
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 48, NO. 2, FEBRUARY 2026 1707

Deeper Insights Into Deep Graph Convolutional
Networks: Stability and Generalization
Guangrui Yang , Ming Li , Member, IEEE, Han Feng , and Xiaosheng Zhuang

Abstract—Graph convolutional networks (GCNs) have emerged
as powerful models for graph learning tasks, exhibiting promising
performance in various domains. While their empirical success is
evident, there is a growing need to understand their essential ability
from a theoretical perspective. Existing theoretical research has
primarily focused on the analysis of single-layer GCNs, while a
comprehensive theoretical exploration of the stability and general-
ization of deep GCNs remains limited. In this paper, we bridge this
gap by delving into the stability and generalization properties of
deep GCNs, aiming to provide valuable insights by characterizing
rigorously the associated upper bounds. Our theoretical results
reveal that the stability and generalization of deep GCNs are influ-
enced by certain key factors, such as the maximum absolute eigen-
value of the graph filter operators and the depth of the network.
Our theoretical studies contribute to a deeper understanding of the
stability and generalization properties of deep GCNs, potentially
paving the way for developing more reliable and well-performing
models.

Index Terms—Graph convolutional networks (GCNs),
generalization gap, deep GCNs, uniform stability.

I. INTRODUCTION

GRAPH-STRUCTURED data is pervasive across diverse
domains, including knowledge graphs, traffic networks,

and social networks to name a few [1], [2]. Several pioneering
works [3], [4] introduced the initial concept of graph neural
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networks (GNNs), incorporating recurrent mechanisms and ne-
cessitating neural network parameters to define contraction map-
pings. Concurrently, Micheli [5] introduced the neural network
for graphs, commonly referred to as NN4G, over a comparable
timeframe. It is worth noting that the NN4G diverges from
recurrent mechanisms and instead employs a feed-forward archi-
tecture, exhibiting similarities to contemporary GNNs. In recent
years, (contemporary) GNNs have gained significant attention
as an effective methodology for modeling graph data [6], [7],
[8], [9], [10], [11]. To obtain a comprehensive understanding
of GNNs and deep learning for graphs, we refer the readers
to relevant survey papers for an extensive overview [12], [13],
[14], [15].

Among the various GNN variants, one of the most powerful
and frequently used GNNs is graph convolutional networks
(GCNs). A widely accepted perspective posits that GCNs can
be regarded as an extension or generalization of traditional
spatial filters, which are commonly employed in Euclidean
data analysis, to the realm of non-Euclidean data. Due to its
success on non-Euclidean data, GCN has attracted widespread
attention on its theoretical exploration. Recent works on GCNs
includes understanding over-smoothing [16], [17], [18], [19],
interpretability and explainability [20], [21], [22], [23], [24],
expressiveness [25], [26], [27], and generalization [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40]. In
this paper, we specifically address the generalization of GCNs
to provide a bound on their generalization gap.

Investigating the generalization of GCNs is essential in under-
standing its underlying working principles and capabilities from
a theoretical perspective. However, the theoretical establishment
in this area is still in its infancy. In recent work [36], Verma and
Zhang provided a novel technique based on algorithmic stability
to investigate the generalization capability of single-layer GCNs
in semi-supervised learning tasks. Their results indicate that the
stability of a single-layer GCN trained with the stochastic gradi-
ent descent (SGD) algorithm is dependent on the largest absolute
eigenvalue of graph filter operators. This finding highlights the
crucial role of graph filters in determining the generalization ca-
pability of single-layer GCNs, providing guidance for designing
effective graph filters for these networks. On the other hand, a
number of prior studies have shown that deep GCNs possess
greater expressive power than their single-layer counterparts.
Consequently, it is essential to extend the generalization results
of single-layer GCNs to their multi-layer counterparts. This
will help us understand the effect of factors (e.g., graph filters,
number of layers) on the generalization capability of deep GCNs.
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In this paper, we investigate the generalization properties of
deep GCNs. Building on the stability framework of [36], we
analyze the uniform stability of deep GCNs in semi-supervised
learning, while developing a more refined theoretical treatment
suited to deep architectures. Our analysis reveals a strong con-
nection between the generalization gap of deep GCNs and the
characteristics of the graph filter, particularly the number of
layers. In particular, we show that when the maximum absolute
eigenvalue (or the largest singular value) of the graph filter
operator remains invariant with respect to graph size, the gener-
alization gap diminishes asymptotically at a rate of O(1/

√
m)

as the training sample size m grows. This result explains why
normalized graph filters generally outperform non-normalized
ones in deep GCNs. Furthermore, our findings indicate that
increasing depth can enlarge the generalization gap and con-
sequently degrade performance, thereby offering theoretical
guidance for selecting an appropriate number of layers when
designing deep GCNs. We then empirically validate our theo-
retical results through experiments on three benchmark datasets:
Cora, Citeseer, and Pubmed, demonstrating strong consistency
between theory and practice. In addition, we further discuss how
our theoretical framework extends to advanced architectures,
including GCNII [41] and Graph Transformer [42], thereby
highlighting its broader applicability and its potential to inspire
future theoretical studies on more complex GNN variants.

The key contributions of our paper are as follows:
� We establish the uniform stability of deep GCNs trained

with SGD, thereby extending the earlier results on single-
layer GCNs presented in [36].

� We provide a rigorous upper bound for the generalization
gap of deep GCNs and highlight the key factors that govern
their generalization ability. Moreover, we further discuss
how our theoretical framework extends naturally to ad-
vanced GNN architectures, including GCNII and Graph
Transformer models.

� We conduct empirical studies on three benchmark datasets
for node classification, which strongly validate our theo-
retical findings regarding the influence of graph filters, as
well as the depth and width of deep GCNs.

The remainder of this paper is organized as follows. In
Section II, an overview of prior studies on the generalization of
GCNs (or generic GNNs) is presented, along with a comparative
analysis highlighting the similarities and distinctions between
our work and previous research. Section III offers an exposition
of the essential concepts. The primary findings of this paper are
given in Section IV. Experimental studies designed to validate
our theoretical findings are presented in Section V. In Section VI,
we discuss how our findings extend to advanced GNN
architectures, including GCNII and Graph Transformer models.
Section VII concludes the paper with additional remarks.

Due to space constraints and for the sake of presentation
clarity, the detailed proofs of our theoretical results are deferred
to the Supplementary Material.

II. RELATED WORK

Theoretical studies on the generalization capability of GCNs
mainly employ three methodologies: Vapnik–Chervonenkis

(VC) dimension [30], [34], Rademacher complexity [31], [32],
[33], [34], [35], and algorithmic stability [36], [37], [43], [44].
Other approaches include PAC-Bayesian theory [38], [39], neu-
ral tangent kernels (NTKs) [28], [40], algorithm alignment [45],
[46], and methods from statistical physics and random matrix
theory [47]. For a broader perspective, we refer readers to the
recent survey [48], which provides a comprehensive overview
of generalization theory for message-passing GNNs.

VC-Dimension and Rademacher Complexity:
Scarselli et al. [30] study the generalization capability of
GNNs by deriving upper bounds on the growth order of
their VC-dimension. While VC-dimension is a classical tool
for establishing learning bounds, it does not capture the
structure of the underlying graph. Similarly, [34] provides
VC-dimension–based error bounds for GNNs, but the results
are trivial and fail to reflect the benefits of degree normalization.
To address graph-specific effects, Esser et al. [34] analyze
upper bounds using transductive Rademacher complexity
(TRC), highlighting how graph convolutions and network
architectures influence generalization. Tang et al. [35] establish
high-probability generalization bounds for popular GNNs
via TRC-based analysis of transductive SGD. However, their
bounds scale with the parameter dimension, limiting tightness
for large models.

Algorithmic Stability: Beyond capacity-based measures, al-
gorithmic stability serves as an important framework for under-
standing GNN generalization. Building on the work of Hardt
et al. [49], Verma and Zhang [36] show that one-layer GCNs
exhibit uniform stability and provide generalization bounds
that scale with the largest absolute eigenvalue of the graph
filter operator. Extending this line, Liu et al. [43] analyze the
stability of single-layer GCNs trained with an SGD-proximal
algorithm under �p-regularization, yielding a more refined theo-
retical understanding. These studies, however, remain restricted
to single-layer architectures. Cong et al. [50] examine GNNs
under uniform transductive stability, showing that deeper models
improve stability and reduce generalization error, whereas our
work adopts a different stability formulation. Ng and Yip [37]
investigate stability and generalization in two-layer GCNs under
an eigen-domain formulation, relying on spectral graph con-
volution [51]. Because this formulation requires computation-
ally expensive eigendecomposition of the graph Laplacian, it
does not scale to large node-classification tasks. Within this
methodological line, the closest studies to ours are [36] and [37],
but our analysis focuses on deep GCNs without assuming a
spectral-based formulation.

Other Methodologies: Alternative perspectives on GNN gen-
eralization also exist. The pioneering work of [38] introduces
PAC-Bayesian analysis for GCNs and message-passing neural
networks, later extended in [39] to provide tighter bounds linked
to the graph diffusion matrix. The NTK framework introduced
by [40] enables analysis of infinitely wide GNNs trained by
gradient descent, with [28] extending this framework to multi-
layer settings. However, NTK-based analyses typically focus
on graph classification rather than the more challenging trans-
ductive node-classification setting. Additional work explores
distinct theoretical frameworks, including topology-sampling
techniques [52], analysis on large random graphs [53], and
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TABLE I
FREQUENTLY USED NOTATIONS

NTK-based loss landscape analysis of wide GCNs [54]. For
further perspectives, we refer readers to the survey [55], which
synthesizes emerging theoretical approaches to characterizing
GNN capabilities.

III. PRELIMINARIES AND NOTATIONS

In this section, we describe the problem setup considered in
this paper and review fundamental concepts of uniform stability
for training algorithms, which form the basis of our subsequent
analysis. For clarity, we first summarize the main symbols used
in this paper in the above Table I.

A. Deep Graph Convolutional Networks

Let G = (V, E ,A) denote an undirected graph with a node set
V of sizeN , an edge set E and the adjacency matrixA ∈ RN×N .
As usual, L := D−A is denoted as its conventional graph
Laplacian, where D ∈ RN×N signifies the degree diagonal ma-
trix. Furthermore, g(L) ∈ RN×N represents a graph filter and
is defined as a function of L (or its normalized versions). We
denote by Cg = ‖g(L)‖2 the maximum absolute eigenvalue of
a symmetric filter g(L) or the maximum singular value of an
asymmetric g(L).

We denote by X = (x1,x2, . . . ,xN )� ∈ RN×d0 the input
features (d0 stands for input dimension) and xj ∈ Rd0 the node
feature of node j, while CX = ‖X‖F represents the Frobenius
norm of X. For the input feature X, a deep GCN with g(L)
updates the representation as follows:

X(k) = σ(g(L)X(k−1)W(k)), k = 1, 2, . . . ,K,

where X(k) ∈ RN×dk is the output feature matrix of the k-th
layer with X(0) = X, the matrix W(k) ∈ Rdk−1×dk represents
the trained parameter matrix specific to the k-th layer. The
function σ(·) denotes a nonlinear activation function applied
within the GCN model. For simplicity, we set a final output in
a single dimension, that is, the final output label of N nodes is
given by

y = σ
(
g(L)X(K)w

)
, (1)

where y ∈ RN and w ∈ RdK .
As defined above, the deep GCN (1) with learnable parameters

θ = {W(1),W(2), . . . ,W(K),w}
is a K + 1 layers GCN with K hidden layers and a final output
layer, and in the case of K = 0, it degenerates into the single-
layer GCN studied in [36].

B. The SGD Algorithm

We denote by D the unknown joint distribution of input
features and output labels. Let

S := {(xj , yj)}mj=1

be the training set i.i.d sampled from D and AS be a learning
algorithm for a deep GCN trained on S . For a deep GCN
model (1) with parameters θ = {W(1), . . . ,W(K),w}, denote
AS(x) = f(x|θS) = σ(δ�xg(L)X

(K)w) as the output of node
x, where θS is the corresponding learned parameter and δx is
the indicator vector with respect to node x. For a loss function
� : R × R → R+, the generalization error or risk R(AS) is
defined by

R(AS) := Ez [�(f(x|θS), y)] ,
where the expectation is taken over z = (x, y) ∼ D, and the
empirical error or risk Remp(AS) is

Remp(AS) :=
1

m

m∑
j=1

�(f(xj |θS), yj).

When considering a randomized algorithm AS ,

εgen(AS) := EA [R(AS)−Remp(AS)] (2)

gives the generalization gap between the generalization error
and the empirical error, where the expectation EA corresponds
to the inherent randomness of AS .

In this paper,AS is considered to be the algorithm given by the
SGD algorithm. Following the approach employed in [36], our
analysis focuses solely on the randomness inherent inAS arising
from the SGD algorithm, while disregarding the stochasticity
introduced by parameter initialization. The SGD algorithm for
a deep GCN (1) aims to optimize its empirical error on a dataset
S by updating parameters iteratively. For t ∈ N and considering
the parameters θt−1 obtained after t− 1 iterations, the t-th
iteration of SGD involves randomly drawing a sample (xt, yt)
from the dataset S . Subsequently, parameters θ are iteratively
updated as follows:

θt = θt−1 − η∇θ�(f(xt|θt−1), yt), (3)
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with the learning rate η > 0.

C. Uniform Stability

For the sake of estimating the generalization gap εgen(AS) of
AS , we invoke the notion of uniform stability of AS as adopted
in [36], [56].

Let

S\i = {(xj , yj)}i−1
j=1 ∪ {(xj , yj)}mj=i+1

be the dataset obtained by removing the i-th data point in S , and

Si = {(xj , yj)}i−1
j=1 ∪ {(x′

i, y
′
i)} ∪ {(xj , yj)}mj=i+1

the dataset obtained by replacing the i-th data point in S .
Then, the formal definition of uniform stability of a randomized
algorithm AS is given in the following.

Definition 1 (Uniform Stability [36]): A randomized algo-
rithm AS = f(x|θS) is considered to be μm-uniformly stable
in relation to a loss function � when it fulfills the following
condition:

sup
S,z

∣∣∣EA [�(ŷ, y)]− EA [�(ŷ′, y)]
∣∣∣ ≤ μm, (4)

where z = (x, y) ∼ D, ŷ = f(x|θS) and ŷ′ = f(x|θS\i).
As shown in Definition 1, μm indicates a bound on how much

the variation of the training set S can influence the output of AS .
It further implies the following property:

sup
S,z

∣∣∣EA [�(ŷ, y)]− EA [�(ŷ′, y)]
∣∣∣ ≤ 2μm, (5)

where z = (x, y) ∼ D, ŷ = f(x|θS) and ŷ′ = f(x|θSi).
Moreover, it is shown that the uniform stability of a learn-

ing algorithm AS can yield the following upper bound on the
generalization gap εgen(AS).

Lemma 1 (Stability Guarantees [36]): Suppose that a ran-
domized algorithm AS is μm-uniformly stable with a bounded
loss function �. Then, with a probability of at least 1− δ, con-
sidering the random draw of S, z with δ ∈ (0, 1), the following
inequality holds for the expected value of the generalization gap:

εgen(AS) ≤ 2μm +

(
4mμm +M

)√
log 1

δ

2m
,

where M is an upper bound of the loss function �, i.e., 0 ≤
�(·, ·) ≤ M .

IV. MAIN RESULTS

This section presents an established upper bound on the
generalization gap εgen(AS) as defined in (2) for deep GCNs
trained using the SGD algorithm. Notably, this generalization
bound, derived from a meticulous analysis of the comprehensive
back-propagation algorithm, demonstrates the enhanced insight
gained through the utilization of SGD.

A. Assumptions

First, we make some assumptions about the considered deep
GCN model (1), which are necessary to derive our results.

Assumption 1: The activation function σ : R → R is as-
sumed to satisfy the following:

1) ασ-Lipschitz:

|σ(x)− σ(y)| ≤ ασ|x− y|, ∀x, y ∈ R.

2) νσ-smooth:

|∇σ(x)−∇σ(y)| ≤ νσ|x− y|, ∀x, y ∈ R.

3) σ(0) = 0.
With these assumptions, the derivative ofσ, denoted by∇σ, is

bounded, i.e., |∇σ(·)| ≤ ασ , and ‖σ(X)‖F ≤ ασ‖X‖F holds
for any matrix X. It can be easily verified that activation func-
tions such as ELU and tanh satisfy the above assumptions.

Assumption 2: Let ŷ and y be the predicted and true labels,
respectively. We denote the loss function � : [ymin, ymax]×
[ymin, ymax] → R by �(ŷ, y). Similar to [37], we adopt the
following assumptions for �.

1) The loss function � exhibits continuity with respect to the
variables (ŷ, y) and possesses continuous differentiability
with respect to ŷ.

2) The loss function � satisfies α�-Lipschitz with respect to
ŷ:

|�(ŷ, y)− �(ŷ′, y)| ≤ α�|ŷ − ŷ′|,
∀ ŷ, ŷ′, y ∈ [ymin, ymax].

3) The loss function � meets ν�-smooth with respect to ŷ:∣∣∣∣ ∂�∂ŷ (ŷ, y)− ∂�

∂ŷ
(ŷ′, y)

∣∣∣∣ ≤ ν�|ŷ − ŷ′|,

∀ ŷ, ŷ′, y ∈ [ymin, ymax].

With these assumptions, | ∂�∂ŷ (ŷ, y)| ≤ α�, and � is bounded,
i.e., 0 ≤ �(ŷ, y) ≤ M .

Assumption 3: The learned parameters {W(1), . . . ,
W(K),w} during the training procedure with limited iterations
satisfies

max
{
‖W(1)‖2, . . . , ‖W(K)‖2, ‖w‖2

}
≤ B.

B. Generalization Gap

This section presents the main results of this paper. Under the
assumptions made in Section IV-A, the bound on the general-
ization gap of deep GCNs is provided in the following theorem.

Theorem 1 (Generalization gap for deep GCNs): Consider
the deep GCN model, defined in (1), which comprises K hidden
layers and utilizes g(L) as the graph filter operator. The model is
trained on S using SGD for T iterations. Under Assumptions 1,
2, and 3 stated in Section IV-A, the following expected gener-
alization gap is valid with a probability of at least 1− δ, where
δ ∈ (0, 1):

εgen(AS) ≤
1√
m

{
O

((
(K + 1)ηκ1 + ηκ2

)T)

+M

√
log 1

δ

2

}
, (6)
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where

κ1 := (υ�α
2
σ + α�νσ)(BασCg)

2KC2
gC

2
X

+ α�(BασCg)
K−1α2

σC
2
gCX, (7)

κ2 := νσ (BασCg)
K C2

gC
2
X

⎛
⎝K−1∑

j=0

(j + 1)(BασCg)
j

⎞
⎠ . (8)

A fundamental correlation between the generalization gap and
the parameters governing deep GCNs is induced by Theorem 1.
This correlation implies that the uniform stability of deep GCNs,
trained using the SGD algorithm, exhibits an increase with the
number of samples when the upper bound approaches zero as
the sample size m tends to infinity. Specifically, it is observed
that if the value ofCg (presenting the largest absolute eigenvalue
of a symmetric g(L) or the maximum singular value of an asym-
metric g(L)) remains unaffected by the size N , a generalization
gap decaying at the order of O(1/

√
m) is obtained. To compare

with the result in [36], let us discuss at length the role of g(L)
and the hidden layer number K on the generalization gap.

According to (7) and (8), κ1 = O(C2K+2
g ) and κ2 =

O(C2K+1
g ). Therefore, the bound on the generalization gap of

deep GCNs in Theorem 1 is

εgen(AS) ≤
1√
m

⎛
⎝O

(
C2T (K+1)

g

)
+M

√
log 1

δ

2

⎞
⎠ . (9)

When K = 0, the GCN model (1) degenerates into the single-
layer GCN model considered in [36]. At this point, according to
(9), we have

εgen(AS) ≤
1√
m

⎛
⎝O

(
C2T

g

)
+M

√
log 1

δ

2

⎞
⎠ , (10)

which is the same as the result of [36].
Remarks: Based on (9), we present certain observations re-

garding the impact of filter g(L) and the hidden layer number
K on the generalization capacity of deep GCNs in (1).
� Normalized vs. Unnormalized Graph Filters: We exam-

ine the three most commonly utilized filters: 1) g1(L) =
A+ I, 2) g2(L) = D−1/2AD−1/2 + I, and 3) g3(L) =
D−1A+ I. For the unnormalized filter g1, its maximum
absolute eigenvalue is bounded by O(N). Consequently,
as the value of m approaches the magnitude to N , the
upper bound indicated by (9) tends towards O(Np) for
some p > 0, leading to an impractical upper bound when
N become infinitely large. On the contrary, for two normal-
ized filters g2 and g3, their largest absolute eigenvalues are
bounded and independent of graph size N . Therefore, both
filters yield a diminishing generalization gap at a rate of

O
(

1√
m

)
as m goes to infinity. This discovery underscores

the superior performance of normalized filters over unnor-
malized counterparts in deep GCNs. This observation is
consistent with the findings in [36], [37].

� Low-pass vs. High-pass Graph Filters: Our theoretical
results are not restricted to the choice of g(L) as either

a low-pass or a high-pass filter. To illustrate, consider
two exponential filters with symmetric L: i) a low-pass
filter glow(λ) = e−bλ2

and ii) a high-pass filter ghigh(λ) =

1− e−aλ2
, where a, b > 0. In this setting, it is straightfor-

ward to verify that

‖ghigh(L)‖2 < ‖glow(L)‖2 = 1.

Consequently, both filters lead to a vanishing generaliza-
tion gap at the rate of O( 1√

m
) as m → ∞.

� The Role of ParameterK: It is evident that, when the values
of Cg and T are fixed, the upper bound (9) exhibits an
exponential dependence on parameter K. This observation
implies that a larger value K leads to an increase in the
upper bound of the generalization gap, thereby offering
valuable insights for the architectural design of deep GCNs.
This finding diverges from the ones presented in [36], [37],
as these studies do not account for generic deep GCNs and
overlook the significance of the parameter K.

Furthermore, based on Theorem 1, we give a brief analysis of
the impact of dk (width of the k-th layer) on the generalization.
Actually, the impact of dk on the generalization is reflected in its
impact on B. More specifically, let us consider the case where
parameters {W(1), . . . ,W(K),w} belong to the set Xξ, where

Xξ := {W : ‖W‖∞ ≤ ξ},
i.e.,Xξ is the collection of all matrices whose elements’ absolute
values are all less than ξ. At this point, for W(k) ∈ Rdk−1×dk ,
we have

sup
W(k)∈Xξ

‖W(k)‖2 ≤ sup
W(k)∈Xξ

‖W(k)‖F ≤ ξ
√

dk−1dk.

Therefore, a larger dk (i.e., width of the k-th layer) results in
a larger upper bound of ‖W(k)‖2, which implies that a larger
dk results in a larger B (see Assumption 3 in Section IV-A).
Finally, Theorem 1 indicates that a larger B leads to a larger
bound on the generalization gap, thus we conclude that a larger
dk leads to a larger bound on the generalization gap. To justify
this argument, we add some experimental studies in Section V.
The empirical results are consistent with our analysis.

Table II offers a concise summary of various upper bounds
on the generalization gap, derived through the application of
uniform stability. From Table II, we can see that all the works
derive a generalization gap decaying at the order of O(1/

√
m).

However, compared to the other three works which only consider
shallow GCNs, our work explores the case of deep GCNs. We
should point out that the generalization of single-layer GCNs
into deep GCNs is not trivial. To derive the results for deep
GCNs, we tackle two significant challenges that arise specifi-
cally in the context of deep GCNs, which are unique to deep
GCNs and are non-existent in single-layer models. The first
challenge is the derivation of the gradient of the final output
with respect to the learnable parameters across multiple layers,
which requires determining how the gradient of the overall
error of a GCN is shared among neurons in different hidden
layers. In particular, in Appendix A.1, we provide a recursive
formula to compute the related gradients. The second challenge
is the evaluation of gradient variations between GCNs trained on
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TABLE II
COMPARISON OF THE GENERALIZATION GAP ESTIMATED BASED ON UNIFORM STABILITY

different datasets. In the single layer case, since the input feature
is the same, the variation of the related gradient is only dependent
on the variations of learnable parameters. While, in the case
of deep GCNs, the variation of the related gradients is also
dependent on the variations of the gradients of the final output
with respect to the hidden layer outputs. Please see Lemma 7
and its proof for details (see Appendix C in the supplementary
material).

C. Stability Upper Bound

In this subsection, we establish the uniform stability of SGD
for deep GCNs, which is the key to further proving Theorem 1.

Theorem 2 (Uniform stability of deep GCNs): Consider the
deep GCNs defined by (1), which are trained on a datasetS using
the SGD algorithm for a total of T iterations and denoted as AS .
Assume that Assumptions 1, 2, and 3 stated in Section IV-A are
satisfied. Then, AS is μm-uniformly stable, with μm satisfying
the following condition:

μm ≤ C

m

T∑
t=1

(1 + (K + 1)ηκ1 + ηκ2)
t−1 , (11)

where

C := (K + 1)ηα2
� (BασCg)

2Kα2
σC

2
gC

2
X,

κ1 and κ2 are defined by (7) and (8), respectively.
With a straightforward calculation, one can see that

μm ≤ 1

m
O

(
((K + 1)ηκ1 + ηκ2)

T

)
,

which decays at the rate of 1
m as m tends to infinity. Together

with Lemma 1, it yields the result of Theorem 1.
Proof Sketch for Theorem 2: We prove Theorem 2 in the

following two steps.
� Step 1: We begin by bounding the stability of deep GCNs

with respect to perturbations in the learned parameters
caused by changes in the training set. The result is given
in Lemma 2.

� Step 2: Next, we provide a bound for the perturbation of the
learned parameters. The result is presented in Theorem 3.

Consider AS , a set of deepGCNs defined by (1), trained
on the dataset S using SGD for T iterations. Let θt =

{W(1)
t , . . . ,W

(K)
t ,wt} and θ′t = {W(1)′

t , . . . ,W
(K)′

t ,w′
t}

(with θ0 = θ′0) denote the parameters of two GCNs trained on S
and Si after t iterations, respectively. We set �wt = wt −w′

t

and�W
(k)
t = W

(k)
t −W

(k)′

t to be the perturbation of learning
parameters and define

‖�θt‖∗ = ‖�wt‖2 +
K∑

k=1

‖�W
(k)
t ‖2. (12)

In the following lemma, it is shown that the stability of AS
can be bounded by ‖�θT ‖∗.

Lemma 2: Let θt and θ′t be the learnt parameters of two GCNs
trained onS andSi using SGD in the t-th iteration with θ0 = θ′0,
and �θt := θt − θ′t. Suppose that all the assumptions made in
Section IV-A hold. Then, after T iterations, we have that for any
z = (x, y) taken from D,∣∣∣EA [�(ŷ, y)]− EA [�(ŷ′, y)]

∣∣∣
≤ α�B

KαK+1
σ CK+1

g CX · EA [‖�θT ‖∗] , (13)

where ŷ = f(x|θT ) and ŷ′ = f(x|θ′T ).
We provide the proof of Lemma 2 in Appendix B (see the

supplementary material).
Combining (5) and (13), the stability of AS has a bound

μm ≤
α�B

KαK+1
σ CK+1

g CX

2
sup
S

{EA [‖�θT ‖∗]} . (14)

So, to estimate the uniform stability of AS , we need to bound
EA[‖�θT ‖∗]. Now, let us recall (3) for parameter updating, for
training on S ,

wt = wt−1 − η∇w�(f(xt|θt−1), yt),

W
(k)
t = W

(k)
t−1 − η∇W(k)�(f(xt|θt−1), yt),

k = 1, 2, . . . ,K, and for training on Si,

w′
t = w′

t−1 − η∇w�(f(x′
t|θ′t−1), y

′
t),

W
(k)′

t = W
(k)′

t−1 − η∇W(k)�(f(x′
t|θ′t−1), y

′
t),
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k = 1, 2, . . . ,K, where (xt, yt) ∈ S and (x′
t, y

′
t) ∈ Si are the

samples drawn at the t-th SGD iteration. Therefore, �θt =

{�W
(1)
t , . . . ,�W

(K)
t ,�wt} has the following iterations:

�wt = �wt−1

− η
(
∇w�(f(xt|θt−1), yt)−∇w�(f(x′

t|θ′t−1), y
′
t)
)
,

and for k = 1, 2, . . . ,K,

�W
(k)
t = �W

(k)
t−1

− η
(
∇W(k)�(f(xt|θt−1), yt)−∇W(k)�(f(x′

t|θ′t−1), y
′
t)
)
,

with ‖�θ0‖∗ = 0.
So, we need to bound

∇w�(f(xt|θt−1), yt)−∇w�(f(x′
t|θ′t−1), y

′
t)

and

∇W(k)�(f(xt|θt−1), yt)−∇W(k)�(f(x′
t|θ′t−1), y

′
t)

to obtain a bound of‖�θt‖∗. There are two scenarios to consider:
i) At step t, SGD picks a sample zt = (xt,yt) which is identical
in S and Si, and occurs with probability (m− 1)/m; and ii)
At step t, SGD picks the only samples that S and Si differ,
zt = (xt,yt) and z′t = (x′

t,y
′
t) which occurs with probability

1/m. We provide the results in the following Lemma 3 and
Lemma 4.

Lemma 3: Consider two GCNs with parameters θt and θ′t,
respectively. Then, the following holds for any sample zt =
(xt, yt):

‖∇w�(f(xt|θt−1), yt)−∇w�(f(xt|θ′t−1), yt)
∥∥
F

≤ κ1‖�θt−1‖∗, (15)

and for k = 1, 2, . . . ,K,

‖∇W(k)�(f(xt|θt−1), yt)−∇W(k)�(f(xt|θ′t−1), yt)‖F
≤ (κ1 + ρk)‖�θt−1‖∗, (16)

where κ1 and ρk are defined by (7) and (A-12) (see the supple-
mentary material), respectively.

Lemma 4: Consider two GCNs with parameters θt and θ′t,
respectively. Then, the following holds for any two samples zt =
(xt, yt) and z′t = (x′

t, y
′
t):

‖∇W(k)�(f(xt|θt−1), yt)−∇W(k)�(f(x′
t|θ′t−1), y

′
t)‖F

≤ 2α�B
KαK+1

σ CK+1
g CX, (17)

for k = 1, 2, . . . ,K + 1. Note that W(K+1) = w.
The proofs of Lemmas 3 and 4 are given in Appendix C

(see the supplementary material). We now provide a bound for
EA[‖�θT ‖∗].

Theorem 3: Let θt and θ′t be the learnt parameters of two
GCNs trained on S and Si using SGD in the t-th iteration with
θ0 = θ′0. The assumptions made in Section IV-A hold. Then,
after T iterations, �θT satisfies

EA [‖�θT ‖∗] ≤ c

T∑
t=1

(
1 + (K + 1)ηκ1 + ηκ2

)t−1

, (18)

TABLE III
STATISTICS OF THE THREE BENCHMARK DATASETS

where c :=
2(K+1)ηα�B

KαK+1
σ CK+1

g CX

m , and κ1 and κ2 are de-
fined by (7) and (8), respectively.

The proof of Theorem 3, using Lemmas 3 and 4, is provided in
Appendix D (see the supplementary material). Combining (14)
and Theorem 3, we obtain that the uniform stability μm of AS
has a bound as

μm ≤ α�B
KαK+1

σ CK+1
g CX sup

S
{EA [‖�θT ‖∗]}

≤ C

m

T∑
t=1

(1 + (K + 1)ηκ1 + ηκ2)
t−1 ,

which completes the proof of Theorem 2.

V. EXPERIMENTS

In this section, we conduct some empirical studies using three
benchmark datasets commonly utilized for the node classifica-
tion task, namely Cora, Citeseer, and Pubmed [57], [58]. Table III
summarizes the basic statistics of these datasets.

In our experiments, we follow the standard transductive
learning problem formulation and the training/test setting used
in [59]. To rigorously test our theoretical insights, our experi-
ments aim to answer the following key questions:
� Q1: How does the design of graph filters (i.e., g(L)) influ-

ence the generalization gap?
� Q2: How does the generalization gap change with the

number of hidden layers (i.e., K)?
� Q3: How does the width (i.e., the number of hidden units:
d) affect the generalization gap?

To address each question, we empirically estimate the general-
ization gap by calculating the absolute difference in loss between
training and test samples. We adopt the official TensorFlow
implementation (https://github.com/tkipf/gcn) for GCN [59]
and the Adam optimizer with default settings. The number of
iterations is fixed to T = 200 for all the simulations.

Results and Discussion for Q1: We analyze two types of graph
filters in our study: 1) the normalized graph filter, defined as
g(L) = D̃−1/2ÃD̃−1/2 with Ã = A+ I and D̃ii =

∑
j Ãij

(which was first employed in the vanilla GCN [59] and has sub-
sequently become widely used in follow-up works on GCNs),
and 2) the random walk filter, g(L) = D−1A+ I. To fit our
theoretical finding, we compare the performance of two 5-layer
GCN models (with widthd = 32 for each layer), each employing
one of these filters. Table IV presents the numerical records of
Remp(AS), R(AS), εgen(AS), Cg for both filters. The results
indicate clearly that the 5-layer GCN with the normalized graph
filter exhibits a smaller generalization gap compared to the one
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TABLE IV
THE GENERALIZATION GAP WITH DIFFERENT GRAPH FILTER FOR THREE DATASETS

Fig. 1. Comparison of trends in the generalization gap: Cora (left), Citeseer (middle), Pubmed (right).

Fig. 2. Comparison of the generalization gap with different settings of network depth K: Cora (left), Citeseer (middle), Pubmed (right).

with the random walk filter. Furthermore, Fig. 1 illustrates the
performance of each filter across different datasets over itera-
tions, demonstrating the superior performance of the normalized
graph filter. Overall, the empirical findings in Table IV and Fig. 1
align well with our theoretical finding regarding the impact of
Cg on the generalization gap.

Results and Discussion for Q2: In this experimental study,
we try different settings of K, i.e., the number of hidden
layers. Specifically, for K = {1, 2, 3, 4, 5}, we compare the
performance of two K-layer GCNs (with width d = 32 for
each layer): one employing the normalized graph filter g(L) =
D̃−1/2ÃD̃−1/2, and one using the random walk filter g(L) =
D−1A+ I. Fig. 2 shows the performance comparison results
for each K. It demonstrates clearly that, consistent with the
aforementioned results for Q1, GCN with a normalized graph
filter (with smaller Cg) consistently exhibits smaller generaliza-
tion gaps compared to those with the random walk filter. Also,

it is observed that the generalization gap becomes larger as K
increases, further validating our theoretical assertions regarding
the influence of K on the model’s generalization gap.

Results and Discussion for Q3: To empirically investigate
the impact of width d (i.e., the number of hidden units) on the
generalization gap, we conduct additional experiments using
a 5-layer GCN equipped with a normalized graph filter. The
experiments specifically involve a comparison between a 5-layer
GCN configured with a width of 2d for each layer and the
previously studied model with dwidth (d = 32), as illustrated in
Fig. 3. This setup allows for a direct comparison under varying
network configurations, providing insights into how changes in
the number of hidden units influence the generalization gap.
As demonstrated in Fig. 3, across all the datasets examined, a
d-width GCN consistently exhibits smaller generalization gaps
compared to one with a 2d-width. This observation is in harmony
with our theoretical explanation presented after Theorem 1, that
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Fig. 3. Comparison of the generalization gap with different settings of network width d: Cora (left), Citeseer (middle), Pubmed (right).

is, the factorB (i.e., the upper bound of 2-norm of the parameters
{W(1), . . . ,W(K),w}) directly influences factors κ1 and κ2 in
the upper bound of the generalization gap.

VI. THEORETICAL IMPLICATIONS

Our work establishes a theoretical framework for analyzing
the generalization gap of traditional deep GCNs, which further
provides insights into extending the analysis to other classes
of graph neural networks, including Graph Transformers. As
illustrative examples, we briefly discuss how the theoretical
proof methodology developed in our framework can be applied
to GCNII and Graph Transformer, which are representative
models of more advanced GNNs, thereby demonstrating the
broader applicability of our theoretical framework.

A. Extension to GCNII

With input features X(0) = X ∈ RN×d, GCNII defines its
k-th layer as

X(k) = σ

((
(1− ak)g(L)X

(k−1) + akX
(0)
)

·
(
(1− bk)Id + bkW

(k)
))

,

for k = 1, 2, . . . ,K, where ak, bk ∈ (0, 1) are two hyperparam-
eters, X(k) is the output feature matrix of the k-th layer, W(k) is
the trained parameter matrix specific to thek-th layer, graph filter
g(L) = D̃−1/2ÃD̃−1/2, and Id is the d× d identity matrix. The
output for node x is

f(x|θ) = σ
(
δ�x

(
(1− aK+1)g(L)X

(K) + aK+1X
(0)
)
w
)
,

where θ = {W(1),W(2), . . . ,W(K),w} (all trainable param-
eters, with w ∈ Rd the output layer parameter); δx ∈ RN is the
indicator vector for node x; aK+1 ∈ (0, 1) is a hyperparameter
for the output layer residual connection. Let θt and θ′t be the
learnt parameters of two GCNs trained on S and Si using SGD
in the t-th iteration with θ0 = θ′0, and �θt := θt − θ′t.

For each layer k, the perturbation of layer outputs
‖�X(k)‖F = ‖X(k) −X(k)′ ‖F satisfies the recursive bound:

‖�X(k)‖F ≤ c
(k)
1 ‖�X(k−1)‖F + c

(k)
2 ‖�W(k)‖2, (19)

where c
(k)
1 = (1− ak)(1− bk + bkB)ασCg and c

(k)
2 =

ασbk((1− ak)CgB
(k−1)
X + akCX) with B

(k−1)
X the bound

of ‖X(k−1)‖F (see (A.22) in the Appendix E). The first term
on the right side of the iterative formula captures propagation
of perturbations from the previous layer, while the second term
captures perturbation from W(k).

By induction, it yields that

‖�X(k)‖F ≤ e(k)

⎛
⎝ k∑

j=1

‖�W(k)‖2

⎞
⎠ , (20)

where e(k) = max{c(k)1 e(k−1), c
(k)
2 } with e(0) = 0. We provide

the proof of (19) and (20) in Appendix E. Then, combining
layer-wise bounds and using the Lipschitz property of σ, one
can have the output perturbation |f(x|θ)− f(x|θ′)| bounded
by the total parameter perturbation ‖Δθ‖∗ =

∑K
j=1 ‖W(j) −

W(j)′ ‖2 + ‖w −w′‖2 (see Appendix E for technical details)
as

|f(x|θ)− f(x|θ′)| ≤ ασ · �‖�θ‖∗, (21)

where � = max{(1− aK+1)BCg · e(K), (1− aK+1)CgB
(K)
X

+ aK+1CX}. Then,∣∣∣EA [�(ŷ, y)]− EA [�(ŷ′, y)]
∣∣∣

=
∣∣∣EA [� (f(x|θT ), y)− � (f(x|θ′T ), y)]

∣∣∣
≤ α�EA

[∣∣f(x|θT )− f(x|θ′T )
∣∣] ≤ �α� · EA [‖�θT ‖∗] .

This implies that the stability of AS for GCNII has a bound

μm ≤ �α�

2
sup
S

{EA[‖�θT ‖∗]} .

Note that when ak = 0, bk = 1 for all k, GCNII degenerates into
the traditional GCN, we have � = BKαK

σ CK+1
g CX, and thus

μm ≤
α�B

KαK
σ CK+1

g CX

2
sup
S

{EA[‖�θT ‖∗]} ,

which is consistent with (14).
To further bound ‖�θT ‖∗, the crucial step is to bound the

perturbation of the gradient of f(x|θ) with respect to the param-
eters θ = {W1,W2, . . . ,WK ,w} and obtain the result similar
to Lemma 7 in Appendix C, which can be achieved by following
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the technique in our paper. Here, we provide the result for
‖∇wf(x|θ)−∇wf(x|θ′)‖F :

‖∇wf(x|θ)−∇wf(x|θ′)‖F ≤
(
νσ� ·

(
(1− aK+1)CgB

(K)
X

+ aK+1CX

)
+ ασ · (1− aK+1)Cge

(K)
)
· ‖�θ‖∗, (22)

where � = max{(1− aK+1)BCg · e(K), (1− aK+1)CgB
(K)
X

+ aK+1CX}. Note that when ak = 0, bk = 1 for all k,
GCNII degenerates into the traditional GCN, we have
� = BKαK

σ CK+1
g CX, B

(K)
X = BKαK

σ CK
g CX and e(K) =

BK−1αK
σ CK

g CX. At this point,∥∥∇wf(x|θ)−∇wf(x|θ′)
∥∥
F

≤
(
υσB

2Kα2K
σ C2K+2

g C2
X +BK−1αK+1

σ CK+1
g CX

)
‖�θ‖∗,

which is consistent with (A.10) in Appendix C. For the bound
of ‖∇W(k)f(x|θ)−∇W(k)f(x|θ′)‖F , we refer the readers to
the proof process of (A.27) in Appendix E.

Finally, these structured analysis results can lead to the re-
sults corresponding Lemma 3 and Lemma 4, and thus enable
bounding the stability of GCNII.

B. Extension to Graph Transformer

To extend our theoretical framework to more complex models
like Graph Transformer, the key is to bound the generalization
gap of Graph Transformer by quantifying how perturbations in
the training set (e.g., removing or replacing a node) propagate
to changes in model outputs. Graph Transformer introduce
new learnable parameters: query (WQ), key (WK), and value
(WV ) projection matrices, alongside attention scalers and feed-
forward layers, for which a self-attention layer is defined [42]
as

F (xn) = a� Relu

(
WO

∑
i∈T n

WV xi · softmaxn

(
(WKxi)

�WQxn

))
,

where xi denotes features of node i, T n is the set of nodes for
the aggregation computing of node n, and softmaxn(h(i, n)) =
exp(h(i, n))/

∑
j∈T n exp(h(j, n)). Despite their architectural

complexity (e.g., self-attention mechanisms, query/key/value
projections), gradient decomposition still remains to be con-
ducted via the product rule and chain rule, accounting for the
propagation of attention-weight variations to the final output.
Besides, a Lipschitz-type inequality for softmax may be criti-
cally needed, for which we claim that for z = (z1, z2, . . . , zp),
z′ = (z′1, z

′
2, . . . , z

′
p) with ‖z− z′‖∞ ≤ 1,

‖ softmax(z)− softmax(z′)‖1 ≤ 2e‖z− z′‖∞. (23)

Actually, the proof is not hard to set up by straight forward
boundedness and the mean value theorem of exponential func-
tions (see the technical details in Appendix F in the Supplemen-
tary Material).

For trainable parameters WQ,WK ,WV , set the attention
output is:

F (xn) = a�ReLu

(
WO

∑
i∈T n

WV xi ·Attn(xn)i

)
,

where Si,n = (WKxi)
T (WQxn) is the scaled dot-product

score, Ai,n = softmaxn(Si,n) are attention weights, and
Attn(xn) =

∑
i∈T n WV xi ·Ai,n the attention output. Then

the gradient decomposition with respect to WK is given by

∇WK
F (xn) = ∇ReLU(Z)F (xn)︸ ︷︷ ︸

©1

· ∇ZReLU(Z)︸ ︷︷ ︸
©2

· ∇Attn(xn)Z︸ ︷︷ ︸
©3

· ∇AAttn(xn)︸ ︷︷ ︸
©4

· ∇SA︸ ︷︷ ︸
©5

· ∇WK
S︸ ︷︷ ︸

©6

where Z = WO · Attn(xn), A = {Ai,n}, and S = {Si,n}.
Then calculating each item gives that

∇WK
F (xn) = a�I≥0(WO · Attn(xn)) ·WQ ·WV

·
(∑

i∈T n

Ai,n(xi − x̄n)x
�
i

)
· (WQxn)

�.

By leveraging the Lipschitz continuity of the gradient with
respect to its trainable parameters, it can lead to bounding the
gradient perturbation in terms of the total parameter perturba-
tion ‖�θ‖∗ = ‖WK −W′

K‖2 + ‖WV −W′
V ‖2 + ‖WO −

W′
O‖2 + ‖WQ −W′

Q‖2 + ‖a− a′‖2 by

‖∇WK
F (xn|θ)−∇WK

F (xn|θ′)‖2 ≤ 2eKmaxB
3C3

X‖Δθ‖∗,
(24)

where Kmax ≥ |T n| is the maximum neighborhood size, B
is the upper bound of weight matrices (technical details in
Appendix F). It mirrors the Lemma 7 in our approach for
deep GCNs, where we recursively decomposed gradients across
layers (see Lemma 7 in the Supplementary Material). For Graph
Transformer, similar recursive relations can be derived for at-
tention layers, with additional terms capturing interactions be-
tween WQX,WKX,WV X. For GCNs, we bounded gradient
variations using norms of graph filters and layer parameters
(e.g., ‖g(L)‖2, ‖W(k)‖2). For Graph Transformer, this will be
extended to: singular values of WQ,WK ,WV (analogous to
Cg in GCNs), as they control the “strength” of feature projections
and Lipschitz constants of softmax and feed-forward activations
(replacing ασ for GCN activations, and leads to an analogous to
Theorem 2 for deep GCNs.

VII. CONCLUSION AND FURTHER REMARKS

This paper explores the generalization of deep GCNs by
providing an upper bound on their generalization gap. Our gen-
eralization bound is obtained based on the algorithmic stability
of deep GCNs trained by the SGD algorithm. Our analysis
demonstrates that the algorithmic stability of deep GCNs is
contingent upon two factors: the largest absolute eigenvalue
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(or maximum singular value) of graph filter operators and the
number of layers utilized. In particular, if the aforementioned
eigenvalue (or singular value) remains invariant regardless of
changes in the graph size, deep GCNs exhibit robust uniform
stability, resulting in an enhanced generalization capability.
Additionally, our results suggest that a greater number of layers
can increase the generalization gap and subsequently degrade
the performance of deep GCNs. This provides guidance for
designing well-performing deep GCNs with a proper number of
layers [60]. Most importantly, the result of single-layer GCNs
in [36] can be regarded as a special case of our results in deep
GCNs without hidden layers.

While our study is primarily focused on exploring the funda-
mental principles of generalizability and stability in the context
of a simple deep GCN model framework, the theoretical insights
obtained here can also offer preliminary perspectives on several
research topics that have drawn increasing attention in the graph
neural network community. These include, among others, the
over-smoothing problem in deep architectures [61], [62], the
design of models tailored for heterophilic graphs [63], [64],
and the emerging topic of graph out-of-distribution (OOD)
generalization [65], [66]. Our theoretical study can provide
potential hints toward these directions, but more fine-grained
and comprehensive work is still needed to fully address them.
Below, we elaborate on these aspects in turn, aiming to clarify
their conceptual connections with our work, outline possible di-
rections for extending our theoretical framework, and highlight
three open and challenging questions that can serve as seeds for
future exploration.

How can the impact of over-smoothing in deep GCNs be
mitigated? We first note that, given a trivial deep GCN model
characterized by over-smoothed node embeddings (which typi-
cally result in significant training errors), our theoretical upper
bound still holds — that is, for a given graph filter, an increase
in layers could potentially increase this upper bound in a prob-
abilistic sense. This also motivates the exploration of advanced
deep GCN models that incorporate mechanisms to counteract
over-smoothing, such as the skip connection technique used in
GCNII [41] and its follow-up works. As detailed in Section V,
our theoretical results can in fact be extended to the setting of
GCNII, thereby providing analytical support for architectures
that integrate skip connections. In both theory and practice,
reducing the maximum absolute eigenvalue of graph filter op-
erators is achievable through the strategic implementation of
skip connections across layers, which can potentially reduce
the generalization gap. From this perspective, our findings may
inspire further studies into sophisticated deep GCN architec-
tures designed to mitigate over-smoothing, offering a promising
direction for both theoretical and practical advancements.

What is the role of heterophily in GCN generalization? It
is also valuable to consider extending our theoretical analysis
to models specifically designed for heterophilic graphs, where
nodes often connect to neighbors with dissimilar labels. This
would require incorporating the homophily/heterophily ratio of
the input graph signal into the upper bound estimation, thereby
capturing how graph signal characteristics influence general-
ization. Although our empirical study here considers two types
of low-pass filters on homophilic benchmark datasets (Cora,

Citeseer, Pubmed), our theoretical framework is not restricted
to low-pass scenarios alone. As remarked in Section IV-B, the
analysis framework is in principle applicable to a broader range
of filtering schemes; however, the derivations in our proofs do
not explicitly examine the impact of specific quantities such as
the homophily/heterophily ratio, leaving this as an open aspect
for further refinement. To ensure a consistent and fair empiri-
cal evaluation, as demonstrated in [36], we adopt homophilic
datasets that are standard in prior stability and generalization
analyses of GCNs. For analyses involving high-pass filters, it
would be appropriate to engage with heterophilic benchmark
datasets (e.g., Texas, Wisconsin, Cornell). Relevant to this dis-
cussion is the recent work [47], which employs analytical tools
from statistical physics and random matrix theory to precisely
characterize generalization in simple GCNs on the contextual
stochastic block model (CSBM). Such studies, although based
on specific graph signal assumptions, could inspire refinements
to our theoretical framework by jointly considering graph signal
characteristics (homophily/heterophily) and model complexities
(filter types, depth, and width).

Can insights from in-distribution generalization inform OOD
generalization? Beyond the above considerations, another rel-
evant line of research that has recently attracted considerable
attention is graph out-of-distribution (OOD) generalization [65],
[66]. It is worth clarifying that the problem setting and the-
oretical assumptions in OOD generalization are distinct from
those in the in-distribution generalization framework consid-
ered in this work. In-distribution generalization focuses on sce-
narios where both training and test data are drawn from the
same underlying distribution, enabling rigorous analysis under
well-defined stochastic assumptions, such as those adopted in
our stability-based framework. In contrast, OOD generaliza-
tion addresses cases involving distribution shifts, which often
require additional modeling principles (e.g., invariance to spu-
rious correlations, causal structure modeling, or domain adap-
tation techniques) and seek performance guarantees that hold
across domains. Despite these differences, the two areas can
be mutually beneficial: in-distribution analyses, such as our
characterization of bias–variance trade-offs and the influence
of spectral properties of graph filters on generalization, may
offer insights for developing more OOD-robust architectures;
conversely, OOD-oriented approaches, such as invariant risk
minimization or causal subgraph intervention, may inspire new
regularization schemes or architectural components that also
enhance in-distribution performance. Related to this discussion,
the authors in [67] analyze a one-layer GCN trained on the
CSBM via logistic regression, providing theoretical insights
into improved linear separability and out-of-distribution gen-
eralization in semi-supervised node classification. Extending
the current stability-based framework to accommodate mild
forms of distribution shift thus presents an appealing research
direction that could bridge these two lines of work and ad-
vance the understanding of generalization in graph neural
networks.

Taken together, these discussions highlight that our theoretical
framework, while developed under a specific in-distribution
setting, has the potential to be extended and adapted to address
a broader range of challenges in graph learning.
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Building on the above open questions, which outline core
challenges for future exploration, it is also important to consider
more concrete research directions and methodological exten-
sions. For example, the theoretical analysis presented in this
study could be extended to encompass other commonly used
learning algorithms in graph neural networks, moving beyond
the scope of SGD. Our theoretical results may also inform the
exploration of strategies to enhance the generalization capability
of deep graph neural networks, such as investigating the efficacy
of regularization techniques, conducting advanced network ar-
chitecture searches, or developing adaptive graph filters. In ad-
dition, establishing the potential connection between model sta-
bility, generalization, and the issues of over-smoothing and over-
squashing represents another promising avenue. Understanding
these interrelationships could contribute to the development of
novel techniques and algorithms that address these challenges,
thereby complementing the broader problem-oriented directions
discussed above and improving the overall effectiveness of deep
graph neural networks in dealing with more complex tasks.
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