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ABSTRACT

Data often have two or more fundamental components, like cartoon-like and textured elements in
images; point, filament, and sheet clusters in astronomical data; and tonal and transient layers in
audio signals. For many applications, separating these components is of interest. Another issue in
data analysis is that of incomplete data, for example a photograph with scratches or seismic data
collected with fewer than necessary sensors. There exists a unified approach to solving these problems
which is minimizing the �1 norm of the analysis coefficients with respect to particular frame(s). This
approach using the concept of clustered sparsity leads to similar theoretical bounds and results, which
are presented here. Furthermore, necessary conditions for the frames to lead to sufficiently good
solutions are also shown.

Keywords: �1 minimization, cluster coherence, geometric separation, inpainting, Parseval frames,
sparse representation, data recovery, clustered sparsity

1. INTRODUCTION

Data analysts in varied fields often face the task of geometric separation. Namely, data may be su-
perpositions of various types of structures which the scientist would like to separate. For example,
gravitation causes 3-d data to concentrate near lower-dimensional structures such as points, filaments,
and sheets. One aspiration of cosmological data analysis is to be able to extract these three “pure”
elements of matter density [1, 2]. Separating texture and the piecewise smooth parts of images [3–5]
and decomposing a single-channel audio signal into tonal and transient layers [6, 7] are both exam-
ples of similar problems in other fields. Astronomers have recently presented empirical evidence that
geometric separation can be achieved by using two or more overcomplete frames [1, 2].

Another issue that arises in data analysis is that of missing data. Due to land development and
bodies of water, it is not always possible to place sensors at all necessary locations when making seismic
measurements [8,9]; however, the complete set of “actual” data is desired. Data recovery in images and
videos is called inpainting, a term used by conservators working with damaged paintings. The removal
of overlaid text in images, the repair of scratched photos and audio recordings, and the recovery of
missing blocks in a streamed video are all examples of inpainting. Variational inpainting methods are
commonly used [10–13], but we shall prove results about a technique based on sparse representations
as in [14] and [15].

Surprisingly, these seemingly disparate problems share common approaches and very similar the-
oretical results. These similarities will become clear in what follows. We shall explicitly set up the
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problems of geometric separation and data recovery in Section 2. In Section 3 the auxiliary notions of
cluster coherence and (joint) concentration are presented. These notions will be used to formulate the
bounds of the solutions to the geometric separation (Section 4) and data recovery (Section 5) problems.

2. PROBLEM FORMULATION

2.1 Notation

We comment here on our notation. A collection of vectors Φ = {ϕi}i∈I in a separable Hilbert space H
forms a Parseval frame for H if for all x ∈ H,

∑

i∈I
|〈x, ϕi〉|2 = ‖x‖2 .

With a slight abuse of notation, given a Parseval frame Φ, we also use Φ to denote the synthesis
operator

Φ : �2(I) → H, Φ({ci}i∈I) =
∑

i∈I
ciϕi.

With this notation, Φ∗ is called the analysis operator.

Although our results concern Parseval frames, the following related definitions will be used when
discussing prior results. With notation as above, Φ is a frame for H if there exist 0 < A ≤ B < ∞
such that for all x ∈ H,

A ‖x‖2 ≤
∑

i∈I
|〈x, ϕi〉|2 ≤ B ‖x‖2 .

If there exists some c 	= 0 such that ‖ϕi‖2 = c for all i ∈ I, then we call Φ a normalized frame.

Given a space X and a subset A ⊆ X, we will use the notation Ac to denote X\A. Also, the
indicator function 1A is defined to take the value 1 on A and 0 on Ac.

2.2 Geometric Separation

Let x be our signal of interest, which belongs to some Hilbert space H, and assume that

x = x01 + x02.

We assume that although we are not given x01 and x02, certain “characteristics” of those components
are known to us. Such “characteristics” might be, for instance, the pointlike structure of stars and
the curvelike structure of filaments in astronomical imaging. This knowledge now enables us to choose
two representation systems, say Φ1 and Φ2, which allow sparse expansions of x01 and x02, respectively
(see also [16, 17]). The measure of sparsity is x �→ ‖x‖0, which counts the number of non-zero entries
of a vector x. Such representation systems might be chosen from the collection of well-known systems
such as wavelets or shearlets; alternatively, one could choose the systems adaptively through dictionary
learning procedures such as K-SVD or MOD [18–20]. However, this approach requires training data
sets for the two components x01 and x02 and also does not always yield representation systems which are
frames, which is a trait that we desire in the Φi. Of course, real data could be composed of more than
two “natural” components. We will focus on the two-component situation for clarity but mention that
most of the theoretical results presented can be extended to the multiple-component situation (see also
[21]).
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Given two appropriate representation systems Φ1 and Φ2, we can write x as

x = x01 + x02 = Φ1c
0
1 +Φ2c

0
2 = [ Φ1 | Φ2 ][ c1 | c2 ]T

with ‖c01‖0 and ‖c02‖0 “sufficiently small.” Thus, the data separation problem has been reduced to
solving an underdetermined linear system. Unique recovery of the original vector [c01, c

0
2]
T automatically

extracts the correct two components x01 and x02 from x, since

x01 = Φ1c
0
1 and x02 = Φ2c

0
2.

Ideally, one might want to solve

min
c1,c2

‖c1‖0 + ‖c2‖0 s.t. x = [ Φ1 | Φ2 ][ c1 | c2 ]T , (1)

but this is an NP-hard problem. Under certain circumstances (see, for example, [22, 23]), the �1
minimization problem

min
c1,c2

‖c1‖1 + ‖c2‖1 s.t. x = [ Φ1 | Φ2 ][ c1 | c2 ]T (2)

yields the same or appropriately close solution. Note that the �1 norm is placed on the synthesis
side. However, (2) is still not the final form of the geometric separation optimization problem. There
is no reason to assume that the Φi are bases. Some well-known representation systems are in fact
redundant and typically constitute Parseval frames such as wavelets, shearlets, or curvelets. Also,
systems generated by dictionary learning are typically highly redundant. In this situation, for each
possible separation

x = x1 + x2, (3)

there exist infinitely many coefficient sequences [c1, c2]
T satisfying

x1 = Φ1c1 and x2 = Φ2c2. (4)

Solving (2) can be numerically unstable for certain representation systems. Since we are only interested
in the correct separation and not in computing the sparsest expansion, we can circumvent possible
problems by solving the separation problem by selecting particular coefficient sequences c̃i which expand
out to the xi for each separation. Assuming Φ1 and Φ2 are Parseval frames, we can exploit this structure
and rewrite (4) as

x1 = Φ1(Φ
∗
1x1) and x2 = Φ2(Φ

∗
2x2).

Thus, for each separation (3), we choose a specific coefficient sequence when expanding the components
in the Parseval frames, in fact, we choose the analysis sequence. This leads to the following different
�1 minimization problem in which the �1 norm is placed on the analysis rather than the synthesis side:

(Sep) (x�1, x
�
2) = argminx1,x2

‖Φ∗
1x1‖1 + ‖Φ∗

2x2‖1 s.t. x = x1 + x2. (5)

This new minimization problem can be also regarded as a mixed �1-�2 problem [16], since the anal-
ysis coefficient sequence is exactly the coefficient sequence which is minimal in the �2 norm. This
minimization on the analysis side is also called optimization of cosparsity [24].

Real data are typically not free of noise. We now assume that we only know x̃ = x + n, where n
is unknown but assumed to be small; that is, for i = 1 or 2, ‖Φ∗

in‖1 ≤ ε. The formulation of (5) with
noise is

(SepNoise) (x̃�1, x̃
�
2) = argminx1,x2

‖Φ∗
1x1‖1 + ‖Φ∗

2x2‖1 s.t. x̃ = x1 + x2. (6)
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2.3 Recovery of Missing Data

Here x0 is our signal of interest, which belongs to some Hilbert space H. We assume that H can be
decomposed into a direct sum H = HM ⊕HK , where HM is associated to the missing part of the signal
x0 and HK to the known part. The respective orthogonal projections onto these subspaces are PK and
PM . We assume that only PKx0 is known to us. We would like to reconstruct the full signal x0. In
order to do so, given a frame Φ for H, we could consider the following optimization problem

x� = Φc�, c� = argminc ‖c‖1 s.t. PKΦc = PKx0.

However, as with the geometric separation problem, we are concerned with the end product – namely,
the complete signal x0 – and not how we get there. Thus, we solve the optimization problem on the
analysis side:

(Rec) x� = argminx ‖Φ∗x‖1 s.t. PKx = PKx0. (7)

A similar approach is taken to inpainting in [14]. Assume now that we know x̃ = PKx0 + n, where x0

and n are unknown but n is assumed to be small. That is, ‖Φ∗n‖1 ≤ ε. Also, clearly n = PKn. Then
we solve

(RecNoise) x̃� = argminx ‖Φ∗x‖1 s.t. PKx = x̃. (8)

With both the geometric separation and data recovery problems, using arbitrary frames will not lead
to desirable outcomes. However, we quantify in the next section which frames will lead to meaningful
results in (Rec) and (Sep). We note here that numerical algorithms have been presented which combine
these two problems by separating and inpainting on each component [14,25,26]. While the algorithms
perform well on the test images, the papers do not address the theoretical issues of which frames to
employ and how close the solution of the minimization problem will be to the actual image.

3. COHERENCE AND CONCENTRATION

One possibility for capturing the appropriateness of using particular frames in (Sep) and (Rec) is
(joint) concentration.

Definition 3.1. Let Φj = {ϕji}i∈Ij for j = 1 . . . N be a finite collection of Parseval frames for a
Hilbert space H. Also assume that G is a subspace of H. Further, let Λj ⊆ Ij for each j = 1 . . . N .
Then the joint concentration κ on G is defined by

κ = κ(Λ1,Φ1; . . . ; ΛN ,ΦN : G) = sup
x∈G

‖1Λ1Φ
∗
1x‖1 + . . . ‖1ΛN

Φ∗
Nx‖1

‖Φ∗
1x‖1 + . . .+

∥∥Φ∗
Nx
∥∥
1

.

When G = H, we write joint concentration and use the notation κ(Λ1,Φ1; . . . ; ΛN ,ΦN ). Also, when
N = 1, we refer to κ as the concentration on G.

This notion was introduced for the geometric separation problem in [27] with concepts going back to
[28] and [29], and the data recovery analog was first presented in [15]. The joint concentration measures
the maximal fraction of the total �1 norm which can be concentrated on the index set Λ1 ∪ · · · ∪ΛN of
the combined dictionary. Adequate control of joint concentration ensures that in principle (5) gives a
successful approximate separation. Similarly, the concentration is the maximal fraction of the total �1
norm which can be concentrated to the index set Λ restricted to functions in HM .

In many studies of �1 optimization, one utilizes the mutual coherence

μ(Φ1,Φ2) = max
j

max
i

|〈ϕ1i, ϕ2j〉|, (9)
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whose importance was shown by [29]. This may be called the singleton coherence. However, in a con-
crete situation, we often have more information about the geometry of the to-be-separated components
x0i related to the Φi. This information is typically encoded in a particular clustering of the non-zero
coefficients in a suitable basis or frame for the expansion of one of the x0i . For example, wavelet coef-
ficients of a point singularity cluster. Thus, it seems conceivable that the morphological difference is
encoded not only in the incoherence of the Φi but in the interaction of the elements of the Φi associated
with the clusters of significant coefficients. This leads to the following definition.

Definition 3.2. Let Φ1 = {ϕ1i}i∈I and Φ2 = {ϕ2j}j∈J be two Parseval frames for a Hilbert space H
and let Λ ⊆ I. Then the cluster coherence μc(Λ,Φ1; Φ2) of Φ1 and Φ2 with respect to Λ is defined by

μc(Λ,Φ1; Φ2) = max
j∈J

∑

i∈Λ
|〈ϕ1i, ϕ2j〉|.

An early notion of coherence adapted to the clustering of frame vectors was the Babel function,
first introduced in [22] and later in [30] as the cumulative coherence function, which, for a normalized
frame Φ = {ϕi}i∈I and some m ∈ {1, . . . , |I|} is defined by

μB(m,Φ) = max
Λ⊂I,|Λ|=m

max
j �∈Λ

∑

i∈I
|〈ϕi, ϕj〉|.

This notion was later refined in [31] by considering the so-called structured p-Babel function, defined
for some family S of subsets of I and some 1 ≤ p < ∞ by

μsB(S,Φ) = max
Λ∈S

(
max
j �∈Λ

∑

i∈I
|〈ϕi, ϕj〉|p

)1/p

.

These other notions of coherence maximize over subsets Λ of a given size, whereas for cluster
coherence we fix a specific set Λ of indices. In our related work, we select Λ’s which have specific
geometric interpretations [15, 27]. Maximizing over all subsets of a given size would give very loose
bounds and would not be suitable for our purposes. Several other coherence measures involving subsets
appear in the literature, e.g., [32] and [33] but do not seem to be strongly related to cluster coherence.

The relation between (joint) concentration and cluster coherence is made precise in the following
result originally from [27] and generalized here. By abuse of notation we write PGΦ = {PGϕi}i∈I .
Proposition 3.1. Let Φj = {ϕji}i∈Ij for j = 1 . . . N be a finite collection of Parseval frames for a
Hilbert space H. Also assume that G is a subspace of H with orthogonal projection PG. Further, choose
Λj ⊆ Ij for each j = 1 . . . N . Let SN denote the symmetric group on {1, . . . , N}. Then

κ(Λ1,Φ1; . . . ; ΛN ,ΦN : G) ≤ min
σ∈SN

max
1≤j≤N

{μc(Λj , PGΦj;PGΦσ(j))} = min
σ∈SN

max
1≤j≤N

{μc(Λj , PGΦj ; Φσ(j))}.

Proof. Let σ ∈ SN be arbitrary. For each f ∈ G, we choose for 1 ≤ j ≤ N coefficient sequences
αj such that f = Φjαi and ‖αj‖1 ≤ ‖βj‖ for all βj satisfying f = Φjβj . Since each Φj, 1 ≤ j ≤ N , is
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Parseval, f = ΦjΦ
∗
jΦjαj and f = (PGΦj)αj . We calculate

N∑

j=1

∥∥1ΛjΦ
∗
jf
∥∥
1

=
N∑

j=1

∥∥1Λj (PGΦj)
∗f
∥∥
1
=

N∑

j=1

∥∥1Λj (PGΦj)
∗(PGΦσ(j))ασ(j)

∥∥
1

≤
N∑

j=1

⎡

⎣
∑

i∈Λj

(
∑

k

∣∣〈PGϕj,i, PGϕσ(j),k〉
∣∣ |ασ(j),k|

)⎤

⎦

=

N∑

j=1

∑

k

⎛

⎝
∑

i∈Λj

∣∣〈PGϕj,i, PGϕσ(j),k〉
∣∣

⎞

⎠ |ασ(j),k|

≤
N∑

j=1

μc(Λj , PGΦj;PGΦσ(j))
∥∥ασ(j)

∥∥
1

≤ max
1≤j≤N

μc(Λj , PGΦj ;PGΦσ(j))
N∑

j=1

∥∥ασ(j)

∥∥
1

= max
1≤j≤N

μc(Λj , PGΦj ;PGΦσ(j))

N∑

j=1

∥∥Φ∗
jf
∥∥
1
.

Since σ was arbitrary and PG is an orthogonal projection, the proof is complete.

4. SEPARATION ESTIMATES

We now present general estimates on the separability of composed data. For real data “true sparsity”
is unrealistic. Instead we present a modified idea which makes use of the clustering of significant
coefficients. This notion was first utilized in [34] and is sufficient to show that the solution (x�1, x

�
2) of

(5) is a “good” approximation of the actual components x0i of x.

Definition 4.1. Let Φ1 = {ϕ1i}i∈I and Φ2 = {ϕ2j}j∈J be two Parseval frames for a Hilbert space H,
and let Λ1 ⊆ I and Λ2 ⊆ J . Further, suppose that x ∈ H can be decomposed as x = x01 + x02. Then the
components x01 and x02 are called δ-relatively sparse in Φ1 and Φ2 with respect to Λ1 and Λ2, if

∥∥1Λc
1
Φ∗
1x

0
1

∥∥
1
+
∥∥1Λc

2
Φ∗
2x

0
2

∥∥
1
≤ δ.

δ-relative sparsity is a type of clustered sparsity. We now have all ingredients to state the data
separation result from [27].

Theorem 4.1 ([27]). Let Φ1 = {ϕ1i}i∈I and Φ2 = {ϕ2j}j∈J be two Parseval frames for a Hilbert
space H, and suppose that x ∈ H can be decomposed as x = x01 + x02. Further, let Λ1 ⊆ I and Λ2 ⊆ J
be chosen such that x01 and x02 are δ-relatively sparse in Φ1 and Φ2 with respect to Λ1 and Λ2. Then
the solution (x�1, x

�
2) of the �1 minimization problem (Sep) stated in (5) satisfies

∥∥x�1 − x01
∥∥
2
+
∥∥x�2 − x02

∥∥
2
≤ 2δ

1− 2κ
. (10)

Using Proposition 3.1 this result can also be stated in terms of cluster coherence, which on one
hand provides an easier estimate and allows a better comparison with results using mutual coherence
but on the other hand poses a slightly weaker estimate.
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Theorem 4.2 ([27]). Let Φ1 = {ϕ1i}i∈I and Φ2 = {ϕ2j}j∈J be two Parseval frames for a Hilbert
space H, and suppose that x ∈ H can be decomposed as x = x01 + x02. Further, let Λ1 ⊆ I and Λ2 ⊆ J
be chosen such that x01 and x02 are δ-relatively sparse in Φ1 and Φ2 with respect to Λ1 and Λ2. Then
the solution (x�1, x

�
2) of the minimization problem (Sep) stated in (5) satisfies

∥∥x�1 − x01
∥∥
2
+
∥∥x�2 − x02

∥∥
2
≤ 2δ

1− 2μc
,

with
μc = max{μc(Λ1,Φ1; Φ2), μc(Λ2,Φ2; Φ1)}.

To thoroughly understand this estimate, it is important to notice the various dependencies of the
relative sparsity δ and the joint concentration κ on the Λi and x0i . In general, replacing either of the Λi

with a superset will increase the value of κ and decrease the possible values of δ and vice versa when
one or both Λi is replaced with a subset. As κ increases to 1

2 , the denominator of the error estimate in
(10) approaches 0. However, note that while the value of κ depends on all x ∈ H, δ is a bound only on
the x0i . Thus, if each

∥∥Φ∗
ix

0
i

∥∥
1
is truly small, then the relative sparsity will remain small regardless of

the choice of the Λi. In [27] the Λi are selected based on geometric information. It is also important to
realize that the sets Λ1 and Λ2 serve as a mere analysis tool; they do not appear in the minimization
problem (Sep). Thus, the algorithm does not depend on this choice at all; however, the estimate for
accuracy of separation does. We comment here that in similar theoretical results applied to a basic
thresholding algorithm, the Λi are selected by the algorithm [27].

Theorems 4.1 and 4.2 can be generalized to include noise. The following result was presented in
[27] and is tightened here.

Theorem 4.3. Let Φ1 = {ϕ1i}i∈I and Φ2 = {ϕ2j}j∈J be two Parseval frames for a Hilbert space H,
and suppose that x ∈ H can be decomposed as x = x01 + x02. Further, let Λ1 ⊆ I and Λ2 ⊆ J be chosen
such that x01 and x02 are δ-relatively sparse in Φ1 and Φ2 with respect to Λ1 and Λ2. Further assume
that only x̃ = x+n is known, where n satisfies ‖Φ∗

in‖1 ≤ ε for either i = 1 or i = 2. Then the solution
(x̃�1, x̃

�
2) of the �1 minimization problem (SepNoise) stated in (6) satisfies

∥∥x̃�1 − x01
∥∥
2
+
∥∥x̃�2 − x02

∥∥
2
≤ 2δ + (5− 2κ)ε

1− 2κ
≤ 2δ + (5− 2κ)ε

1− 2μc
(11)

with
μc = max{μc(Λ1,Φ1; Φ2), μc(Λ2,Φ2; Φ1)}.

Proof. By symmetry, we can assume without loss of generality that ‖Φ∗
2n‖1 ≤ ε. Since the Φi are

Parseval, ∥∥x̃�1 − x01
∥∥
2
+
∥∥x̃�2 − x02

∥∥
2
≤ ∥∥Φ∗

1(x̃
�
1 − x01)

∥∥
1
+
∥∥Φ∗

2(x̃
�
2 − x02)

∥∥
1
. (12)

By the construction of the solution,

x̃�1 + x̃�2 = x01 + x02 + n ⇒ x̃�1 − x01 = x02 − x̃�2 + n. (13)

Thus, ∥∥Φ∗
2(x̃

�
2 − x02)

∥∥
1
≤ ∥∥Φ∗

2(x̃
�
1 − x01)

∥∥
1
+ ‖Φ∗

2n‖1 ≤
∥∥Φ∗

2(x̃
�
1 − x01)

∥∥
1
+ ε. (14)
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By the definition of κ and applying (13) again, we calculate

∥∥Φ∗
1(x̃

�
1 − x01)

∥∥
1
+
∥∥Φ∗

2(x̃
�
1 − x01)

∥∥
1

(15)

=
∥∥1Λ1Φ

∗
1(x̃

�
1 − x01)

∥∥
1
+
∥∥1Λ2Φ

∗
2(x̃

�
1 − x01)

∥∥
1
+
∥∥1Λc

1
Φ∗
1(x̃

�
1 − x01)

∥∥
1
+
∥∥1Λc

2
Φ∗
2(x̃

�
2 − x02 − n)

∥∥
1

≤ ∥∥1Λ1Φ
∗
1(x̃

�
1 − x01)

∥∥
1
+
∥∥1Λ2Φ

∗
2(x̃

�
1 − x01)

∥∥
1
+
∥∥1Λc

1
Φ∗
1(x̃

�
1 − x01)

∥∥
1
+
∥∥1Λc

2
Φ∗
2(x̃

�
2 − x02)

∥∥
1
+ ‖Φ∗

2n‖1
≤ κ

(∥∥Φ∗
1(x̃

�
1 − x01)

∥∥
1
+
∥∥Φ∗

2(x̃
�
1 − x01)

∥∥
1

)
+
∥∥1Λc

1
Φ∗
1(x̃

�
1 − x01)

∥∥
1
+
∥∥1Λc

2
Φ∗
2(x̃

�
2 − x02)

∥∥
1
+ ε. (16)

Rearranging (16) and using the relative sparsity of the systems, we get

∥∥Φ∗
1(x̃

�
1 − x01)

∥∥
1
+
∥∥Φ∗

2(x̃
�
1 − x01)

∥∥
1

=
1

1− κ

(∥∥1Λc
1
Φ∗
1(x̃

�
1 − x01)

∥∥
1
+
∥∥1Λc

2
Φ∗
2(x̃

�
2 − x02)

∥∥
1
+ ε
)

≤ 1

1− κ

(∥∥1Λc
1
Φ∗
1x̃

�
1

∥∥
1
+
∥∥1Λc

2
Φ∗
2x̃

�
2

∥∥
1
+ δ + ε

)
. (17)

Recall that the x̃�i are minimal solutions to (6). Using this fact and relatively sparsity, we obtain

∥∥1Λc
1
Φ∗
1x̃

�
1

∥∥
1
+
∥∥1Λc

2
Φ∗
2x̃

�
2

∥∥
1

= ‖Φ∗
1x̃

�
1‖1 + ‖Φ∗

2x̃
�
2‖1 − ‖1Λ1Φ

∗
1x̃

�
1‖1 − ‖1Λ2Φ

∗
2x̃

�
2‖1

≤ ∥∥Φ∗
1x

0
1

∥∥
1
+
∥∥Φ∗

2x
0
2

∥∥
1
+ ‖Φ∗

2n‖1 − ‖1Λ1Φ
∗
1x̃

�
1‖1 − ‖1Λ2Φ

∗
2x̃

�
2‖1

≤ ∥∥Φ∗
1x

0
1

∥∥
1
+
∥∥Φ∗

2x
0
2

∥∥
1
+ ε+

∥∥1Λ1Φ
∗
1(x̃

�
1 − x01)

∥∥
1
− ∥∥1Λ1Φ

∗
1x

0
1

∥∥
1
+
∥∥1Λ2Φ

∗
2(x̃

�
2 − x02)

∥∥
1
− ∥∥1Λ2Φ

∗
2x

0
2

∥∥
1

≤ ∥∥1Λ1Φ
∗
1(x̃

�
1 − x01)

∥∥
1
+
∥∥1Λ2Φ

∗
2(x̃

�
2 − x02)

∥∥
1
+ δ + ε. (18)

We combine (17) and (18) with the definition of κ in the calculation

∥∥Φ∗
1(x̃

�
1 − x01)

∥∥
1
+
∥∥Φ∗

2(x̃
�
1 − x01)

∥∥
1

≤ 1

1− κ

(∥∥1Λc
1
Φ∗
1x̃

�
1

∥∥
1
+
∥∥1Λc

2
Φ∗
2x̃

�
2

∥∥
1
+ δ + ε

)

≤ 1

1− κ

(∥∥1Λ1Φ
∗
1(x̃

�
1 − x01)

∥∥
1
+
∥∥1Λ2Φ

∗
2(x̃

�
2 − x02)

∥∥
1
+ 2δ + 2ε

)

≤ 1

1− κ

(∥∥1Λ1Φ
∗
1(x̃

�
1 − x01)

∥∥
1
+
∥∥1Λ2Φ

∗
2(x̃

�
1 − x01)

∥∥
1
+ 2δ + 3ε

)

≤ 1

1− κ

(
κ
(∥∥Φ∗

1(x̃
�
1 − x01)

∥∥
1
+
∥∥Φ∗

2(x̃
�
1 − x01)

∥∥
1

)
+ 2δ + 3ε

)

≤ 1

1− κ

(
κ
(∥∥Φ∗

1(x̃
�
1 − x01)

∥∥
1
+
∥∥Φ∗

2(x̃
�
2 − x02)

∥∥
1

)
+ 2δ + 4ε

)
.

Merging this result with (12) and (14) yields

∥∥x̃�1 − x01
∥∥
2
+
∥∥x̃�2 − x02

∥∥
2

≤ ∥∥Φ∗
1(x̃

�
1 − x01)

∥∥
1
+
∥∥Φ∗

2(x̃
�
1 − x01)

∥∥
1
+ ε

≤
(
1− κ

1− κ

)−1(2δ + 4ε

1− κ

)
+ ε

=
2δ + (5− 2κ)ε

1− 2κ
,

as desired.

Also note that these results can be easily generalized to general frames instead of Parseval frames,
which then changes the separation estimates by invoking the lower frame bound.

Proc. of SPIE Vol. 8138  813818-8



5. RECOVERY OF MISSING DATA ESTIMATES

The bounds for the accuracy of the solution of (Rec) presented in this section are remarkably similar
to the results in the preceding section, showing the versatility of �1 minimization on the analysis side.
The proofs for the following results may be found in [15].

We begin with the data recovery analog of Definition 4.1.

Definition 5.1. Let Φ = {ϕi}i∈I be a Parseval frame for a Hilbert space H, and let Λ ⊆ I. Then
x0 ∈ H is called δ-relatively sparse in Φ with respect to Λ if

∥∥1ΛcΦ∗x0
∥∥
1
≤ δ.

Comparing this definition with Definition 4.1, we note that if x = x1 + x2 is δ-relatively sparse in Φ1

and Φ2 with respect to Λ1 and Λ2, then there exists some 0 ≤ η ≤ δ such that x1 is η-relatively sparse
in Φ1 with respect to Λ1 and x2 is is (δ − η)-relatively sparse in Φ2 with respect to Λ2. Also, as with
Definition 4.1, δ-relative sparsity is a clustered sparsity.

The data recovery versions of Theorems 4.1 and 4.2 follow. Note that the κ used here is the
concentration on HM , not the joint concentration.

Theorem 5.1 ([15]). Let Φ = {ϕi}i∈I be a Parseval frame for a Hilbert space H = HM ⊕HK , and
suppose that for x0 ∈ H, only PKx0 is known. Further, let Λ ⊆ I be chosen such that x0 is δ-relatively
sparse in Φ with respect to Λ. Then the solution x� of the �1 minimization problem (Rec) stated in
(7) satisfies

∥∥x� − x0
∥∥
2
≤ 2δ

1− 2κ
. (19)

Theorem 5.2 ([15]). Let Φ = {ϕi}i∈I be a Parseval frame for a Hilbert space H = HM ⊕HK , and
suppose that for x0 ∈ H, only PKx0 is known. Further, let Λ ⊆ I be chosen such that x0 is δ-relatively
sparse in Φ with respect to Λ. Then the solution x� of the �1 minimization problem (Rec) stated in
(7) satisfies

∥∥x� − x0
∥∥
2
≤ 2δ

1− 2μc(Λ, PMΦ;Φ)
.

The reader should notice that the considered error
∥∥x� − x0

∥∥
2
is only measured on HM , the masked

space, since PKx� = PKx0 due to the constraint in (Rec). We also point out the difference in
dependencies of δ and κ in these results. The relative sparsity here is unrelated to how much data is
missing from the measurement, while κ and μc are.

Adding noise to the hypotheses of Theorems 5.1 and 5.2, we obtain the following theorem.

Theorem 5.3 ([15]). Let Φ = {ϕi}i∈I be a Parseval frame for a Hilbert space H = HM ⊕ HK ,
and suppose that for x0 ∈ H, only x̃ = PKx0+n is known, where n satisfies ‖Φ∗n‖1 ≤ ε and PKn = n.
Further, let Λ ⊆ I be chosen such that x0 is δ-relatively sparse in Φ with respect to Λ. Then the solution
x� of the �1 minimization problem (RecNoise) stated in (8) satisfies

∥∥x̃� − x0
∥∥
2
≤ 2δ + (3 + 2κ)ε

1− 2κ

and more loosely satisfies
∥∥x̃� − x0

∥∥
2
≤ 2δ + (3 + 2κ)ε

1− 2μc(Λ, PMΦ;Φ)
.
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