
Wavelets on the Interval: A Short Survey

Quanhan Li and Xiaosheng Zhuang

Department of Mathematics, City University of Hong Kong, Hong Kong SAR, China
quanhanli2-c@my.cityu.edu.hk,xzhuang7@cityu.edu.hk

Abstract. The construction of wavelets on intervals has garnered sig-
nificant attention, and there are currently two primary approaches em-
ployed in this area of research. One approach involves obtaining the
wavelet on the interval by reconstructing the boundary function using
multi-resolution analysis, starting from wavelets defined on the real line
R. This approach was initially proposed by Meyer and subsequently re-
fined by Cohen. More recently, Han extended this approach to encompass
biorthogonal multi-wavelets. The second approach involves constructing
a spline function as a scaling function from a knot sequence, which al-
lows for the definition of the function itself on the interval. Additionally,
wavelets on intervals or their extensions, such as non-uniform meshes and
manifolds, have been considered in more generalized settings. Our aim is
to provide a comprehensive summary of these results, offering a better
understanding of the developmental trajectory of wavelets on intervals.
This summary will not only facilitate further investigation in this topic
but also aid in the practical application of wavelets on intervals.
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1 Introduction

The theory of wavelet analysis has received a great deal of attention since it was
introduced by many pioneers, see[10,18,23,45,43], and many references therein.
In view of their desirable properties, wavelets were soon used in signal analysis,
differential equations, finite element, and many other areas, see [7], [21], [27],
[28], [36], [38], [46], [47], [54], and many references therein. Typically, wavelets
are bases for L2(Rd) and are constructed based on the multiresolution analysis.
However, in practice, such as the signal/image processing, data are defined on a
bounded domain Ω, e.g., Ω = [0, 1], the unit interval. The wavelets constructed
on the real line must be adapted to the bounded domain. One way is to utilize
boundary/periodic extension on the data, which could bring undesirable artifacts
into the data near the boundary after processing. Another way is to consider
building the wavelets on the bounded domain directly, which could avoid the
unnatural extension of the data. In this survey, we provide a comprehensive
summary of wavelets on the interval.
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1.1 An overview

A direct idea is to construct the wavelet bases of L2[0, 1] based on the exist-
ing bases of L2(R). The first one to put this idea into practice was Meyer [44],
who constructed wavelets at the boundary by the Gram-Schmidt method. These
boundary wavelets, combined with those wavelets originally within the domain,
formed the basis for L2[0, 1]. Jouini and Lemarié-Rieusset [34] further extended
this construction to the case of biorthogonal wavelets. However, Meyer’s con-
struction encounters certain challenges. First of all, due to the inequality of the
number of scaling functions and wavelet functions, filters Firstly, an inequality
between the number of scaling functions and wavelet functions renders its filters
unsuitable for wavelet packet constructions. Additionally, a more significant issue
arises in practical scenarios where a wavelet function’s support slightly increases,
leading to an uncontrollable condition number for the orthogonalized matrix.
In light of these concerns, Cohen et al. [14] and Andersson et al. [3] provided
an alternative construction for the boundary wavelets to address these issues.
Williams and Amaratunga [55] and Madych [42] later improved the construction
of the boundary wavelets by leveraging the two-scale relation. Grivet-Talocia and
Tabacco [22] proposed the construction of a biorthogonal wavelet system based
on Cohen et al.’s work [14]. Altur̈k and Keinert [1], on the other hand, proposed
an alternative method for constructing the boundary wavelet function using a
different boundary recurrence relation. In subsequent studies, many researchers
dedicated their efforts to exploring multi-wavelets such as [2], [20], [24], [29], and
[35]. After Chui et al. [11] introduced non-stationary wavelet frames on bounded
intervals, Zhu et al. [58] proposed the construction of a multi-wavelet frame on
the interval, and Han and Michelle [25] drew inspiration from the folding op-
eration in [14] to construct a biorthogonal wavelets/framelets on the interval.
Han and Michelle in [26] provided a general framework on the construction of
compactly supported (bi-)orthogonal (multi-)wavelets on intervals.

Wavelets on the interval through the spline functions have undergone exten-
sive development over a significant period of time [9], [37], [41], especially Lyche
and Mørken’s construction of spline wavelets [41] has provided subsequent re-
searchers with valuable inspiration for wavelet construction on intervals. Chui
and Quak [12] proposed a method for constructing a semi-orthogonal wavelet ba-
sis on L2[0, 1] based on spline functions. Quak and Weyrich [50] further enhanced
the results in [12] by improving the decomposition algorithm, while Jia [31] re-
vised the result theoretically. Moreover, unlike the two approaches mentioned
above, Plonka et al. [48] constructed the basis of L2

w[−1, 1] using the Cheby-
shev transform. subsequent research on the construction of spline wavelets on
intervals has been influenced by Dahmen et al. [16], who first proposed the con-
struction of a biorthogonal spline wavelet that satisfies a stability condition, and
the result is generalized to the case of multi-wavelets [15]. Such a result seems
too complicated for practical applications, and there are many works on improv-
ing it, such as [8], [33], [49], and [51]. At the same time, wavelet constructions
that satisfy stability conditions on the interval can be used to obtain numerical
solutions to the partial differential equations, see [4], [30], [32].
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Besides the development of wavelets on intervals, many researchers also focus
on more general conditions and domains such as non-uniform meshes, manifolds,
graphs, etc., for example, see [56]. Dahmen and Schneider [17] proposed that
wavelets on the manifold can be reduced to the construction of wavelets on the
local path with mild boundary conditions, and constructed n-dimensional cube
that satisfies this condition. Later Bownik et al. [6] gave an alternative way to
construct wavelets on the manifold. Stevenson [52] applied biorthogonal wavelets
on non-uniform mesh, while Bitter and Brachtendorf [5] gave the algorithm of
how to achieve spline wavelets on non-uniform grids. In addition to this, Dijkema
and Stevenson [19] and Stevenson [53] proposed the construction of wavelets on
the hypercube, Li et al. [39] constructed wavelets on the sphere, and Zheng and
Zhuang [57] constructed wavelets/framelets on graphs to address graph-related
problems.

1.2 Structure of the paper

The structure of this survey is as follows.
In Section 2, we provide a concise overview of fundamental definitions and

properties of multi-resolution analysis on the real line. Additionally, we intro-
duce the concept of biorthogonal wavelets, which offer increased degrees of free-
dom compared to orthogonal wavelets. Consequently, one can construct wavelet
systems with higher vanishing moments while relaxing the constraint of orthog-
onality, allowing for the inclusion of additional properties tailored to specific
applications. The section concludes with a brief delineation of the properties of
multi-resolution analysis on L2[0, 1].

In Section 3, we focus on the approach of restricting wavelets from the real
line to the interval. We start in Section 3.1 with an overview of Meyer’s construc-
tion in [44], which reduces the problem to the construction of wavelet bases on a
half-space, namely L2[0,∞). We describe how to construct biorthogonal wavelets
on intervals along this line by Cohen et al., in Section 3.2, as well as those similar
results from Grivet-Talocia and Tabacco [22] in Section 3.3. In Section 3.4 we
explore Han and Michelle’s construction [24] for biorthogonal wavelets on the
interval using the folding operator as well as their direct approach [26] on how to
construct compactly supported (bi-)orthogonal (multi-)wavelets on the intervals
in Section 3.5.

In Section 4, we focus on another approach of constructing wavelets on the
interval through spline functions. We begin in Section 4.1 by presenting Chui and
Quak’s construction of semi-orthogonal wavelet bases [12], which references Ly-
che’s construction of a spline wavelet basis [41]. Additionally, we provide a brief
overview of Quak and Weyrich’s improvement of the decomposition algorithm
[50]. In Section 4.2, we present Dahmen et al.’s construction of a biorthogonal
spline wavelet basis [16], and it is worth noting that this wavelet exhibits a
certain level of stability by sacrificing orthogonality while achieving higher van-
ishing moments. However, the construction in [16] appears to be too complicated
in practice, and we present in Section 4.3 an alternative construction by Primbs
[49]. In Section 4.4, we introduce Dahmen et al.’s construction of biorthogonal
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multi-wavelets on the interval [15], which comes from the Hermite cubics splines.
After this, we describe in Section 4.5 Jia’s work [33] further on this construction
so that the resulting wavelets can be better used for solving partial differential
equations.

In Section 5, we explore wavelets on more general domains or with more
general conditions, commencing with the construction of tensor product spline
wavelets. We discuss Lyche et al.’s results [40] in Section 5.1, which also pro-
vide the wavelet construction based on triangulation. In Section 5.2, we present
Dahmen and Schneider’s wavelet construction [17] on an n-dimensional cube.
Furthermore, in Section 5.3, we discuss the results of Stevenson [52], who con-
structs biorthogonal wavelets on non-uniform meshes using the aforementioned
triangulation technique.

We provide the conclusions and further remarks in Section 6.

2 Preliminariles

In this section, we briefly describe some basic concepts and definitions that will
be used in subsequent sections and illustrate the notation.

2.1 Multi-resolution analysis on L2(R)

We first introduce the scaling function, the multiresolution analysis (MRA), and
the wavelet function.

Definition 1. A function ϕ ∈ L2(R) is called a scaling function, if the subspaces
Vj of L2(R), defined by

Vj := closL2(R)⟨ϕj,k : k ∈ Z⟩ := ⟨ϕj,k : k ∈ Z⟩, j ∈ Z,

where ⟨ ⟩ denotes the linear span and ϕj,k(x) := 2j/2ϕ(2jx− k), j, k ∈ Z, satisfy
the following properties:

(1) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ;
(2) closL2(R)(∪j∈ZVj) = L2(R);
(3) ∩j∈ZVj = {0};
(4) f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1 ⇔ f(x+ 2−j) ∈ Vj , j ∈ Z,

and if {ϕ(· − k) : k ∈ Z} is a Riesz basis of V0, i.e., there exist constants A and
B with 0 < A ≤ B <∞ such that

A∥{ck}∥2l2 ≤

∥∥∥∥∥∑
k∈Z

ckϕ(· − k)

∥∥∥∥∥
2

2

≤ B∥{ck}∥2l2 , (2.1)

for any {ck} ∈ l2. We also say that the scaling function ϕ generates a multires-
olution analysis {Vj} of L2(R).
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Thus, one can obtain a nested sequence {Vj} of subspaces from a scaling
function ϕ, and if one consider the orthogonal complement subspace Wj of
Vj related to Vj+1, one can have an orthogonal decomposition of L2(R), i.e.,
L2(R) = ⊕j∈ZWj , where ⊕ denotes the orthogonal sum.

Definition 2. A function ψ ∈ L2(R) is a wavelet dual to the scaling function if
the subspaces Wj of L2(R) defined by

Wj := closL2(R)⟨ψj,k : k ∈ Z⟩, j ∈ Z,

satisfy Vj+1 = Vj ⊕Wj, j ∈ Z, where ψj,k(x) := 2j/2ψ(2jx− k), j, k ∈ Z.

A famous family of orthogonal wavelets is constructed by Daubechies [18] with
the scaling function ϕ and ψ have support width 2N − 1 and order N vanishing
moment of ψ.

2.2 Biorthogonal decomposition on R

A scaling function ϕ ∈ L2(R) is associated with a mask a := {ak}k∈Z ⊂ R by
the following refinement equation (two-scale relation):

ϕ(x) =
∑
k∈Z

akϕ(2x− k). (2.2)

We say that two scaling functions ϕ, ϕ̃ form a dual pair if

(ϕ, ϕ̃(· − k))R = δ0,k, k ∈ Z, (2.3)

where (·, ·)R denote the usual L2 inner product on the whole real line, and δ is
the Kronecker symbol:

δi,j =

{
1, i = j,

0, i ̸= j.

We say that ϕ is exact of order d if all polynomials with at most degree d−1
can be represented by the linear combinations of integer translation ϕ(· − k).
More precisely, define

αϕ̃,r(y) := ((·)r, ϕ̃(· − y))R. (2.4)

Thus, from the definition of a dual pair, we have

xr =
∑
k∈Z

αϕ̃,r(k)ϕ(x− k), r = 0, . . . , d− 1. (2.5)

Let ϕ and ϕ̃, with mask a and ã, generate multi-resolution analysis {Vj} and

{Ṽj}, respectively. Then, to construct the biorthogonal decomposition of L2(R),
we need to find the complement subspace Wj and W̃j of Vj and Ṽj related to

Vj+1 and Ṽj+1, respectively, satisfying

Wj ⊥ Ṽj , W̃j ⊥ Vj .
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Thus,
Wj ⊥ W̃r, j ̸= r.

These subspaces Wj and W̃j can be generated by functions:

ψ(x) :=
∑
k∈Z

bkϕ(2x− k), ψ̃(x) :=
∑
k∈Z

b̃kϕ̃(2x− k), (2.6)

where
bk := (−1)kã1−k, b̃k := (−1)ka1−k, k ∈ Z. (2.7)

Meanwhile, as for biorthogonal decomposition of L2(R), it should satisfy

(ϕ, ψ̃(· − k))R = (ϕ̃, ψ(· − k))R = 0, (ψ, ψ̃(· − k))R = δ0,k, k ∈ Z. (2.8)

Note that if ϕ̃ is exact order of d̃, with the properties of complement subspace,
then ψ has d̃ vanishing moment, i.e.,∫

R
xrψ(x)dx = 0, r = 0, . . . , d̃− 1. (2.9)

2.3 Multi-resolution analysis on L2[0, 1]

For a multiresolution analysis adapted to the interval [0, 1], the sequence of
nested subspaces cannot be bi-infinite. Thus, there must exist an initial subspace

V
[0,1]
0 and the nested sequence becomes:

V
[0,1]
0 ⊂ V

[0,1]
1 ⊂ · · ·

with
closL2(∪j≥0V

[0,1]
j ) = L2[0, 1],

and the orthogonal complement subspaces W
[0,1]
j satisfying

V
[0,1]
j+1 = V

[0,1]
j ⊕W

[0,1]
j , j ∈ N.

Hence,

L2[0, 1] = V
[0,1]
0 ⊕j∈N W

[0,1]
j .

Since outside the given interval, our target function does not have a definition,

and simple truncation cannot guarantee a basis for W
[0,1]
j , one necessarily needs

to reconsider/reconstruct the wavelet functions on R that cross the boundary.

3 Wavelets on the interval via restriction

In this section, we focus on the approach of constructing wavelets on the interval
through restriction of wavelet systems on R and the careful treatment of the
boundary elements.
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3.1 Meyer’s approach

We first discuss Meyer’s construction in [44].
For the interval [0, 1], by symmetry and considering sufficiently large scales,

we only need to consider the case at the left boundary, i.e., we can obtain wavelets
on the interval by constructing wavelets on the half-space L2[0,∞). We assume
that ϕ and ψ are from the Daubechies orthogonal family of N order vanishing
moment, and both ϕ and ψ have been shifted such that supp(ϕ) = supp(ψ) =
[−N + 1, N ]. Define

ϕhalfj,k (x) =

{
ϕj,k(x), x ≥ 0,

0, x < 0,
(3.1)

V half
j = ⟨ϕhalfj,k : k ∈ Z⟩, j ∈ Z. (3.2)

Then for all j, k ∈ Z, supp(ϕj,k) = [2−j(−N + k + 1), 2−j(N + k)]. If k ≤ −N
or K ≥ N − 1, then the support of ϕj,k does not overlap with the 0-boundary.
Thus, one only needs to consider ϕj,k for −N + 1 ≤ k ≤ N − 2.

As in Section 2.3, there must be an initial subspace V half
0 . Since ϕj,k,−N+1 ≤

k ≤ N − 2 are all independent, and orthogonal to ϕj,m,m ≥ N − 1. Thus, we
orthonormalize the ϕhalf0,k ,−N+1 ≤ k ≤ N−2 by Gram-Schmidt procedure. The

resulted functions are denoted by ϕleft0,k ,−N + 1 ≤ k ≤ N − 2, and we have

ϕleft0,k =

N−2∑
l=−N+1

Ak,lϕ
half
0,l , k = −N + 1, . . . , N − 2, (3.3)

where A = (Ak,l) is an invertible matrix with dim(A) = 2N − 2. That is, each
ϕleft0,k is the linear combination of ϕhalf0,l , −N + 1 ≤ k ≤ N − 2. Consequently,

{ϕleft0,k : −N + 1 ≤ k ≤ N − 2} ∪ {ϕhalf0,l : l ≥ N − 1} serves as a basis of V half
0 .

We next consider W half
j and naturally, it needs to be satified with W half

j =

(V half
j+1 )∩(V half

j )⊥. Using a similar technique, we can obtain the ψhalf
j,k . As pointed

out in [14], one has the facts that (i) ψhalf
j,m ∈ W half

j for m ≥ N − 1; (ii)

ProjWhalf
j

ψhalf
j,k = 0 for −N + 1 ≤ k ≤ −1; and (iii) The functions

ψ̃half
0,k = ProjWhalf

0
ψhalf
0,k = ψhalf

0,k −
N−2∑

l=−N+1

⟨ψhalf
0,k , ϕ

left
0,l ⟩ϕleft0,l , (3.4)

for 0 ≤ k ≤ N−2 are non-vanishing, indepdenent, and orthogonal to the interior
ψhalf
j,m with m ≥ N − 1. Thus, using the three facts, we can orthonormalize ψ̃half

0,k ,
k = 0, . . . , N − 2, to obtain

ψleft
0,k =

N−2∑
l=0

Bk,lψ
half
0,l +

N−2∑
l=−N+1

Ck,lϕ
left
0,l , k = 0, . . . , N − 2. (3.5)

Therefore, {ψleft
0,k : 0 ≤ k ≤ N − 2} ∪ {ψhalf

0,l : l ≥ N − 1} is a basis of W half
0 .
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So far, we have obtained the basis of V half
0 and W half

0 . We next discuss the
two-scale relation for their connection to V half

1 . Since ϕhalf0,k =
∑
m hmϕ

half
1,2k+m,

k ≥ N − 1, where hm = (ϕ, ϕ1,m)R. This equation together with (3.3) implies
that

ϕleft0,k =

N−2∑
l=−N+1

H left
k,l ϕ

left
1,l +

∑
m≥N−1

hleftk,mϕ
half
1,m, (3.6)

where

H left
k,l =

N−2∑
r=−N+1

−2k+N−2∑
m=−2k−N+1

Ak,rhm(A−1)2k+m,l

and

hleftk,m =

N−2∑
r=−N+1

Ak,rhm−2r.

Similarly, from ψhalf
0,k =

∑
m gmϕ

half
1,2k+m, k ≥ N − 1, where gm = (ψ, ϕ1,m)R,

together with (3.5) it follows that

ψleft
0,k =

N−2∑
l=−N+1

Gleft
k,l ϕ

left
1,l +

∑
m≥N−1

gleftk,mϕ
half
1,m, (3.7)

where

Gleft
k,l =

N−2∑
r=0

−2k+N−2∑
−2k−N+1

Bk,rgm(A−1)2k+m,l +

N−2∑
−N+1

Ck,sH
left
s,l ,

and

gleftk,m =

N−2∑
r=0

Bk,rgm−2r +

N−2∑
s=−N+1

Ck,sh
left
k,m.

The above construction is invariant for dilation of x by 2j . Thus we get the
basis of the V half

j and W half
j by simply replacing 0 by j, respectively. Moreover,

the two-scale relations in (3.6) and (3.7) are also valid if we replace 0, 1 by j, j+1,
respectively. Thus, with the help of the Gram-Schmidt method and refinement
relations, we can obtain the multi-resolution analysis in half space L2[0,∞).
Due to the symmetry, we can get the multi-resolution analysis of the half-space
L2(−∞, 1] in the same way, and consequently, we obtain the wavelet basis on
the interval [0, 1].

However, Meyer’s construction faces two primary challenges. Firstly, the
number of scaling functions and wavelet functions with supports entirely con-
tained within the interval is 2j−2N+2. However, Meyer requires 2N−2 scaling
functions at each boundary, which does not match the number of N − 1 bound-
ary wavelet functions. Consequently, in the interval [0, 1], we have a total of
2j + 2N − 2 scaling functions but only 2j wavelet functions. This discrepancy
renders Meyer’s filters unsuitable for wavelet packet construction. Furthermore,
a more critical issue arises. In the Gram-Schmidt process described earlier, we
need to compute the inverse of the matrix A. However, Cohen et al. in [14]
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pointed out that when N ≥ 5, the condition number of the matrix A becomes
excessively large. This high condition number poses a significant hindrance to the
practical application of Meyer’s construction. We next discuss the improvement
of Meyer’s construction by Cohen et al. in [14].

3.2 Cohen et al.’s improvement

Similarly to Meyer’s construction [44], Cohen et al. in [14] retained those scaling
functions whose support falls entirely within the interval, but in order to allow
the number of scaling functions to be consistent with the number of wavelet
functions, they adopted a different construction of the boundary functions. Note
that the previous constructions about subsequent hierarchies are obtained based
on the two-scale relation. So one just needs to reconstruct the boundary function
of the initial space V half

0 .
Starting from the already existing interior scaling functions, Cohen et al. in

[14] noticed that these functions cannot reproduce constants on [0,∞). With
this in mind, they defined a boundary function ϕ0:

ϕ0 := 1−
∞∑

k=N−1

ϕ0,k. (3.8)

This ϕ0 with those interior scaling functions would be able to reproduce all
constant-valued functions in the half space. At the same time, since

∞∑
k=−∞

ϕ0,k = 1, (3.9)

Thus,

ϕ0 =

N−2∑
k=−N+1

ϕ0,k. (3.10)

This shows that ϕ0 is a linear combination of ϕ0,k,−N + 1 ≤ k ≤ N − 2 like
the boundary function constructed by Meyer, so it also has the same properties
as the original boundary function. In [14], it illustrates that such a construction
does not disrupt the multi-resolution hierarchy, i.e.,

⟨ϕ0, ϕ0,k : k ≥ N − 1⟩ ⊂ ⟨ϕ0(2·), ϕ1,k : k ≥ N − 1⟩. (3.11)

More generally, one can construct

ϕi :=

2N−2∑
k=i

(
k

i

)
ϕ(·+ k −N + 1), i = 0, . . . , N − 2,

to reproduce polynomial of degree up to N − 2, and the space

⟨ϕi, ϕ0,k : 0 ≤ i ≤ N − 2, k ≥ N − 1⟩
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then has exactly N−1 boundary scaling functions matching the number of N−1
boundary wavelet functions. However, such a construction has its limitations;
that is, while Meyer’s construction can reproduce polynomials of degrees up to
N−1, this construction can, at most, represent polynomials with order not larger
than N − 2. To recover the one extra lost degree, Cohen et al. in [14] shows that
one can include ϕN−1 while excluding ϕ0,N−1 leading to the space V half

0 that can
be built from

⟨ϕi, ϕ0,k : 0 ≤ i ≤ N − 1, k ≥ N⟩,

and the space W half
0 from

⟨ψi, ψ0,k : 0 ≤ i ≤ N − 1, k ≥ N⟩,

through orthonormalization, both of which have N boundary functions.

3.3 Grivet-Talocia and Tabacco’s biorthogonal wavelets

By relaxing the orthogonality condition, one can have a higher degree of freedom
and thus have more desired properties of the wavelet systems. We present in
this section how to construct biorthogonal wavelets on the interval [0,1] based
on Grivet-Talocia and. Tabacco’s results in [22]. Similar to the previous process,
we only consider the case at the left boundary point 0, while letting j = 0. Let
us consider two scaling functions ϕ and ϕ̃ that form a dual pair. Without loss of
generality, we can assume supp(ϕ) = [−N + 1, N ] ⊂ supp(ϕ̃) = [−Ñ + 1, Ñ ].

Following Meyer [44] and Cohen et al. [14], the support of all the scaling
functions ϕ0,k with k ≥ N − 1 falls entirely within the half line [0,∞). And we
can reproduce all polynomials of order up to N − 2 on a half space L2[0,∞) by
constructing N − 1 boundary scaling functions. Since Ñ ≥ N , we can define

V B0 := ⟨ϕ0,k : 0 ≤ k ≤ Ñ − 2⟩, V I0 := ⟨ϕ0,k : k ≥ Ñ − 1⟩, (3.12)

where B denotes the boundary and I denotes the interior. The scaling functions
ϕ0,k with 0 ≤ k ≤ Ñ − 2 are then the boundary functions that we need to take

care of. Note that if Ñ > N , some of the interior functions ϕ0,k for N − 1 ≤ k ≤
Ñ − 2 are treated as boundary elements. Similarly, we can define:

Ṽ B0 := ⟨ϕ̃0,k : 0 ≤ k ≤ Ñ − 2⟩, Ṽ I0 := ⟨ϕ̃0,k : k ≥ Ñ − 1⟩, (3.13)

and with this, we have

V half
0 = V B0 ⊕ V I0 , Ṽ half

0 = Ṽ B0 ⊕ Ṽ I0 . (3.14)

Since V I0 is originally biorthogonal to Ṽ I0 , and

V B0 ⊥ Ṽ I0 , V I0 ⊥ Ṽ B0 , (3.15)

Hence, the remaining problem is to reconstruct the basis of each V B0 and Ṽ B0 so
that the biorthogonality condition, i.e., V B0 ⊥ Ṽ B0 , is satisfied.
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In fact, the new basis can be represented as a linear combination of the
original basis. That is,

V B0 = ⟨φ0,k : 0 ≤ k ≤ Ñ − 2⟩, Ṽ B0 = ⟨φ̃0,k : 0 ≤ k ≤ Ñ − 2⟩, (3.16)

φ0,k =
∑Ñ−2
k=0 Ak,mϕ0,m, φ̃0,k =

Ñ−2∑
k=0

Ãk,mϕ̃0,m. (3.17)

Thus, to get the entire biorthogonal system, one needs to guarantee that

biort(φ0,k, φ̃0,l)R+ :=

∫ ∞

0

φ0,k(x)φ̃0,l(x)dx = δk,l, 0 ≤ k, l ≤ Ñ − 2. (3.18)

Let Γ be the Gramian matrix of components [22]:

Γk,l = (ϕ0,k, ϕ̃0,l)R+ , 0 ≤ k, l ≤ Ñ − 2. (3.19)

Then, the problem about the biorthogonality becomes finding two matrices A
and Ã such that

AΓÃ⊤ = I, (3.20)

where (·)⊤ is the matrix transpose and I is the identity matrix.
Utilize similar technique as in (3.4), we can obtain a wavelet basis in half

space W half
0 and W̃ half

0 . Similar to the previous illustration, we have

W half
0 =WB

0 ⊕W I
0 , W̃ half

0 = W̃B
0 ⊕ W̃ I

0 , (3.21)

WB
0 ⊥ W̃ I

0 , W I
0 ⊥ W̃B

0 . (3.22)

The biorthogonality can be satisfied by constructing new basis for each of WB
0

and W̃B
0 .

We have completed the construction of biorthogonality on V half
0 and W half

0

and their dual spaces, respectively. Regarding the two-scale relations, one can
utilize an approach similar to those in Section 3.1. With a similar construction
for the half-space L2(−∞, 1], we can complete the construction of biorthogonal
wavelets on the interval [0, 1].

3.4 Han and Michelle’s folding operator

Unlike the previous approach of constructing new boundary functions to obtain
(bi-)orthogonal wavelets on the interval, we can obtain wavelets on the interval
by folding the original wavelets. However, such an operation requires that the
original scaling function and the wavelet function satisfy either symmetry or
anti-symmetry. Otherwise, biorthogonality will not be guaranteed.

Such an operation was first proposed by Cohen et al. in [14], and another way
of folding was later given by Han [25]. Let us begin with Cohen et al.’s method.
Define

f fold(x) =
∑
n∈Z

[f(x− 2n) + f(2n− x)]. (3.23)
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With this definition, one can know that

f fold(−x) = f fold(x), f fold(x+ 2k) = f fold(x). (3.24)

Let ψ, ψ̃ be two biorthogonal wavelets with corresponding scaling functions
ϕ and ϕ̃. As previously stated, to ensure that the biorthogonality is maintained
after the folding is performed, we can assume (see [13]) that

ϕ(x) = ϕ(1− x) and ψ(x) = −ψ(1− x), (same for ϕ̃ and ψ̃). (3.25)

In what follows, we assume the dual part and the original part have the same
properties, and the conclusions obtained in the original part hold automatically
for the dual part. From (3.24), one can derive that

ϕfoldj,k+2j+1m(x) = ϕfoldj,k (x), ϕfoldj,2j+1−k−1(x) = ϕfoldj,k (x), j ≥ 0, (3.26)

which means that we only need to consider those terms with 0 ≤ k ≤ 2j − 1.
Similar situation holds for ϕ̃, ψ and ψ̃. As for the situation j ≤ −1, one can
show that

ϕfoldj,k (x) = 2
j
2

∑
n∈Z

[ϕ(2jx− 2j+1n− k) + ϕ(2j+1n− 2jx− k)] = 2−
j
2 , (3.27)

and similarly, ψfold
j,k (x) = 0 for j ≤ −1. Let the V fold

j and W fold
j denote the

space spanned by ϕfoldj,k and ψfold
j,k , respectively (same for Ṽ fold

j and W̃ fold
j ). Note

that the function that is acted upon by the folding operator will be completely
determined by the part in the interval [0, 1], i.e.,

(f fold, g)R = (f, gfold)R = (f fold, gfold)[0,1],∀f, g ∈ L2(R) (3.28)

Thus, one can deduce that for j ≥ 0,

V fold
j ⊥ W̃ fold

j , Ṽ fold
j ⊥W fold

j , V fold
j+1 = V fold

j ⊕W fold
j . (3.29)

This is consistent with our discussion in Section 2.3. That is

L2[0, 1] = V fold
0 ⊕j∈N W

fold
j = Ṽ fold

0 ⊕j∈N W̃
fold
j . (3.30)

Han and Michelle in [25] considered a more general folding operator and
applied it to the case of multi-wavelets (multi-framelets). To distinguish between
the two, we denote the function vectors on which Han and Michelle’s folding
operator acts as (·)ϵ1,ϵ2 . Define

Fc,ϵ1,ϵ2(f) = F̃ + ϵ1F̃ (c− ·) + ϵ2F̃ (c+ 2− ·) + ϵ1ϵ2F̃ (2 + ·), (3.31)

where F̃ (x) :=
∑
k∈Z f(x − 4k) and ϵ1, ϵ2 ∈ {−1, 1} indicates symmetry or

anti-symmetry. Similarly to the former folding operation in [14], such a folding
operator is completely determined by the part in [ c2 ,

c
2 + 1], and here we take
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c = 0 in order to better compare it with that in [14]. Han and Michelle con-
sider multiwavelets (multiframelets) and hence the scaling function and wavelet
function are vector functions:

ϕ = (ϕ1, · · · , ϕr)⊤ and ψ = (ψ1, · · · , ψs)⊤ (same for ϕ̃ and ψ̃). (3.32)

We assume they agree with the assumptions as in (3.24). Although [25] considers
more scenarios, the results are similar, see [25] for more details. One can define
Φj = ∪rl=1ϕ

l
j (similar for Φ̃j , Ψj and Ψ̃j), where Φ

l
j = {(ϕlj,k)ϵ1,ϵ2 : 0 ≤ k ≤ 2j−1}

and the system should have the properties similar to (3.28)–(3.30).
We can see that with the help of such a folding operator, we can simply obtain

wavelets on the interval without any construction of the boundary functions in
particular. However, the disadvantages of this method are obvious: on the one
hand, it requires symmetry or anti-symmetry of the scaling function and wavelet
function, and on the other hand, it can only be constructed if the endpoints of
the target interval are integers. In the next section, we describe a more general
approach which is also given by Han and Michelle in [26].

3.5 Han and Michelle’s direct approach

We present Han and Michelle’s recent work that utilize a direct approximation
to biorthogonal wavelets on intervals without explicitly involving the dual part.

Let’s start with the classical approach. The basic idea is still the same as
Meyer [44]’s, by constructing wavelets in the half-space L2[0,∞) and thus on
the interval. We consider here biorthogonal multi-wavelets as in (3.32) as in
the previous section. For biorthogonal multi-wavelets, their scaling and wavelet
function vectors ϕ, ψ, ϕ̃, and ψ̃ are associated with matrix filters a, ã, b, and b̃,
respectively, whose dimension should satisfy s = r and[

ˆ̃a(ξ) ˆ̃a(ξ + 2π)
ˆ̃
b(ξ)

ˆ̃
b(ξ + 2π)

][
¯̂a(ξ)⊤

¯̂
b(ξ)⊤

¯̂a(ξ + π)⊤
¯̂
b(ξ + π)⊤

]
= I2r, ξ ∈ R, (3.33)

where â(ξ) :=
∑
k a(k)e

ik·ξ with each a(k) being a matrix of size r × r in R.
Now we need to construct the function on the left boundary, which needs

to satisfy the two-scale relation. One can obtain a two-scale relation similar to
(3.6):

ϕleft = 2ALϕ
left(x·) +

∑
k≥nϕ

Akϕ1,k, (3.34)

where AL, Ak are a matrices with appropriate sizes, nϕ denote the smallest inte-
ger such that with supp(ϕ(·−k)) ⊂ [0,∞) for all k ≥ nϕ. We have discussed the
construction by Meyer [44] and Cohen et al. [14] for the left boundary function
in the previous sections, and such a construction can follow well to the case of
multi-wavelets. Let us be a little more specific. Keep in mind, we are consider-
ing multiple wavelets here, but we can consider each components in the wavelet
vector ψ separately and utilize the previous results.



14 Quanhan Li and Xiaosheng Zhuang

For AL in (3.34), we can write it as a Jordan normal form

AL = C−1diag(J1, · · · , Jr)C, (3.35)

where

Jl =


λl 1 0 · · · 0
0 λl 1 · · · 0
...

...
. . .

...
...

0 0 · · · λl 1
0 0 · · · 0 λl

 , λl ∈ C (3.36)

and define (ϕleft,l)1≤l≤r = Cϕleft. This allows us to consider the components of
the multi-wavelet independently, i.e.,ϕ

left,1

...
ϕleft,r

 = 2

J1ϕ
left,1(2·)
...

Jrϕ
left,r(2·)

+ 2
∑
k≥nϕ

CAkϕ0,k (3.37)

And after processing them separately we can then merge them and keep the orig-
inal properties. Since the construction for multi-wavelets is similar, we illustrate
the case with r = 2. For the vector functions ϕleft,1, ϕleft,2 satisfy (3.34) with
AL1

, AL2
and A1(k), A2(k), respectively, ϕ

left = ϕleft,1 ∪ ϕleft,2 satisfies (3.34)
with AL = diag(AL1

, AL2
) and Ak = [A1(k), A2(k)]

⊤.
Once we obtain Φ = {ϕleft} ∪ {ϕ0,k : k ≥ nϕ} as a basis of V half

0 , we can
apply Gram-Schmidt to replace the origin one with an orthogonal basis, and then
imitating what we did in (3.4) and (3.5) to obtain the orthogonal multi-wavelet
basis on the half space. For the biorthogonal case, similar to [22], we need to
construct the biorthogonal boundary wavelets satisfying condition (3.34), which
is equivalent to the fact that the Gramian matrix Γ is invertible. One can take
A = I and Ã = Γ−⊤ in (3.34) to get the dual part Φ̃.

More specifically, define nϕ̃ similar to that of nϕ. Consider vector function

ϕ◦ := {ϕleft} ∪ {ϕ0,k : nϕ ≤ k ≤ nϕ̃}, and then we can define a vector function

ϕ̆left = ϕ̃half0,k ∪ ϕ̃h, where

ϕ̃h = 2

nh−1∑
k=nϕ̃

Ãkϕ̃1,k and (ϕ̃h, ϕ0,k)[0,∞) = 0, ∀k ≥ nϕ̃, (3.38)

where nh = 2max(nϕleft , hϕ + nϕ̃) − lϕ̃, l(·) and h(·) denote the left and right

boundary of the support of (·), respectively. One can start with ηL = ∅ and

merge ϕ̆left into ηL if (ηL ∪ ϕ̆left, ϕ◦) has full rank until #ηL = #ϕ◦. Thus,
ϕ̃left = (ηL, ϕ◦)−1ηL.

Next, let us consider how to construct the wavelet part. For the non-dual part
of the wavelet, we can obtain it directly by the direct sum property, attributing it
to the fact that we only need to reconstruct a new set of boundary functions when
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building the biorthogonal wavelet. That is, define mϕ = max(2nϕ+hã, 2nψ+hb̃)
and ψ◦ = {ϕleft(2·)} ∪ {ϕ1,k : nϕ ≤ k ≤ mϕ}. Thus,

ψleft = ψ◦ − (ψ◦, ϕ̃left)ϕleft −
Mϕ−1∑
k=nϕ

(ψ◦, ϕ̃0,k)ϕ0,k, (3.39)

whereMϕ is chosen to guarantee that supp ψ◦∩ supp ϕ̃0,k is at most a singleton.
For the biorthogonal multi-wavelets on the half line, Han and Michelle states

that for each η ∈ {ψleft} ∪ {ψ0,k : nϕ ≤ k ≤ nϕ̃}, there exists a unique sequence
{cη(h)} such that

(dη, g) =

{
1, if η = g

0, if g ∈ (Φ ∪ Ψ)\{η}
with dη =

√
2
∑
h∈Φ

cη(h)h̃(2·) (3.40)

and
cη(ϕ0,k) = 0,∀k ≥ mϕ̃. (3.41)

Then ψleft = {dη : η ∈ {ψleft} ∪ {ψ0,k : nϕ ≤ k ≤ nϕ̃}}.
Such a construction appeared to be overly complicated, so Han and Michelle

proposed a method for the construction of biorthogonal multi-wavelets on in-
tervals that do not have to involve the explicit construction of the dual part.
Define

ϕleft =

∞∑
j=1

2j−1Aj−1
L g(2j ·), where g = 2

∞∑
k=nϕ

Akϕ0,k, (3.42)

and then ϕleft has the form (3.34). Find ψleft such that[
ϕleft(2·)
ϕ0,k(2·)

]
= A0ϕ

left +B0ψ
left +

∑
nϕ≤k<hC

Ckϕ0,k +
∑

nψ≤k<hD

Dkψ0,k. (3.43)

With these, one can determine ÃL and B̃L formA0, B0, {C(k)}hC−1
k=nϕ

, {D(k)}hD−1
k=nψ

and filter ã, b̃. In fact, we have obtained the dual part

ϕ̃left =

∞∑
j=1

2j−1Ãj−1
L g̃(2j ·), (3.44)

where g̃ = 2
∑∞
k=nϕ̃

Ãkϕ̃0,k and

ψ̃left = 2B̃Lϕ̃
left(2·) + 2

∞∑
k=nϕ̃

B̃(k)ϕ̃1,k, (3.45)

where Ã(k) and B̃(k) are defined as

Ã(k) =


0

ã(k − 2nϕ)
...

ã(k − 2(nϕ̃ − 1))

 , B̃(k) =


0

b̃(k − 2nψ)
...

b̃(k − 2(nψ̃ − 1))

 (3.46)
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In this way we obtain the biorthogonal multi-wavelet on the half-space by a
direct approach.

So far, we have given results on how to obtain results on intervals by means
of (bi-)orthogonal (multi-)wavelets or (multi-)framelets defined on R. In the next
section, we focus on another approach that starts from the spline function.

4 Wavelets on the interval via splines

In this section, based on the knot sequence and spline functions, we discuss the
approach for wavelets on the interval from directly defining the scaling function
on the interval without having to deal with the boundary.

4.1 Chui and Quak’s approach

Define knot sequence {tj,k} on the interval [0, 1]:

{tj,k}2
j+m−1
k=−m+1 :=


0, −m+ 1 ≤ k ≤ 0,

k/2j , 1 ≤ k ≤ 2j − 1,

1, 2j ≤ k ≤ 2j +m− 1.

(4.1)

For this knot sequence, B-splines are defined as:

Bmj,k(x) := (tj,k+m − tj,k)[tj,k, . . . , tj,k+m]t(t− x)m−1
+ , (4.2)

where [·, . . . , ·]t is the m-th divided difference of (t − x)m−1
+ with respect to

t. From this definition we know that supp(Bmj,k) = [tj,k, tj,k+m] and Bmj,k =

Nm(2jx − k), 0 ≤ k ≤ 2j − m, where Nm(x) denotes the cardinal B-spline
function of order m.

The spline space of order m corresponding to this knot sequence is

Smj := {s ∈ Cm−2[0, 1] : s[tj,k,tj,k+1] ∈ Πm−1, 0 ≤ k ≤ 2j − 1}, (4.3)

where Πm−1 denotes the space of all polynomials of degree at most m − 1. A

nested sequence of subspaces V
[0,1]
j is obtained by setting V

[0,1]
j := Smj , V

[0,1]
0 =

Πm−1, and the scaling function ϕj,k = Bmj,k.

It remains to consider the orthogonal complement subspacesW
[0,1]
j satisfying

V
[0,1]
j+1 = V

[0,1]
j ⊕W

[0,1]
j . Note that W

[0,1]
j is a subspace of S2m

j . Define the spline
space

S̃2m
j+1 := ⟨B2m

j+1,k : −m+ 1 ≤ k ≤ 2j+1 −m− 1⟩ (4.4)

and its subspace

S̃0,2m
j+1 := ⟨s ∈ S̃2m

j+1 : s(tj,k) = 0, 0 ≤ k ≤ 2j⟩. (4.5)

In [12], Chui and Quak proved that the m-th order differential operator Dm

maps S̃0,2m
j+1 one-to-one onto the wavelet space W

[0,1]
j . Thus, for 2j > 2m − 1,
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there exists 2j − 2m + 2 linearly independent interior wavelet functions belong

to W
[0,1]
j :

ψj,k = ψm(2j · −l) = 1

22m−1

2m−2∑
l=0

(−1)lN2m(l + 1)B
2m,(m)
j+1,2k+l,

where B
2m,(m)
j,k := DmB

2m
j,k and

supp(ψj,k) = [
2k

2j+1
,
2k + 4m− 2

2j+1
], (4.6)

which implies that supp(ψj,k) ⊂ [0, 1] for 0 ≤ k ≤ 2j − 2m+ 1.
We can see that similar to the construction of Cohen et al. in [14], we have

2j − 2m+ 2 interior functions and need to construct m− 1 boundary functions
for both sides, then we will have totally 2j functions as a basis. Here as before,
we only consider the case at the 0-boundary. For the 0-boundary wavelets, Chui
and Quak in [12] set

ψj0,k(x) :=
1

22m−1

−1∑
l=−m+1

αk,lB
2m,(m)
j0+1,k (x)

+

2m−2+2k∑
l=0

(−1)lN2m(l + 1− 2k)B
2m,(m)
j0+1,k (x),

(4.7)

where the coefficients αk,l are the solution of

Bαk = rk, −m+ 1 ≤ k ≤ −1 (4.8)

with B = (bi,l)
m−1
i,l=1, bi,l = B2m

j0+1,−l(tj0,i), αk = [αk,−m+1, · · · , αk,−1]
⊤, and

rk = [rk,−m+1, · · · , rk,−1]
⊤. Here

rk,i = −
2m−2+2k∑

l=0

(−1)lN2m(l + 1− 2k)N2m(2m+ 2i− l).

In the remainder of this section, we present a refinement of Quak andWeyrich’s
decomposition algorithm in [50] for such a construction. In general, for

fj+1(x) = fj(x) + gj(x),

where fj ∈ V
[0,1]
j and gj ∈ V

[0,1]
j , j ∈ Z+. Thus, we can get

2j+1−1∑
k=−m+1

cj+1
k ϕj+1,k(x) =

2j−1∑
k=−m+1

cjkϕj,k(x) +

2j−m∑
k=−m+1

djkψj,k(x). (4.9)

That means we need the coefficients sequence dN−1, · · · , dj0 , cj0 to reconstruct
the function, where N is the initial level and j0 is the smallest integer satisfying
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2j0 > 2m − 1. The general idea is to get all the terms by recursion. But here
we do not need cN−1, · · · , cj0−1. Computing these terms definitely reduces the
arithmetic efficiency. Quak and Weyrich in [50] suggested a way to improve this
situation.

Consider the dual pair of the scaling function ϕj,k and wavelet function ψj,k,

and denote them as ϕ̃j,k and ψ̃j,k, respectively. The existence of biorthogonal
spline wavelets, we shall discuss them soon in the next subsection. Since

fN (x) =

2N−1∑
k=−m+1

cNk ϕN,k(x) =

2N−1∑
k=−m+1

aNk ϕ̃N,k(x) (4.10)

Then we have aj = Cjcj , where Cj = ((ϕj,k, ϕj,l)[0,1])
2j−1
k,l=−m+1. Similar we can

get bj = Djdj from decomposition with wavelet functions and the dual pair. Let

P j = ((ϕ̃j+1,k̃, ϕj,k)[0,1])
2j+1−1;2j−1

k̃=−m+1;k=−m+1
,

Qj = ((ϕ̃j+1,k̃, ψj,k)[0,1])
2j+1−1;2j−m
k̃=−m+1,k=−m+1

.
(4.11)

Firstly, one can get aN from aN = CNcN and then for each level j0 ≤ j ≤ N−1,
we can compute aj = (P j)⊤aj+1, bj = (Qj)⊤aj+1. Thus, we can get cj0 from
Cj0cj0 = aj0 and dj , j0 ≤ j ≤ N − 1 from Djdj = bj .

Here, we can see that in Quak and Weyrich’s algorithm, we have involved
the dual functions of the scaling functions and wavelet functions. Thanks to the
biorthogonal wavelets, we can use different sets of functions in the decomposi-
tion and reconstruction, which gives a great deal of freedom. In the subsequent
sections, we will refer to Dahmen et al.’s results in [16] to illustrate how to obtain
biorthogonal wavelets from the spline functions.

4.2 Dahmen et al.’s biorthogonal spline wavelets

We already know how to construct multi-resolution analyses on intervals based
on knot sequences from Chui and Quak’s results in [12]. In [16], Dahmen et al.
considered the case of biorthogonal spline wavelets on the interval.

In [16], Dahmen et al. used cardinal B-splines with order m as scaling func-
tions ϕ. With this definition, ϕ is centered on µ(m)/2, where µ(m) := m mod 2.
From [16], we know that for each m and m̃ ≥ m, m̃ ∈ N such that m + m̃ is
even, there exists ϕ̃ ∈ L2(R) is the dual pair of ϕ with order m̃. Suppose that
we already have the multi-resolution space on the interval [0, 1]:

Φ′
j := {ϕleftj,k : k ∈ ∆left

j } ∪ {ϕj,k : k ∈ ∆0
j} ∪ {ϕrightj,k : k ∈ ∆right

j }, (4.12)

Φ̃′
j := {ϕ̃leftj,k : k ∈ ∆̃left

j } ∪ {ϕ̃j,k : k ∈ ∆̃0
j} ∪ {ϕ̃rightj,k : k ∈ ∆̃right

j }, (4.13)

where ∆ and ∆ denote the domain of k. Due to the construction of boundary
functions and the nature of the dual pair, we know that only the boundary part
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does not satisfy the biorthogonality condition. That is, as in [22], if we define

V Lj := ⟨ϕleftj,k : k ∈ ∆left
j ⟩, V Ij := ⟨ϕj,k : k ∈ ∆0

j ⟩, (4.14)

Ṽ Lj := ⟨ϕ̃leftj,k : k ∈ ∆̃left
j ⟩, Ṽ Ij := ⟨ϕ̃j,k : k ∈ ∆̃0

j ⟩, (4.15)

then we have something similar to (3.15). Thus, things remained to do is similar
to those in Section 3.3. But [22] doesn’t give specific methods. The more specific
method is given in [16].

Like (3.20), we need transform matrix Aj and Ãj such that

AjΓj(Ãj)
⊤ = I. (4.16)

We know that if the matrix Γj is non-singular, then by taking

Aj = I, Ãj = Γ−⊤
j , (4.17)

we can have the biorthogonality. Define

Γj,L := (Φleft
j , Φ̃left

j )[0,1] := ((ϕleftj,k , ϕ̃
left
j,m)[0,1])k,m∈∆̃left

j
, (4.18)

and the case on the right boundary can be constructed similarly. Here we use
∆̃left
j rather than ∆left

j since #∆̃left
j ≥ #∆left

j . Dahmen et al. in [16] proved that
Γj,L is a matrix independent of j and can be expressed as

ΓL = (2(
1
2+k)j(ϕleftj,l−m+r, (·)k)[0,1])m̃−1

k,r=0 := ΓL(m, m̃, l, 0), (4.19)

where l is the left boundary of ∆0
j . It can be defined more generally,

ΓL(m, m̃, l, ν) = (2(
1
2+k)j(ϕleftj,l−m+r, (·)k+ν)[0,1])m̃−1

k,r=0. (4.20)

In [16], ΓL(m, m̃, l, 0) is non-singular if and only if ΓL(m−1, m̃, l−µ(m−1), 1)
is non-singular. Thus, by repeating this operation m− 1 times, we can get

det(ΓL) ̸= 0 if and only if det(ΓL(1, m̃, l̂,m− 1)) ̸= 0, (4.21)

where l̂ = l−
∑m−1
k=1 µ(k). Note that for m = 1, ϕ(x) = χ[0,1), and we can reduce

the matrix to a non-singular Vandermonde matrix. Thus, we get the transform
matrix that we were looking for.

Let us now turn our attention to the wavelet space. First of all, according
to the two-scale relations, Dahmen et al. in [16] defined the matrices Mj,0 and

M̃j,0 satisfying

Φ⊤
j = Φ⊤

j+1Mj,0, Φ̃
⊤
j = Φ̃⊤

j+1M̃j,0. (4.22)

Then let M̆j,1 be some stable completion of Mj,0 and Gj = (Mj,0,Mj,1)
−1 has

the form Gj = (M̃⊤
j,0, Ğ

⊤
j,1)

⊤. Mj,1 is defined as Mj,1 := (I −Mj,0M̃
⊤
j,0)M̆j,1.

Thus,
Ψ⊤
j = Φ⊤

j+1Mj,1, Ψ̃
⊤
j = Φ̃⊤

j+1Ğ
⊤
j,1. (4.23)



20 Quanhan Li and Xiaosheng Zhuang

So far, we have completed the construction of biorthogonal spline wavelets
on the interval as in [16]. Such a construction suffers from a similar problem as
Meyer’s construction in [44]. The condition numbers of the matrices involved
are too large for some larger m and m̃. In the next section, we present Primbs’
refinement of this construction in [49], which is based on Chui and Quak’s con-
struction in [12].

4.3 Primbs’s improvement

With the scaling functions ϕj,k = 2
j
2Bmj,k already established by Chui and Quak

[12], see Section 4.1, We have obtained basis that can represent all polynomials
of order up to m− 1 on the interval [0, 1]. We can also obtain the dual pair ϕ̃ of
order m̃ as in Section 4.2. We know that the domain of the scaling function ϕ is
completely within the interval [0, 1], but this is not the case for its dual function
ϕ̃, which we need to handle at the boundary as before.

In order to satisfy biorthogonality, we still need to ensure that the Gramian
matrix Γj,L defined as (4.18) is non-singular. Unlike the previous proof proce-
dure, Primbs makes the matrix become an upper triangular matrix by a special
construction of the boundary function of the dual part. That is,

ΓL =

[
Im−1 A
O Γ ′

L

]
, (4.24)

where Γ ′
L is an upper triangular matrix with detΓ ′

L = m−1
m̃+m−1 . In this way,

we easily obtain that the matrix is invertible, while by repeating (4.17), we
can obtain biorthogonality on the interval. The biorthogonal basis obtained by
Primbs by such manipulation has a better Riesz boundary than the original one.

Primbs’ subsequent thoughts on obtaining the basis of the complementary
space agree with Dahmen et al.’s approach [16]. Similar to (4.22), consider the
relation between neighboring hierarchies. More specifically, in Primbs’s construc-
tion, it has

ϕleftj,k =
1√
2

2m−2∑
l=1

mleft
l,k ϕ

left
j+1,l, (4.25)

with

mleft
l,k :=


0, 1 ≤ l ≤ 2k −m− 1,

al1+l+m−2k, 2k −m ≤ l ≤ 2k,

0, 2k + 1 ≤ l ≤ 3m̃+ 2m− 5,

(4.26)

where l1 is the left boundary of supp ϕ and ak = 21−m
(

m
k + ⌊m2 ⌋

)
. By symme-

try we can obtain the matrix MR. Thus, Mj,0 has the form

Mj,0 =
1√
2


ML

Aj

MR


}m+ 2m̃− 3

}m+ 2m̃− 3

(4.27)
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where

(Aj)n,k :=

{
al1+1+n−2k, −1 ≤ n− 2k ≤ m− 1,

0, otherwise.
(4.28)

Then as in (4.23), we obtain biorthogonal wavelets on the interval.

4.4 Dahmen et al.’s biorthogonal multi-wavelets

We next consider the case of multi-wavelets as before, and it is worth mentioning
that Dahmen et al.’s results in [15] is the first to construct multi-wavelets on the
interval. Although it considers only the dyadic case, the results undoubtedly have
a great impact on subsequent research on multi-wavelets on the interval. Multi-
wavelets have received a lot of attention due to their desirable properties that
normal wavelets can not have. We give a specific example for multi-wavelets on
the interval in this section, while the systematic method we have already stated
in Section 3.5.

Consider the cubic splines given by

ϕ1(t) :=


(t+ 1)2(−2t+ 1), t ∈ [−1, 0],

(1− t)2(2t+ 1), t ∈ [0, 1],

0, otherwise,

(4.29)

ϕ2(t) :=


(t+ 1)2t, t ∈ [−1, 0],

(1− t)2t, t ∈ [0, 1],

0, otherwise.

(4.30)

For the scaling function vector ϕ = (ϕ1, ϕ2)
⊤ defined on the whole real line, it

satisfies the two-scale relation

ϕ(x) =
∑
k∈Z

Akϕ(2x− k), x ∈ R, (4.31)

where

A−1 =

[
1
2

3
4

− 1
8 − 1

8

]
, A0 =

[
1 0
0 1

2

]
, A2 =

[
1
2 − 3

4
1
8 − 1

8

]
, (4.32)

and Ak = 0 for other cases.
For the dual pair ϕ̃ satisfies

(ϕ, ϕ̃(· − k))R = δ0,kI2, k ∈ Z, (4.33)

we can get the dual matrices Ãk in (4.31) for ϕ̃ with supp Ã = {−2, · · · , 2}:

Ã−2 =

[ −7
64

−5
64

87
128

31
64

]
, Ã−1 =

[
1
2

3
16−99

32
−37
32

]
, Ã0 =

[
39
32 0
0 15

8

]
, Ã1 =

[
1
2

−3
16

99
32

−37
32

]
, Ã2 =

[ −7
64

5
64−87

128
31
64

]
,

By (4.33), we also have ∑
k∈Z

AkÃ
⊤
k+2m = 2δ0,mI2. (4.34)
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Let us consider the case on the interval. As in the previous idea, we need to
reconstruct the boundary functions. Define

ϕleftj,r (x) =

2∑
m=0

(αϕ̃,r(k))
⊤ϕhalfj,m(x), 0 ≤ r ≤ 3, (4.35)

where αϕ̃,r is the vector form of (2.4) and then we can get the left boundary
vectors

Φleft
j,1 =

[
ϕleftj,0

ϕleftj,1

]
, Φleft

j,2 =

[
ϕleftj,2

ϕleftj,3

]
. (4.36)

The right boundary vector can be obtained in the same way. Thus, together with
the domain and the part that is completely in the interval, a set of bases that
can represent all polynomials of order up to 3 in the interval [0, 1] is obtained.

As with the previous construction of biorthogonal wavelets, the new bound-
ary functions do not satisfy biorthogonality. Thus we need the matrix defined in
(4.18) to be invertible, but here the multi-wavelet is not a generalized case but
a special case from the cubic spline, thus we can obtain det(Γj,L) =

16
15 directly

by computation, see details in [15]. The method of constructing biorthogonal
multi-wavelets is the same as [16]; see Sections 4.2 and 4.3.

4.5 Jia’s Hermite cubic spline wavelets on the interval

Dahmen et al.’s construction in [15] appears to be complicated as far as practical
applications are concerned, and Jia in [33] constructed a Hermite cubic spline
wavelet basis on the interval that is more suitable for finding numerical solutions
to differential equations.

Since it aims to apply to differential equations, Jia in [33] further required
that

(ψ′
1, ϕ

′
m(· − k)) = (ψ′

2, ϕ
′
m(· − k)) = 0, m = 1, 2,∀k ∈ Z (4.37)

so that one has ∫ 1

0

w′(x)v′(x)dx = 0, ∀w ∈ Ψj , v ∈ Φj , (4.38)

where

Φj := {ϕ1(2j · −k) : 1 ≤ k ≤ 2j − 1} ∪ {ϕ2(2j · −k)|[0,1] : 0 ≤ k ≤ 2j}, (4.39)

and

Ψj := {ψ1(2
j · −k) : 1 ≤ k ≤ 2j − 1} ∪ {ψ2(2

j · −k)|[0,1] : 0 ≤ k ≤ 2j}. (4.40)

With this, one can show that

ψ1(x) = −2ϕ1(2x+1)+4ϕ1(2x)−2ϕ1(2x−1)−21ϕ2(2x+1)+21ϕ2(2x−1) (4.41)
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and

ψ2(x) = ϕ1(2x+ 1)− ϕ1(2x− 1) + 9ϕ2(x) + 12ϕ2(2x) + 9ϕ2(2x− 1). (4.42)

Let H1(0, 1) := {u : u ∈ L2(0, 1) and u′ ∈ L2(0, 1)} and H1
0 (0, 1) be the

closure of {u : u ∈ C[0, 1]∩C1(0, 1) and u(0) = u(1) = 0} in the space H1(0, 1).
With above, one can get the decomposition of the space H1

0 (0, 1):

H1
0 (0, 1) = V1 ⊕

∑
j∈Z+

Wj . (4.43)

In Jia’s construction, V1 is spanned by ϕ1,k(x), k = 1, 2, 3, 4:

ϕ1,1(x) =
√

5
24ϕ1(2x− 1), ϕ1,2(x) =

√
15

4
ϕ2(2x),

ϕ1,3(x) =
√

15
8 ϕ2(2x− 1), ϕ1,4(x) =

√
15

4
ϕ2(2x− 2),

where the coefficients are chosen such that ∥ϕ′1,k∥L2[0,1] = 1, k = 1, 2, 3, 4. Do
the same normalization for ψj,k and then let gk = ϕ1,k for k = 1, 2, 3, 4 and
g2j+1+k = ψj,k for n ∈ Z+.

For the Dirichlet boundary problem{
−u′′ + u = f on (0, 1),

u(0) = u(1) = 0,
(4.44)

we can solve it by the weak form of the equation:

(u, v) + (u′, v′) = (f, v). (4.45)

With the obtained wavelet basis, we can transform the problem into

2j+1∑
k=1

[(g′j , g
′
k) + (gj , gk)]ηk = (gj , f), 1 ≤ j ≤ 2j+1, (4.46)

where un =
∑2j+1

k=1 ηkgk.
There are many other applications of wavelets on the interval to differential

or integral equations, e.g., [4], [21], [27].

5 Extensions

We have discussed wavelets on the interval in the previous sessions on mainly
two approaches. We next discuss some more generalized situations, such as con-
sidering the domains to be manifolds, spheres, etc. Although in the previous
sections, we considered basically the case of the interval [0, 1], we can obtain
wavelets on any interval I = [a, b] by operations such as translation and dila-
tion. We consider higher dimensional cases in this section, but ultimately, it still
needs to base on the one-dimensional cases.
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5.1 Tensor products and triangulation

Let V1 = V0 ⊕W0 and V ′
1 = V ′

0 ⊕W ′
0 be decomposition of spline space. Thus we

can divide the tensor product space into four pieces, i.e.,

V1 ⊗ V ′
1 = (V0 ⊗ V ′

0)⊕ (V0 ⊗W ′
0)⊕ (W0 ⊗ V ′

0)⊕ (W0 ⊗W ′
0). (5.1)

For any given f1 ∈ V1 ⊗ V ′
1 , it can also be decomposed as

f1 = f0 + g0 + g1 + g2, (5.2)

where f0 ∈ V0 ⊗ V ′
0 , g0 ∈ V0 ⊗W ′

0, g1 ∈W0 ⊗ V ′
0 , and g2 ∈W0 ⊗W0. Since both

{ϕ0,k} and {ψ0,k} form the basis of V1, Lyche et al. in [40] defined

(Φ⊤
0 , Ψ

⊤
0 ) = Φ⊤

1 (P,Q) = Φ⊤
1 M, (5.3)

where Φ0, Ψ0 is the basis vector of V0,W0, respectively. One can write f1 with
the basis and coefficients matrix C1, i.e.,

f1(x, y) = Φ⊤
1 (x)C1Φ

′
1(y). (5.4)

Similar to (5.4), we can define C0, D0, D1, D2 for f0, g0, g1, g2, respectively. With
C1, P,Q, P

′, Q′, we can get the value of the coefficients matrix C0, D0, D1, D2.
For the case of triangulation, we give the definition of triangle first. A trian-

gle is the convex hull of three non-collinear points [x1, x2, x3] with three edges
[x1, x2], [x1, x3] and [x2, x3]. Let T0 = {T1, . . . , TM} and Ω = ∪ni=1Ti, and then
we can define the triangulation.

Definition 3. T0 is a triangulation if

(1) the intersection Ti ∩ Tj is either empty or corresponds to a common vertex
or a common edge, i ̸= j;

(2) the number of boundary edges incident on a boundary vertex is two;
(3) the region Ω is simply connected.

Let V0 denote the linear space of piecewise linear functions over T0, we need to
construct V1 ⊃ V0, and thus get the wavelet space W0. In fact, Lyche et al. in
[40] made a more careful division of T0 by letting y1, y2, y3 be the midpoints of
[x1, x2], [x1, x3], [x2, x3], respectively, so that one can get a new triangulation T1,
and the V1 generated by this T1 is what one need to construct. The construction
of wavelets is then corresponding to the midpoint of each edge in T0.

In this section, we briefly introduce the construction of tensor-product and
non-tensor-product wavelet systems in the bi-variate case, which establishes the
basis for later studies. The construction of wavelets on manifolds by Dahmen and
Schneider [17] in Section 5.2 can be attributed to the construction of wavelets
on the n-dimensional cube which uses tensor products, while the construction
of wavelets on non-uniform meshes by Stevenson [52] in Section 5.3 deals with
triangulation, and the essence is to divide the domain by triangles.
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5.2 Manifolds

In this section, let us define Ω = [0, 1]n and for Z ⊂ {0, 1},

[0, 1]Z =


[0, 1], if Z = {∅},

[−1, 1], if Z = {0},
[0, 2], if Z = {1},

[−1, 2], if Z = {0, 1}.

(5.5)

In this way one can define different extensions of the unit interval. Further, define
for Z = Z1 ⊗ · · · ⊗ Zn,

ΩZ = [0, 1]Z1
⊗ · · · ⊗ [0, 1]Zn , (5.6)

where ⊗ denote the tensor product, and Z̃ = {0, 1}n\Z.
With these, Dahmen and Schneider in [17] stated that Sobolev spaces Hs(ζ)

on manifolds ζ can be isomorphized to explicit product spaces, i.e.,

T : Hs(ζ) → Hs(ζ1)Z1 ⊗ · · · ⊗Hs(ζN )ZN , (5.7)

and T extends isomorphism for the dual

H−s(ζ) ≡ H−s(ζ1)Z̃1
⊗ · · · ⊗Hs(ζN )Z̃N . (5.8)

One can deduce that constructing a wavelet on a manifold can be weakened
to constructing a wavelet on each local path that satisfies certain boundary
conditions. The latter, in turn, are smooth parameterized images, so one only
needs to construct the wavelet bases on the n-dimensional cube.

The paper [17] focus on how to construct wavelets that satisfy the boundary
conditions, so we will not go into details, while for wavelets on the n-dimensional
cube, [17] takes a simple tensor product approach to obtain them, which we
have already talked about in the previous section. In the next section, we refer
to Stevenson’s result in [52] on the construction of biorthogonal wavelets on
non-uniform meshes.

5.3 Non-uniform meshes

In this section, we follow Stevenson’s idea in [52] to construct biorthogonal
wavelets on non-uniform meshes.

Let us first define n-simplex T

T = {λ ∈ Rn+1 :

n+1∑
i=1

λi = 1, λi ≥ 0}, (5.9)

and if n = 2, T is associated with a triangle. For I ⊂ T , Stevenson consider
Φ = {ϕλ : λ ∈ I} satisfies the following properties:

(1) ϕλ ∈ C(T );
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(2) ϕλ(µ) = ϕπ(λ)(π(µ)) for any permutation π : Rn+1 → Rn+1;
(3) ϕλ vanishes for e does not include λ;
(4) {ϕλ|e : λ ∈ I ∩ e} is independent.

Here, e is the face of T . The intent of such a construction is clear: one hopes to
build the scaling function basis on the triangle. Below we consider the case n = 2
(In fact, Stevenson also just considered the case n ≤ 2). We know that our scaling
function basis needs to satisfy the two-scale relation. The most straightforward
construction is to take the midpoint of each edge as we mentioned in Section 5.1.
Stevenson gave a more general result: Suppose we divide T into {Ti : 1 ≤ i ≤ 2n}
and let

I(r) = ∪ni=1B
−1
i (I), where Bi : Ti → T . (5.10)

Then, for

ϕ
(r)
λ (µ) =

{
ϕBi(λ)(Bi(µ)), if λ, µ ∈ Ti,
0, otherwise,

(5.11)

we have Φ
(r)
j = 2−

n
2 Φj+1, which implies that ⟨Φ⟩ ⊂ ⟨Φ(r)⟩. Stevenson also de-

duced that ⟨Φ⟩ = Pd−1,m(T ), where Pd−1,m denote the space of piecewise poly-
nomials on T of degree d− 1 with respect to binary division of m repetitions.

For better understanding, Stevenson gave a specific example: Φ = ∆d−1,m =
{δd−1,m
λ : λ ∈ I(d−1)2m} ⊂ Pd−1,m, where Iq = {λ ∈ T : λi/q ∈ N}, and

δd−1,m
λ (µ) =

{
1, λ = µ,

0, otherwise.
(5.12)

In this special case, we have (∆d−1,m)(r) = ∆d−1,m. Following Dahmen et al.’s
process in Section 4.2, we can obtain the wavelet space Ψd−1,m satisfies

Pd−1,m+1(T ) = Pd−1,m(T )⊕ Ψd−1,m, (5.13)

where
Ψd−1,m := {δd−1,m+1

λ : λ ∈ I(d−1)2m+1\I(d−1)2m}. (5.14)

In this way, we can construct the wavelet basis on a triangulation, and for the
case of non-uniform meshes, we simply decompose them into the case of a tri-
angulation, which is a method often used in finite elements analysis.

6 Conclusion

To summarize, starting from orthogonal wavelets defined on R, we can construct
wavelets on the interval. By symmetry, we only need to consider constructing
the base of the half-space L2[0,∞) and only need to deal with one side of the
boundary. In order to construct wavelets on the interval, we need to consider
the multi-resolution analysis on the interval. We can see that in Section 3, we
spend a lot on how to construct the base of the initial space, which is from ϕ0,k.
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We can categorize the scaling functions into three types. The first is where
the domain is completely within the target interval, the second is those that
do not intersect with the interval, and the third is those that overlap with the
boundary. We do not need to deal with the first two categories but need to focus
on the third. We can make modifications to the third class of scaling functions so
that the new boundary functions and the first class can form a basis for V0. Once
we have this, we can then obtain the basis of the space V1 from the two-scale
relation, while the wavelet space W0 satisfies V1 = V0 ⊕W0, from which we can
deduce the wavelets on the interval from the projection.

The case of biorthogonality is similar, and for functions that satisfy biorthog-
onality on R, we again only need to focus on the case at the boundary since
functions of the first type automatically satisfy biorthogonality. We need to use
the matrices C and C̃ to transform the boundary functions. As we mentioned
in Sections 3.3 and 4.2, it is equivalent to (4.16). Moreover, if the Gramian
matrices Γ are invertible, we can use the construction of (4.17) to achieve the
biorthogonality of two bases on the interval.

We mentioned another method of constructing biorthogonal multi-wavelets
on the interval in Section 3.4 by Han and Michelle. It requires symmetry or anti-
symmetry properties for the scaling function and the wavelet function. Although
it is straightforward and simple, it is not generalized enough. In Section 3.5, we
present Han and Michelle’s direct approach, which gives a generalized construc-
tion method for constructing (bi-)orthogonal (multi-)wavelets on the interval.

Besides by means of (bi-)orthogonal (multi-)wavelets defined on R, with the
help of spline functions, we can also construct bases in the space V0, and the
spline functions obtained by means of knot sequences defined on intervals have
domains already on the interval so that there is no need to process the bound-
aries anymore. Chui and Quak showed that we can map the subspace of V1 to the
wavelet space with the help of differential operators. However, similar to Meyer’s
construction earlier, we still have to process at the boundary for wavelets, in-
cluding the (bi-)orthogonal (multi-)wavelets case from the spline functions.

Wavelets on the interval can be considered in more general settings, such
as manifolds, non-uniform grids, and hypercubes. The most straightforward ap-
proach to constructing wavelets on these special intervals is through tensor prod-
ucts, but the disadvantage of such an approach is the lack of directionality. There
are many researchers working on non-tensor-product wavelets as well. By re-
laxing the orthogonality, the biorthogonal (multi-)wavelets constructed on the
interval are able to possess more properties, such as fewer boundary conditions
and more stability, which allows the wavelets on the interval to be generalized
to other situations.
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C, Analyse non linéaire, volume 10, pages 453–476. Elsevier, 1993.

35. Fritz Keinert. Regularity and construction of boundary multiwavelets. Poincaré
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43. Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.
44. Yves Meyer. Ondelettes sur l’intervalle. Revista Matematica Iberoamericana,

7(2):115–133, 1991.
45. Yves Meyer. Wavelets and operators: volume 1. Number 37. Cambridge University

Press, 1992.
46. Maria V Perel and Mikhail S Sidorenko. Wavelet analysis for the solutions of the

wave equation. In DAYS on DIFFRACTION 2006, pages 208–217. IEEE, 2006.
47. Maria V Perel and Mikhail S Sidorenko. New physical wavelet ‘Gaussian wave

packet’. Journal of Physics A: Mathematical and Theoretical, 40(13):3441, 2007.
48. Gerlind Plonka, Kathi Selig, and Manfred Tasche. On the construction of wavelets

on a bounded interval. Advances in Computational Mathematics, 4(1):357–388,
1995.

49. Miriam Primbs. New stable biorthogonal spline-wavelets on the interval. Results
in Mathematics, 57:121–162, 2010.

50. Ewald Quak and Norman Weyrich. Decomposition and reconstruction algorithms
for spline wavelets on a bounded interval. Applied and computational harmonic
analysis, 1(3):217–231, 1994.

51. Andreas Schneider. Biorthogonal cubic Hermite spline multiwavelets on the in-
terval with complementary boundary conditions. Results in Mathematics, 53(3-
4):407–416, 2009.

52. Rob Stevenson. Locally supported, piecewise polynomial biorthogonal wavelets on
non-uniform meshes. 2000.

53. Rob Stevenson. Divergence-free wavelets on the hypercube: General boundary
conditions. Constructive Approximation, 44:233–267, 2016.

54. Gaofeng Wang. Application of wavelets on the interval to numerical analysis of
integral equations in electromagnetic scattering problems. International Journal
for Numerical Methods in Engineering, 40(1):1–13, 1997.

55. John R Williams and Kevin Amaratunga. A discrete wavelet transform without
edge effects using wavelet extrapolation. Journal of Fourier analysis and Applica-
tions, 3:435–449, 1997.

56. Yuchen Xiao and Xiaosheng Zhuang. Adaptive directional Haar tight framelets on
bounded domains for digraph signal representations. Journal of Fourier Analysis
and Applications, 27:1–26, 2021.

57. Ruigang Zheng and Xiaosheng Zhuang. Data-adaptive graph framelets with
generalized vanishing moments for graph signal processing. arXiv preprint
arXiv:2309.03537, 2023.

58. Fengjuan Zhu, Yongdong Huang, Xiao Feng, Qiufu Li, et al. Minimum-energy
multiwavelet frame on the interval. Mathematical Problems in Engineering, 2015,
2015.


	Wavelets on the Interval: A Short Survey

