), trained on the dataset S using SGD for T iterations. Let 6, =
{ng), e 7WgK),wt} and 0] = {ng)/, . ,WgK)l,wg} (with 0y = 6})) denote the parameters of two GCNs trained
on S and S after ¢ iterations, respectively. We set Aw; = w; — w} and Ang) = ng) — W§k>/ to be the perturbation of
learning parameters and define

K
1481 = [ Awellz + 37 1AW |2 (12)
k=1
In the following lemma, it is shown that the stability of As can be bounded by || A0 | ..

Lemma 2. Let 0, and 0} be the learnt parameters of two GCNs trained on S and S* using SGD in the ¢-th iteration with
0o = 6, and AG, := 0, — 0;. Suppose that all the assumptions made in Section 4.1 hold. Then, after T iterations, we
have that for any z = (x, y) taken from D,

where § = f(x|0r) and §' = f(x|67%).

We provide the proof of Lemma 2 in Appendix B.
Combining (5) and (13), the stability of As has a bound

agBKafHCfHCX
2

i < sup {Eall20].]} (14)

So, to estimate the uniform stability of As, we need to bound E4[[|Af7]|.]. Now, let us recall (3) for parameter
updating, for training on S,
wi = Wi—1 — NVl (f(x¢]01-1), yr),

W = W Vi € (xel0:-1), 1),
k=1,2,...,K, and for training on S°,
wy = w;_y — VW l(f(x:10;1),91),
W = W — Va0 €0 (16,_1). vt
i =Wl = nVwe l(f(x40,-1), ).
k=1,2,..., K, where (x;,9;:) € S and (x},,) € S’ are the samples drawn at the ¢-th SGD iteration. Therefore, Af; =
{Ang), cee AWE/K), Aw,} has the following iterations:
Awy = Awy_1 — n(vwg(f(XtWtfl)a Yyt) — ng(f(xﬂeifl)a y;))7
and fork=1,2,..., K,
AW = AW, - U(Vw(mg(f(xt\@t—l), yt) — Viwa £(f(x;10; 1), yﬁ)),

with || Abp||« = 0.
So, we need to bound
Vwl(f(x:10:-1), y¢) — Vo l(f(x410;-1), v1)

and
Vwo b(f(x¢0i-1), ye) — Vw<k>£(f(xg|9£—1)v y;ﬁ)

to obtain a bound of ||A#]|.. There are two scenarios to consider: i) At step ¢, SGD picks a sample z; = (x;,y:) which is
identical in S and S¢, and occurs with probability (m — 1)/m; and ii) At step ¢, SGD picks the only samples that S and S*
differ, z; = (x¢,y:) and z; = (x},y;) which occurs with probability 1/m. We provide the results in the following Lemma
3 and Lemma 4.

Lemma 3. Consider two GCNs with parameters ; and 6}, respectively. Then, the following holds for any sample z; =
(Xt,yt):

IV l(f(%e]0c-1), y1) = Vel (F(%e|0i_1), v0) || p < Bal| A1 ], (15)
and fork=1,2,... K,
IV €(f (x¢]0:-1), y¢) = Vo £(f (xel04_1), ye) | 7 < (k1 + pi) [ A1 s, (16)
where k1 and py, are defined by (7) and (A.12).
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Lemma 4. Consider two GCNs with parameters 6§, and ¢}, respectively. Then, the following holds for any two samples
Zy = (Xtayt) and Zf‘, = (Xy/tayzlt):

IV b(f (xe0:-1), y¢) — Vo £(f (%4107 1), y) | < 200 BX oS T CF 41 Cx, 17)
fork=1,2,...,K + 1. Note that WK+ =

The proofs of Lemma 3 and Lemma 4 are given in Appendix C. We now provide a bound for E 4 [[| Af7|].].

Theorem 3. Let 0; and 0, be the learnt parameters of two GCNs trained on S and S* using SGD in the ¢-th iteration with
0o = 0},. The assumptions made in Section 4.1 hold. Then, after T iterations, Al satisfies

IEA[HAGTH*} < ci (1 + (K + 1)nrq + nnz)t_l, (18)
t=1

2(K+1)nay BX aE O Cx
m

where ¢ :=

,and k; and k2 are defined by (7) and (8), respectively.

The proof of Theorem 3, using Lemma 3 and Lemma 4, is provided in Appendix D. Combining (14) and Theorem 3, we
obtain that the uniform stability p,, of As has a bound as

fin < e B¥ O Cocsup (Bl 2071}

cZX t—1
§—Z(1+(K+1)17/<1 +77/£2) ,
mia

which completes the proof of Theorem 2.

5 EXPERIMENTS

In this section, we conduct some empirical studies using three benchmark datasets commonly utilized for the node

classification task, namely Cora, Citeseer, and Pubmed [58], [59]. Table 3 summarizes the basic statistics of these datasets.
TABLE 3
Statistics of the three benchmark datasets.

Cora  Citeseer Pubmed

# Nodes 2,708 3,327 19,717
# Edges 5,420 4,732 44,338

# Features 1,433 3,703 500
# Classes 7 6 3
Label Rate  0.052 0.036 0.003

In our experiments, we follow the standard transductive learning problem formulation and the training/test setting
used in [60]. To rigorously test our theoretical insights, our experiments aim to answer the following key questions:

o QI1: How does the design of graph filters (i.e., g(L)) influence the generalization gap?
o Q2: How does the generalization gap change with the number of hidden layers (i.e., K)?
o Q3: How does the width (i.e., the number of hidden units: d) affect the generalization gap?

To address each question, we empirically estimate the generalization gap by calculating the absolute difference in loss
between training and test samples. We adopt the official TensorFlow implementation (https://github.com/tkipf/gcn) for
GCN [60] and the Adam optimizer with default settings. The number of iterations is fixed to 7' = 200 for all the simulations.
Results and Discussion for Q1. We analyze two types of graph filters in our study: 1) the normalized graph filter, defined
as g(L) = D 2AD /2 with A = A +Iand D;; = Zj A;; (which was first employed in the vanilla GCN [60] and
has subsequently become widely used in follow-up works on GCNs), and 2) the random walk filter, g(L) = D7!A + L.
To fit our theoretical finding, we compare the performance of two 5-layer GCN models (with width d = 32 for each
layer), each employing one of these filters. Table 4 presents the numerical records of Remp(As), R(As), €gen(As), Cy
for both filters. The results indicate clearly that the 5-layer GCN with the normalized graph filter exhibits a smaller
generalization gap compared to the one with the random walk filter. Furthermore, Fig. 1 illustrates the performance of
each filter across different datasets over iterations, demonstrating the superior performance of the normalized graph filter.
Overall, the empirical findings in Table 4 and Fig. 1 align well with our theoretical finding regarding the impact of Cy on
the generalization gap.

Results and Discussion for Q2. In this experimental study, we try different settings of K, i.e., the number of hidden
layers. Specifically, for K = {1,2,3,4,5}, we compare the performance of two K-layer GCNs (with width d = 32 for
each layer): one employing the normalized graph filter g(L) = D~/2AD~'/2, and one using the random walk filter
g(L) = D7'A + I Fig. 2 shows the performance comparison results for each K. It demonstrates clearly that, consistent
with the aforementioned results for Q1, GCN with a normalized graph filter (with smaller C,) consistently exhibits


https://github.com/tkipf/gcn
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TABLE 4
The generalization gap with different graph filter for three datasets.
Dataset  Graph filter g(L) Remp(As) R(As) e€gen(As) Cy
Cora D-1/2AD1/2 1.488 0.136 1.352 1
D 'A+1I 1914 0.118 1.796 4.746
Citeseer D-1/2AD1/2 2.896 0.235 2.661 1
D 1A+1I 3.206 0.145 3.061 4.690
Pubmed D-1/2AD-1/2 1.594 0.023 1.571 1
DA +1I 2.534 0.037 2.497 7.131

smaller generalization gaps compared to those with the random walk filter. Also, it is observed that the generalization
gap becomes larger as K increases, further validating our theoretical assertions regarding the influence of K on the

model’s generalization gap.

Results and Discussion for Q3. To empirically investigate the impact of width d (i.e., the number of hidden units) on the
generalization gap, we conduct additional experiments using a 5-layer GCN equipped with a normalized graph filter. The
experiments specifically involve a comparison between a 5-layer GCN configured with a width of 2d for each layer and
the previously studied model with d width (d = 32), as illustrated in Fig. 3. This setup allows for a direct comparison
under varying network configurations, providing insights into how changes in the number of hidden units influence the
generalization gap. As demonstrated in Fig. 3, across all the datasets examined, a d-width GCN consistently exhibits smaller
generalization gaps compared to one with a 2d-width. This observation is in harmony with our theoretical explanation
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presented after Theorem 1, that is, the factor B (i.e., the upper bound of 2-norm of the parameters {W) ... W) w1)
directly influences factors 1 and x5 in the upper bound of the generalization gap.

6 THEORETICAL IMPLICATIONS

Our work establishes a theoretical framework for analyzing the generalization gap of traditional deep GCNs, which further
provides insights into extending the analysis to other classes of graph neural networks, including Graph Transformers. As
illustrative examples, we briefly discuss how the theoretical proof methodology developed in our framework can be applied
to GCNII and Graph Transformer, which are representative models of more advanced GNNS, thereby demonstrating the
broader applicability of our theoretical framework.

6.1 Extension to GCNII
With input features X(©) = X € RV*?, GCNII defines its k-th layer as

X0 = a((u — ap)g(L)X*=1 4 ak.X(O)) : ((1 — )y + ka(k))>,

fork =1,2,..., K, where ay, by € (0, 1) are two hyperparameters, X ¥ is the output feature matrix of the k-th layer, W k)
is the trained parameter matrix specific to the k-th layer, graph filter g(L) = D~'/2AD~!/2, and 1, is the d x d identity
matrix. The output for node x is

F(x0) =0 (a,j ((1 — ax+1)g(L)XE) 4 aKHX(O)) w) ,

where § = (WM W) . 'W&E) w} (all trainable parameters, with w € R? the output layer parameter); §, € RY is
the indicator vector for node x; ax +1 € (0,1) is a hyperparameter for the output layer residual connection. Let 6; and ; be
the learned parameters of two GCNs trained on S and S using SGD in the ¢-th iteration with 8y = 6(, and A6, := 6; — 6;.

For each layer k, the perturbation of layer outputs || AX®) || = | X*) — X ()|  satisfies the recursive bound:

1AXBp < A AXEDp + G AWE,, (19)

where ¢{*) = (1—a)(1—by +bpB)a,Cy and e = a,by (1- ak)CgB%_l) +a,Cx) with Bgf_l) the bound of | X*~1| &
(see (A.22) in the Appendix E). The first term on the right side of the iterative formula captures propagation of perturbations
from the previous layer, while the second term captures perturbation from W (*).

By induction, it yields that

k
IAXMp < B IAWE ), (20)
j=1
where e(®) = lfnaux{cgk)e(k_l)7 cgk)} with e(®) = 0. We provide the proof of (19) and (20) in Appendix E. Then, combining
layer-wise bounds and using the Lipschitz property of o, one can have the output perturbation | f(z|0) — f(x|0")| bounded

K ‘ N
by the total parameter perturbation ||Af], = 3 [[WU) — WU ||y + ||w — w'||2 (see Appendix E for technical details) as
j=1

[f(x]0) = f(x]0)] < ao - 0| 2B, (21)

where 0 = max {(1 —ar+1)BCy - (K (1- aK+1)CgB§(K) + aKHCX}. Then,

[EAl£(.9)] ~ B0 9)]| = [EAlE(F(elor). v) — (£ (x165). )] | < ek [|7(x10r) — F(x167)]] < e0e - Bl 267].].
This implies that the stability of .As for GCNII has a bound
00y
pon < 257 sup {E[[| 607 ] .

Note that when ay, = 0, b5, = 1 for all k, GCNII degenerates into the traditional GCN, we have ¢ = B K aff C;( +1Cx, and

thus
agBKafo“‘le

2

pom < sup {Eall[A0r]1.]},
s
which is consistent with (14).
To further bound ||Afr||., the crucial step is to bound the perturbation of the gradient of f(x|#) with respect to the
parameters § = {W1, Wy, ..., Wi, w} and obtain the result similar to Lemma 7 in Appendix C, which can be achieved
by following the technique in our paper. Here, we provide the result for ||V, f(x]0) — V f(x]0")| F:

IV f (x16) = Va f (el < (Voo (1= axs1)CyBYY + anarCx) + g - (1= axs1)Coe™) - 20, (22)



12
where ¢ = max {(1 —ax+1)BCy - e (1 - ak+1)Cy B(K) + aK+1C'x} Note that when a,, = 0,b; = 1 for all k, GCNII

degenerates into the traditional GCN, we have ¢ = BEq KCK+1C B(K) BEq KCKC’X and eX) = BK-1 KC’KCX
At this point,

IV F(x10) = Vo fx16) | < (05 B 2K C2H2C] + BE a1 Of 1 Ox ) | A4)]-,

which is consistent with (A.10) in Appendix C. For the bound of ||V f(%]0) — Vwe f(x]0")|| 7, we refer the readers to
the proof process of (A.27) in Appendix E.

Finally, these structured analysis results can lead to the results corresponding Lemma 3 and Lemma 4, and thus enable
bounding the stability of GCNIL

6.2 Extension to Graph Transformer

To extend our theoretical framework to more complex models like Graph Transformer, the key is to bound the generalization
gap of Graph Transformer by quantifying how perturbations in the training set (e.g., removing or replacing a node)
propagate to changes in model outputs. Graph Transformer introduce new learnable parameters: query (Wg), key (Wg),
and value (Wy ) projection matrices, alongside attention scalers and feed-forward layers, for which a self-attention layer
is defined [43] as

F(x,)=a' Relu (WO Z Wy x; - softmax,, ((WKxi)TWan)),
T
where x; denotes features of node i, 7" is the set of nodes for the aggregation computing of node n, and softmax,, (h(i,n)) =
exp(h(i,n))/ 3 ;ern exp(h(j,n)). Despite their architectural complexity (e.g., self-attention mechanisms, query/key/value
projections), gradient decomposition still remains to be conducted via the product rule and chain rule, accounting for the
propagation of attention-weight variations to the final output. Besides, a Lipschitz-type inequality for softmax may be
critically needed, for which we claim that for z = (21, 22,..., 2p), 2" = (21,23, ..., 2,) with [z — 2’|« < 1,

|| softmax(z) — softmax(z')||1 < 2¢||z — 2’| - (23)

Actually, the proof is not hard to set up by straight forward boundedness and the mean value theorem of exponential
functions (see the technical details in Appendix F).
For trainable parameters W, W i, Wy, set the attention output is:

F(x,) = aTReLu(WO Z Wy x; -Attn(xn)i),
T

where S;,, = (Wgx;)T(Wgx,,) is the scaled dot-product score, A;, = softmax,(S;,) are attention weights, and
Attn(xy,) = > ,c7n WyX; - A, the attention output. Then the gradient decomposition with respect to W is given

by

Vw i F(xn) = VreLuz) F'(%n) - VZReLU(Z) - V pun(x,) Z - VAALN(X,,) - VSA -V, S
M~ N——

©) @ ©) @ © ®
where Z = Wp, - Attn(x,,), A = {4;,}, and S = {S; ,,}. Then calculating each item gives that

VwiF(xn) :aTHZO(WO -Atin(x,,)) - Wo - Wy - ( Z A n(x; — xn)xj) . (Wan)T.
€T

By leveraging the Lipschitz continuity of the gradient with respect to its trainable parameters, it can lead to bounding
the gradient perturbation in terms of the total parameter perturbation ||A8]. = [Wx — Wik|l2+[|Wy — Wi |2+ ||[Wo —
Wollz +[[Wq = Woll2 + [la —a’ll> by

VW F(x010) = Ve F(%0]0') |2 < 2¢Kimax B Cx | A0+, (24)

where Kpax > |7T"| is the maximum neighborhood size, B is the upper bound of weight matrices (technical details
in Appendix F). It mirrors the Lemma 7 in our approach for deep GCNs, where we recursively decomposed gradients
across layers (see Lemma 7). For Graph Transformer, similar recursive relations can be derived for attention layers, with
additional terms capturing interactions between WX, W X, Wy, X. For GCNs, we bounded gradient variations using
norms of graph filters and layer parameters (e.g., ||g(L)||2, |[W*)|2). For Graph Transformer, this will be extended to:
singular values of Wg, W, Wy, (analogous to C,; in GCNs), as they control the ”strength” of feature projections and
Lipschitz constants of softmax and feed-forward activations (replacing o, for GCN activations, and leads to an analogous
to Theorem 2 for deep GCNis.



7 CONCLUSION AND FURTHER REMARKS

This paper explores the generalization of deep GCNs by providing an upper bound on their generalization gap. Our
generalization bound is obtained based on the algorithmic stability of deep GCNs trained by the SGD algorithm. Our
analysis demonstrates that the algorithmic stability of deep GCNs is contingent upon two factors: the largest absolute
eigenvalue (or maximum singular value) of graph filter operators and the number of layers utilized. In particular, if the
aforementioned eigenvalue (or singular value) remains invariant regardless of changes in the graph size, deep GCNs
exhibit robust uniform stability, resulting in an enhanced generalization capability. Additionally, our results suggest that a
greater number of layers can increase the generalization gap and subsequently degrade the performance of deep GCNs.
This provides guidance for designing well-performing deep GCNs with a proper number of layers [61]. Most importantly,
the result of single-layer GCNs in [36] can be regarded as a special case of our results in deep GCNs without hidden layers.

While our study is primarily focused on exploring the fundamental principles of generalizability and stability in
the context of a simple deep GCN model framework, the theoretical insights obtained here can also offer preliminary
perspectives on several research topics that have drawn increasing attention in the graph neural network community.
These include, among others, the over-smoothing problem in deep architectures [62], [63], the design of models tailored
for heterophilic graphs [64], [65], and the emerging topic of graph out-of-distribution (OOD) generalization [66], [67]. Our
theoretical study can provide potential hints toward these directions, but more fine-grained and comprehensive work
is still needed to fully address them. Below, we elaborate on these aspects in turn, aiming to clarify their conceptual
connections with our work, outline possible directions for extending our theoretical framework, and highlight three open
and challenging questions that can serve as seeds for future exploration.

How can the impact of over-smoothing in deep GCNs be mitigated? We first note that, given a trivial deep GCN model
characterized by over-smoothed node embeddings (which typically result in significant training errors), our theoretical
upper bound still holds — that is, for a given graph filter, an increase in layers could potentially increase this upper bound
in a probabilistic sense. This also motivates the exploration of advanced deep GCN models that incorporate mechanisms
to counteract over-smoothing, such as the skip connection technique used in GCNII [42] and its follow-up works. As
detailed in Section 5, our theoretical results can in fact be extended to the setting of GCNII, thereby providing analytical
support for architectures that integrate skip connections. In both theory and practice, reducing the maximum absolute
eigenvalue of graph filter operators is achievable through the strategic implementation of skip connections across layers,
which can potentially reduce the generalization gap. From this perspective, our findings may inspire further studies
into sophisticated deep GCN architectures designed to mitigate over-smoothing, offering a promising direction for both
theoretical and practical advancements.

What is the role of heterophily in GCN generalization? It is also valuable to consider extending our theoretical analysis to
models specifically designed for heterophilic graphs, where nodes often connect to neighbors with dissimilar labels. This
would require incorporating the homophily/heterophily ratio of the input graph signal into the upper bound estimation,
thereby capturing how graph signal characteristics influence generalization. Although our empirical study here considers
two types of low-pass filters on homophilic benchmark datasets (Cora, Citeseer, Pubmed), our theoretical framework is not
restricted to low-pass scenarios alone. As remarked in Section 4.2, the analysis framework is in principle applicable to a
broader range of filtering schemes; however, the derivations in our proofs do not explicitly examine the impact of specific
quantities such as the homophily/heterophily ratio, leaving this as an open aspect for further refinement. To ensure a
consistent and fair empirical evaluation, as demonstrated in [36], we adopt homophilic datasets that are standard in prior
stability and generalization analyses of GCNs. For analyses involving high-pass filters, it would be appropriate to engage
with heterophilic benchmark datasets (e.g., Texas, Wisconsin, Cornell). Relevant to this discussion is the recent work [48],
which employs analytical tools from statistical physics and random matrix theory to precisely characterize generalization
in simple GCNs on the contextual stochastic block model (CSBM). Such studies, although based on specific graph signal
assumptions, could inspire refinements to our theoretical framework by jointly considering graph signal characteristics
(homophily/heterophily) and model complexities (filter types, depth, and width).

Can insights from in-distribution generalization inform OOD generalization? Beyond the above considerations, another
relevant line of research that has recently attracted considerable attention is graph out-of-distribution (OOD) generalization
[66], [67]. It is worth clarifying that the problem setting and theoretical assumptions in OOD generalization are distinct
from those in the in-distribution generalization framework considered in this work. In-distribution generalization focuses
on scenarios where both training and test data are drawn from the same underlying distribution, enabling rigorous
analysis under well-defined stochastic assumptions, such as those adopted in our stability-based framework. In contrast,
OOD generalization addresses cases involving distribution shifts, which often require additional modeling principles (e.g.,
invariance to spurious correlations, causal structure modeling, or domain adaptation techniques) and seek performance
guarantees that hold across domains. Despite these differences, the two areas can be mutually beneficial: in-distribution
analyses, such as our characterization of bias-variance trade-offs and the influence of spectral properties of graph filters
on generalization, may offer insights for developing more OOD-robust architectures; conversely, OOD-oriented approaches,
such as invariant risk minimization or causal subgraph intervention, may inspire new regularization schemes or architectural
components that also enhance in-distribution performance. Related to this discussion, the authors in [68] analyze a
one-layer GCN trained on the CSBM via logistic regression, providing theoretical insights into improved linear separability
and out-of-distribution generalization in semi-supervised node classification. Extending the current stability-based framework
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to accommodate mild forms of distribution shift thus presents an appealing research direction that could bridge these two
lines of work and advance the understanding of generalization in graph neural networks.

Taken together, these discussions highlight that our theoretical framework, while developed under a specific in-distribution
setting, has the potential to be extended and adapted to address a broader range of challenges in graph learning.

Building on the above open questions, which outline core challenges for future exploration, it is also important to
consider more concrete research directions and methodological extensions. For example, the theoretical analysis presented
in this study could be extended to encompass other commonly used learning algorithms in graph neural networks, moving
beyond the scope of SGD. Our theoretical results may also inform the exploration of strategies to enhance the generalization
capability of deep graph neural networks, such as investigating the efficacy of regularization techniques, conducting
advanced network architecture searches, or developing adaptive graph filters. In addition, establishing the potential
connection between model stability, generalization, and the issues of over-smoothing and over-squashing represents
another promising avenue. Understanding these interrelationships could contribute to the development of novel techniques
and algorithms that address these challenges, thereby complementing the broader problem-oriented directions discussed
above and improving the overall effectiveness of deep graph neural networks in dealing with more complex tasks.
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APPENDIX: PRELIMINARIES

The proofs of our main results are given in this section. We first make some statements about the notations used in the
paper. W denotes the transpose of a matrix W; the (i, j)-entry of W is denoted as W,;; however when contributing to
avoid confusion, the alternative notation W (4, j) will be used. || - ||2 denotes the 2-norm of a matrix or vector and || - | »
denotes the Frobenius norm. §; denotes the unit pulse signal at node ¢ that all elements are 0 except the i-th one, which
is 1. Let f : R™*™ — R be a real-valued function of variable W € R™*". Then, the gradient of f with respect to W is
denoted as . o of
W= 5w = (awij

To make it easier to understand the derivation of our results, we first provide the following inequalities, which will be
used frequently in the derivation.

For any matrix A, A, A} and A}, we have:

e [[A1As|F < ||A1|l2]|Az2]|F- To prove this, let A; = UXV " be the SVD of A;, where U and V are both orthogonal
matrix. Then,

) € R™X™,

A1 A ||r = [USV T Asllr = SV Asllr < |S]2V T Ag|lp = [[Adl2] Azl

Similarly, we also have ||A1Az|r < ||A1| rllAz]2.
o |JA1A; — ALAL||F <A1 — Allr||Az]l2 + ||A]]|F]|A2 — AL]|2. To show this, note that
[A1A2 — ATAY[p =[|(A1 — A1) Az + Aj(Az — A))|F
<[[(A1 = ADAs||F + [[A] (A2 — AS)||F
Then, the proof is complete using the first inequality || A1 Az||r < ||A1|r|Az]2,

e ||A1 © Asllr < allA1]lr < ||A1]|F||Az2]|F, where « is the maximum absolute value of the entries of A. Note that
allA1]|lF < JA1]|F||Az||F holds true because a < ||As]| p. Furthermore,

1410 Asllr = |3 (As(i.)As(i. )’

< |3 (0asi9) <o |3 (A6.5))” = allAdle

ij ij




APPENDIX A: GRADIENT COMPUTATION FOR SGD
To work with the SGD algorithm, we provide a recursive formula for the gradient of the final output f(x|6) at node x in
the GCNs model (1) with respect to the learnable parameters.

o For the final layer,

Vwf(x]0) = Vo (6] (L)X Fw) [8] g(L)XF)] T, (A1)
e For the hidden layer k =1,2,..., K,
- k—1)1 T (O (x]0) k
VW(k)f(X|9) - [g(L)X( 1)] ( aX(k) ®R( ))7 (AZ)
where R(*%) := Vg(g(L)X(k—l)W(k)> and
af(X|9) _ T 8f(X‘9) (k) (k) T
axE-n — 9L (TX(@ O R )[W 1, (A.3)
with O (x[0)
x T
IOX(E) — VU(‘SIQ(L)X(K)W) [JIQ(L)] w'. (A.4)

The notation ® represents the Hadamard product of two matrices. (A.1) and (A.4) are easy to verify, while (A.2) and (A.3)
are not. In the following, a detailed procedure is provided to derive (A.2) and (A.3).
First, since Xz(-;-c) =0 (6] g(L)X*E-DWH)§),
oxX{) do(6] g(L)XE-DW R4,
OW k) OW (k)

— Vo (87 L)XW,

0{8; g( X(kfl)w(k)(;j}
oW
— Vo (8] g(L)X*IW®H ) [o(L) X+ 51'5;»

and
XM 90 (5] g(L)XE-LDWH)S)) _ T
OX(kil) = IX(k—1) 22 = Vo (8 g(L)X*DIWH ) g(L) 86 [WH)]
Let R® = Vo (g(L)X* =YW ®). Then,
(k) (k)
OF(x0) _ 5000 OXG <~ 0r(xle) ) OXS
aW® ox® W £ Tox ) Y gwin
i,
afxe T
% )6y RO TR 58]
) of (x]0
= [ox 1] G ) mG s8]
%]
= x0T (U ¢ g,
and

OJ(xl6) _ 5~ 07(x1) oxh
OX (k=1) 3X(k) OX (k=1)

of(x[0) . . .
0T (32 5 ) R o] ) )

)T (85;(513) o R(k)) W)

This completes the derivation of (A.2) and (A.3).
Based on the above recursive formula, we prove the following lemma recursively.

Lemma 5. Let the assumptions made in Section 4.1 hold. Then, we have the following results for the GCNs model (1)
during the training procedure.

o Hidden layer output X*)(k = 1,2. .., K) satisfies
|X®)||p < BFakCkOx. (A5)



o The gradient of f with respect to X(*) (k = 1,2, ..., K) satisfies

I 35;(;23) Ir < BK+17kaé(+1kagK+lfk' (A.6)
o The gradient of f with respect to W) (k =1,..., K + 1) satisfies
| Vw f(x0)]|, < BXaE T K0k, (A7)
where WK+ .= w.
Proof. Now, we give a complete proof for Lemma 5.
o Firstly, for k =1,2,..., K, since ||0(Z)||r < as||Z||r holds for any matrix Z, we have

IX®lp = [lo (g(LXFDWD) |7 < ag[lg(L)XEDWE | .

Then, by applying the 1nequahty |ALAs || < [|A1]2]|Az| F twice, we obtain | X*)||p < Ba,Cy||X*#~ V|| . Note
that | XV < Ba,C,||X©| r = Ba,C,Cx, it further yields that

IX®|p < BRakChCx, k=1,2,... K,

which completes the proof of (A.5).
o To show (A.6), note that for k =1,2,..., K — 1, by applying ||A1Az|r < ||A1]|2||Az| F twice, we obtain

of X|‘9 af (x]0) (k+1) (k+1) af (x[0) (k+1) (k+1)

%o e = lo@ (v @ B42)IWET L < @l | gy © B+ IW 2l
Since Cy = [|g(L)|l2, [W*+1||y < B and the absolute value of the elements in R(*+1) is less than «,, we further
have | 85;;?;'5) | » < BasCy gx(f‘fn | 7. Meanwhile, since |Vo (8, ¢(L)XF)w)| < a,,

df(x(0) T
|20, = [ (67 9@X W) [8] (L)) W]l < BasCy.
Therefore, for k =1,2,..., K,
I of(x[0) |p < BE+1-kqK+1- ch+1 k.
X F<

This completes the proof of (A.6).
« Now, let’s prove (A.7). Firstly, note that |V (6, g(L)X5)w)| < a,, so

IVt x10)]] = Vo (85 (L)X Fw) [g(L)X )] b . < o | X |67 g(L) |-
Combining (A.5) and ||, g(L)||2 < Cy, we have
|Vwf(x[0)], < BXaf T CEHCx.
Furthermore, for k = 1,2,..., K, by applying ||A1 Az||r < ||A1]|2||Az]|F twice, it yields

oR®

0 0 0 0
Ve 7Gxl = | o@x =] (2B o RO < [lg(m ], x| 2130

Since the absolute value of the elements in R(*) is less than a,,, we have

8f(x|0

I

BK K+10K+IC

[Vwoo F(x10)]1r < aoCy [ XED | | =5l <

which holds by combining (A.5) and (A.6). This completes the proof of (A.7).

APPENDIX B:PROOF OF LEMMA 2

To prove Lemma 2, we first provide the following lemma to show the variation of output in each layer for two GCNs
with different learned parameters § = {W® W) . W) w}and ' = {W(l),, we' L WE) w'}. Let X(®) and
(¥)" be their output of the hidden layer, as well as f(x|f) and f(x|¢’) the final output of node x. The following lemma
provides a bound of X*) — X(®)" and f(x|0) — f(x|0’) based on A0 = {AWD .. AWE) Aw}.
Lemma 6. Consider two GCNs with parameters 6 and ¢’, respectively. Then, we obtain the following results for their
variations.

o Their variation of outputs in hidden layers AX®*) := X(*) — X ®) (k=1,2,...,K) satisfies

k
|AXW ) < B akCiOx (3 1AW D). (A8)



o Furthermore, for the final output of node x,
F(x10) — f(x[0")] < BRI+ O Cx[| 20 (A.9)
Proof: To prove (A.8), we first have that for k =1,2,..., K,
[AXB | = KO = X[ = o (gLXEDWE) o (g(L)XEDWE) .
Since ||0(Z)||r < ar||Z]||F holds for any matrix Z, we have
[AXBr < agg(L) (XEHIWE = XEDWE) 5 < aglg(L)])o - [XEDWE - XED WO 5.
Note that
[XE-DWE — XEDWE || o< [XED | o[ WE = WE ||, 4 [ XED - XED LW E||,
= [IXEDY [ AW B 5 4 [ AXED | | WE|5.
Then, combining (A.5) and [|[W®)'||, < B, we obtain
IXE-DWE — XE-DWHE | o < BFlaltoh1ox [AW®) || + BAXED | .
Thus,
IAXP e < agllg(L)|z - [XEDWE - XEDWE | < BF1al CFOx AW W |z + Bag Cyl| AX* D .
Then, since |AX®V | r < a,C,Ox || AW D) ||5, we have
IAXW | < Bk*laﬁcgcx(fj AW ,),
j=1

holds for any £ = 1,2,..., K. This completely proves (A.8).
Furthermore, for the final output, using the Lipschitz property of o (), we have

Fxl6) — F(x16")] = |o/(6] 9(LIXFIw) — 0(8] g(L)XI) W) < @8] g(L)(XFw — XU w')].
Note that
165 (L) (Xw — XU w')| < |87 g(L) | - X w — XEV W || o < Cy (|X5V| | Aw ]z + AKX o w]|2).
Combining (A.5) and (A.8), we further have
K
16,5 9(L) (X"w — XUV'w')| < BXFOFH Cx([|Aw]a + Y AW [2) = BXal O Cx || A6)]..

j=1

Thus,
£(x10) = F(x]0)] < ag]8, g(L) (X )w — XUFO'w')| < BT CE 1 Ox || A6,

which completes the proof of (A.9).
Proof of Lemma 2: Now, we are ready to prove Lemma 2 based on Lemma 6. For any z = (x, y) taken from D, we denote
by § = f(x|0r) and § = f(x|6/). Firstly, using the Lipschitz property of loss function £(-, -), we have

sup B[, )] — Ea[65,0)]| = sup (B [£(F(x10r),9) = £(F(x107),9)] | < Sl}l{pEA[!f(XWT) — Sl
Then, according to (A.9),

sup
S,z

Eall(§,y)] —Ea [5(37731)}’ < BT CET Cx B[]l A07 ]

This completes the proof of Lemma 2.



APPENDIX C: PROOF OF LEMMA 3 AND LEMMA 4

To prove Lemma 3 and Lemma 4, we should first prove the following lemma.

Lemma 7. Consider two GCNs with parameters 6 and ¢’, respectively. Then, their variation of gradients of f with respect
to {WW ... W) w) satisfies

IV f(x10) = Vao f(x[0)|| < (vo B2 2K C2EH2C5 4+ BE T al FLCE 1 Ox ) | A, (A.10)
and fork=1,2,... K,
IVwoo F(x16) = Voo (X1 < (vo B2 2K C2EF2CE + BE Lol 1O 10x )180]. + pi| 80, (A1D)

where

K—
pie 1= ug(Bagcg)KM*lcgc;(( Z (BayC, ) (A.12)

Proof . First, according to the proof of (A.8) and (A.9), the following holds true for k =1,2,..., K + 1:
[XE-DWE — XEDWE | o <BFlaf e lox |AWE) ||y + BIAX® D |5
<Bk_1a§_1C§_le(i AW Hz), (A.13)
j=1
where WEHD) — .
We now prove (A.10). First, applying A1A; — AJAL = (A1 — A))As + Al (A2 — A)), we have
|V F(x16) = Vo f(x10') | =|| Vo (8 9 (L)X Fw) [9(L) X 5] T8 = Vor (8 (L)X w) [g (L)X S| T |
<[ (Vo (6T 9@)Xw) — Vo (87 g(L)X ') ) [gLX ) To |
+ HVJ(éIg(L)X(K) W’)[g(L)AX(K)]TéxHF.
Using the v,-smooth property of o(-) and applying ||A1Az||r < ||A1l2]|Az| 7, we have
| (Vo (859X Tw) = Vo (67 g(L)X )W) ) [gL)X S| To |
<[V (87 g(L)X W) = Vo (67 gL)X S W) |- | [g(L)X S To |

<0, |8 g(L)X"w — 87 g(L) X W[ - [ XU |8, g(L) 5
<0, O [ X"Ow = XU w|| - X5 - C

and since |Vo ()| < ag,
(A.13), we have

Vo (8] g(L)XE) w') [g(L)AX(K)]TéxHF < %OgnAX(K)H #. Then, combining (A.5), (A.8) and

IV (x16) = Y f(x[0) ]| < (v, B 02K C2H2C% + BE 1ol Of 1 Ox ) | 20)l.,

which completes the proof of (A.10).
Next, we turn to prove (A.11). First, for k = 1,2,... , K,

[V f(x]0) — Vo £(x160))]]
[ To(L)X kD) af (x[0) R® _ [o(LyX kDT af (x]0") R
[ [omx =217 ( OR®) - [¢(L) ] (—@ )

X X
( | ) 8f(x|9) af (x]0") ,
<[lg@)AXE| | =" © RVl + (L) N0 R<’€LW@RU«>|F
<C I AXED o | 5}2"' I+ Gl X0 H gx’?b or® - T6E) o
Let
_19f(x]0) k) _ ( |9)
= I%xm OR"Y = “xw (A14)

Then, combining (A.5), (A.6) and (A.8), we have

k1
[Vwa f(x]60) = Ve f(x]6')]] » < BK_lOéfHCfHCx( > ||AW(j)||2) +B" b i Ox -, (A.15)



Next, we need to bound .

af (x[0) (k) (k) of(x|0)  of(x[0") ()’
o 5| oxm @ RY-RED -+ I ox® ~ oxm ) ORI
of(x|0) Of(x[¢)
< _
She+ o X | r
af(x|0) T af(x|6") / T
<hy + Q(L)T(ax o © R(k+1)) wik]T - g(L)T(W o RK+D ) (W 1] HF
Shi+ 0 lg(L) | gy © R [AWED -+ 0 g L) oW s
<hy + O‘UC!J(BQGCQ)K kHAW(k—H) |2 + BagCyVi+1,
where hy, := || 29 o (R®) — RW) | .. By (A.13),
RS RV [V (gL IWE) — Vo (gL W) |,
SVan||X(k_1)W(k) _
k
<v BElah IOk Cx (Y AW D)) (A.16)
j=1
Combining (A.6), we have
f(x]6) k k of (x]0) k k)’
H OX (k) R( )~ Rl ) OX (k) ||F ’ HR( ) - R® Ir
k
< VUBKafoHCX(Z ||AWU>II2). (A.17)
j=1
Let hpax = l/(,BKaffC;(HC’XHAGH*. Then, it is easy to see that
hi < hmax holds forall k =1,2,..., K. (A.18)

Therefore,
Y& < Pmax + aicg(BO‘an)KikHAW(kJrl) ll2 + Ba,Cy - Y41
Furthermore, since
||(9f(X|9) _of(x]¢") I
OXE) — gxE) ¥
=V (8] gL)XFw) [6] g(L)] "W - vU(5T9<L>x<K>’w') [0 g(L)] W' |
<BC,||Vo (67 g(L)XF)w) — Vo (6] g(L)X ) W) | + Vo (6] g(L)X ) w) 5 g(L)]  Aw |
<a,Cy|| Awl|p + 1o BCZ|| X )w — X ) w Il &
<a,Cy|| Awlly + v BE T af CF P2 Cx (| A .,

we have

_,0f(x]0) (k) Of(x]¢")
k=l gxa OB = xm ©

RE) &

/
<28 © (R0 — R+ |(LEE) - Sy o RV 5
of(x|0) Of (x|
Shuc 0ol gt — gy I
<himax + 02Cy||AW]|2 + ve BK a1 CEF20x | A9
Finally, based on the above recursive formula of 7, we have
K-k K+1
Tk Shmax( > (Bagcg)j) + a?,cq(Bach)K—k( 3 HAW(ﬂIb)
J=0 j=k+1
+ 1o B Lo O Ox (Bao Co) K41 00)).
K-k K+1
Shons (3 (BaoCy)') +02C,(BaaC) (32 [4WOe)
j=0 j=k+1

+ v BRI OREA2 TR O || AG. (A.19)



where AWK+ = Aw. Finally, substituting (A.19) into (A.15),
k—1
IV f(x]60) = Ve £(x16))]| 7 gBK—laff“Cf“cx( > ||AWU)||2) + Btk CROx
j=1

S(VUB2KQ§KC§K+QC)2(+BK710[K+ICK+IC )||A9||*
K—k
+ VUBK+k71a£(+k710§(+k+102 ( Z (Ba,C, ) 100,
j=0
<(k1+ pr) |20,

which completes the proof of (A.11).
Up to now, the proof of Lemma 7 is complete. Then, we prepare to prove Lemma 3 and Lemma 4.

Proof of Lemma 3.
Now, we are ready to prove Eq. (15). Firstly, note that

t 8‘€ A/, t ,
IVl s} ) = T el 2) 0l = | G205 ) = S )
oUg,y)) 9T, y) i )
<H( oy 9y )wa(xtwtfl) + T(wa(xtw:f—l) Vwf(x:|0;_ )H

200 _ I 17 sl + | 2T V1) = Va0
§W|f(xt|9t—1) - f(X|9t71)| NV f(x¢|0:—1)l| 7 + Oéz||wa(Xt|9t—1) — Vuw f(x:]0; 1)l s

where § = f(x;|0;_1) and §' = f(x¢|6_,). Then, according to (A.7), (A.9) and (A.10), we have

IVl o) 1) = Vol )0

S{UZBZKQ§K+QC§K+2C)2( + oy (UUBQKaiKC§K+2C§( + BKflaf“C’erlCX) } 1201

<

This proves Eq. (15).
Similarly, for k =1,2,..., K,

IV £(f (xe02-1), y¢) = Vawoo £(f (xe[0; 1) we) [l P
SUZ’f(XtWtfl) (Xt|9t 1)’ N Vwo f(xel0e—1)l| F + el Voo f(x¢]0r—1) — VW(k)f(Xt\eéq)HF
Then, according to (A.7), (A.9) and (A.11),
IV oo €(f (x¢]01-1), ye) — Voo £(f (%2105 1), ye) | 7
S{WBzKagKJrQC;KHC% + Otg{ (VUBzKachgKHC)Q(

K—k
+BK’1aff+1C§(HCX) + vy BE R QK Hh -1 R eh1 02 ( > (BasCy )}}HAGt,lH*,

=0

which competes the proof of Eq. (16).

Proof of Lemma 4.

Since |%ﬁy’y)\ < ay for any ¢ and y, we first have that for k =1,2,..., K + 1,

oL(y, yt) ol yt)

Vw e f(xe]0r—1) — %
Sae(uvw<k>f<xt|am>uF + [ Vwio ;16 )1 )
where § = f(x;6;_1) and § = f(x}|6,_;) and WE+D) = w_ Finally, according to (A.7),

IV w6 (eal1), 90) = Ve LF 410 1) w0 [ <ae (Vs f<l00-1) e + [ Ve f(x10;1)lL )
SQO&@BKCV§+1C;(+ICX,

| € Ceilbe-1). ) = Ve €07 (1164 ). ) | =|| =5

holds fork =1,2,..., K + 1.

LI w0 [(x1160/-1) |

20
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APPENDIX D:PROOF OF THEOREM 3

Based on Lemma 3 and Lemma 4, we detail the proof of Theorem 3 as follows.

Note that (x¢,y:) = (x},y;) with probability 1 — 1 and (x;,3) # (x},y;) with probability -L. By considering Eq. (3)
(in Section 3.2) and incorporating the probability of the two scenarios presented in Lemma 3 and Lemma 4, using F and
F' to denote f(x;|0;_1) and f(x;|0}_,), respectively, we have:

Bl Awlz] =~ )& [IAwe s — n(Vwl(F, ) — Tuwl(F )2
+ B[l AWt~ 0(TwlF ) — VullF 40 ]
<(1 = B[ AWl + I Twl(F 1) = TullF o))
+ Bl AW+l VubFow) - VullF 50 2]
(1= 2JBA AW o+ 1V lF. 1) = Ful(F )]

1 ,
+ %EA[HAWtﬂHz + || Vwl(F,ye) = Vol (F ,y1)|lF]-

Based on Lemma 3 and Lemma 4,
2na B afH1CETIOx

m

allawlo] <Eall|Aw—1ll2] + nriEall|A0—1]l.] +
Similarly, for k =1,2,..., K,

2770¢gBK04£<+1CgK+1C’X

Ea[llAW;™ 2] <EA[IAW, o] +n(s1 + pi)Ba [ A0 ]|.] + —

Then,

K
Ea[26:].] =Ealllawe]l2] + 3 Ea[|AWH 2]
k=1
217a4BKaff+1C’gK+1CX

<Ea[[|Awi_1]l2] + ns1Ea[[| D01 ]|.] +

m
QUOégBKOszrlO;(Jrle

m

K
k

+ D EAllAWE ] + a1 + pe)Eall Ab-s]l] +

k
2(K 4+ 1)naBXaft1CET10x

- .

where k3 = S, pi. By (A.12), we have sy = 14 (BagCg)KC§C§( ( Zf:_ol G+ 1)(BozUC'g)j), as defined in (8)). Finally,
since ||Abp|l« = |60 — 01|« =0

=(1+ (K + 1)nr1 + nr2)Ea[|| A0,_1].] +

T _
E[|AO7]].] Z(1+ (K+1 nn1+n/~£2)t g

Cc
m t=1

This completes the proof of Theorem 3.
APPENDIX E: PROOF FOR SECTION 6.1
Recall to the GCNII,
X(*) = J(((l — ar)g(L)XE=D 4 ¢, XO) (1 = b)I, + kaUc))), k=1,2,... K;
fx10) = 0(5;((1 — agc+1)g(L)XF) + CLK+1X(O))W)
Proof of Eq. (19) and Eq. (20):

We first bound the output of each layer, i.e., bound ||X*)|| . Applying ||o0(Z)||r < . |Z||+ holds for any matrix Z and
[A1Az[lp < [[Ad][7([Azl2, we have

IX® 5 = (1 = ar)g@XED + aXO) (1 = by)La + bW H))

<as

(1 = a)g(@X D + @ XO) (1 = b)Ls + WD) |
<ao||(1 = ar)g(L)XE 1 4 @, XO|| /(1 = bp)Ta + b W
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Furthermore, since Cx = || X[ = [X ||, Cy = [|g(L)[|2, and [ A1 Az[|r < [A1]2]|As|lr,
(1 = ar)g(L)XFN 4+ 0, XO < |1 = ar)g(L)XF D]+ [|ar X @
< (1= ap)Cy | XV |k + anCy,
and since |[W®) ||, < B, H(l —bp)Ig + ka(’“)HQ < 1 — by, + by, B. Therefore,

I

[X®|| p < ay (1 —ar)Cy|X* V|| p + arCy) (1 — by, + by, B)
= (1 —ag)(1 = by + b B)a, Cy | XEV || p + (1 — by, + b B)aga, C,.

Note that | X(9||p = Cx, we thus have that for k = 1,2,..., K,

IX®| 5 < (ﬁ(lfai)( — b+ b;B)a,C )CX+Z( H (1= ai) (1= bi + biB)Cy ) (1= by + b;B)aja.Cy ). (A20)

=1 = i=j+1

For convenience, in the following text we denote
k k k
BE = (TI(1 = a1 = bi +0B)asCy ) Ox + > ( T] (1= )@ = bi +0:B)C,y ) (1= b + b;B)ajanCy ), (A21)
i=1 j=1 i=j+1

and thus |[X®)|p < Bg? ). When ar = 0,b; = 1 for all k, GCNII degenerates into the traditional GCN, and Bgf ) —
BFakC%Cx, which is the same as shown in (A.5). The bound of [X )| implies

IH® | = (1 = ax)g(LXD + ax 1 XO[p < (1= ax11)CyBY + ag41Cx.
Then, we bound the perturbation of the output of each layer, i.e., bound | AX*)| .. Note that
AX® = XB) — XE — g (HED (1= be)la + bW D) ) — o (HED (1= bi)Ty + W) ).
Thus, following a calculation similar to Lemma 5, we have
IAX®) | :HU(HUH) (1= be)Tg + bk.W(k))) - g(H<k*1>’((1 )Ly + bkw<k>')) HF
<oy [HED (1 = b)Lg + by WH) — HED (1 - b) 1y + 0, WH) |

:Oéo(||H(k_1) — H(k—l)’HF . ||(1 _ bk)Id + bkw(k)HZ

oW - W)

)

Since HA=D_H* 1" = (1—q;,)g(L)AX*=D ||H<k D_HED||p = (1- ak)C | AX*=1)|| 5. Combining [|[H*~D'||p <
(1 —ap)CyBY ™Y + a,Cx, AW >:W< )W, and (1 = bp)Lg + bW R |5 < (1 — bg) + by, B, we have

IAX®) | < P AXED| 5 4+ AW P, (A22)

where CYC) = (1—ag)(1 — by + byB)a,Cy and c(zk) = aobk((l — ak)CgBX_l) + aka). This completes the proof of Eq.
(19).
Furthermore, since | AXD||p < iV | AW®||,, we further have

k
[AXB | p < e® - (DT AWD||,), (A.23)

where e(F) = ]fnax{cgk)e(k_l)7 cék)} with e(®) = 0. When a;, = 0,b;, = 1 for all k¥, GCNII degenerates into the traditional
GCN, we have ¢{*) = Ba,C,, )" = BF-1akCkCx, and thus e = B*~1akCkCx, which is the same as shown in (A.8).
This conclusively proves Eq. (20).

Proof of Eq. (21):

To bound | f(x|0) — f(x]0")|, we apply the a,-Lipschitz property of o(-) and then have
F(x10) = £ (10 =l (8 H w) — o (5 HIY w')| < g+ |6, Hw — 6, HID W,
that is, we need to bound |8] HF)w — § T HE) w/|.
Since [|A1A2 — ATAS[|p < [[Ay — All[p[Azllz + [AL][F[|A2 — A2,
G H O w — 6 HI w'| < |6 (HY) = HED) |- [wll> + [SHE | [[w — /]



23
Since |[H) — H) ||z < (1 — ag41)Cy| AXF)||p and || w|2 < B,
187 (OO — HOV) - wils < (1 - a4 1)BC [ AXW|
and
6L H Y |-l (w = W)z < (1= axc1)CoBY + a1 Cx ) [ Awllz,
which holds true because [|6] H) ||z < [HU ||z < (1 — ag41)C, BX + ax+1Cx. That is,
STH w — 5TH W] < (1 1) BCIAXS 5 + (1 = arcs1)Cy BE + a1 Cx) [ Aw]la
By (A.23), we further have

K
60 Hw — 5]H W/ <(1 = ar 1) BCy D [AWD 2 + (1 = ar41)CyBY + arc41Cx) [ Awllz

j=1
K .
<o (S IAWD | + [[wl2) = o+ [ 20]., (A24)
j=1
where ¢ = max {(1 —ax41)BCy - (1 —ar+41)Cy Bx K) + aK+1CX} Therefore,
|F(x]6) — f(x]0)] < oo - |6, HF)w — 6 THE) ' W'| < ap0 - || 26 (A.25)

Note that when a; = 0,b; = 1 for all k£, we have eE) = BK’lafC’KCX and B;CK) = BKaffC’gKCx, then at this point,
0= BRafCFCx, and |f(x|0) — f(x]0)] < ago- [|A0]. = BKaffg“C’;(“CX - [|AB]«, which is consistent with (A.9).
Thus, we complete the proof of Eq. (21).

Proof of Eq. (22):

To bound the perturbation of the gradient, we first follow the calculation technique used in Appendix A to obtain the
gradient of f(x|6) as follow:
i) For the final layer,
Vw/(x]0) = Vo (6] HFw)[§THEO) T,
ii) For the hidden layer k =1,2,..., K,

of(xle) X 0f (x|0)

. - (k=1nT (k)
ox® awm — T Corgm O R,
iy

Vo f(x[0) =)

.3

where R(F) = VU(HU’C_l) ((1 —bi)Ia + ka(k))). Furthermore,

(k)
f(x|0 of(x|) 90X Of(x|6
8X((k|_1)) =2 a)(dilv)) ' axucj—l) = (1= an)la(L)( a)(d’lv)) O RN - bl + bW,
ij
with
af(x|6
GJ;(C(IL)) =(1—ax+1)Vo (6 HOw) [ g(L)]Tw'.

We now bound ||V f(x]0) — Vw f(x]0")| 7. Note that Vy f(x]0) = Vo (5] HE)w)[§]HIF)|T, we apply ||A;Ay —
ALAs | < [|A1 = Alllp - [[Az]lr + [[AY][F - [[Ar — Ab[|F and have

IV f(x10) = Vo f(x|0) || = || Vo (8L HOw)[6 HIOTT - Vo (5;HI W[5, HIO)T|,
<|Vo(og HFw) — Vo (8, HE w')| - [|[6, HEO)T || + | Vo oy HEO w')| - [|[6, HUOTT — [67HE T[4,
We further apply the property of o(-) and have
Hwa(Xle) - wf(XW)llF < vy - |5 HOw — s HIO W] [[[§7HEO)T L+ - 8y HUOTT — [87HEOTT
o [T HE ) w — sTHO W |- (1= ag11)CyBY) + ar110x) + g - (1 — age11)Cy | AXE) | .
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Finally, combining (A.23) and (A.24), we have
IV £ (x]60) = Vo f(x10) |7 <o |20 - (1= axcs1)CaBY + ar10x) + o (1 = aze1)C Z IAWD )

< (u,,g (1= ag11)CyBE) + ak 10x) + g - (1 — aK+1)Cge(K)) : ||A9|\*.
Thus, we complete the proof of Eq. (22).
Proof of bounding ||V f(x]0) — Vwe f(x]0")] 7.

Next, we bound || Vw e f(x]0) — Ve f(x]0")|| . First,

9f (x|0) Of (x]0")

[V £ (x18) = Twior £x10") [ = [ D) (S35 @ RG) — b [HEDTT (S50 @R<k>’> .
_ of(x|0) 1y af(x|0) 8f(x|9)
k k—
b ([BED = BOY |- | S50 @ RO+ B |- | S o RY - 2 )
Since || 22247 © RW||, < a | 252121 and [HED — HED' || < (1= a)Cl|AXED|
- o df(x|0) df(x|6)
(k=1) _ gq(k—1) (k) _ (k—1)
||H H || H X (k) OR HF 1 ak)C ||AX ||F <T|| X (F) HF
Following (A.14), we denote
of(x|0 . of(x|6'
Vi = || éf)(((L)> oRM — f( | >®R (A.26)
Since [H*= D[ < (1 — ag CB(k_l)—i—akC’x, we further apply (A.23) and (A.28) to obtain
9Bx pply
[Vw f(x]0) — Vwa f(x[0)]F
k—1
_ . of(x|6 _
Sbk{(l—ak)agCge(k V(T 1AW @D ) - g}(((,L))|IF+((1—ak)CgB§§ 1)+akC’X)-*yk}. (A27)
Jj=1

That is, to bound ||V f(x|0) — Vo f(x]6")||p, we need to bound || 2219 | . and ;. We provide the following

X )
steps to the bound of || af)((’fL)) |7 and 7%. Using these two bounds, we finally obtain the upper bound of ||V f(x|0) —

Vw f(x]0')||r by applying them to (A.27).

Step 1: we first bound H g{gf@) HF

According to the iterative formula of 68)1;5:@) , we have
1 2T e =11 awlo@T L) © RN (1 — byt + WO
<(1- )o@l 1228 & ROy (1 - b1+ WO,
Since the absolute value of the elements in R(*) is less than oy, || ng)?flg) ORM|p < ag aéf)((’f,[? |lF. Then, combining
lg(L)l2 = Cy and ||(1 — bg)Lg + b W) ||y < (1 — by,) + by B, we obtain the following iterative formula
9f(x]0) 9f(x]0)

ak)(l — by + ka)Ongg . ||

||8X(k 1) ||F (1 - X (k) HF
Note that since |V (5] HF)w)| < a, and ||w|, < B,

” af (x[0) ”
oxX (&) IF

= (1 = agx+1)Vo (o HOw) 8] g(L)] "W || < (1 — ax+1)BaCy.

Thus,

af (x a
102 < ((TL (- a)(0— by +5;8)) (1~ agesr) B+ =FOp 1
j=k+1

K
For simplicity, we denote Bg;z = ( I Q—a)A—-0b;+ bjB)) (1 — ag41)BafT17FCE+1=F and then
j=k+1 ’

Of(x|0 )
OX (k
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When a;, = 0,by, = 1 for all k, we have Bg;g = BK‘*‘l_kaf“_kC"fH_k, which is the same as shown in (A.6).

Step 2: We next bound ;.
Following the proof of Lemma 7, we have by (A.26) that

9f (x|6) / Of (x[0) _ 9f(x[6")
o < |2 & (w0 ROV, 4 a, - (2D 20N, (A29)
Similarly, let hy, := || %fx’fw;) o (R®) — R(k)/)”F. Then, applying ||[A1 © Az||r < ||A1]|r||Az| F, we have
of(x]0) k k)’ of(x]0) k
hi = || 0 o RHM —RH®" X | [R®) — (A.30)

Note that R%) = Vo (H(k_l) ((1 —bp)Ig + ka(k))), then the v,-smooth property of o(-) implies

IR R

N =[[ Vo (BED (@ = o)Ly + 5 WE) ) = T (HED" (1= )T, + ka("')')) [

<o - [HED((1 = by)Ly + b W) — HED' (1 = b)) 1y + by W)
Applying ||A; Ag —AALF < ||A1 — A} ||F . HA2||2 + |A%llF - |A2 — ALll2, we further have

IR —RE|| . <v, - (]| (HC ).

Note that |[H*=D —HE=D"|| o < (1—-a;,)Cy | AXED || g < (1—ay,)Cy-e*=1( z AW ||5) (see (A.23)), [HE-D ||z <

F

liPs

W W)

H l—bk Id+ka(k)|| + ||H(k b |

(1= ag)CyBE ™ + ayCx, and ||(1 — by)Ty + by W (1 —bg) + biB. Thus

I, <

IR —RW|| . < v, - ((1 —ag)(1 = by + b B)Cy - 7 Z IAWD 2) + (1 = ax)CyBE ™ + akCX)kaAW(k)H?)
=1
k .
< vor - (Z ||Aw(J)H2)’ (A.31)
=1

where 7, = max{(l —ax)(1 — by + by B)Cy - elk—1), (1 - ak)Cngf_l) + akC’X)bk}. When a;, = 0,b, = 1 for all
k, ek=1) = Bk—2q k'_le_lC and B(k R = BF1lg k_lc’g_le, then at this point, r;, = Bk_la(’ﬁ_ngCx, and thus
|IR®*) — » SveBFlabT1OROX ( Z |AW @) ||5), which is the same as shown in (A.16).

Combining (A 28), (A.30), and (A.31), we have

hie < BS) - vgry, - ZHAW(J 2). (A32)

Next, we use the same technique as in (A.18) that uses an hmax to bound all hy,. Specifically, let
_ (k) .
Rmax = k:{r’g?(')K {Bax I/C,Tk} A0
Then,
hi < hpax holds forall k =1,2,..., K. (A.33)

One can prove that when a;, = 0, by, = 1 for all k, then hyax = VJBKafC;(HCXHAHH*, which is the same as in the case
of traditional GCN.
Applying (A.33) to (A.29), we have
af(><|9) 8f(XW’
X (k) OX (k HF7
and we can derive the iterative formula for the bound of v;. To do this, we utilize the iterative formula of
obtain

Vi < hmax + Qo - H (A34)

0f(x]9)
X (k—1)

and

9f (x|0) 3f(XI9’

H 9f(x|9)
OX (k) OX(k

||F (1~ ak+1)[9(L)]T(W O REFD)(1 = by 1)Tg + by WHFD]T

-(1- ak+1)[9@)ﬂ<%

af(x|0)
<(1 —ag+1)C, <H 1(x]6) ® R(k+1))[(1 — by1)Ig + bk+1W(k+1)}T

X(k+1)
(Bf (x6")
OX (k+1)

O REFD) (1 = by 1) g + by WEEDT|

O RED) (1= bl + b WD),
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Applying A1 Ay — AL AS|p < [|Ay — Al rl|Azll2 + | ALl P ]| A2 — Ab|l2 and [|[(1 = bri1)Tg+ besn WEFD [y < 1 —bjyy +
bi+1B, we have
Haf(XW) _Of(x]¢")
OX () OX (k)

0 0 /
HF <(1—aks1)Cy - ((1 — bi41 + bry1B) H 07(x|6) o REHD _ LX‘) o RKE+D

OX (k+1) R )
+ ’ % ® R(k+1)’HF by (WD — W1 2>.
Since Hgﬁ(ﬁ‘fi? ® RG+D P S A | %HF aBg;;r ) and Ve+1 = H g)égffl o RKF+D) ag{((xkfg - R(’”l)'HF/ -
I 85;?1?) - 35;‘5 I, < (1= as1)C, - ((1 b+ besi Byt + bepran BED | AW(’“*UHQ). .

Combining (A.34) and (A.35), we obtain the iterative formula for the bound of v, as

Yk Shmax + (1 - ak+1)aan : ((1 - bk—i—l + bk—i—lB) *Ye+1 + bk-t,-lao . B k+1 ||AW k+1)H ) (A36)

Furthermore, since 22519 — (1 —ax1)Vo(8JHEw) 6] g(L)] TwT,

OX(K) —
Haf(XW) of (x]0) H
OX(K) OX(K) 'F

/(1 - ax4) Vo T HE W) gL W — (1 - axc41) Vo (@I HE w67 g(L)] Tw'T|
=(1 = ag )| Vo (8 HOw)[5] g(L)] W' — Vo (5] HS'w)[5] g(L)] W' |,
The inequation ||[A1As — A AL|lF < ||A; — Alllrl|Az]l2 + ||AY|lF]| Az — AL||2 further derives

of(x|0)  of(x[0)
| — el <

(1= ax) (|Vo(6f HEw) — Vo (§THES W) - (6] (L)) Tw T,
+ Vo (6T HS w)| - [|[6T g(L) T (w — w) T,
<(1—ag41) (ua JOTHF w — 5THE) w'| . BC, + aachAan),
where the last inequation holds true because of the v,-smooth property of o(-) and |Vo| < a,. Then, we apply (A.24) to

obtain :
||5f(><|9) af (x[60")
OX(K) OX (K

where ¢ = max {(1 —ar+1)BCy - (K (1- aK+1)CgB§(K) + aKHC’x}. Substituting (A.37) into (A.34),

2 < (1= arcn) (v BCy - o A1) + a0 Cl| Sw)o ), (A.37)

Vi < hmax + (1 — ak11)as - (Z/UBCg <o)l A0|. + aUC’gHAng). (A.38)

Combining (A.36) and (A.38), we can further obtain the bound of .

APPENDIX F:PROOF FOR SECTION 6.2
Proof of Eq. (23):

For vectors z = (21, 22, ...,2,) and 2’ = (2], 25, ..., 2]) (with ||z — Z'||c < 1), the softmax function is defined as:
P 1> ~2 D

softmax(z) = (Z1, Za, ..., Z,), softmax(z') = (Z1,Z5,.. Z’)

)

where /
ek , e’k
Zkzw, Zk:piezé Vk:LQ,,p
i= j=1
For each k, rewrite | Z), — Z; | using the softmax definition:
Ze— 71| = e ek e S — e S
S R T T T

where S =370_ e and &' =37"_, e By the triangle inequality in the numerator:

le*:S" — eS| < e[S — S| + Sl — €.
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Summing |Z;, — Z},| over k gives the 1-norm:

P P
|| softmax(z) — softmax(z)||; = Z |Z1 — Z;| < Z (SS’|S, S|+ 5 : \62’“ - ezkl)

p 2l
Since kzl ¢ =1, this simplifies to:

S'— 8 1 - z z
| 5 |+§Z|ek76k. (A.39)

|| softmax(z) — softmax(z')||; <

Notice that for any k, by the mean value theorem,
le* — ek | < ePkle T — 1| < ek e |z — 21,

where the last inequation holds true because ||z — 2’| < 1, and, by the triangle inequality,

p P
—S|:Z(ezf—e Zef—e
i=1 =1

Substituting into (A.39) gives:

2 p
5 D les — €] < 26 max|ey — | = 2e- [z~ ||
j=1

|| softmax(z) — softmax(z)||; <

bS]

where the second inequation holds true because Z i

= 1. Thus, we complete the proof of Eq. (23).

Proof of Eq. (24):

Recall that we denote B a constant which bounds all original and perturbed parameters, i.e,
Wk ll2, [Wik |2, [Wall2, [Woll2, [Wv |2, [Wil2, [Woll2, [Woll2 < B,
and ||a||2, |[a’|]2 < B (output vector norm). And for § = {Wg, Wqo, Wy, W, a},
Vwi F(x,]0) = a’T50(Zg) - Wo - Wy - My - (Wox,) ', (A.40)

where: Zg = Wo - Atin(x,;0), Attn(x,;0) = > crn Asn(0)(Wyxs), Asn(0) = softmax(S. ,(0))s with S, ,(0) =
(Wixs)T(Wox,), Mg =Y crn Asn(0)(xs — X)X, (aggregate neighbor term).

Then the gradient perturbation Vw , F'(x,,|0) — Vw, F(x,|0’) arises from differences in § and 6’. According to (A.40), we
apply the triangle inequality and Lipschitz continuity of matrix multiplication/activation functions and then decompose
the perturbation into contributions from each parameter:

VW F(xn]0) = Vw  F(%n]0)]l2 < Y IVw, F(xnl0) = Vw, F (50050712 (A41)
$e{0}
where 64_, 4 replaces parameter ¢ with ¢’ while keeping others fixed.
« Contribution from a — a’: The term a' in (A.41) introduces a perturbation bounded by:
VWi F'(x0]0) = Vw1 F(xp|0asa) 2 < [la = a'llz - [T>0(Zo) |2 - [[Wolla - [Wvll2 - [Mgllz - [Wexall2,

Using
1150(Zo)|l2 <1, [IMgll2 < KmaxCs, [|[WoXall2 < BCx, (A.42)

where K, ax is the maximum neighborhood size, we have

VWi F(%0]0) — Vw e F(%n|0asa )|z < lla—a|la-1- B+ B+ KnaxC2 - BCyx = |la —a||z - Knax B*C2.

o Contribution from Wy — W{,: The term W affects both Zy and the gradient product. By Lipschitz continuity of
matrix multiplication:

VW F(xn]0) = Vw  F(%nlfwo w2 < [[Wo = Wo 2 - lall2 - [T>0(Zo)ll2 - [[Wvl2 - [Ma]l2 - [Wexnll2-
Substituting (A.42):
VW F(%0l0) = Vv F (%0|0wo w2 < [Wo = Wo |- B-1- B KunaxC - BOx = [Wo = W |2 Kmax B*C5.
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o Contribution from Wy — W{,: Wy, is independent of Atin(x,,) and My. The perturbation bound is:
IVw i F(xnl0) = Vw, F(xn|0wy w2 < Wy = W l2 - [lall2 - [I0(Zo) 2 - [Woll2 - [Mollz - [Wexa|l2.
By symmetry with Wo:
HVWKF(XTL|9) - VWKF(XnWWV—)W’V)”Z < HWV - §/|‘2 'Kmangcagr

o Contribution from Wg — W’Q: W, affects attention scores S, and thus As, and My. Using Lipschitzness of
softmax and matrix multiplication:

VWi F(%0l0) = Vw . F(%n|0wqswr, |2 < 2e[[Wo — Wz - [[all2 - [[T>0(Zo) 2 - [Wollz - [[Wy 2 [ M2 - Cx.
Substituting bounds:
IVw . F(xn|0) — VWKF(X'”|9WQ*>W&))||2 < 2e[[Wq — WIQHZ - Kinax B C3.

o Contribution from W — W'.: W directly impacts S ,,, A ,, and My. By analogous reasoning:

[Vw i F(xn|0) — VWKF(anWK%W}()lb <2e|Wgk — IK||2 'KmaxB?)Ci'

According to (A.41), total gradient perturbation bound summing all contributions, and we get:
VWi F(x0]0) = Ve F(x0]0)ll2 < 26 Kinax B C[[ A0
where [[A0]. = [Wx = Wic|l2 + [Wy = Wy |2 + [Wo — Woll2 + [Wa = Woll2 +[la — a’l|2.
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