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Abstract In this paper, we are interested in the problems of matrix extension with
symmetry, more precisely, the extensions of submatrices of Laurent polynomials
satisfying some conditions to square matrices of Laurent polynomials with certain
symmetry patterns, which are closely related to the construction of (bi)orthogonal
multiwavelets in wavelet analysis and filter banks with the perfect reconstruction
property in electronic engineering. We satisfactorily solve the matrix extension
problems with respect to both orthogonal and biorthogonal settings. Our results
show that the extension matrices do possess certain symmetry patterns and their co-
efficient supports can be controlled by the given submatrices in certain sense. More-
over, we provide step-by-step algorithms to derive the desired extension matrices.
We show that our extension algorithms can be applied not only to the construction
of (bi)orthogonal multiwavelets with symmetry, but also to the construction of tight
framelets with symmetry and with high order of vanishing moments. Several exam-
ples are presented to illustrate the results in this paper.

1 Introduction and Motivation

The matrix extension problems play a fundamental role in many areas such as elec-
tronic engineering, system sciences, mathematics, etc. We mention only a few ref-
erences here on this topic; see [1–3, 5, 8, 10, 12, 19–21, 23–25]. For example, matrix
extension is an indispensable tool in the design of filter banks in electronic engineer-
ing (see [19,24,25]) and in the construction of multiwavelets in wavelet analysis (see
[1–3, 5, 8, 10, 12, 14, 18, 20, 21]). In this section, we shall first introduce the general
matrix extension problems and then discuss the connections of the general matrix
extension problems to wavelet analysis and filter banks.

Xiaosheng Zhuang
Department of Mathematical and Statistical Sciences, University of Alberta, 632 CAB, Edmonton,
Alberta T6G 2G1, Canada, e-mail: xzhuang@math.ualberta.ca

M. Neamtu and L. Schumaker (eds.) , Approximation Theory XIII: San Antonio 2010,
Springer Proceedings in Mathematics 13, DOI 10.1007/978-1-4614-0772-0 24,
c©Springer Science+Business Media, LLC 2012

375

xzhuang@math.ualberta.ca


376 Xiaosheng Zhuang

1.1 The Matrix Extension Problems

In order to state the matrix extension problems, let us introduce some notation and
definitions first. Let p(z) =∑k∈Z pkzk,z∈C\{0} be a Laurent polynomial with com-
plex coefficients pk ∈ C for all k ∈ Z. We say that p has symmetry if its coefficient
sequence {pk}k∈Z has symmetry; more precisely, there exist ε ∈ {−1,1} and c ∈ Z

such that

pc−k = ε pk ∀ k ∈ Z. (1)

If ε = 1, then p is symmetric about the point c/2; if ε = −1, then p is antisym-
metric about the point c/2. Symmetry of a Laurent polynomial can be conveniently
expressed using a symmetry operator S defined by

Sp(z) :=
p(z)
p(1/z)

, z ∈ C\{0}. (2)

When p is not identically zero, it is evident that (1) holds if and only if Sp(z) = εzc.
For the zero polynomial, it is very natural that S0 can be assigned any symmetry
pattern; i.e., for every occurrence of S0 appearing in an identity in this paper, S0
is understood to take an appropriate choice of εzc for some ε ∈ {−1,1} and some
c ∈ Z so that the identity holds. If P is an r× s matrix of Laurent polynomials with
symmetry, then we can apply the operator S to each entry of P, i.e., SP is an r× s
matrix such that [SP] j,k := S([P] j,k), where [P] j,k is the ( j,k)-entry of the matrix P.

For two matrices P and Q of Laurent polynomials with symmetry, even though
all the entries in P and Q have symmetry, their sum P+Q, difference P−Q, or
product PQ, if well defined, generally may not have symmetry any more. This is
one of the difficulties for matrix extension with symmetry. In order for P±Q or PQ
to possess some symmetry, the symmetry patterns of P and Q should be compatible.
For example, if SP= SQ (i.e., both P and Q have the same symmetry pattern), then
indeed P±Q has symmetry and S(P±Q) = SP= SQ. In the following, we discuss
the compatibility of symmetry patterns of matrices of Laurent polynomials.

For an r× s matrix P(z) = ∑k∈Z Pkzk, we denote

P
∗(z) := ∑

k∈Z
P∗

k z−k with P∗
k := Pk

T
, k ∈ Z, (3)

where Pk
T

denotes the transpose of the complex conjugate of the constant matrix Pk

in C. We say that the symmetry of P is compatible or P has compatible symmetry, if

SP(z) = (Sθ1)
∗(z)Sθ2(z) (4)

for some 1× r and 1× s row vectors θ1 and θ2 of Laurent polynomials with sym-
metry. For an r× s matrix P and an s× t matrix Q of Laurent polynomials, we say
that (P,Q) has mutually compatible symmetry if

SP(z) = (Sθ1)
∗(z)Sθ (z) and SQ(z) = (Sθ )∗(z)Sθ2(z) (5)
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for some 1 × r, 1 × s, 1 × t row vectors θ1,θ ,θ2 of Laurent polynomials with
symmetry. If (P,Q) has mutually compatible symmetry as in (5), then their product
PQ has compatible symmetry and in fact S(PQ) = (Sθ1)

∗Sθ2.
For a matrix of Laurent polynomials, another important property is the support of

its coefficient sequence. For P= ∑k∈Z Pkzk such that Pk = 0 for all k ∈ Z\[m,n] with
Pm �= 0 and Pn �= 0, we define its coefficient support to be csupp(P) := [m,n] and the
length of its coefficient support to be |csupp(P)| := n−m. In particular, we define
csupp(0) := /0, the empty set, and |csupp(0)| :=−∞. Also, we use coeff(P,k) := Pk

to denote the coefficient matrix (vector) Pk of zk in P. In this paper, 0 always denotes
a general zero matrix whose size can be determined in the context.

Now, we introduce the general matrix extension problems with symmetry. We
shall use r and s to denote two positive integers such that 1 ≤ r ≤ s. Ir denotes the
r× r identity matrix.

Problem 1 (Orthogonal Matrix Extension). Let F be a subfield of C. Let P be an
r× s matrix of Laurent polynomials with coefficients in F such that P(z)P∗(z) = Ir

for all z ∈ C\{0} and the symmetry of P is compatible. Find an s× s square matrix
Pe of Laurent polynomials with coefficients in F and with symmetry such that

1. [Ir,0]Pe = P (that is, the submatrix of the first r rows of Pe is the given
matrix P);

2. The symmetry of Pe is compatible and Pe(z)P∗
e(z) = Is for all z ∈C\{0} (that is,

Pe is paraunitary);
3. The length of the coefficient support of Pe can be controlled by that of P in some

way.

Problem 1 is closely related to the construction of orthonormal multiwavelets
in wavelet analysis and the design of filter banks with the perfect reconstruction
property in electronic engineering. More generally, Problem 1 can be extended to a
more general form with respect to the construction of biorthogonal multiwavelets in
wavelet analysis. In a moment, we shall reveal their connections, which also serve
as our motivation. The more general form of Problem 1 can be stated as follows.

Problem 2 (Biorthogonal Matrix Extension). Let F be a subfield of C. Let (P,˜P)
be a pair of r × s matrices of Laurent polynomials with coefficients in F such
that P(z)˜P∗(z) = Ir for all z ∈ C\{0}, the symmetry of P or ˜P is compatible, and
SP= S˜P. Find a pair of s× s square matrices (Pe,˜Pe) of Laurent polynomials with
coefficients in F and with symmetry such that

1. [Ir,0]Pe = P and [Ir,0]˜Pe = ˜P (that is, the submatrix of the first r rows of Pe,˜Pe

is the given matrix P,˜P, respectively);
2. (Pe,˜Pe) has mutually compatible symmetry and Pe(z)˜P∗

e(z) = Is for all z∈C\{0}
(that is, (Pe,˜Pe) is a pair of biorthogonal matrices);

3. The lengths of the coefficient support of Pe and ˜Pe can be controlled by those of
P and ˜P in some way.
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1.2 Motivation

The above problems are closely connected to wavelet analysis and filter banks. The
key of wavelet construction is the so-called multiresolution analysis (MRA), which
contains mainly two parts. One is on the construction of refinable function vectors
that satisfies certain desired conditions. Another part is on the derivation of wavelet
generators from refinable function vectors obtained in first part, which should be
able to inherit certain properties similar to their refinable function vectors. From
the point of view of filter banks, the first part corresponds to the design of filters
or filter banks with certain desired properties, while the second part can be and is
formulated as some matrix extension problems stated previously. In this paper, we
shall mainly focus on the second part (with symmetry) of the MRA while assume
that the refinable function vectors with certain properties are given in advance (part
of Sect. 3 is on the construction of refinable functions satisfying (14)).

We say that d is a dilation factor if d is an integer with |d|> 1. Throughout this
paper, d denotes a dilation factor. For simplicity of presentation, we further assume
that d is positive, while multiwavelets and filter banks with a negative dilation factor
can be handled similarly by a slight modification of the statements in this paper.

We say that φ = [φ1, . . . ,φr]
T : R→ C

r×1 is a d-refinable function vector if

φ = d ∑
k∈Z

a0(k)φ(d ·−k), (6)

where a0 : Z → C
r×r is a finitely supported sequence of r × r matrices on Z,

called the low-pass filter (or mask) for φ . The symbol of a0 is denoted by a0(z) :=
∑k∈Z a0(k)zk, which is an r× r matrix of Laurent polynomials.

In the frequency domain, the refinement equation in (6) can be rewritten as

̂φ (dξ ) = â0(ξ )̂φ (ξ ), ξ ∈R, (7)

where â0 is the Fourier series of a0 given by

â0(ξ ) := ∑
k∈Z

a0(k)e
−ikξ = a0(e

−iξ ), ξ ∈ R. (8)

The Fourier transform ̂f of f ∈ L1(R) is defined to be ̂f (ξ ) =
∫

R
f (t)e−itξ dt and

can be extended to square integrable functions and tempered distributions.
We say that a compactly supported d-refinable function vector φ in L2(R) is

orthogonal if
〈φ ,φ(·− k)〉= δ (k)Ir, k ∈ Z, (9)

where δ is the Dirac sequence such that δ (0) = 1 and δ (k) = 0 for all k �= 0.
Usually, a wavelet system is generated by some wavelet function vectors ψ� =

[ψ�
1, . . . ,ψ�

r ]
T, �= 1, . . . ,L, from a d-refinable function vector φ as follows:

̂ψ�(dξ ) = â�(ξ )̂φ (ξ ), �= 1, . . . ,L, (10)

where each a� : Z→ C
r×r is a finitely supported sequence of r × r matrices on Z,

called the high-pass filter (or mask) for ψ�, �= 1, . . . ,L.
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We say that {ψ1, . . . ,ψL} generates a d-multiframe in L2(R) if {ψ�
j,k := d j/2ψ�

(d j ·−k) : j,k ∈ Z, �= 1, . . . ,L} is a frame in L2(R), that is, there exist two positive
constants C1,C2 such that

C1‖ f‖2
L2(R)

≤
L

∑
�=1

∑
j∈Z

∑
k∈Z

|〈 f ,ψ�
j,k〉|2 ≤C2‖ f‖2

L2(R)
, ∀ f ∈ L2(R), (11)

where |〈 f ,ψ�
j,k〉|2 = 〈 f ,ψ�

j,k〉〈ψ�
j,k, f 〉 and 〈·, ·〉 is the inner product defined to be

〈 f ,g〉 :=
∫

R

f (t)g(t)
T
dt, f ∈ (L2(R))

s1×�,g ∈ (L2(R))
s2×�.

If C1 = C2 = 1 in (11), we say that {ψ1, . . . ,ψL} generates a tight d-multiframe in
L2(R). The wavelet function vectors ψ� are called tight multiframelets. When r = 1,
we usually drop the prefix multi.

If φ is a compactly supported d-refinable function vector in L2(R) associated
with a low-pass filter a0, then it is well-known (see [6]) that {ψ1, . . . ,ψL} associ-
ated with high-pass filters {a1, . . . ,aL} via (10) generates a tight d-multiframe if and
only if

L

∑
�=0

â�â�(·+ 2πk/d)
T
= δ (k)Ir, k = 0, . . . ,d− 1. (12)

According to various requirements of problems in applications, different de-
sired properties of a wavelet system are needed, which usually can be character-
ized by conditions on the low-pass filter a0 for φ and the high-pass filters a� for
ψ�, � = 1, . . . ,L. Among all properties of a wavelet system, high order of vanish-
ing moments, (bi)orthogonality, and symmetry are highly desirable properties in
wavelet and filter bank applications. High order of vanishing moments is crucial
for the sparsity representation of a wavelet system, which plays an important role
in image denoising and compression. (Bi)orthogonality (more general, tightness of
a wavelet system) results in simple rules for guaranteeing the perfect reconstruc-
tion property. Symmetry usually produces better visual effect and less artifact in
signal/image processing; not to mention the double reduction of the computational
cost for a symmetric system.

A framelet ψ has vanishing moments of order n if
∫

R

tkψ(t)dt = 0 k = 0, . . . ,n− 1, (13)

which is equivalent to saying that dk

dtk ̂ψ(0) = 0 for all k = 0, . . . ,n− 1. If (12) holds
and the low-pass filter a0 satisfies

1−|â0(ξ )|2 = O(|ξ |2n), ξ → 0, (14)

which means 1−|â0(ξ )|2 has zero of order 2n near the origin, then the framelet sys-
tem generated by {ψ1, . . . ,ψL} has vanishing moments of order n (see [6]). We shall
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see in Sect. 3 on the connection of tight frames to the orthogonal matrix extension
problem and on the construction of symmetric complex tight framelets with high
order of vanishing moments via the technique of matrix extension with symmetry.

Next, let us review the construction of tight d-multiframes in the point of view
of filters and filter banks. Let F be a subfield of C. Let a0 : Z → F

r×r be a low-
pass filter with multiplicity r for a d-refinable function vector φ = [φ1, . . . ,φr]

T. The
d-band subsymbols (polyphase components) of a0 are defined to be

a0;γ(z) :=
√
d ∑

k∈Z
a0(γ +dk)zk, γ ∈ Z. (15)

Let a1, . . . ,aL :Z→F
r×r be high-pass filters for function vectors ψ1, . . . ,ψL, respec-

tively. The polyphase matrix for the filter bank {a0,a1, . . . ,aL} (or
{a0,a1, . . . ,aL}) is defined to be

P(z) =

⎡

⎢

⎢

⎢

⎣

a0;0(z) · · · a0;d−1(z)
a1;0(z) · · · a1;d−1(z)

...
...

...
aL;0(z) · · · aL;d−1(z)

⎤

⎥

⎥

⎥

⎦

, (16)

where a�;γ are subsymbols of a� similarly defined as in (15) for γ = 0, . . . ,d−1 and
�= 1, . . . ,L.

If φ is a compactly supported d-refinable function vectors in L2(R), then it is
well-known (see [6]) that {ψ1, . . . ,ψL} associated with {a1, . . . ,aL} via (10) gener-
ates a tight d-multiframe, i.e., (12) holds, if and only if,

P∗(z)P(z) = Idr, z ∈ C\{0}. (17)

Note that the polyphase matrix P is not necessarily a square matrix (only if L =
d−1). When the d-refinable function vector φ associated with a low-pass filter a0 is
orthogonal, the multiframlet system generated by {ψ1, . . . ,ψd−1} via (10) becomes
an orthonormal multiwavelet basis for L2(R). In this case, the polyphase matrix P
associated with the filter bank {a0, . . . ,ad−1} is indeed a square matrix. Moreover,
the low-pass filter a0 for φ is a d-band orthogonal filter:

d−1

∑
γ=0

a0;γ(z)a
∗
0;γ (z) = Ir, z ∈ C\{0}. (18)

Now, one can show that the derivation of high-pass filters a1, . . . ,ad−1 from a0 so
that the filter bank {a0,a1, . . . ,ad−1} has the perfect reconstruction property as in
(17) is simply a special case of Problem 1 (orthogonal matrix extension). More
generally, for L = d− 1, one can consider the construction of biorthogonal mul-
tiwavelets (see Sect. 4), which corresponds to Problem 2. Our main focus of this
paper is on matrix extension with symmetry with respect to Problems 1 and 2. We
shall study in Sects. 2 and 4 on the orthogonal matrix extension problem and the
biorthogonal matrix extension problem, respectively.



Matrix Extension with Symmetry and Its Applications 381

1.3 Prior Work and Our Contributions

Without considering symmetry issue, it is known in the engineering literature that
Problem 1 or 2 can be solved by representing the given matrices in cascade struc-
tures; see [19, 24]. In the context of wavelet analysis, orthogonal matrix extension
without symmetry was discussed by Lawton, Lee, and Shen in their paper [20].
In electronic engineering, an algorithm using the cascade structure for orthogonal
matrix extension without symmetry was given in [24] for filter banks with perfect
reconstruction property. The algorithms in [20,24] mainly deal with the special case
that P is a row vector (that is, r = 1 in our case) without symmetry, and the coef-
ficient support of the derived matrix Pe indeed can be controlled by that of P. The
algorithms in [20,24] for the special case r = 1 can be employed to handle a general
r× s matrix P without symmetry; see [20, 24] for detail. However, for the general
case r > 1, it is no longer clear whether the coefficient support of the derived ma-
trix Pe obtained by the algorithms in [20, 24] can still be controlled by that of P.
For r = 1, Goh et al. in [9] considered the biorthogonal matrix extension problem
without symmetry. They provided a step-by-step algorithm for deriving the exten-
sion matrices, yet they did not concern about the support control of the extension
matrices nor the symmetry patterns of the extension matrices. For r > 1, there are
only a few results in the literature [1,4] and most of them only consider about some
very special cases. The difficulty comes from the flexibility of the biorthogonality
relation between the given pair (P,˜P) of biorthogonal matrices.

Several special cases of matrix extension with symmetry were considered in the
literature. For F = R and r = 1, orthogonal matrix extension with symmetry was
considered in [21]. For r = 1, orthogonal matrix extension with symmetry was stud-
ied in [12] and a simple algorithm is given there. In the context of wavelet analysis,
several particular cases of matrix extension with symmetry related to the construc-
tion of (bi)orthogonal multiwavelets were investigated in [1, 3, 10, 12, 19, 21]. How-
ever, for the general case of an r × s matrix, the approaches on orthogonal matrix
extension with symmetry in [12,21] for the particular case r = 1 cannot be employed
to handle the general case. The algorithms in [12, 21] are very difficult to be gen-
eralized to the general case r > 1, partially due to the complicated relations of the
symmetry patterns between different rows of P. For the general case of matrix ex-
tension with symmetry, it becomes much harder to control the coefficient support of
the derived matrix Pe, comparing with the special case r = 1. Extra effort is needed
in any algorithm of deriving Pe so that its coefficient support can be controlled by
that of P.

The contributions of this paper lie in the following aspects. First, we satisfactorily
solve the matrix extension problems with symmetry for any r,s such that 1 ≤ r ≤ s.
More importantly, we obtain a complete representation for any r × s paraunitary
matrix P or pairs of biorthogonal matrices (P,˜P) having compatible symmetry with
1≤ r ≤ s. This representation leads to step-by-step algorithms for deriving a desired
matrix Pe or the pair of extension matrices (Pe,˜Pe) from a given matrix P or a pair
(P,˜P). Second, we obtain an optimal result in the sense of (21) on controlling the
coefficient support of the desired matrix Pe derived from a given matrix P by our
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algorithm for orthogonal matrix extension with symmetry. This is of importance
in both theory and application, since short support of a filter or a multiwavelet is
a highly desirable property and short support usually means a fast algorithm and
simple implementation in practice. Third, we introduce the notion of compatibility
of symmetry, which plays a critical role in the study of the general matrix exten-
sion problems with symmetry (r ≥ 1). Fourth, we provide a complete analysis and
a systematic construction algorithm for symmetric filter banks with the perfect re-
construction property and symmetric (bi)orthogonal multiwavelets. Finally, most of
the literature on the matrix extension problem only consider Laurent polynomials
with coefficients in the special field C (see [20]) or R (see [2,21]). In this paper, our
setting is under a general field F, which can be any subfield of C satisfies certain
conditions (see (19) for the case of orthogonal matrix extension).

1.4 Outline

Here is the structure of this paper. In Sect. 2, we shall study the orthogonal ma-
trix extension with symmetry and present a step-by-step algorithm for this prob-
lem. We shall also apply our algorithm in this section to the design of symmetric
filter banks in electronic engineering and to the construction of symmetric orthonor-
mal multiwavelets in wavelet analysis. In Sect. 3, we shall discuss the construction
of symmetric complex tight framelets with high order of vanishing moments and
with symmetry via our algorithm for orthogonal matrix extension with symmetry.
In Sect. 4, we shall study the biorthogonal matrix extension problem correspond-
ing to the construction of symmetric biorthogonal multiwavelets. We also provide
a step-by-step algorithm for the construction of the desired pair of biorthogonal ex-
tension matrices. Examples will be provided to illustrate our algorithms and results.

2 Orthogonal Matrix Extension with Symmetry

In this section, we shall study the orthogonal matrix extension problem with sym-
metry. The Laurent polynomials that we shall consider in this section have their
coefficients in a subfield F of the complex field C such that F is closed under the
operations of complex conjugate of F and square roots of positive numbers in F. In
other words, the subfield F of C satisfies the following properties:

x̄ ∈ F and
√

y ∈ F ∀ x,y ∈ F with y > 0. (19)

Two particular examples of such subfields F are F = R (the field of real numbers)
and F = C (the field of complex numbers). A nontrivial example is the field of all
algebraic number, i.e., the algebraic closure Q of the rational number Q. A subfield
of R given by Q∩R also satisfies (19).

Problem 1 is completely solved by the following theorem.
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Theorem 1. Let F be a subfield of C such that (19) holds. Let P be an r× s matrix
of Laurent polynomials with coefficients in the subfield F such that the symmetry
of P is compatible, i.e., SP = (Sθ1)

∗Sθ2 for some 1× r, 1× s vectors θ1, θ2 of
Laurent polynomials with symmetry. Then P(z)P∗(z) = Ir for all z ∈C\{0} (that is,
P is paraunitary), if and only if, there exists an s× s square matrix Pe of Laurent
polynomials with coefficients in F such that

(1) [Ir,0]Pe = P; that is, the submatrix of the first r rows of Pe is P;
(2) Pe is paraunitary: Pe(z)P∗

e(z) = Is for all z ∈ C\{0};
(3) The symmetry of Pe is compatible: SPe = (Sθ )∗Sθ2 for some 1× s vector θ of

Laurent polynomials with symmetry;
(4) Pe can be represented as products of some s × s matrices P0,P1, . . . ,PJ+1 of

Laurent polynoimals with coefficient in F:

Pe(z) = PJ+1(z)PJ(z) · · ·P1(z)P0(z); (20)

(5) P j,1 ≤ j ≤ J are elementary: P j(z)P∗
j(z) = Is and csupp(P j)⊆ [−1,1];

(6) (P j+1,P j) has mutually compatible symmetry for all 0 ≤ j ≤ J;
(7) P0 = U∗

Sθ2
and PJ+1 = diag(USθ1 , Is−r), where USθ1 , USθ2 are products of a

permutation matrix with a diagonal matrix of monomials, as defined in (23);
(8) The coefficient support of Pe is controlled by that of P in the following sense:

|csupp([Pe] j,k)| ≤ max
1≤n≤r

|csupp([P]n,k)|, 1 ≤ j,k ≤ s. (21)

The representation in (20) is often called the cascade structure in the literature
of engineering, see [19, 24]. The key of Theorem 1 is to construct the elementary
paraunitary matrices P1, . . . ,PJ step by step such that P j’s have the properties stated
as in Items (4)–(7) of the theorem. We shall provide such a step-by-step algorithm
next, which not only provides a detailed construction of such P j’s, but also leads to
a constructive proof of Theorem 1. For a complete and detailed proof of Theorem 1
using our algorithm, one may refer to [16, Sect. 4].

2.1 An Algorithm for the Orthogonal Matrix Extension with
Symmetry

Now we present a step-by-step algorithm on orthogonal matrix extension with
symmetry to derive the desired matrix Pe in Theorem 1 from a given matrix P. Our
algorithm has three steps: initialization, support reduction, and finalization. The step
of initialization reduces the symmetry pattern of P to a standard form. The step of
support reduction is the main body of the algorithm, producing a sequence of ele-
mentary matrices A1, . . . ,AJ that reduce the length of the coefficient support of P
to 0. The step of finalization generates the desired matrix Pe as in Theorem 1. More
precisely, see Algorithm 1 for our algorithm written in the form of pseudo-code.
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Algorithm 1 Orthogonal matrix extension with symmetry

(a) Input: P as in Theorem 1 with SP = (Sθ1)
∗Sθ2 for some 1× r and 1× s row vectors θ1 and

θ2 of Laurant polynomials with symmetry.
(b) Initialization: Let Q :=U∗

Sθ1
PUSθ2 . Then the symmetry pattern of Q is

SQ= [1r1 ,−1r2 , z1r3 ,−z1r4 ]
T[1s1 ,−1s2 , z

−11s3 ,−z−11s4 ], (22)

where all nonnegative integers r1, . . . , r4, s1, . . ., s4 are uniquely determined by SP.
(c) Support Reduction: Let P0 :=U∗

Sθ2
and J := 1.

1: while (|csupp(Q)| > 0) do
2: Let Q0 :=Q, [k1,k2] := csupp(Q), and AJ := Is .
3: if k2 =−k1 then
4: for j = 1 to r do
5: Let q := [Q0] j,: and p := [Q] j,: be the jth rows of Q0 and Q, respectively. Let

[�1, �2] := csupp(q), � := �2 − �1, and B j := Is.
6: if csupp(q) = csupp(p) and �≥ 2 and (�1 = k1 or �2 = k2) then
7: B j := Bq. AJ := AJB j . Q0 :=Q0B j .
8: end if
9: end for

10: Q0 takes the form in (31). Let B(−k2 ,k2) := Is, Q1 :=Q0, j1 := 1 and j2 := r3 + r4 +1.
11: while j1 ≤ r1 + r2 and j2 ≤ r do
12: Let q1 := [Q1] j1,: and q2 := [Q1] j2,:.
13: if coeff(q1,k1) = 0 then j1 := j1 +1. end if
14: if coeff(q2,k2) = 0 then j2 := j2 +1. end if
15: if coeff(q1,k1) �= 0 and coeff(q2,k2) �= 0 then
16: B(−k2 ,k2) := B(−k2,k2)B(q1,q2). Q1 := Q1B(q1,q2). AJ := AJB(q1,q2). j1 := j1 + 1.

j2 := j2 +1.
17: end if
18: end while // end inner while loop
19: end if
20: Q1 takes the form in (31) with either coeff(Q1,−k) = 0 or coeff(Q1,k) = 0. Let AJ :=

AJBQ1 and Q :=QAJ . Then

SQ= [1r1 ,−1r2 , z1r3 ,−z1r4 ]
T[1s′1 ,−1s′2 , z

−11s′3 ,−z−11s′4 ].

Replace s1, . . . , s4 by s′1, . . ., s
′
4, respectively. Let PJ := A∗

J and J := J+1.
21: end while // end outer while loop
(d) Finalization: Q = diag(F1,F2,F3,F4) for some r j × s j constant matrices Fj in F, j =

1, . . . ,4. Let U := diag(UF1 ,UF2 ,UF3 ,UF4) so that QU = [Ir,0]. Define PJ :=U∗ and PJ+1 :=
diag(USθ1 , Is−r).

(e) Output: A desired matrix Pe satisfying all the properties in Theorem 1

In the following subsections, we present detailed constructions of the matrices
USθ , Bq, B(q1,q2), BQ1 , and UF appearing in Algorithm 1.

2.1.1 Initialization

Let θ be a 1 × n row vector of Laurent polynomials with symmetry such that
Sθ = [ε1zc1 , . . . ,εnzcn ] for some ε1, . . . ,εn ∈ {−1,1} and c1, . . . ,cn ∈ Z. Then,
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the symmetry of any entry in the vector θdiag(z−�c1/2�, . . . ,z−�cn/2�) belongs to
{±1,±z−1}. Thus, there is a permutation matrix Eθ to regroup these four types
of symmetries together so that

S(θUSθ ) = [1n1 ,−1n2 ,z
−11n3 ,−z−11n4 ], (23)

where USθ := diag(z−�c1/2�, . . . ,z−�cn/2�)Eθ , 1m denotes the 1 × m row vector
[1, . . . ,1], and n1, . . . ,n4 are nonnegative integers uniquely determined by Sθ . Since
P satisfies (4), Q := U∗

Sθ1
PUSθ2 has the symmetry pattern as in (22). Note that USθ1

and USθ2 do not increase the length of the coefficient support of P.

2.1.2 Support Reduction

For a 1× n row vector f in F such that ‖f‖ �= 0, we define nf to be the number of
nonzero entries in f and ε j := [0, . . . ,0,1,0, . . . ,0] to be the jth unit coordinate row
vector in R

n. Let Ef be a permutation matrix such that fEf = [ f1, . . . , fnf ,0, . . . ,0]
with f j �= 0 for j = 1, . . . ,nf. We define

Vf :=

⎧

⎪

⎨

⎪

⎩

f̄1
| f1| , if nf = 1;

f̄1
| f1|

(

In − 2
‖vf‖2 v∗fvf

)

, if nf > 1,
(24)

where vf := f− f1
| f1| ‖f‖ε1. Observing that ‖vf‖2 = 2‖f‖(‖f‖−| f1|), we can verify

that VfV ∗
f = In and fEfVf= ‖f‖ε1. Let Uf := EfVf. Then Uf is unitary and satisfies

Uf= [ f
∗

‖f‖ ,F
∗] for some (n−1)×n matrix F in F such that fUf= [‖f‖,0, . . . ,0]. We

also define Uf := In if f= 0 and Uf := /0 if f= /0. Here, Uf plays the role of reducing
the number of nonzero entries in f. More generally, for an r×n nonzero matrix G of
rank m in F, employing the above procedure to each row of G, we can obtain an n×n
unitary matrix UG such that GUG = [R,0] for some r×m lower triangular matrix R of
rank m. If G1G∗

1 = G2G∗
2, then the above procedure produces two matrices UG1 ,UG2

such that G1UG1 = [R,0] and G2UG2 = [R,0] for some lower triangular matrix R of
full rank. It is important to notice that the constructions of Uf and UG only involve
the nonzero entries of f and nonzero columns of G, respectively. In other words, up
to a permutation, we have

[Uf] j,: = ([Uf]:, j)
T = ε j , if [f] j = 0,

[UG] j,: = ([UG]:, j)
T = ε j , if [G]:, j = 0.

(25)

Denote Q := U∗
Sθ1

PUSθ2 as in Algorithm 1. The outer while loop produces a se-
quence of elementary paraunitary matrices A1, . . . ,AJ that reduce the length of the
coefficient support of Q gradually to 0. The construction of each A j has three parts:
{B1, . . . ,Br}, B(−k,k), and BQ1 . The first part {B1, . . . ,Br} (see the for loop) is con-
structed recursively for each of the r rows of Q so that Q0 :=QB1 · · ·Br has a special
form as in (31). If both coeff(Q0,−k) �= 0 and coeff(Q0,k) �= 0, then the second part
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B(−k,k) (see the inner while loop) is further constructed so that Q1 := Q0B(−k,k)
takes the form in (31) with at least one of coeff(Q1,−k) and coeff(Q1,k) being 0.
BQ1 is constructed to handle the case that csupp(Q1) = [−k,k − 1] or csupp(Q1)
= [−k+ 1,k] so that csupp(Q1BQ1)⊆ [−k+ 1,k− 1].

Let q denote an arbitrary row of Q with |csupp(q)| ≥ 2. We first explain how to
construct Bq for a given row q such that Bq reduces the length of the coefficient
support of q by 2 and keeps its symmetry pattern. Note that in the for loop, B j is
simply Bq with q being the current jth row of QB0 · · ·B j−1, where B0 := Is.

By (22), we have Sq = εzc[1s1 ,−1s2 ,z
−11s3 ,−z−11s4 ] for some ε ∈ {−1,1}

and c ∈ {0,1}. For ε = −1, there is a permutation matrix Eε such that S(qEε)
= zc[1s2 ,−1s1 ,z

−11s4 ,−z−11s3 ]. For ε = 1, we let Eε := Is. Then, qEε must take
the form in either (26) or (27) with f1 �= 0 as follows:

qEε =[f1,−f2,g1,−g2]z
�1 +[f3,−f4,g3,−g4]z

�1+1 +
�2−2

∑
�=�1+2

coeff(qEε , �)z
�

+[f3,f4,g1,g2]z
�2−1 +[f1,f2,0,0]z�2;

(26)

qEε =[0,0,f1,−f2]z
�1 +[g1,−g2,f3,−f4]z

�1+1 +
�2−2

∑
�=�1+2

coeff(qEε , �)z
�

+[g3,g4,f3,f4]z
�2−1 +[g1,g2,f1,f2]z

�2 .

(27)

If qEε takes the form in (27), we further construct a permutation matrix Eq such
that [g1,g2,f1,f2]Eq = [f1,f2,g1,g2] and define Uq,ε := Eε Eqdiag(Is−sg ,z

−1Isg),
where sg is the size of the row vector [g1,g2]. Then, qUq,ε takes the form in (26).
For qEε of form (26), we simply let Uq,ε := Eε . In this way, q0 := qUq,ε always
takes the form in (26) with f1 �= 0.

Note that Uq,εU
∗
q,ε = Is and ‖f1‖= ‖f2‖ if q0q

∗
0 = 1, where ‖f‖ :=

√
ff∗. Now

we construct an s× s paraunitary matrix Bq0 to reduce the coefficient support of q0

as in (26) from [�1, �2] to [�1 + 1, �2 − 1] as follows:

B∗
q0

:=
1
c

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f1(z+
c0

cf1
+ 1

z ) f2(z− 1
z ) g1(1+

1
z ) g2(1− 1

z )

cF1 0 0 0

−f1(z− 1
z ) −f2(z− c0

cf1
+ 1

z ) −g1(1− 1
z ) −g2(1+

1
z )

0 cF2 0 0

cg1
cf1

f1(1+ z) − cg1
cf1

f2(1− z) cg′1g
′
1 0

0 0 cG1 0

cg2
cf1

f1(1− z) − cg2
cf1

f2(1+ z) 0 cg′2g
′
2

0 0 0 cG2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (28)
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where cf1 := ‖f1‖, cg1 := ‖g1‖, cg2 := ‖g2‖, c0 := 1
cf1

coeff(q0, �1+1)coeff(q∗0,−�2),

cg′1 :=

{−2cf1−c0
cg1

if g1 �= 0;

c otherwise,
cg′2 :=

{ 2cf1−c0
cg2

if g2 �= 0;

c otherwise,

c := (4c2
f1
+ 2c2

g1
+ 2c2

g2
+ |c0|2)1/2,

(29)

and [
f∗j
‖f j‖ ,F

∗
j ] = Uf j , [g

′∗
j ,G

∗
j ] = Ug j for j = 1,2 are unitary constant extension

matrices in F for vectorsf j,g j in F, respectively. Here, the role of a unitary constant
matrix Uf in F is to reduce the number of nonzero entries in f such that fUf =
[‖f‖,0, . . . ,0]. The operations for the emptyset /0 are defined by ‖ /0‖= /0, /0+A = A
and /0 ·A = /0 for any object A.

Define Bq := Uq,εBq0U
∗
q,ε . Then, Bq is paraunitary. Due to the particular form of

Bq0 as in (28), direct computations yield the following very important properties of
the paraunitary matrix Bq:

(P1) SBq = [1s1 ,−1s2 ,z1s3 ,−z1s4 ]
T[1s1 ,−1s2 ,z

−11s3 ,−z−11s4 ], csupp(Bq) =
[−1,1], and csupp(qBq) = [�1+1, �2−1]. That is, Bq has compatible symmetry
with coefficient support on [−1,1] and Bq reduces the length of the coefficient
support of q exactly by 2. Moreover, S(qBq) = Sq.

(P2) If (p,q∗) has mutually compatible symmetry and pq∗ = 0, then S(pBq) = S(p)
and csupp(pBq) ⊆ csupp(p). That is, Bq keeps the symmetry pattern of p and
does not increase the length of the coefficient support of p.

Next, let us explain the construction of B(−k,k). For csupp(Q) = [−k,k] with
k ≥ 1, Q is of the form as follows:

Q=

⎡

⎢

⎢

⎣

F11 −F21 G31 −G41

−F12 F22 −G32 G42

0 0 F31 −F41

0 0 −F32 F42

⎤

⎥

⎥

⎦

z−k +

⎡

⎢

⎢

⎣

F51 −F61 G71 −G81

−F52 F61 −G72 G82

G11 −G21 F71 −F81

−G12 G22 −F72 F82

⎤

⎥

⎥

⎦

z−k+1

+
k−2

∑
n=2−k

coeff(Q,n)zn +

⎡

⎢

⎢

⎣

F51 F61 G31 G41

F52 F61 G32 G42

G51 G61 F71 F81

G52 G62 F72 F82

⎤

⎥

⎥

⎦

zk−1 +

⎡

⎢

⎢

⎣

F11 F21 0 0
F12 F22 0 0
G11 G21 F31 F41

G12 G22 F32 F42

⎤

⎥

⎥

⎦

zk

(30)

with all Fjk’s and G jk’s being constant matrices in F and F11,F22,F31,F42 being of
size r1 × s1, r2 × s2, r3 × s3, r4 × s4, respectively. Due to Properties (P1) and (P2) of
Bq, the for loop in Algorithm 1 reduces Q in (30) to Q0 := QB1 · · ·Br as follows:

⎡

⎢

⎢

⎢

⎢

⎣

0 0 ˜G31 − ˜G41

0 0 − ˜G32 ˜G42

0 0 0 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

z−k + · · ·+

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0

˜G11 ˜G21 0 0
˜G12 ˜G22 0 0

⎤

⎥

⎥

⎥

⎥

⎦

zk. (31)
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If either coeff(Q0,−k) = 0 or coeff(Q0,k) = 0, then the inner while loop does
nothing andB(−k,k) = Is. If both coeff(Q0,−k) �= 0 and coeff(Q0,k) �= 0, thenB(−k,k)
is constructed recursively from pairs (q1,q2) with q1,q2 being two rows of Q0 sat-
isfying coeff(q1,−k) �= 0 and coeff(q2,k) �= 0. The construction of B(q1,q2) with
respect to such a pair (q1,q2) in the inner while loop is as follows.

Similar to the discussion before (26), there is a permutation matrix E(q1,q2) such
that q1E(q1,q2) and q2E(q1,q2) take the following form:

[

q̃1

q̃2

]

:=

[

q1

q2

]

E(q1,q2) =

⎡

⎣

0 0 g̃3 −g̃4

0 0 0 0

⎤

⎦z−k +

⎡

⎣

˜f5 −˜f6 g̃7 −g̃8

g̃1 −g̃2 ˜f7 −˜f8

⎤

⎦z−k+1

+
k−2

∑
n=2−k

coeff

([

q̃1

q̃2

]

,n

)

zn +

⎡

⎣

˜f5 ˜f6 g̃3 g̃4

g̃5 g̃6 ˜f7 ˜f8

⎤

⎦ zk−1 +

⎡

⎣

0 0 0 0

g̃1 g̃2 0 0

⎤

⎦ zk,

(32)

where g̃1, g̃2, g̃3, g̃4 are all nonzero row vectors. Note that ‖g̃1‖ = ‖g̃2‖=: cg̃1
and

‖g̃3‖= ‖g̃4‖=: cg̃3
. Construct an s× s paraunitary matrix B(q̃1,q̃2) as follows:

B∗
(q̃1,q̃2)

:=
1
c

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

c0
cg̃1

g̃1 0 g̃3(1+
1
z ) g̃4(1− 1

z )

c ˜G1 0 0 0

0 c0
cg̃1

g̃2 −g̃3(1− 1
z ) −g̃4(1+

1
z )

0 c ˜G2 0 0

cg̃3
cg̃1

g̃1(1+ z) − cg̃3
cg̃1

g̃2(1− z) − c0
cg̃3

g̃3 0

0 0 c ˜G3 0

cg̃3
cg̃1

g̃1(1− z) − cg̃3
cg̃1

g̃2(1+ z) 0 − c0
cg̃3

g̃4

0 0 0 c ˜G4

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (33)

where c0 := 1
cg̃1

coeff(q̃1,−k+1)coeff(q̃∗2,−k), c :=(|c0|2+4c2
g̃3
)

1
2 , and [

g̃∗j
‖g̃ j‖ ,

˜G∗
j ] =

Ug̃ j
are unitary constant extension matrices in F for vectors g̃ j in F, j = 1, . . . ,4,

respectively. Let B(q1,q2) := E(q1,q2)B(q̃1,q̃2)E
T
(q1,q2)

. Similar to Properties (P1) and
(P2) of Bq, we have the following very important properties of B(q1,q2):

(P3) SB(q1,q2) = [1s1,−1s2 ,z1s3 ,−z1s4 ]
T[1s1 ,−1s2 ,z

−11s3 ,−z−11s4 ], csupp(B(q1,q2))
= [−1,1], csupp(q1B(q1,q2)) ⊆ [−k+ 1,k− 1] and csupp(q2B(q1,q2)) ⊆ [−k+
1,k−1]. That is, B(q1,q2) has compatible symmetry with coefficient support on
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[−1,1] and B(q1,q2) reduces the length of both the coefficient supports of q1

and q2 by 2. Moreover, S(q1B(q1,q2)) = Sq1 and S(q2B(q1,q2)) = Sq2.
(P4) If both (p,q∗1) and (p,q∗2) have mutually compatible symmetry and pq∗1 =

pq∗2 = 0, then S(pB(q1,q2)) = Sp and csupp(pB(q1,q2)) ⊆ csupp(p). That is,
B(q1,q2) keeps the symmetry pattern of p and does not increase the length of
the coefficient support of p.

Now, due to Properties (P3) and (P4) of B(q1,q2), B(−k,k) constructed in the in-
ner while loop reduces Q0 of the form in (31) with both coeff(Q0,−k) �= 0 and
coeff(Q0,k) �= 0, to Q1 := Q0B(−k,k) of the form in (31) with either coeff(Q1,−k)
= coeff(Q1,k) = 0 (for this case, simply let BQ1 := Is) or one of coeff(Q1,−k)
and coeff(Q1,k) is nonzero. For the latter case, BQ1 := diag(U1W1, Is3+s4)E with
U1,W1 constructed with respect to coeff(Q1,k) �= 0 or BQ1 := diag(Is1+s2 ,U3W3)E
with U3,W3 constructed with respect to coeff(Q1,−k) �= 0, where E is a permuta-
tion matrix. BQ1 is constructed so that csupp(Q1BQ1)⊆ [−k+1,k−1]. Let Q1 take
form in (31). The matrices U1,W1 or U3,W3, and E are constructed as follows.

Let U1 := diag(U
˜G1
,U

˜G2
) and U3 := diag(U

˜G3
,U

˜G4
) with

˜G1 :=

[

˜G11
˜G12

]

, ˜G2 :=

[

˜G21
˜G22

]

, ˜G3 :=

[

˜G31
˜G32

]

, ˜G4 :=

[

˜G41
˜G42

]

. (34)

Here, for a nonzero matrix G with rank m, UG is a unitary matrix such that GUG =
[R,0] for some matrix R of rank m. For G = 0,UG := I and for G = /0,UG := /0.
When G1G∗

1 = G2G∗
2, UG1 and UG2 can be constructed such that G1UG1 = [R,0] and

G2UG2 = [R,0].
Let m1, m3 be the ranks of ˜G1, ˜G3, respectively (m1 = 0 when coeff(Q1,k) = 0

and m3 = 0 when coeff(Q1,−k) = 0). Note that ˜G1 ˜G∗
1 = ˜G2 ˜G∗

2 or ˜G3 ˜G∗
3 = ˜G4 ˜G∗

4
due to Q1Q

∗
1 = Ir. The matrices W1,W3 are then constructed by

W1 :=

⎡

⎢

⎢

⎣

U1 U2

Is1−m1

U2 U1

Is2−m1

⎤

⎥

⎥

⎦

,W3 :=

⎡

⎢

⎢

⎣

U3 U4

Is3−m3

U4 U3

Is4−m3

⎤

⎥

⎥

⎦

, (35)

where U1(z) =−U2(−z) := 1+z−1

2 Im1 and U3(z) = U4(−z) := 1+z
2 Im3 .

Let WQ1 := diag(U1W1, Is3+s4) for the case that coeff(Q1,k) �= 0 or WQ1 :=
diag(Is1+s2 ,U3W3) for the case that coeff(Q1,−k) �= 0. Then WQ1 is paraunitary.
By the symmetry pattern and orthogonality of Q1, WQ1 reduces the coefficient sup-
port of Q1 to [−k+1,k−1], i.e., csupp(Q1WQ1) = [−k+1,k−1]. Moreover, WQ1

changes the symmetry pattern of Q1 such that

S(Q1WQ1) = [1r1 ,−1r2 ,z1r3 ,−z1r4 ]
TSθ1,

with

Sθ1 = [z−11m1 ,1s1−m1 ,−z−11m1 ,−1s2−m1 ,1m3 ,z
−11s3−m3 ,−1m3 ,−z−11s4−m3 ].
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E is then the permutation matrix such that

S(Q1WQ1)E = [1r1 ,−1r2 ,z1r3 ,−z1r4 , ]
TSθ ,

with Sθ = [1s1−m1+m3 , ,−1s2−m1+m3 ,z
−11s3−m3+m1 ,−z−11s4−m3+m1 ] = (Sθ1)E .

2.2 Application to Filter Banks and Orthonormal Multiwavelets
with Symmetry

In this subsection, we shall discuss the application of our results on orthogonal
matrix extension with symmetry to d-band symmetric paraunitary filter banks in
electronic engineering and to orthonormal multiwavelets with symmetry in wavelet
analysis.

Symmetry of the filters in a filter bank is a very much desirable property in many
applications. We say that the low-pass filter a0 with multiplicity r has symmetry if

a0(z) = diag(ε1zdc1 , . . . ,εrzdcr)a0(1/z)diag(ε1z−c1 , . . . ,εrz−cr ) (36)

for some ε1, . . . ,εr ∈ {−1,1} and c1, . . . ,cr ∈R such that dc�− c j ∈ Z for all �, j =
1, . . . ,r. If a0 has symmetry as in (36) and if 1 is a simple eigenvalue of a0(1), then
it is well known that the d-refinable function vector φ in (6) associated with the
low-pass filter a0 has the following symmetry:

φ1(c1 −·) = ε1φ1, φ2(c2 −·) = ε2φ2, . . . , φr(cr −·) = εrφr. (37)

Under the symmetry condition in (36), to apply Theorem 1, we first show that
there exists a suitable paraunitary matrix U acting on Pa0 := [a0;0, . . . ,a0;d−1] so that
Pa0U has compatible symmetry. Note that Pa0 itself may not have any symmetry.

Lemma 1. Let Pa0 := [a0;0, . . . ,a0;d−1], where a0;0, . . . ,a0;d−1 are d-band subsym-
bols of a d-band orthogonal filter a0 satisfying (36). Then there exists a dr × dr
paraunitary matrix U such that Pa0U has compatible symmetry.

Proof. From (36), we deduce that

[a0;γ (z)]�, j = ε�ε jz
Rγ
�, j [a0;Qγ

�, j
(z−1)]�, j, γ = 0, . . . ,d− 1; �, j = 1, . . . ,r, (38)

where γ,Qγ
�, j ∈ Γ := {0, . . . ,d− 1} and Rγ

�, j, Qγ
�, j are uniquely determined by

dc�− c j − γ = dRγ
�, j +Qγ

�, j Qγ
�, j ∈ Γ .with Rγ

�, j ∈ Z, (39)

Since dc�− c j ∈ Z for all �, j = 1, . . . ,r, we have c�− c j ∈ Z for all �, j = 1, . . . ,r
and therefore, Qγ

�, j is independent of �. Consequently, by (38), for every 1 ≤ j ≤ r,
the jth column of the matrix a0;γ is a flipped version of the jth column of the matrix
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a0;Qγ
�, j

. Let κ j,γ ∈ Z be an integer such that |csupp([a0;γ ]:, j + zκ j,γ [a0;Qγ
�, j
]:, j)| is as

small as possible. Define P := [b0;0, . . . ,b0;d−1] as follows:

[b0;γ ]:, j :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[a0;γ ]:, j, γ = Qγ
�, j;

1√
2
([a0;γ ]:, j + zκ j,γ [a0;Qγ

�, j
]:, j), γ < Qγ

�, j;
1√
2
([a0;γ ]:, j − zκ j,γ [a0;Qγ

�, j
]:, j), γ > Qγ

�, j,

(40)

where [a0;γ ]:, j denotes the jth column of a0;γ . Let U denote the unique transform
matrix corresponding to (40) such that P := [b0;0, . . . ,b0;d−1] = [a0;0, . . . ,a0;d−1]U.
It is evident that U is paraunitary and P= Pa0U. We now show that P has compatible
symmetry. Indeed, by (38) and (40),

[Sb0;γ ]�, j = sgn(Qγ
�, j − γ)ε�ε jz

Rγ
�, j+κ j,γ , (41)

where sgn(x) = 1 for x ≥ 0 and sgn(x) =−1 for x < 0. By (39) and noting that Qγ
�, j

is independent of �, we have

[Sb0;γ ]�, j
[Sb0;γ ]n, j

= ε�εnzRγ
�, j−Rγ

n, j = ε�εnzc�−cn , �,n = 1, . . . ,r,

which is equivalent to saying that P has compatible symmetry. �� ��
Now, for a d-band orthogonal low-pass filter a0 satisfying (36), we have an al-

gorithm to construct high-pass filters a1, . . . ,ad−1 such that they form a symmetric
paraunitary filter bank with the perfect reconstruction property. See Algorithm 2.

Algorithm 2 Construction of orthonormal multiwavelets with symmetry

(a) Input: An orthogonal d-band filter a0 with symmetry in (36).
(b) Initialization: Construct U with respect to (40) such that P :=Pa0U has compatible symmetry:

SP = [ε1zk1 , . . . ,εrzkr ]TSθ for some k1, . . .,kr ∈ Z and some 1×dr row vector θ of Laurent
polynomials with symmetry.

(c) Extension: Derive Pe with all the properties as in Theorem 1 from P by Algorithm 1.
(d) High-pass Filters: Let P := PeU

∗ =: (am;γ )0≤m,γ≤d−1 as in (16). Define high-pass filters

am(z) :=
1√
d

d−1

∑
γ=0

am;γ(z
d)zγ , m = 1, . . . ,d−1. (42)

(f) Output: A symmetric filter bank {a0,a1, . . . ,ad−1} with the perfect reconstruction property,
i.e., P in (16) is paraunitary and all filters am, m = 1, . . . ,d−1, have symmetry:

am(z) = diag(εm
1 zdcm

1 , . . .,εm
r zdcm

r )am(1/z)diag(ε1z−c1 , . . . ,εrz
−cr ), (43)

where cm
� := (km

� − k�) + c� ∈ R and all εm
� ∈ {−1,1}, km

� ∈ Z, for �, j = 1, . . . , r and m =
1, . . . ,d−1, are determined by the symmetry pattern of Pe as follows:

[ε1zk1 , . . .,εrz
kr ,ε1

1 zk1
1 , . . . ,ε1

r zk1
r , . . . , zkd−1

1 , . . . ,εd−1
r zkd−1

r ]TSθ := SPe. (44)
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Proof (of Algorithm 2). Rewrite Pe = (bm;γ )0≤m,γ≤d−1 as a d×d block matrix with
r×r blocks bm;γ . Since Pe has compatible symmetry as in (44), we have [Sbm;γ ]�,: =

εm
� ε�zkm

� −k� [Sb0;γ ]�,: for �= 1, . . . ,r and m = 1, . . . ,d− 1. By (41), we have

[Sbm;γ ]�, j = sgn(Qγ
�, j − γ)εm

� ε jz
Rγ
�, j+k j,γ+km

� −k� , �, j = 1, . . . ,r. (45)

By (45) and the definition of U∗ in (40), we deduce that

[am;γ ]�, j = εm
� ε jz

Rγ
�, j+km

� −k� [am;Qγ
�, j
(z−1)]�, j. (46)

This implies that [Sam]�, j = εm
� ε jzd(k

m
� −k�+c�)−c j , which is equivalent to (43) with

cm
� := km

� − k�+ c� for m = 1, . . . ,d− 1 and �= 1, . . . ,r. �� ��
Since the high-pass filters a1, . . . ,ad−1 satisfy (43), it is easy to verify that each

ψm = [ψm
1 , . . . ,ψ

m
r ]

T defined in (10) also has the following symmetry:

ψm
1 (cm

1 −·) = εm
1 ψm

1 , ψm
2 (c

m
2 −·) = εm

2 ψm
2 , . . . , ψm

r (cm
r −·) = εm

r ψm
r . (47)

In the following, let us present an example to demonstrate our results and illus-
trate our algorithms (for more examples, see [16]).

Example 1. Let d= 3 and r = 2. Let a0 be the 3-band orthogonal low-pass filter with
multiplicity 2 obtained in [15, Example 4]. Then

a0(z) =
1

540

[

a11(z)+ a11(z−1) a12(z)+ z−1a12(z−1)
a21(z)+ z3a21(z−1) a22(z)+ z2a22(z−1)

]

,

where

a11(z) = 90+(55−5
√

41)z− (8+2
√

41)z2 +(7
√

41−47)z4,

a12(z) = 145+5
√

41+(1−
√

41)z2 +(34−4
√

41)z3,

a21(z) = (111+9
√

41)z2 +(69−9
√

41)z4,

a22(z) = 90z+(63−3
√

41)z2 +(3
√

41−63)z3.

The low-pass filter a0 satisfies (36) with c1 = 0,c2 = 1 and ε1 = ε2 = 1. From Pa0 :=
[a0;0,a0;1,a0;2], the matrix U constructed by Lemma 1 is given by

U :=
1√
2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√
2 0 0 0 0 0

0 1 0 0 0 1
0 0 1 0 1 0
0 0 0

√
2 0 0

0 0 z 0 −z 0
0 z 0 0 0 −z

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Let
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c0 = 11−
√

41, t12 = 5(7−
√

41), c12 = 10(29+
√

41), t13 =−5c0,

t16 = 3c0, t15 = 3(3
√

41−13), t25 = 6(7+3
√

41), t26 = 6(21−
√

41),

t53 = 400
√

6/c0, t55 = 12
√

6(
√

41−1), t56 = 6
√

6(4+
√

41), c66 = 3
√

6(3+7
√

41).

Then, P := Pa0U satisfies SP= [1,z]T[1,1,1,z−1,−1,−1] and is given by

P=

√
6

1080

[

180
√

2 b12(z) b13(z) 0 t15(z− z−1) t16(z− z−1)

0 0 180(1+ z) 180
√

2 t25(1− z) t26(1− z)

]

,

where b12(z) = t12(z + z−1) + c12 and b13(z) = t13(z − 2+ z−1). Applying Algo-
rithm 1, we obtain a desired paraunitary matrix Pe as follows:

Pe =

√
6

1080

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

180
√

2 b12(z) b13(z) 0 t15(z− 1
z ) t16(z− 1

z )

0 0 180(1+ z) 180
√

2 t25(1− z) t26(1− z)

360 − b12(z)√
2

− b13(z)√
2

0 t15√
2
( 1

z − z) t16√
2
( 1

z − z)

0 0 90
√

2(1+ z) −360 t25√
2
(1− z) t26√

2
(1− z)

0
√

6t13(1− z) t53(1− z) 0 t55(1+ z) t56(1+ z)

0
√

6t12
2 ( 1

z − z)
√

6t13
2 ( 1

z − z) 0 b65(z) b66(z)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where b65(z) = −√
6(5t15(z + z−1) + 3c12)/10 and b66(z) = −√

6t16(z + z−1)/2
+ c66. Note that SPe = [1,z,1,z,−z,−1]T[1,1,1,z−1,−1,−1] and the coefficient
support of Pe satisfies csupp([Pe]:, j) ⊆ csupp([P]:, j) for all 1 ≤ j ≤ 6. From the
polyphase matrix P := PeU

∗ =: (am;γ )0≤m,γ≤2, we derive two high-pass filters a1,a2

as follows:

a1(z) =

√
2

1080

[

a1
11(z)+ a1

11(z
−1) a1

12(z)+ z−1a1
12(z

−1)

a1
21(z)+ z3a1

21(z
−1) a1

22(z)+ z2a1
22(z

−1)

]

,

a2(z) =

√
6

1080

[

a2
11(z)− z3a2

11(z
−1) a2

12(z)− z2a2
12(z

−1)

a2
21(z)− a2

21(z
−1) a2

22(z)− z−1a2
22(z

−1)

]

,

where
a1

11(z) = (47−7
√

41)z4 +2(4+
√

41)z2 +5(
√

41−11)z+180,

a1
12(z) = 2(2

√
41−17)z3 +(

√
41−1)z2 −5(29+

√
41),

a1
21(z) = 3(37+3

√
41)z+3(23−3

√
41)z−1,

a1
22(z) =−180z+3(21−

√
41)−3(21−

√
41)z−1,

a2
11(z) = (43+17

√
41)z+(67−7

√
41)z−1,

a2
12(z) = 11

√
41−31− (79+

√
41)z−1,

a2
21(z) = (47−7

√
41)z4 +2(4+

√
41)z2 −3(29+

√
41)z,

a2
22(z) = 2(2

√
41−17)z3 +(

√
41−1)z2 +3(3+7

√
41).
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Then the high-pass filters a1, a2 satisfy (43) with c1
1 = 0, c1

2 = 1, ε1
1 = ε1

2 = 1 and
c2

1 = 1, c2
2 = 0, ε2

1 = ε2
2 = −1. See Fig. 1 for graphs of the 3-refinable function

vector φ associated with the low-pass filter a0 and the multiwavelet function vectors
ψ1,ψ2 associated with the high-pass filters a1,a2, respectively.

3 Construction of Symmetric Complex Tight Framelets

Redundant wavelet systems (L ≥ d in (17)) have been proved to be quit useful in
many applications, for examples, signal denoising, image processing, and numeri-
cal algorithm. As a redundant system, it can possess many desirable properties such
as symmetry, short support, high vanishing moments, and so on, simultaneously (see
[6,7,12,22]). In this section, we are interested in the construction of tight framelets
with such desirable properties. Due to [6], the whole picture of constructing tight
framelets with high order of vanishing moments is more or less clear. Yet, when
comes to symmetry, there is no general way of deriving tight framelet systems with
symmetry. Especially when one requires the number of framelet generators is as less
as possible. In this section, we first provide a general result on the construction of
d-refinable functions with symmetry such that (14) holds. Once such a d-refinable
function is obtained, we then show that using our results on orthogonal matrix exten-
sion with symmetry studied in Sect. 2, we can construct a symmetric tight framelet
system with only d or d+ 1 framelet generators.
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Fig. 1: Graphs of the 3-refinable function vector φ = [φ1,φ2]
T associated with a0 (left

column), multiwavelet function vector ψ1 = [ψ1
1 ,ψ

1
2 ]

T associated with a1 (middle
column), and multiwavelet function vector ψ2 = [ψ2

1 ,ψ2
2 ]

T associated with a2 (right
column) in Example 1

3.1 Symmetric Complex d-Refinable Functions

Let φ be a d-refinable functions associated with a low-pass filters a0. To have high
order of vanishing moments for a tight framelet system, we need to design a0 such
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that (14) holds for some n ∈ N. To guarantee that the d-refinable function φ as-
sociated with a0 has certain regularity and polynomial reproducibility, usually the
low-pass filter a0 satisfies the sum rules of order m for some m ∈N. More precisely,
â0 is of the form:

â0(ξ ) =

(

1+ e−iξ + · · ·+ e−i(d−1)ξ

d

)m

̂L (ξ ), ξ ∈R (48)

for some 2π-periodic trigonometric polynomial ̂L (ξ ) with ̂L (0)=1. For ̂L (ξ )≡1.
a0 is the low-pass filter for B-spline of order m: ̂Bm(ξ ) = (1− e−iξ )m/(iξ )m.

Define a function h by

h(y) :=
d−1

∏
k=1

(

1− y

sin2(kπ/d)

)

, y ∈ R. (49)

One can show that

h(sin2(ξ/2)) =
|1+ · · ·+ e−i(d−1)ξ |2

d2 =
sin2(dξ/2)

d2 sin2(ξ/2)
(50)

and

h(y)−m =

[

d−1

∏
k=1

(

∞

∑
jk=0

y jk

sin2 jk(kπ/d)

)]−m

=
∞

∑
j=0

cm, jy
j, |y|< sin2(π/d), (51)

where

cm, j = ∑
j1+···+ jd−1= j

d−1

∏
k=1

(

m− 1+ jk
jk

)

sin(kπ/d)−2 jk , j ∈N. (52)

Define Pm,n(y) a polynomial of degree n− 1 as follows:

Pm,n(y) =
n−1

∑
j=0

[

∑
j1+···+ jd−1= j

d−1

∏
k=1

(

m− 1+ jk
jk

)

sin(kπ/d)−2 jk

]

y j. (53)

By convention,
(m

j

)

= 0 if j < 0. Note that Pm,n(y) = ∑n−1
j=0 cm, jy j. Then, it is easy to

show the following result by Taylor expansion.

Lemma 2. Let m,n∈N be such that n≤ m; let Pm,n and h be polynomials defined as
in (53) and (49), respectively. Then Pm,n(sin2(ξ/2)) is the unique positive trigono-
metric polynomial of minimal degree such that

1− h(sin2(ξ/2))mPm,n(sin2(ξ/2)) = O(|ξ |2n), ξ → 0. (54)
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For m,n ∈ N such that 1 ≤ n ≤ m, let ̂IIa0(ξ ) := h(sin2(ξ/2))mPm,n(sin2(ξ/2)).
Then the d-refinable function IIφ associated with IIa0 by (6) is called the d-refinable
pseudo spline of type II with order (m,n). By Lemma 2, using Riesz Lemma, one can
derive a low-pass filter Ia0 from IIa0 such that |̂Ia0(ξ )|2 = ̂IIa0(ξ ). The d-refinable
function Iφ associated with such Ia0 by (6) is referred as real d-refinable pseudo
spline of type I with order (m,n). Interesting readers can refer to [6, 7, 22] for more
details on this subject for the special case d= 2.

Note that Ia0 satisfies (14). One can construct high-pass filters a1, . . . ,aL from
a0 := Ia0 such that (12) holds. Then ψ1, . . . ,ψL defined by (10) are real-valued
functions. {ψ1, . . . ,ψL} has vanishing moment of order n and generates a tight
d-frame. However, {ψ1, . . . ,ψL} does not necessarily have symmetry since the low-
pass filter Ia0 from IIa0 via Riesz lemma might not possess any symmetry pattern.
In the following, we shall show that we can achieve symmetry for any odd integer
n ∈ N if considering complex-valued wavelet generators.

For 1 ≤ n ≤ m, we have the following lemma regarding the positiveness of
Pm,n(y), which generalizes [12, Theorem 5] and [22, Theorem 2.4]. See
[26, Theorem 2] for its technical proof.

Lemma 3. Let m,n ∈ N be such that n ≤ m. Then Pm,n(y) > 0 for all y ∈ R if and
only if n is an odd number.

Now, by Pm,2n−1(y) > 0 for all y ∈ R and 2n− 1 ≤ m, Pm,2n−1(y) can only have
complex roots. Hence, we must have

Pm,2n−1(y) = c0

n−1

∏
j=1

(y− z j)(y− z j), z1,z1, . . . ,zn−1,zn−1 ∈ C\R.

In view of Lemmas 2 and 3, we have the following result.

Theorem 2. Let d > 1 be a dilation factor. Let m,n ∈ N be positive integers such
that 2n− 1≤ m. Let Pm,n(y) be the polynomial defined in (53). Then,

Pm,2n−1(y) = |Qm,n(y)|2, (55)

where Qm,n(y) = c(y− z1) · · · (y− zn−1) with c = (−1)n−1(z1 · · · zn−1)
−1 and z1,z1,

. . ., zn−1,zn−1 ∈ C \R are all the complex roots of Pm,2n−1(y). Define a low-pass
filter a0 by

â0(ξ ) := ei�m(d−1)
2 �ξ

(

1+ e−iξ + · · ·+ e−i(d−1)ξ

d

)m

Qm,n(sin2(ξ/2)), (56)

where �·� is the floor operation. Then,

â0(−ξ ) = eiεξ â0(ξ ) with ε = m(d− 1)− 2�m(d− 1)
2

� (57)
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and

csupp(a0) =

[

−�m(d− 1)
2

�− n+ 1,�m(d− 1)
2

�+ n− 1+ ε
]

.

Let φ be the standard d-refinable function associated with the low-pass filter a0, that
is, ̂φ(ξ ) := ∏∞

j=1 â0(d
− jξ ). Then, φ is a compactly supported d-refinable function

in L2(R) with symmetry satisfying φ( ε
d−1 −·) = φ .

For m,n ∈ N such that 2n− 1 ≤ m, we shall refer the d-refinable function φ
associated with the low-pass filter a0 defined in Theorem 2 as complex d-refinable
pseudo spline of type I with order (m,2n− 1).

Now, we have the following result which shall play an important role in our
construction of tight framelet systems in this section.

Corollary 1. Let d > 1 be a dilation factor. Let m,n ∈ N be such that 2n− 1 ≤ m
and a0 be the low-pass filter for the complex d-refinable pseudo spline of type I with
order (m,2n− 1). Then

1−
d−1

∑
j=0

|â0(ξ + 2π j/d)|2 = |̂b(dξ )|2, (58)

for some 2π-periodic trigonometric function ̂b(ξ ) with real coefficients. In
particular,

|̂b(ξ )|2 =
{

0 m = 2n− 1;

c2n,2n−1[sin2(ξ/2)/d2]2n−1 m = 2n,

where c2n,2n−1 is the coefficient given in (52).

Proof. We first show that 1−∑d−1
j=0 |â0(ξ + 2π j/d)|2 ≥ 0 for all ξ ∈ R. Let y j :=

sin2(ξ/2+ π j/d) for j = 0, . . . ,d− 1. Noting that |â0(ξ )|2 = h(y0)
mPm,2n−1(y0),

we have

1−
d−1

∑
j=0

|â0(ξ + 2π j/d)|2 = 1−
d−1

∑
j=0

h(y j)
mPm,2n−1(y j)

= 1−
d−1

∑
j=0

h(y j)
mPm,m(y j)+

d−1

∑
j=0

h(y j)
m

m−1

∑
k=2n−1

cm,kyk
j

=
d−1

∑
j=0

h(y j)
m

m−1

∑
k=2n−1

cm,kyk
j

≥ 0.

The last equality follows from the fact that the low-pass filter a0, which is defined by
factorizing h(y0)

mPm,m(y0) such that |â0(ξ )|2 := h(y0)
mPm,m(y0), is an orthogonal

low-pass filter (see [17]). Now, by that 1−∑d−1
j=0 |â0(ξ +2π j/d)|2 is of period 2π/d,

(58) follows from Riesz Lemma.
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Obviously, ̂b(ξ ) ≡ 0 when m = 2n− 1 since a0 is then an orthogonal low-pass
filter. For m = 2n, noting that h(y j)y j = sin2(dξ/2)/d2 for j = 0, . . . ,d−1, we have

|̂b(dξ )|2 = c2n,2n−1

d−1

∑
j=0

h(y j)
2ny2n−1

j = c2n,2n−1

d−1

∑
j=0

[h(y j)y j]
2n−1h(y j)

= c2n,2n−1[sin2(dξ/2)/d2]2n−1
d−1

∑
j=0

h(y j)P1,1(y j)

= c2n,2n−1[sin2(dξ/2)/d2]2n−1,

which completes our proof. ��

3.2 Tight Framelets via Matrix Extension

Fixed m,n∈N such that 1≤ 2n−1≤m, we next show that we can construct a vector
of Laurent polynomial with symmetry from a low-pass filter a0 for the complex
d-refinable pseudo spline of type I with order (m,2n− 1) to which Algorithm 1 is
applicable. Indeed, by (40), we have a 1× d vector of Laurent polynomial p(z) :=
[b0;0(z), . . . ,b0;d−1(z)] from a0. Note pp∗ = 1 when m = 2n−1 while pp∗ �= 1 when
2n− 1 < m. To apply our matrix extension algorithm, we need to append extra
entries to p when pp∗ < 1. It is easy to show that

1−
d−1

∑
j=0

|â0(ξ + 2 jπ/d)|2 = 1−
d−1

∑
γ=0

a0;γ (z
d)a∗0;γ(z

d), z = e−iξ ,

where a0;γ ,γ = 0, . . . ,d− 1 are the subsymbols of a0. By Corollary 1, we have

1−
d−1

∑
j=0

|â0(ξ + 2 jπ/d)|2 = |̂b(dξ )|2.

for some 2π-periodic trigonometric function ̂b with real coefficients. Hence, we can
construct a Laurent polynomial a0;d(z) from ̂b such that a0;d(e−iξ ) = ̂b(ξ ). Then,
the vector of Laurent polynomials q(z) = [a0;0(z), . . . ,a0;d−1(z),a0;d(z)] satisfies
qq∗ = 1.

For m = 2n, by Corollary 1, |̂b(ξ )|2 = c2n,2n−1[sin2(ξ/2)/d2]2n−1. In this case,
a0;d(z) can be constructed explicitly as follows:

a0;d(z) =
√

c2n,2n−1

(

2− z− 1/z
4d2

)n−1 1− z
2d

. (59)

a0;d(z) has symmetry Sa0;d =−z. Let b0;d(z) := a0;d(z). Then p := [b0;0, . . . ,b0;d] is
a 1× (d+ 1) vector of Laurent polynomials with symmetry satisfying pp∗ = 1.
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For m �= 2n, a0;d(z) does not necessary have symmetry. We can further let
b0;d(z) := (a0;d(z)+ a0;d(1/z))/2 and b0;d+1(z) := (a0;d(z)− a0;d(1/z))/2. In this
way, p := [b0;0, . . . ,b0;d,b0;d+1] is a 1× (d+ 2) vector of Laurent polynomials with
symmetry satisfying pp∗ = 1.

Consequently, we can summerize the above discussion as follows:

Theorem 3. Let m,n ∈ N be such that 1 ≤ 2n − 1 < m. Let a0 (with symbol
a0) be the low-pass filter for the complex d-refinable pseudo spline of type I
with order (m,2n − 1) defined in (56). Then one can derive Laurent polynomi-
als a0;d, . . . ,a0;L,L ∈ {d,d+ 1} such that pa0 := [a0;0, . . . ,a0;d−1, . . . ,a0;L] satisfies
pa0p

∗
a0

= 1, where a0;0, . . . ,a0;d−1 are subsymbols of a0. Moreover, one can con-
struct an (L+ 1)× (L+ 1) paraunitary matrix U such that pa0U is a vector of Lau-
rent polynomials with symmetry. In particular, if m = 2n, then L = d and a0;d is
given by (59).

Now, applying Theorem 3 and Algorithm 1, we have the following algorithm
to construct high-pass filters a1, . . . ,aL from a low-pass filter a0 for a complex d-
refinable pseudo spline of type I with order (m,2n− 1) so that ψ1, . . . ,ψL defined
by (10) generates a tight framelet system.

Algorithm 3 Construction of symmetric complex tight framelets

(a) Input: A low-pass filter a0 for a complex d-refinable pseudo spline of type I with order
(m,2n−1), 1 ≤ 2n−1 < m. Note that a0 satisfies (36) for r = 1.

(b) Initialization: Construct pa0(z) and U as in Theorem 3 such that p := pa0U is a 1× (L+ 1)
row vector of Laurent polynomials with symmetry (L = d when m = 2n while L = d+1 when
m �= 2n).

(c) Extension: Derive Pe from p by Algorithm 1 with all the properties as in Theorem 1 for the
case r = 1.

(d) High-pass Filters: Let P := [PeU
∗]0:L,0:d−1 =: (am;γ )0≤m≤L,0≤γ≤d−1 as in (16). Define high-

pass filters

am(z) :=
1√
d

d−1

∑
γ=0

am;γ(z
d)zγ , m = 1, . . . ,L. (60)

Note that we only need the first d columns of PeU
∗.

(e) Output: A symmetric filter bank {a0,a1, . . .,aL} with the perfect reconstruction property, i.e.
P∗(z)P(z) = Id for all z ∈ C\{0}. All filters am, m = 1, . . . ,L, have symmetry:

am(z) = εmzdcm−c0am(1/z), (61)

where cm := km + c0 ∈ R and all εm ∈ {−1,1}, km ∈ Z for m = 1, . . . ,L are determined by the
symmetry pattern of Pe as follows:

[1,ε1zk1 , . . .,εLzkL ]TSp := SPe. (62)

Since the high-pass filters a1, . . . ,aL satisfy (43), it is easy to verify that ψ1, . . . ,ψL

defined in (10) also has the following symmetry:

ψ1(c1 −·) = ε1ψ1, ψ2(c2 −·) = ε2ψ2, . . . , ψL(cL −·) = εLψ1. (63)
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In the following, let us present an example to demonstrate our results and
illustrate our algorithms. More examples can be obtained in the same way.

Example 2. Consider dilation factor d = 3. Let m = 4 and n = 2. Then P4,3(y) =
1+ 32

3 y+64y2). The low-pass filter a0 with its symbol a0 for the complex 3-refinable
pseudo spline of order (4,3) is given by

a0(z) =

(

1
z + 1+ z

3

)4 [

−
(

4
3
+

2
√

5
3

i

)

1
z
+

(

11
3

+
4
√

5
3

i

)

−
(

4
3
+

2
√

5
3

i

)

z

]

.

Note that csupp(a0) = [−5,5] and a(z) = a(z−1). In this case, m = 2n. By Theo-
rem 3, we can obtain pa0 = [a0;0(z),a0;1(z),a0;2(z),a0;3(z)] as follows:

a0;0(z) =−
√

15i
405

(

10z+27
√

5i−20+10z−1
)

;

a0;1(z) =

√
3

243
(−(4+2

√
5i)z−2 +30z−1 +60+6

√
5i− (5+4

√
5i)z);

a0;2(z) =

√
3

243
(−(5+4

√
5i)z−2 +(60+6

√
5i)z−1 +30− (4+2

√
5i)z)

a0;3(z) =−2
√

10
81

(z−2+ z−1)(1− z).

We have a0;1(z) = z−1a0;2(z−1). Let p = pa0U with U being the paraunitary matrix
given by

U := diag(1,U0,z
−1) with U0 =

[

1√
2

1√
2

1√
2
− 1√

2

]

.

Then p is a 1 × 4 vector of Laurent polynomials with symmetry pattern satis-
fying Sp = [1,z−1,−z−1,−z−1]. Applying Algorithm 3, we can obtain a 4 × 4
extension matrix P

∗
e = [p∗a0

,p∗a1
,p∗a2

,p∗a3
] with pa1 := [a1;0,a1;1,a1;2,a1;3], pa2 :=

[a2;0,a2;1,a2;2,a2;3], and pa3 := [a3;0,a3;1,a3;2,a3;3]. The coefficient support of Pe

satisfies csupp([Pe]:, j) ⊆ csupp([pa0 ] j) for j = 1,2,3,4. The high-pass filters a1,
a2,a3 constructed from pa1 , pa2 , and pa3 via (60) are then given by

a1(z) = c1(b1(z)+b1(z
−1)); a2(z) = c2(b2(z)−b2(z

−1)); a3(z) = c3(b3(z)− z3b3(z
−1)).

where c1 =
√

19178
4660254 , c2 =

√
218094

17665614 , c3 =
2
√

1338
54189 , and

b1(z) =
(

−172−86 i
√

5
)

z5 +
(

−215−172 i
√

5
)

z4 −258 i
√

5z3

+
(

1470+1224 i
√

5
)

z2 +
(

1860+2328 i
√

5
)

z−3036 i
√

5−2943

b2(z) =
(

−652−326 i
√

5
)

z5 +
(

−815−652 i
√

5
)

z4 −978 i
√

5z3

+
(

1832 i
√

5+1750
)

z2 +
(

3508 i
√

5+3020
)

z

b3(z) =
(

4
√

5+10 i
)

z5 +
(

5
√

5+20 i
)

z4 +30 iz3 +
(

−53
√

5−260 i
)

z2.
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We have a1(z) = a1(z−1), a2(z) = −a2(z−1), and a3(z) = −z3a3(z−1). Let φ be
the 3-refinable function associated with the low-pass filter a0. Let ψ1,ψ2,ψ3 be the
wavelet functions associated with the high-pass filters a1,a2,a3 by (10), respectively.
Then φ(−·) = φ , ψ1(−·) = ψ1, ψ2(−·) =−ψ2, and ψ3(1−·) =−ψ3 . See Fig. 2
for the graphs of φ ,ψ1,ψ2, and ψ3.
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Fig. 2: The graphs of φ ,ψ1,ψ2, and ψ3 (left to right) in Example 2. Real part: solid
line. Imaginary part: dashed line

4 Biorthogonal Matrix Extension with Symmetry

In this section, we shall discuss the construction of biorthogonal multiwavelets with
symmetry, which corresponds to Problem 2. Due to the flexibility of biorthogonal-
ity relation P˜P

∗ = Ir, the biorthogonal matrix extension problem becomes far more
complicated than that for the orthogonal matrix extension problem we considered in
Sect. 2. The difficulty here is not the symmetry patterns of the extension matrices,
but the support control of the extension matrices. Without considering any issue on
support control, almost all results of Theorem 1 can be transferred to the biorthogo-
nal case without much difficulty. In Theorem 1, the length of the coefficient support
of the extension matrix can never exceed the length of the coefficient support of the
given matrix. Yet, for the extension matrices in the biorthogonal extension case, we
can no longer expect such nice result, that is, in this case, the length of the coeffi-
cient supports of the extension matrices might not be controlled by one of the given
matrices. Nevertheless, we have the following result.

Theorem 4. Let F be any subfield of C. Let (P,˜P) be a pair of r × s matrices of
Laurent polynomials with coefficients in F such that SP = S˜P = (Sθ1)

∗Sθ2 for
some 1× r, 1× s vectors θ1,θ2 of Laurent polynomials with symmetry. Moreover,
P(z)˜P∗(z) = Ir for all z ∈ C\{0}. Then there exists a pair of s× s square matrices
(Pe,˜Pe) of Laurent polynomials with coefficients in F such that

(1) [Ir,0]Pe =P and [Ir,0]˜Pe = ˜P; that is, the submatrices of the first r rows of Pe,˜Pe

are P,˜P, respectively;
(2) (Pe,˜Pe) is a pair of biorthogonal matrices: Pe(z)˜P∗

e(z) = Is for all z ∈C\{0};
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(3) the symmetry of each Pe,˜Pe is compatible: SPe = S˜Pe = (Sθ )∗Sθ2 for some
1× s vector θ of Laurent polynomials with symmetry;

(4) Pe,˜Pe can be represented as:

Pe(z) = PJ(z) · · ·P1(z), ˜Pe(z) = ˜PJ(z) · · ·˜P1(z), (64)

where (P j,˜P j),1 ≤ j ≤ J are pairs of s× s biorthogonal matrices of Laurent

polynomials with symmetry. Moreover, each pair of (P j+1,P j) and (˜P j+1,˜P j)
has mutually compatible symmetry for all j = 1, . . . ,J− 1.

(5) if r = 1, then the coefficient supports of Pe,˜Pe are controlled by those of P,˜P in
the following sense:

max
1≤ j,k≤s

{|csupp([Pe] j,k)|, |csupp([˜Pe] j,k)|} ≤ max
1≤�≤s

|csupp([P]�)|+ max
1≤�≤s

|csupp([˜P]�)|. (65)

4.1 Proof of Theorem 4 and an Algorithm

In this section, we shall prove Theorem 4. Based on the proof, we shall provide a
step-by-step extension algorithm for deriving the desired pair of biorthogonal ex-
tension matrices in Theorem 4.

In this section, F denote any subfield of C. The next lemma shows that for a pair
of constant vectors (f,˜f) in F, we can find a pair of constant biorthogonal matrices
(U(f,˜f),

˜U(f,˜f)) in F such that up to a constant multiplication, it normalizes (f,˜f) to
a pair of unit vectors.

Lemma 4. Let (f,˜f) be a pair of nonzero 1× n vectors in F. Then,

(1) if f˜f
∗ �= 0, then there exists a pair of n× n matrices (U(f,˜f),

˜U(f,˜f)) in F such

that U(f,˜f) = [(
˜f
c̃ )

∗,F ], ˜U(f,˜f) = [(fc )
∗, ˜F ], and U(f,˜f)

˜U∗
(f,˜f)

= In, where F, ˜F are

n× (n− 1) constant matrices in F and c, c̃ are two nonzero numbers in F such
that f˜f

∗
= cc̃. In this case, fU(f,˜f) = cε1 and ˜f˜U(f,˜f) = c̃ε1;

(2) if f˜f
∗
= 0, then there exists a pair of n× n matrices (U(f,˜f),

˜U(f,˜f)) in F such

that U(f,˜f) = [( fc̃1
)∗,( ˜f

c2
)∗,F ], ˜U(f,˜f) = [( fc1

)∗,( ˜f
c̃2
)∗, ˜F ], and U(f,˜f)

˜U∗
(f,˜f)

= In,

where F, ˜F are n× (n− 2) constant matrices in F and c1,c2, c̃1, c̃2 are nonzero
numbers in F such that ‖f‖2 = c1c̃1,‖˜f‖2 = c2c̃2. In this case, fU(f,˜f) = c1ε1

and ˜f˜U(f,˜f) = c2ε2.

Proof. If f˜f
∗ �= 0, there exists {f2, . . . ,fn} being a basis of the orthogonal compli-

ment of the linear span of {f} in F
n. Let F := [f∗2, . . . ,f

∗
n] and U(f,˜f) := [(

˜f
c̃ )

∗,F ].

Then U(f,˜f) is invertible. Let ˜U(f,˜f) := (U−1
(f,˜f)

)∗. It is easy to show that U(f,˜f) and

˜U(f,˜f) are the desired matrices.
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If f˜f
∗
= 0, let {f3, . . . ,fn} be a basis of the orthogonal compliment of the lin-

ear span of {f,˜f} in F
n. Let U(f,˜f) = [( fc̃1

)∗,( ˜f
c2
)∗,F ] with F := [f∗3, . . . ,f

∗
n]. Then

U(f,˜f) and ˜U(f,˜f) := (U−1
(f,˜f)

)∗ are the desired matrices. �� ��

Thanks to Lemma 4, we can reduce the support lengths of a pair (p, p̃) of Laurent
polynomials with symmetry by constructing a pair of biorthogonal matrices (B, ˜B)
of Laurent polynomials with symmetry as stated in the following lemma.

Lemma 5. Let (p, p̃) be a pair of 1×s vectors of Laurent polynomials with symmetry
such that pp̃∗ = 1 and Sp = Sp̃ = εzc[1s1 ,−1s2 ,z

−11s3 ,−z−11s4 ] =: Sθ for some
nonnegative integers s1, . . . ,s4 satisfying s1+ · · ·+s4 = s and ε ∈{1,−1},c∈ {0,1}.
Suppose |csupp(p)|> 0. Then there exists a pair of s× s matrices (B, ˜B) of Laurent
polynomials with symmetry such that

(1) (B, ˜B) is a pair of biorthogonal matrices: B(z)˜B∗(z) = In;
(2) SB = S˜B = (Sθ )∗Sθ1 with Sθ1 = εzc[1s′1 ,−1s′2 ,z

−11s′3 ,−z−11s′4 ] for some non-

negative integers s′1, . . . ,s
′
4 such that s′1 + · · ·+ s′4 = s;

(3) the length of the coefficient support of p is reduced by that of B. ˜B does
not increase the length of the coefficient support of p̃. That is, |csupp(pB)| ≤
|csupp(p)|− |csupp(B)| and |csupp(p̃˜B)| ≤ |csupp(p̃)|.

Proof. We shall only prove the case that Sθ = [1s1 ,−1s2 ,z
−11s3 ,−z−11s4 ]. The

proofs for other cases are similar. By their symmetry patterns, p and p̃ must take
the forms as follows with � > 0 and coeff(p,−�) �= 0:

p= [f1,−f2,g1,−g2]z
−�+[f3,−f4,g3,−g4]z

−�+1 +
�−2

∑
k=−�+2

coeff(p,k)zk

+[f3,f4,g1,g2]z
�−1 +[f1,f2,0,0]z�;

p̃= [˜f1,−˜f2, g̃1,−g̃2]z
−˜�+[˜f3,−˜f4, g̃3,−g̃4]z

−˜�+1 +

˜�−2

∑
k=−˜�+2

coeff(p̃,k)zk

+[˜f3,˜f4, g̃1, g̃2]z
˜�−1 +[˜f1,˜f2,0,0]z

˜�.

(66)

Then, either ‖f1‖+ ‖f2‖ �= 0 or ‖g1‖+ ‖g2‖ �= 0. Considering ‖f1‖+ ‖f2‖ �= 0,
due to pp̃∗ = 1 and |csupp(p)|> 0, we have f1˜f

∗
1−f2˜f

∗
2 = 0. Let C :=f1˜f

∗
1 =f2˜f

∗
2.

There are at most three cases: (a) C �= 0; (b) C = 0 but both f1,f2 are nonzero
vectors; (c) C = 0 and one of f1,f2 is 0.

Case (a). In this case, we have f1˜f
∗
1 �= 0 and f2˜f

∗
2 �= 0. By Lemma 4, we can con-

struct two pairs of biorthogonal matrices (U(f1,˜f1)
, ˜U(f1,˜f1)

) and (U(f2,˜f2)
, ˜U(f2,˜f2)

)

with respect to the pairs (f1,˜f1) and (f2,˜f2) such that

U(f1 ,˜f1)
=

[(

˜f1

c̃1

)∗
,F1

]

, ˜U(f1 ,˜f1)
=

[(

f1

c1

)∗
, ˜F1

]

, f1U(f1,˜f1)
= c1ε1, ˜f1 ˜U(f1 ,˜f1)

= c̃1ε1,

U(f2 ,˜f2)
=

[(

˜f2

c̃1

)∗
,F2

]

, ˜U(f2 ,˜f2)
=

[(

f2

c1

)∗
, ˜F2

]

, f2U(f2,˜f2)
= c1ε1, ˜f2 ˜U(f2 ,˜f2)

= c̃1ε1,
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where c1, c̃1 are constants in F such that C = c1c̃1. Define B0(z), ˜B0(z) as follows:

B0(z) =

⎡

⎢

⎣

1+z−1

2 (
˜f1
c̃1
)∗ F1 − 1−z−1

2 (
˜f1
c̃1
)∗ 0 0

− 1−z−1

2 (
˜f2
c̃1
)∗ 0 1+z−1

2 (
˜f2
c̃1
)∗ F2 0

0 0 0 0 Is3+s4

⎤

⎥

⎦
,

˜B0(z) =

⎡

⎢

⎣

1+z−1

2 (f1
c1
)∗ ˜F1 − 1−z−1

2 (f1
c1
)∗ 0 0

− 1−z−1

2 (f2
c1
)∗ 0 1+z−1

2 (f2
c1
)∗ ˜F2 0

0 0 0 0 Is3+s4

⎤

⎥

⎦
.

(67)

Direct computation shows that B0(z)˜B0(z)∗ = Is due to the special structures of
the pairs (U(f1,˜f1)

, ˜U(f1,˜f1)
) and (U(f2,˜f2)

, ˜U(f2,˜f2)
) constructed by Lemma 4. The

symmetry patterns of pB0 and p̃˜B0 satisfies

S(pB0) = S(p̃˜B0) = [z−1,1s1−1,−z−1,−1s2−1,z
−11s3 ,−z−11s4 ].

Moreover, B0(z), ˜B0(z) reduce the lengths of the coefficient support of p and p̃ by
1, respectively.

In fact, due to the above symmetry pattern and the structures of B0, ˜B0, we only
need to show that coeff([pB0] j, �) = coeff([p̃˜B0] j, �) = 0 for j = 1,s1 + 1. Note that
coeff([pB0] j, �) = coeff(p, �)coeff([B0]:,1,0) = 1

2c̃1
(f1˜f

∗
1−f2˜f

∗
2) = 0. Similar com-

putations apply for other terms. Thus, |csupp(pB0)| < csupp(p) and |csupp(p̃˜B0)|
< |csupp(p̃)|. Let E be a permutation matrix such that

S(pB0)E = S(p̃˜B0)E = [1s1−1,−1s2−1,z
−11s3+1,−z−11s4+1] =: Sθ1.

Define B(z) = B0(z)E and ˜B(z) = ˜B0(z)E . Then B(z) and ˜B(z) are the desired
matrices.

Case (b). In this case, f1˜f
∗
1 = f2˜f

∗
2 = 0 and both f1,f2 are nonzero vectors. We

have f1f∗1 �= 0 and f2f∗2 �= 0. Again, by Lemma 4, we can construct two pairs of
biorthogonal matrices (U(f1,f1),

˜U(f1,f1)) and (U(f2,f2),
˜U(f2,f2)) with respect to the

pairs (f1,f1) and (f2,f2) such that

U(f1,f1) =

[(

f1

c̃1

)∗
,F1

]

, ˜U(f1,f1) =

[(

f1

c0

)∗
,F1

]

, f1U(f1,f1) = c0ε1,

U(f2,f2) =

[(

f2

c̃2

)∗
,F2

]

, ˜U(f2,f2) =

[(

f2

c0

)∗
,F2

]

, f2U(f2,f2) = c0ε1,

where c0, c̃1, c̃2 are constants in F such that f1f
∗
1 = c0c̃1 and f2f

∗
2 = c0c̃2. Let

B0, ˜B0(z) be defined as follows:
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B0(z) =

⎡

⎢

⎣

1+z−1

2 (f1
c̃1
)∗ F1 − 1−z−1

2 (f1
c̃1
)∗ 0 0

− 1−z−1

2 (f2
c̃2
)∗ 0 1+z−1

2 (f2
c̃2
)∗ F2 0

0 0 0 0 Is3+s4

⎤

⎥

⎦
,

˜B0(z) =

⎡

⎢

⎣

1+z−1

2 (f1
c0
)∗ F1 − 1−z−1

2 (f1
c0
)∗ 0 0

− 1−z−1

2 (f2
c0
)∗ 0 1+z−1

2 (f2
c0
)∗ F2 0

0 0 0 0 Is3+s4

⎤

⎥

⎦
.

(68)

We can show that B0(z) reduces the length of the coefficient support of p by 1, while
˜B0(z) does not increase the support length of p̃. Moreover, similar to case (a), we
can find a permutation matrix E such that

S(pB0)E = S(p̃˜B0)E = [1s1−1,−1s2−1,z
−11s3+1,−z−11s4+1] =: Sθ1.

Define B(z) = B0(z)E and ˜B(z) = ˜B0(z)E . Then B(z) and ˜B(z) are the desired
matrices.

Case (c). In this case, f1˜f
∗
1 = f2˜f

∗
2 = 0 and one of f1 and f2 is nonzero. Without

loss of generality, we assume that f1 �= 0 and f2 = 0. Construct a pair of matrices
(U(f1,˜f1)

, ˜U(f1,˜f1)
) by Lemma 4 such that f1U(f1,˜f1)

= c1ε1 and ˜f1 ˜U(f1,˜f1)
= c2ε2

(when ˜f1 = 0, the pair of matrices is given by (U(f1,f1),
˜U(f1,f1))). Extend this

pair to a pair of s × s matrices (U, ˜U) by U := diag(U(f1,˜f1)
, Is3+s4) and ˜U :=

diag(˜U(f1,˜f1)
, Is3+s4). Then pU and p̃˜U must be of the form:

q := pU = [c1,0, . . .,0,−f2,g1,−g2]z
−�+[f3,−f4,g3,−g4]z

−�+1

+
�−2

∑
k=−�+2

coeff(q,k)zk +[f3,f4,g1,g2]z
�−1 +[c1,0, . . . ,0,f2,0,0]z�;

q̃ := p̃˜U = [0,c2, . . . ,0,−˜f2, g̃1,−g̃2]z
−˜�+[˜f3,−˜f4, g̃3,−g̃4]z

−˜�+1

+

˜�−2

∑
k=−˜�+2

coeff(q̃,k)zk +[˜f3,˜f4, g̃1, g̃2]z
˜�−1 +[0,c2, . . .,0, ,˜f2,0,0]z

˜�.

If [q̃]1 ≡ 0, we choose k such that k = argmin� �=1{|csupp([q]1)| − |csupp([q]�)|},
i.e., k is an integer such that the length of coefficient support of |csupp([q]1)| −
|csupp([q]k)| is minimal among those of all |csupp([q]1)|−|csupp([q]�)|, �= 2, . . . ,s;
otherwise, due to qq̃∗ = 0, there must exist k such that

|csupp([q]1)|− |csupp([q]k)| ≤ max
2≤ j≤s

|csupp([q̃] j)|− |csupp([q̃]1)|,

(k might not be unique, we can choose one of such k so that |csupp([q]1)| −
|csupp([q]k)| is minimal among all |csupp([q]1)|− |csupp([q]�)|, � = 2, . . . ,s).

For such k (in the case of either [q̃]1 = 0 or [q̃]1 �= 0), define two matrices
B(z), ˜B(z) as follows:
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B(z) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
−b(z) 0 · · · 1

Is−k

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, ˜B(z) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 0 · · · b∗(z)
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

Is−k

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

where b(z) in B(z), ˜B(z) is a Laurent polynomial with symmetry such that Sb(z) =
S([q]1/[q]k), |csupp([q]1−b(z)[q]k)|< |csupp([q]k)|, and |csupp([q̃]k−b∗(z)[q̃]1)| ≤
max1≤�≤s |csupp([q̃]�)|. Such b(z) can be easily obtained by long division.

It is straightforward to show that B(z)˜B∗(z) = Is. B(z) reduces the length of the
coefficient support of q by that of b(z) due to |csupp([q]1−b(z)[q]k)|< |csupp([q]k)|.
And by our choice of k, ˜B(z) does not increase the length of the coefficient support
of q̃. Moreover, the symmetry patterns of both q and q̃ are preserved.

In summary, for all cases (a), (b), and (c), we can always find a pair of biorthog-
onal matrices (B, ˜B) of Laurent polynomials such that B reduces the length of the
coefficient support of p while ˜B does not increase the length of the coefficient sup-
port of p̃.

For ‖f1‖+ ‖f2‖ = 0, we must have ‖g1‖+ ‖g2‖ �= 0. The discussion for this
case is similar to above. We can find two matrices B(z), ˜B(z) such that all items in
the lemma hold. In the case that g1g̃

∗
1 = g2g̃

∗
2 = c1c̃1 �= 0, the pair (B0(z), ˜B0(z))

similar to (67) is of the form

B0(z) =

⎡

⎢

⎣

Is1+s2 0 0 0 0

0 1+z
2 ( g̃1

c̃1
)∗ G1 − 1−z

2 ( g̃1
c̃1
)∗ 0

0 − 1−z
2 ( g̃2

c̃1
)∗ 0 1+z

2 ( g̃2
c̃1
)∗ G2

⎤

⎥

⎦
,

˜B0(z) =

⎡

⎢

⎣

Is1+s2 0 0 0 0
0 1+z

2 (g1
c1
)∗ ˜G1 − 1−z

2 (g1
c1
)∗ 0

0 − 1−z
2 (g2

c1
)∗ 0 1+z

2 (g2
c1
)∗ ˜G2

⎤

⎥

⎦
.

(69)

The pairs for other cases can be obtained similarly. We are done. �� ��
Now, we can prove Theorem 4 using Lemma 5.

Proof (of Theorem 4). First, we normalize the symmetry patterns of P and ˜P to
the standard form as in (22). Let Q := U∗

Sθ1
PUSθ2 and ˜Q := U∗

Sθ1
˜PUSθ2 (given θ ,

USθ is obtained by (23)). Then the symmetry of each row of Q or ˜Q is of the form
εzc[1s1 ,−1s2 ,z

−11s3 ,−z−11s4 ] for some ε ∈ {−1,1} and c ∈ {0,1}.

Let p := [Q]1,: and p̃ := [˜Q]1,: be the first row of Q, ˜Q, respectively. Applying
Lemma 5 recursively, we can find pairs of biorthogonal matrices of Laurent poly-
nomials (B1, ˜B1), ..., (BK , ˜BK) such that pB1 · · ·BK = [1,0, . . . ,0] and p̃˜B1 · · · ˜BK =
[1,q(z)] for some 1× (s− 1) vector of Laurent polynomials with symmetry. Note
that by Lemma 5, all pairs (B j ,B j+1) and (˜B j , ˜B j+1) for j = 1, . . . ,K − 1 have

mutually compatible symmetry. Now construct BK+1(z), ˜BK+1(z) as follows:
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BK+1(z) =

[

1 0
q∗(z) Is−1

]

, ˜BK+1(z) =

[

1 −q(z)
0 Is−1

]

.

BK+1 and ˜BK+1 are biorthogonal. Let A := B1 · · ·BKBK+1 and ˜A := ˜B1 · · · ˜BK
˜BK+1.

Then, pA= p̃˜A= ε1.
Note that QA and ˜Q˜A are of the forms

QA=

[

1 0
0 Q1(z)

]

, ˜Q˜A=

[

1 0
0 ˜Q1(z)

]

for some (r−1)× s matrices Q1, ˜Q1 of Laurent polynomials with symmetry. More-
over, due to Lemma 5, the symmetry patterns of Q1 and ˜Q1 are compatible and
satisfies SQ1 = S˜Q1. The rest of the proof is completed by employing the standard
procedure of induction. �� ��

According to the proof of Theorem 4, we have an extension algorithm for Theo-
rem 4. See Algorithm 4.

Algorithm 4 Biorthogonal matrix extension with symmetry

(a) Input: P,˜P as in Theorem 4 with SP = S˜P = (Sθ1)
∗Sθ2 for two 1× r, 1× s row vectors θ1,

θ2 of Laurant polynomials with symmetry.
(b) Initialization: Let Q :=U∗

Sθ1
PUSθ2 and ˜Q :=U∗

Sθ1
˜PUSθ2 . Then both Q and ˜Q have the same

symmetry pattern as follows:

SQ= S˜Q= [1r1 ,−1r2 , z1r3 ,−z1r4 ]
T[1s1 ,−1s2 , z

−11s3 ,−z−11s4 ], (70)

where all nonnegative integers r1, . . . , r4, s1, . . . , s4 are uniquely determined by SP. Note that
this step does not increase the lengths of the coefficient support of both P and ˜P.

(c) Support Reduction:
1: Let U0 :=U∗

Sθ2
and A= ˜A := Is.

2: for k = 1 to r do
3: Let p := [Q]k,k:s and p̃ := [˜Q]k,k:s.
4: while |csupp(p)|> 0 and |csupp(p̃)|> 0 do
5: Construct a pair of biorthogonal matrices (B, ˜B) with respect to the pair (p, p̃) by

Lemma 5 such that |csupp(pB)|+ |csupp(p̃˜B)|< |csupp(p)|+ |csupp(p̃)|.
6: Replace p, p̃ by pB, p̃˜B, respectively.
7: Set A := Adiag(Ik−1,B) and ˜A := ˜Adiag(Ik−1, ˜B).
8: end while
9: The pair (p, p̃) is of the form: ([1,0, . . .,0], [1,q(z)]) for some 1× (s− k) vector of Laurent

polynomials q(z). Construct B(z), ˜B(z) as follows:

B(z) =

[

1 0
q∗(z) Is−k

]

, ˜B(z) =

[

1 −q(z)
0 Is−k

]

.

10: Set A := Adiag(Ik−1,B) and ˜A := ˜Adiag(Ik−1, ˜B).
11: Set Q :=QA and ˜Q := ˜Q˜A.
12: end for
(d) Finalization: Let U1 := diag(USθ1 , Is−r). Set Pe :=U1A

∗U0 and ˜Pe :=U1
˜A∗U0.

(e) Output: A pair of desired matrices (Pe,˜Pe) satisfying all the properties in Theorem 4.
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4.2 Application to Construction of Biorthogonal Multiwavelets
with Symmetry

For the construction of biorthogonal refinable function vectors (a pair of
biorthogonal low-pass filters), the CBC (coset by coset) algorithm proposed in [11]
provides a systematic way of constructing a desirable dual mask from a given pri-
mal mask that satisfies certain conditions. More precisely, given a mask (low-pass
filter) satisfying the condition that a dual mask exists, following the CBC algorithm,
one can construct a dual mask with any preassigned orders of sum rules, which is
closely related to the regularity of the refinable function vectors. Furthermore, if the
primal mask has symmetry, then the CBC algorithm also guarantees that the dual
mask has symmetry. Thus, the first part of MRA corresponding to the construc-
tion of biorthogonal multiwavelets is more or less solved. However, how to derive
the wavelet generators (high-pass filters) with symmetry remains open even for the
scalar case (r = 1). We shall see that using our extension algorithm for the biorthogo-
nal case, the wavelet generators do have symmetry once the given refinable function
vectors possess certain symmetry patterns.

Let (φ , ˜φ ) be a pair of dual d-refinable function vectors associated with a pair of
biorthogonal low-pass filters (a0, ã0), that is, φ , ˜φ are d-refinable function vectors
associated with a0, ã0, respectively, and

〈φ , ˜φ (·− k)〉= δ (k)Ir, k ∈ Z. (71)

It is easy to show that the pair of biorthogonal low-pass filters (a0, ã0) satisfies

d−1

∑
γ=0

a0;γ(z)ã
∗
0;γ (z) = Ir, z ∈ C\{0}, (72)

where a0;γ and ã0;γ are d-band subsymbols (polyphase components) of a0 and ã0

defined similar to (15) by

a0;γ(z) := d1 ∑k∈Z a0(k+dk)zk,
ã0;γ(z) := d2 ∑k∈Z ã0(k+dk)zk,

γ ∈ Z. (73)

Here, d1,d2 are two constants in F such that d= d1d2.
To construct biorthogonal multiwavelets in L2(R), we need to design high-pass

filters a1, . . . ,ad−1 : Z→ F
r×r and ã1, . . . , ãd−1 : Z→ F

r×r such that the polyphase
matrices with respect to the filter banks {a0,a1, . . . ,ad−1} and {ã0, ã1, . . . , ãd−1}

P(z) =

⎡

⎢

⎢

⎣

a0;0(z) · · · a0;d−1(z)
a1;0(z) · · · a1;d−1(z)

...
...

...
ad−1;0(z) · · · ad−1;d−1(z)

⎤

⎥

⎥

⎦

, ˜P(z) =

⎡

⎢

⎢

⎣

ã0;0(z) · · · ã0;d−1(z)
ã1;0(z) · · · ã1;d−1(z)

...
...

...
ãd−1;0(z) · · · ãd−1;d−1(z)

⎤

⎥

⎥

⎦

(74)
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are biorthogonal, that is, P(z)˜P∗(z) = Idr, where am;γ , ãm;γ are subsymbols of am, ãm

defined similar to (73) for m,γ = 0, . . . ,d− 1, respectively. The pair of filter banks
({a0, . . . ,ad−1},{ã0, . . . , ãd−1}) satisfying P˜P∗ = Idr is called a pair of biorthogonal
filter banks with the perfect reconstruction property.

Let (a0, ã0) be a pair of biorthogonal low-pass filters such that a0 and ã0 have
the same symmetry satisfying (36). By a slight modification of Lemma 1 (more
precisely, by modifying (40)), one can easily show that there exists a suitable in-
vertible matrix U, i.e., det(U) is a monomial, of Laurent polynomials in F act-
ing on Pa0 := [a0;0, . . . ,a0;d−1] so that Pa0U and Pã0

˜U have compatible symmetry

(˜U= (U∗)−1). Note that Pa0 itself may not have compatible symmetry.
Now, for a pair of biorthogonal d-band low-pass filters (a0, ã0) with multiplicity

r satisfying (36), we have an algorithm (see Algorithm 5) to construct high-pass
filters a1, . . . ,ad−1 and ã1, . . . , ãd−1 such that the polyphase matrices P(z) and ˜P(z)
defined as in (74) satisfy P(z)˜P∗(z) = Idr. Here, Pa0 := [a0;0, . . . ,a0;d−1] and ˜Pã0

:=
[ã0;0, . . . , ã0;d−1] are the polyphase vectors of a0, ã0 obtained by (73), respectively.

Algorithm 5 Construction of biorthogonal multiwavelets with symmetry

(a) Input: A pair of biorthogonal d-band filters (a0, ã0) with multiplicity r and with the same
symmetry as in (36).

(b) Initialization: Construct a pair of biorthogonal matrices (U, ˜U) in F by Lemma 1 such that
both P := Pa0U and ˜P = ˜Pã0

˜U (˜U = (U∗)−1) are matrices of Laurent polynomials with

coefficients in F having compatible symmetry: SP = S˜P = [ε1zk1 , . . .,εrzkr ]TSθ for some
k1, . . . ,kr ∈ Z and some 1×dr row vector θ of Laurent polynomials with symmetry.

(c) Extension: Derive (Pe,˜Pe) with all the properties as in Theorem 4 from (P,˜P) by Algorithm 4.
(d) High-pass Filters: Let P := Pe

˜U∗ =: (am;γ )0≤m,γ≤d−1, ˜P := ˜PeU
∗ =: (ãm;γ )0≤m,γ≤d−1 as in

(74). For m = 1, . . . ,d−1, define high-pass filters

am(z) :=
1
d1

d−1

∑
γ=0

am;γ (z
d)zγ , ãm(z) :=

1
d2

d−1

∑
γ=0

ãm;γ(z
d)zγ . (75)

(e) Output: A pair of biorthogonal filter banks ({a0,a1, . . . ,ad−1},{ã0, ã1, . . ., ãd−1}) with sym-
metry and with the perfect reconstruction property, i.e. P,˜P in (74) are biorthogonal and all
filters am, ãm, m = 1, . . . ,d−1, have symmetry:

am(z) = diag(εm
1 zdcm

1 , . . .,εm
r zdcm

r )am(1/z)diag(ε1z−c1 , . . . ,εrz−cr ),
ãm(z) = diag(εm

1 zdcm
1 , . . .,εm

r zdcm
r )ãm(1/z)diag(ε1z−c1 , . . . ,εrz−cr ),

(76)

where cm
� :=(km

� −k�)+c� ∈R and all εm
� ∈{−1,1}, km

� ∈Z, for �= 1, . . . , r and m= 1, . . . ,d−
1, are determined by the symmetry pattern of Pe as follows:

[ε1zk1 , . . .,εrz
kr ,ε1

1 zk1
1 , . . . ,ε1

r zk1
r , . . . , zkd−1

1 , . . . ,εd−1
r zkd−1

r ]TSθ := SPe. (77)

Let (φ , ˜φ ) be a pair of biorthogonal d-refinable function vectors in L2(R) asso-
ciated with a pair of biorthogonal d-band filters (a0, ã0) and with φ = [φ1, . . . ,φr]

T,
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˜φ = [˜φ1, . . . , ˜φr]
T. Define multiwavelet function vectors ψm = [ψm

1 , . . . ,ψm
r ]T, ˜ψm =

[˜ψm
1 , . . . , ˜ψ

m
r ]T associated with the high-pass filters am, ãm, m = 1, . . . ,d− 1, by

̂ψm(dξ ) := am(e
−iξ )̂φ (ξ ), ̂

˜ψm(dξ ) := ãm(e
−iξ )

̂

˜φ (ξ ), ξ ∈ R. (78)

It is well known that {ψ1, . . . ,ψd−1; ˜ψ1, . . . , ˜ψd−1} generates a biorthonormal multi-
wavelet basis in L2(R). Moreover, since the high-pass filters a1, . . . ,
ad−1, ã1, . . . , ãd−1 satisfy (76), it is easy to verify that each ψm = [ψm

1 , . . . ,ψm
r ]

T,
˜ψm = [˜ψm

1 , . . . , ˜ψ
m
r ]

T defined in (78) has the following symmetry:

ψm
1 (cm

1 −·) = εm
1 ψm

1 , ψm
2 (c

m
2 −·) = εm

2 ψm
2 , . . . , ψm

r (cm
r −·) = εm

r ψm
r ,

˜ψm
1 (cm

1 −·) = εm
1 ˜ψm

1 , ˜ψm
2 (c

m
2 −·) = εm

2 ˜ψm
2 , . . . , ˜ψm

r (cm
r −·) = εm

r ˜ψm
r .

(79)

In the following, let us present an example to demonstrate our results and illus-
trate our algorithms.

Example 3. Let d = 3,r = 2, and a0, ã0 be a pair of dual d-filters with symbols
a0(z), ã0(z) (cf. [13]) given by

a0(z) =
1

243

[

a11(z) a12(z)
a21(z) a22(z)

]

, ã0(z) =
1

34884

[

ã11(z) ã12(z)
ã21(z) ã22(z)

]

.

where
a11(z) =−21z−2 +30z−1 +81+14z−5z2,

a12(z) = 60z−1 +84−4z2 +4z3,

a21(z) = 4z−2 −4z−1 +84z+60z2,

a22(z) =−5z−1 +14+81z+30z2 −21z3,

and
ã11(z) = 1292z−2 +2,844z−1 +17,496+2,590z−1,284z2 +1,866z3,

ã12(z) =−4,773z−2 +9,682z−1 +8,715−2,961z+386z2 −969z3,

ã21(z) =−969z−2 +386z−1 −2,961+8,715z+9,682z2 −4,773z3,

ã22(z) = 1,866z−2 −1,284z−1 +2,590+17,496z+2,844z2 +1,292z3.

The low-pass filters a0 and ã0 do not satisfy (36). However, we can employ a very
simple orthogonal transform E :=

[

1 1
1 −1

]

to a0, ã0 so that the symmetry in (36) holds.

That is, for b0(z) := Ea0(z)E−1 and ˜b0(z) := E−1ã0(z)E , it is easy to verify that b0

and ˜b0 satisfy (36) with c1 = c2 = 1/2 and ε1 = 1,ε2 =−1. Let d= d1d2 with d1 = 1
and d2 = 3. Construct Pb0 := [b0;0,b0;1,b0;2] and ˜P

˜b0
:= [˜b0;0,˜b0;1,˜b0;2] from b0 and

˜b0. Let U be given by

U=

⎡

⎢

⎢

⎢

⎢

⎣

z−1 0 z−1 0 0 0
0 z−1 0 z−1 0 0
1 0 −1 0 0 0
0 1 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦
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and define ˜U := (U∗)−1. Let P := Pb0U and ˜P := ˜P
˜b0

˜U. Then we have SP = S˜P =

[z−1,−z−1]T[1,−1,−1,1,1,−1] and P,˜P are given by

P= c

[

t11(1+ 1
z ) t12(1− 1

z ) t13(1− 1
z ) t14 t15(1+ 1

z ) t16(1− 1
z )

t21(1− 1
z ) t22(1+ 1

z ) t23(1+ 1
z ) t24(1− 1

z ) t25(1− 1
z ) t26(1+ 1

z )

]

,

˜P= c̃

[

˜t11(1+ 1
z ) ˜t12(1− 1

z ) ˜t13(1− 1
z ) ˜t14 ˜t15(1+ 1

z ) ˜t16(1− 1
z )

˜t21(1− 1
z ) ˜t22(1+ 1

z ) ˜t23(1+ 1
z ) ˜t24(1− 1

z ) ˜t25(1− 1
z ) ˜t26(1+ 1

z )

]

,

where c = 1
486 , c̃ =

3
34,884 and t jk’s, ˜t jk’s are constants defined as follows:

t11 = 162, t12 = 34, t13 =−196, t14 = 0, t15 = 81, t16 = 29,

t21 =−126, t22 =−14, t13 = 176, t24 =−36, t15 =−99, t16 =−31,

˜t11 = 5,814, ˜t12 =−1,615, ˜t13 =−7,160, ˜t14 = 0, ˜t15 = 5,814, ˜t16 = 2,584,

˜t21 =−5,551, ˜t22 = 5,808, ˜t13 = 7,740, ˜t24 =−1,358, ˜t15 =−6,712, ˜t16 =−4,254.

Applying Algorithm 2, we obtain Pe and ˜Pe as follows:

Pe = c

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

t11(1+ 1
z ) t12(1− 1

z ) t13(1− 1
z ) t14 t15(1+ 1

z ) t16(1− 1
z )

t21(1− 1
z ) t22(1+ 1

z ) t23(1+ 1
z ) t24(1− 1

z ) t25(1− 1
z ) t26(1+ 1

z )

t31(1+ 1
z ) t32(1− 1

z ) t33(1− 1
z ) t34(1+ 1

z ) t35(1+ 1
z ) t36(1− 1

z )

t41 0 0 t44 t45 0
0 t52 t53 0 0 t56

t61(1− 1
z ) t62(1+ 1

z ) t63(1+ 1
z ) t64(1− 1

z ) t65(1− 1
z ) t66(1+ 1

z )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where all t jk’s are constants given by

t31 = 24, t32 =
472
27

, t33 =−148
27

,

t34 =−36, t35 =−24, t36 =−112
27

,

t41 =
1,09,998

533
, t44 =

94,041
533

, t45 =−1,09,989
533

,

t52 = 406c0, t53 = 323c0 , t56 = 1,142c0, c0 =
16,09,537

13,122
,

t61 = 24,210c1, t62 = 14,318c1, t63 =−11,807c1, t64 =−26,721c1,

t65 =−14,616c1, t66 =−1,934c1, c1 = 200/26,163.

And

˜Pe = c̃

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

˜t11(1+ 1
z ) ˜t12(1− 1

z ) ˜t13(1− 1
z ) ˜t14 ˜t15(1+ 1

z ) ˜t16(1− 1
z )

˜t21(1− 1
z ) ˜t22(1+ 1

z ) ˜t23(1+ 1
z ) ˜t24(1− 1

z ) ˜t25(1− 1
z ) ˜t26(1+ 1

z )
˜t31(1+ 1

z ) ˜t32(1− 1
z ) ˜t33(1− 1

z ) ˜t34(1+ 1
z ) ˜t35(1+ 1

z ) ˜t36(1− 1
z )

˜t41 0 0 ˜t44 ˜t45 0
0 ˜t52 ˜t53 0 0 ˜t56

˜t61(1− 1
z ) ˜t62(1+ 1

z ) ˜t63(1+ 1
z ) ˜t64(1− 1

z ) ˜t65(1− 1
z ) ˜t66(1+ 1

z )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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where all ˜t jk’s are constants given by

˜t31 = 3,483c̃0 , ˜t32 = 37,427c̃0, ˜t33 = 4,342c̃0, ˜t34 =−12,222c̃0,

˜t35 =−3,483c̃0, ˜t36 =−7,267, c̃0 =
8,721
4,264

,

˜t41 = 5,814, ˜t44 = 1,1628, ˜t45 =−1,1628,

˜t52 = 3c̃1, ˜t53 = 2c̃1, ˜t56 = 10c̃1, c̃1 =
12,680,011

243
;

˜t61 = 18,203c̃2 , ˜t62 = 1,01,595c̃2, ˜t63 = 1,638c̃2, ˜t64 =−33,950c̃2,

˜t65 =−10,822c̃2 , ˜t66 =−36,582c̃2, c̃2 =
26,163

2,13,200
.

Note that Pe and ˜Pe satisfy

SPe = SPe = [z−1,−z−1,z−1,1,−1,−z−1]T[1,−1,−1,1,1,−1].

From the polyphase matrices P := Pe
˜U∗ and ˜P := ˜PeU

∗, we derive high-pass filters
b1,b2 and ˜b1,˜b2 as follows:

b1(z) =

[

b1
11(z) b1

12(z)
b1

21(z) b1
22(z)

]

,b2(z) =

[

b2
11(z) b2

12(z)
b2

21(z) b2
22(z)

]

,

where

b1
11(z) =

199
6,561

+
125

6,561
z3 − 4

81
z2 +

199
6,561

z− 4
81

z−1 +
125

6,561
z−2,

b1
12(z) =− 361

6,561
− 125

6,561
z3 − 56

6,561
z2 +

361
6,561

z+
56

6,561
z−1 +

125
6,561

z−2,

b1
21(z) =

679
3,198

z3 +
679

3,198
z− 679

1,599
z2, b1

22(z) =
387

2,132
z3 − 387

2,132
z,

b2
11(z) = c3(323z3 −323z),

b2
12(z) = c3(406z3 +2,284z2 +406z),

b2
21(z) = c4(−36,017+12,403z3 −29,232z2 +36,017z+29,232z−1 −12,403z−2),

b2
22(z) = c4(41,039−12,403z3 −3,868z2 +41,039z−3,868z−1 −12,403z−2),

c3 =
27

32,19,074
, c4 =

50
63,57,609

.

And

˜b1(z) =

[

˜b1
11(z) ˜b1

12(z)
˜b1

21(z)
˜b1

22(z)

]

,˜b2(z) =

[

˜b2
11(z) ˜b2

12(z)
˜b2

21(z)
˜b2

22(z)

]

,

where

˜b1
11(z) =− 859

17,056
+

7,825
17,056

z3 − 3,483
8,528

z2 − 859
17,056

z− 3,483
8,528

z−1 +
7,825

17,056
z−2,
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˜b1
12(z) =−49,649

17,056
+

25,205
17,056

z3 − 559
656

z2 +
49,649
17,056

z+
559
656

z−1 − 25,205
17,056

z−2,

˜b1
21(z) =

1
6
(z3 + z−2z2), ˜b1

22(z) =
1
3
(z3 − z),

˜b2
11(z) = 2c̃3(z

3 − z),

˜b2
12(z) = c̃3(3z3 +10z2 +3z), c̃3 =

39,257
26,244

;

˜b2
21(z) =− 9,939

1,70,560
+

59,523
8,52,800

z3− 16,233
4,26,400

z2+
9,939

1,70,560
z+

16,233
4,26,400

z−1− 59,523
8,52,800

z−2,

˜b2
22(z) =

81,327
1,70,560

+
40,587

1,70,560
z3 − 4,221

32,800
z2 +

81,327
1,70,560

z− 4,221
32,800

z−1 +
40,587

1,70,560
z−2.

Then the high-pass filters b1,b2 and ˜b1,˜b2 satisfy (76) with c1
1 = c1

2 = 1/2,
ε1

1 = 1,ε1
2 = 1 and c2

1 = c2
2 = 3/2, ε1

1 =−1,ε1
2 =−1, respectively. Using E , we can

define a1,a2 and ã1, ã2 to be the high-pass filters constructed from b1,b2 and ˜b1,˜b2

by a1(z) := E−1b1(z)E,a2 := E−1b2E and ã1(z) := E˜b1(z)E−1, ã2 := E˜b2E−1.
See Fig. 4 for graphs of the 3-refinable function vectors φ , ˜φ associated with

the low-pass filters a0, ã0, respectively, and the biorthogonal multiwavelet function
vectors ψ1,ψ2 and ˜ψ1, ˜ψ2 associated with the high-pass filters a1,a2 and ã1, ã2, re-
spectively. Also, see Fig. 3 for graphs of the 3-refinable function vectors η , ˜η associ-
ated with the low-pass filters b0,˜b0, respectively, and the biorthogonal multiwavelet
function vectors ζ 1,ζ 2 and ˜ζ 1, ˜ζ 2 associated with the high-pass filters b1,b2 and
˜b1,˜b2, respectively.
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Fig. 3: Graphs of φ = [φ1,φ2]
T, ψ1 = [ψ1

1 ,ψ1
2 ]

T, and ψ2 = [ψ2
1 ,ψ2

2 ]
T (top, left to

right), and ˜φ = [˜φ1, ˜φ2]
T, ˜ψ1 = [˜ψ1

1 , ˜ψ
1
2 ]

T, and ˜ψ2 = [˜ψ2
1 , ˜ψ

2
2 ]

T (bottom, left to right)
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Fig. 4: Graphs of η = [η1,η2]
T, ζ 1 = [ζ 1

1 ,ζ 1
2 ]

T, and ζ 2 = [ζ 2
1 ,ζ 2

2 ]
T (top, left to right),

and ˜η = [˜η1, ˜η2]
T, ˜ζ 1 = [˜ζ 1

1 ,
˜ζ 1

2 ]
T, and ˜ζ 2 = [˜ζ 2

1 ,
˜ζ 2

2 ]
T (bottom, left to right)
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