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Abstract—Construction of directional compactly supported
tensor product complex tight framelets cptTP-CTF6 is discussed.
The construction algorithm employs optimization techniques
and puts extensive emphasis on frequency response and spatial
localization of the underlying one-dimensional tight framelet
filter banks. A concrete example of cptTP-CTF6 is provided.
Numerical experiments show that such constructed cptTP-CTF6

have good performance in image denoising.

I. INTRODUCTION

To achieve directionality for multidimensional problems, by
using complex-valued high-pass filters in a tight framelet filter
bank, recently a family of directional tensor product complex
tight framelets TP-CTFn with n > 3 has been introduced in
[10] and further developed in [13], [14], where n is the total
number of filters in the underlying one-dimensional tight fra-
melet filter banks. Experimental results demonstrate that tensor
product complex tight framelets, especially TP-CTF6, have
significantly better performance than many other transform-
based methods for the model problems of image denoising in
[13], image inpainting in [25], and video denoising/inpainting
in [14]. However, the tensor product complex tight framelets
constructed in [10], [13], [14] are band-limited, that is, they
are compactly supported in the frequency domain. Hence, in
the spatial/time domain, they cannot have compact support.
Since compactly supported wavelets or framelets have good
space-frequency localization and lead to efficient computati-
onal algorithms, they are of great importance both theoreti-
cally and practically. The initial effort on finding directional
compactly supported tensor product complex tight framelets
cptTP-CTFn has been started in [12], which concentrates
on the simplest directional compactly supported cptTP-CTF3

with only two high-pass filters in one dimension.
In this paper we are interested in constructing directional

compactly supported tensor product complex tight framelets,
cptTP-CTF6, with good performance for applications such as
image denoising. In the following sections, we first briefly re-
view tensor product tight framelets and recall the construction
of the band-limited tensor product complex tight framelet filter
banks TP-CTFn with n > 3. We then discuss the filters’
frequency separation property and provide a step-by-step al-
gorithm for constructing compactly supported cptTP-CTF6

having good frequency separation property with prescribed

filter supports. Finally, we test the constructed cptTP-CTF6

in image denoising.

II. TENSOR PRODUCT TIGHT FRAMELETS

By u ∈ l0(Zd) we mean that u is a sequence on Zd
having finite support. For 1 6 p < ∞, we say that u =
{u(k)}k∈Zd ∈ lp(Zd) if ‖u‖p

lp(Zd) :=
∑
k∈Zd |u(k)|p < ∞.

For u = {u(k)}k∈Zd ∈ l2(Rd), we define its Fourier series
(or symbol) to be û(ξ) :=

∑
k∈Zd u(k)e

−ik·ξ, ξ ∈ Rd.
For a, b1, . . . , bs ∈ l2(Rd), we say that {a; b1, . . . , bs} is a

(d-dimensional dyadic) tight framelet filter bank if

â(ξ)â(ξ + πω) +

s∑
`=1

b̂`(ξ)b̂`(ξ + πω) = δω,

for ω ∈ ([0, 1]d ∩ Zd) and for almost every ξ ∈ Rd.
If there exist positive numbers C and τ such that |â(ξ) −

1| 6 C|ξ|τ for all ξ ∈ [−π, π]d (this condition is automatically
satisfied if a ∈ l0(Zd) and â(0) = 1), then the following
functions are well defined for a tight framelet filter bank
{a; b1, . . . , bs}:

φ̂(ξ) :=

∞∏
j=1

â(2−jξ) and ψ̂`(ξ) := b̂`(ξ/2)φ̂(ξ/2),

ξ ∈ Rd, ` = 1, . . . , s, where the Fourier transform is
defined to be f̂(ξ) :=

∫
Rd f(x)e

−ix·ξdx for f ∈ L1(Rd).
Then it is known in [9, Theorem 17 and Corollary 12] that
{φ;ψ1, . . . , ψs} is a tight framelet for L2(Rd), that is,

‖f‖2L2(Rd) =
∑
k∈Zd

|〈f, φ(· − k)〉|2

+

∞∑
j=0

s∑
`=1

∑
k∈Zd

|〈f, 2dj/2ψ`(2j · −k)〉|2, ∀f ∈ L2(Rd).

If a ∈ l0(Zd) with â(0) = 1, then {φ;ψ1, . . . , ψs} is a
tight framelet for L2(Rd) if and only if {a; b1, . . . , bs} is a
tight framelet filter bank. As a consequence, in this paper we
mainly concentrate on tight framelet filter banks instead of
tight framelets for L2(Rd).

A d-dimensional dyadic tight framelet filter bank can be ea-
sily obtained through the tensor product of a one-dimensional
tight framelet filter bank. For filters u1, . . ., ud ∈ l1(Z) in



one dimension, we define their d-dimensional tensor product
filter u1 ⊗ · · · ⊗ ud to be (u1 ⊗ · · · ⊗ ud)(k1, . . . , kd) :=
u1(k1) · · ·ud(kd) for k1, . . . , kd ∈ Z. In particular, we define
⊗du := u⊗ · · · ⊗ u as the tensor product of d copies of u. If
{a; b1, . . . , bs} is a one-dimensional tight framelet filter bank,
then it is straightforward to check that ⊗d{a; b1, . . . , bs} :=
{h1 ⊗ · · · ⊗ hd : hj ∈ {a; b1, . . . , bs}, j = 1, . . . , d} is a d-
dimensional tight framelet filter bank with the d-dimensional
low-pass filter ⊗da.

III. BAND-LIMITED TENSOR PRODUCT COMPLEX TIGHT
FRAMELETS TP-CTFn

We now briefly recall the construction of band-limited
tensor product complex tight framelets in [10], [13], [14]. For
cL < cR and two positive numbers εL, εR satisfying εL+εR 6
cR − cL, let χ[cL,cR];εL,εR on R be a bump function defined
as in [14, (3.1)], which is supported on [cL − εL, cR + εR].
Let s ∈ N and 0 < c1 < c2 < · · · < cs+1 := π and
ε0, ε1, . . . , εs+1 be positive real numbers satisfying 0 < ε0 <
c1−ε1, 0 < ε1 6 min(c1,

π
2 −c1), (c`+1−c`)+ε`+1+ε` 6 π,

` = 1, . . . , s. The filters a, a+, a−, b+1 , . . . , b
+
s , b
−
1 , . . . , b

−
s are

defined through their 2π-periodic Fourier series on the basic
interval [−π, π) as:

â :=χ[−c1,c1];ε1,ε1 , â
+ := χ[0,c1];ε0,ε1 , â

− := â+(−·),

b̂+` :=χ[c`,c`+1];ε`,ε`+1
, b̂−` := b̂+` (−·), ` = 1, . . . , s.

Then CTF2s+1 := {a; b+1 , . . . , b+s , b
−
1 , . . . , b

−
s } and

CTF2s+2 := {a+, a−; b+1 , . . . , b+s , b
−
1 , . . . , b

−
s } are (one-

dimensional dyadic) tight framelet filter banks. The tensor
product complex tight framelet filter banks TP-CTF2s+1 and
TP-CTF2s+2 in d dimensions are given by

TP-CTF2s+1 := ⊗d{a; b+1 , . . . , b+s , b
−
1 , . . . , b

−
s },

TP-CTF2s+2 := {⊗da} ∪
(
⊗d CTF2s+2 \ ⊗d {a+, a−}

)
.

See [10], [12]–[14], [25] for detailed discussions on tensor
product complex tight framelets and their applications to
image/video processing.

IV. CONSTRUCTION OF COMPACTLY SUPPORTED TENSOR
PRODUCT COMPLEX TIGHT FRAMELETS cptTP-CTF6

The above constructed TP-CTFn with n > 3 are band-
limited and do not have compact support in the spatial domain.
Due to the importance of compactly supported tensor product
complex tight framelets (cptTP-CTFn) in both theory and
application, it is highly desirable to know whether it is possible
to construct directional cptTP-CTFn with good performance
in practical applications over other state-of-the-art transform-
based methods in the literature.

As explained in [12]–[14], the directionality of TP-CTFn
with n > 3 in high dimensions is mainly due to the following
frequency separation property:

b̂+` (ξ) ≈ 0, ξ ∈ [−π, 0] or b̂−` (ξ) ≈ 0, ξ ∈ [0, π], (1)

` = 1, . . . , s. That is, all â+, b̂+1 , . . . , b̂
+
s nearly vanish

on [−π, 0] and mostly concentrate on [0, π], while all

â−, b̂−1 , . . . , b̂
−
s nearly vanish on [0, π] and mostly concentrate

on [−π, 0]. In view of (1), when consider compactly supported
framelets, for their associated finitely supported filters b =
{b(k)}k∈Z ∈ l0(Z) which is not identically zero, we introduce
the following quantity to measure frequency separation of the
filter b:

fsp(b) :=
min

{
1
π

∫ 0

−π |̂b(ξ)|
2dξ, 1

π

∫ π
0
|̂b(ξ)|2dξ

}
1
2π

∫ π
−π |̂b(ξ)|2dξ

. (2)

It is straightforward to observe that 0 6 fsp(b) 6 1. The
smaller the quantity fsp(b) is, the better the frequency sepa-
ration of the filter b will have. If b is a real-valued filter, then
b̂(ξ) = b̂(−ξ) and we can check that fsp(b) = 1. However,
things can be quite different for complex-valued filters. Define
a sequence c = {c(k)}k∈Z by ĉ(ξ) := |̂b(ξ)|2. The quantity
fsp(b) in (2) can be easily computed by fsp(b) = 1− 4|Cb|

πc(0) with

Cb := Im
(∑∞

j=1
c(2j−1)
2j−1

)
, since 1

2π

∫ π
−π |̂b(ξ)|

2dξ = c(0) =

‖b‖2l2(Z),
1
π

∫ 0

−π |̂b(ξ)|
2dξ = c(0)+ 4Cb

π , and 1
π

∫ π
0
|̂b(ξ)|2dξ =

c(0)− 4Cb
π .

For any tight framelet filter bank {a; b+, b−} with b− = b+,
[12, Theorem 1] says

fsp(b+) = fsp(b−) >
1
π

∫ π
0
A(ξ)dξ

1− ‖a‖2l2(Z)
=: fsp(a | hp), (3)

where hp in fsp(a | hp) stands for high-pass and

A(ξ) :=
1

2

(
1−B(ξ)−

√
4B(ξ) + C(ξ)

)
, (4)

with B(ξ) := 1− |â(ξ)|2 − |â(ξ + π)|2 and C(ξ) = |â(ξ)|2 −
|â(ξ + π)|2.

For splitting a real-valued filter a into two auxiliary filters
a+ and a− with a− = a+ and preserving the tightness
property of the filter bank {a±; b±1 , . . . , b±s }, similarly, one
can show that

fsp(a+) = fsp(a−) > fsp(a | lp), (5)

where fsp(a | lp) :=
1
π

∫ π
0

min(|â(ξ)|2,|â(ξ+π)|2)dξ
‖a‖2

l2(Z)
and lp in

fsp(a | lp) stands for low-pass. Note that 0 6 fsp(a | lp) 6 1.
We now present in Algorithm 1 the construction of

cptTP-CTF6 with good frequency separation property, which
we briefly summarize here: The steps (S1)–(S3) focus on
splitting a low-pass filter a ∈ l0(Z) into two auxiliary
finitely supported low-pass filters a+, a− with good frequency
separation. Note that â−(ξ) = â+(−ξ) and â+, â− are 2π-
periodic. Hence (S3) minimizes the ‘energy’ of â+ in [−π, 0]
and â− in [0, π]. The steps (S4)–(S5) then build finitely
supported high-pass filters b+1 , b

−
1 , b

+
2 , b
−
2 so that the filter

bank {a+, a−; b+1 , b
−
1 , b

+
2 , b
−
2 } ⊂ l0(Z) has good frequency

separation property similar to the band-limited CTF6 in [13],
[14].

Algorithm 1. Let a ∈ l0(Z) be a real-valued filter on Z
satisfying |â(ξ)|2 + |â(ξ + π)|2 6 1 for all ξ ∈ R.



(S1) Choose an integer M ∈ N ∪ {0} and define[
u1(ξ) u2(ξ)
u3(ξ) u4(ξ)

]

:=

[
cos(t0) − sin(t0)
sin(t0) cos(t0)

] M∏
j=1

[
cos(tj) − sin(tj)

e−iξ sin(tj) e−iξ cos(tj)

]
,

where t0, . . . , tM ∈ [−π, π] are real numbers to be
determined later.

(S2) Define two filters a+ and a− by â+(ξ) := â(ξ)û+(2ξ)

and â−(ξ) := â(ξ)û−(2ξ), where

û+(ξ) :=
1
√
2
[u1(ξ) + iu2(ξ)], û−(ξ) :=

1
√
2
[u1(ξ)− iu2(ξ)].

(S3) Find a solution {t0, . . . , tM} of the following optimiza-
tion problem:

min
t0,...,tM

∫ π

0

(
|â+(ξ + π)|2 + |â−(ξ)|2

)
dξ.

(S4) Choose a suitable integer N ∈ N∪{0} and parameterize
high-pass filters b+1 and b+2 by

b̂+1 (ξ) := s0 + s1e
−iξ + · · ·+ sNe

−iNξ,

b̂+2 (ξ) := c0 + c1e
−iξ + · · ·+ cNe

−iNξ,

where s0, . . . , sN , c0, . . . , cN are complex numbers to be

determined later. Define b−1 , b
−
2 through b̂−1 = b̂+1 (−·)

and b̂−2 = b̂+2 (−·).
(S5) Find a solution {s0, . . . , sN , c0, . . . , cN} of complex

numbers to the following constrained optimization pro-
blem:

min
sk,ck

k=0,...,N

λ1I1 + λ2I2 − λ3I3 − λ4I4,

under the constraints for a tight framelet filter bank
{a; b+1 , b

+
2 , b
−
1 , b
−
2 } :

|b̂+1 (ξ)|2 + |b̂+2 (ξ)|2 + |b̂−1 (ξ)|2 + |b̂−2 (ξ)|2 = 1− |â(ξ)|2,
2∑
`=1

(
b̂+` (ξ)b̂+` (ξ + π) + b̂−` (ξ)b̂−` (ξ + π)

)
= −â(ξ)â(ξ + π),

for all ξ ∈ R, where

I1 =

∫ 7π
12

π
4

|b̂+1 (ξ)|2dξ, I2 =

∫ 5π
6

π
2

|b̂−2 (ξ)|2dξ,

I3 =

∫ −π6
−π2
|b̂+1 (ξ)|2dξ, I4 =

∫ − 5π
12

− 3π
4

|b̂−1 (ξ)|2dξ.

(such constraints on b+1 , b+2 , b−1 , and b−2 can be rewritten
as equations in terms of s0, . . . , sN , c0, . . . , cN ), where
λ1, . . . , λ4 are real positive regularization parameters.

Then CTF6 := {a+, a−; b+1 , b
+
2 , b
−
1 , b
−
2 } is a finitely suppor-

ted tight framelet filter bank with small frequency separation
quantities fsp(a+), fsp(b+1 ), and fsp(b+2 ).

To illustrate Algorithm 1 we present one concrete example.
We set the regularization parameters λ1 = 2.2, λ2 = 1, λ3 =
0, λ4 = −2.5 for Algorithm 1. We use a numerical routine in

the computer algebra software MAPLE to solve the optimiza-
tion problems in (S3) and (S5) of Algorithm 1.

Example 1. Consider a low-pass filter a as follows:

a =
{

1+
√

28
256 −

√
8+2
√

28
256 , 1+

√
7

32 − 3
√

8+2
√

28
128 , 7+

√
28

64 − 7
√

8+2
√

28
128 ,

7−
√

7
32 − 7

√
8+2
√

28
128 , 35−5

√
28

128 , 7−
√

7
32 +

7
√

8+2
√

28
128 ,

7+
√

28
64 +

7
√

8+2
√

28
128 , 1+

√
7

32 +
3
√

8+2
√

28
128 , 1+

√
28

256 +

√
8+2
√

28
256

}
[−4,4]

.

Then one can show that a has sum rule order sr(a) = 4,
linear-phase moment lpm(a∗a?) = 6, and ‖a‖l2(Z) =

√
25278
256 ,

fsp(a | hp) = 4.52e−3, and fsp(a | lp) = 4.16e−2.
Applying Algorithm 1 (S1–S3) with M = 2 to split the

low-pass filter a, we obtain two auxiliary filters a+ and a−

with a− = a+, where a+ is given by â+(ξ) := â(ξ)û+(2ξ)
with

u+ = {u+(k)}k∈[0,2]
= {(7.13e−1), −(5.37e−2)− (6.97e−1)i,−(5.50e−2)i}[0,2].

Then fsp(a+) = fsp(a−) = 3.32e−1, ‖a+‖l2(Z) =
‖a−‖l2(Z) = 4.39e−1.

Applying Algorithm 1 (S4–S5) with N = 4, we obtain
finitely supported filters b+1 , b+2 , b−1 and b−2 with b−1 := b+1
and b−2 := b+2 , where

b+1 = {(1.74e−2)− (9.69e−3)i, (6.49e−2) + (5.69e−2)i,
(3.83e−2)− (1.24e−1)i,−(1.29e−1)− (6.07e−2)i,
− (7.02e−2) + (1.20e−1)i, (6.84e−2) + (1.12e−1)i,
(1.05e−1)− (8.18e−2)i,−(5.60e−2)− (7.21e−2)i,
− (5.99e−3) + (3.99e−2)i, (1.54e−2)− (7.13e−3)i,
− (6.77e−3) + (3.34e−3)i,−(5.88e−3) + (2.85e−3)i,
− (1.13e−3) + (5.48e−4)i,

b+2 = { − (3.58e−2)− (6.86e−3)i, (9.26e−2) + (7.16e−2)i,
− (4.13e−2)− (1.88e−1)i,−(1.05e−1) + (2.16e−1)i,
(1.89e−1)− (1.17e−1)i,−(1.62e−1)− (8.41e−3)i,
(6.40e−1) + (6.34e−2)i, (8.51e−3)− (7.80e−3)i,
(7.32e−3)− (4.87e−2)i,−(2.41e−2) + (2.72e−2)i,
(2.08e−3) + (1.63e−3)i, (4.06e−3)− (2.18e−3)i,
(7.82e−4)− (4.20e−4)i}[−4,8].

Then CTF6 = {a+, a−; b+1 , b
+
2 , b
−
1 , b
−
2 } is a tight

framelet filter bank with fsp(b+1 ) = fsp(b−1 ) =
4.93e−2, fsp(b+2 ) = fsp(b−2 ) = 1.58e−1, ‖b+1 ‖l2(Z) =
‖b−1 ‖l2(Z) = 3.31e−1, ‖b+2 ‖l2(Z) = ‖b−2 ‖l2(Z) = 4.44e−1.
The vanishing moments of b±1 , b

±
2 are vm(b+1 ) = vm(b−1 ) =

3, vm(b+2 ) = vm(b−2 ) = 3. See Figure 1(a)–(b) for the graphs
of the frequency separation properties of a+, b+, b+1 , and b+2 .

V. NUMERICAL EXPERIMENTS ON IMAGE DENOISING

In this section, we test the performance of the constructed
cptTP-CTF6 for the image denoising. We compare the per-
formance with its band-limited counterpart TP-CTF6 as well
as several other frame-based methods such as curvelets and
shearlets. See [4], [6], [11], [15], [19], [20], [23] on tight
wavelet frames and see [1]–[3], [7], [8], [17], [18], [21], [22]
for curvelets and shearlets as well as their applications. See



(a) |â| and |â+| (b) |b̂+1 | and |b̂+2 | (c) Barbara (d) Lena

Fig. 1. The frequency separation properties of filters in Example 1 on the
basic interval [−π, π]: (a) |â| (solid line) and |â+| (dashed line). (b) |b̂+1 |
(solid line) and |b̂+2 | (dashed line). (c) Barbara. (d) Lena.

[13], [14], [16], [25] for detail comparison results on the
performance of band-limited TP-CTFn with several other
transform-based methods. The state-of-the-art BM3D [5] met-
hod is also reported here for comparison. Note that BM3D
uses more sophisticated block matching techniques for sparse
representation which is quite different to other frame-based
methods here.

The testing images Barbara and Lena are given in Fi-
gure 1(c)–(d) and all of them are 512 × 512 gray-scale
images. As usual, we use peak signal-to-noise ratio (PSNR)
to measure the quality of image restoration. All parameters
for the cptTP-CTF6 such as level of decomposition, window
size in bivariate shrinkage [24], etc., are the same as those of
TP-CTF6 in [14]. The image denoising experimental setting
is same as in [14]; see [14, Section 4] for the details. The
comparison results are reported in Table I.

1 2 3 4 5 6
σ cptTP-CTF6 TP-CTF6 CurveLab DNST BM3D

Example 1 [13], [14] [2] [22] [5]
512× 512 Lena

5 38.38 38.37 35.77 38.22 38.72
10 35.49 35.48 33.37 35.19 35.93
25 31.57 31.60 30.07 31.09 32.08
40 29.47 29.52 28.15 28.92 29.86
50 28.47 28.54 27.19 27.89 29.05
80 26.40 26.47 25.16 25.71 26.97

100 25.45 25.52 24.22 24.67 25.95
512× 512 Barbara

5 37.76 37.84 33.83 37.76 38.31
10 34.12 34.18 29.17 33.94 34.98
25 29.37 29.35 24.83 28.90 30.72
40 26.87 26.86 23.87 26.36 27.99
50 25.72 25.71 23.38 25.22 27.23
80 23.52 23.53 22.22 23.11 24.79

100 22.62 22.64 21.61 22.23 23.62

TABLE I
IMAGE DENOISING COMPARISON RESULTS IN TERMS OF PSNR.

In conclusion, the proposed cptTP-CTF6 leads to efficient
computational algorithm, nice space–frequency localization
property, and good performance in image denoising. The com-
bination of block matching techniques and our cptTP-CTF6

might lead to improvement of the denoising results. In view
of the tensor product nature, such complex tight framelets
cptTP-CTF6 can be easily extended to any dimension and
applied to high-dimensional problems, e.g., video denoi-
sing/inpainting. Moreover, thanks to their compactly supported
property, the compactly supported complex tight framelets
provide the possibility to build directional representation sys-

tems on bounded domains, which are important in numerical
solutions of partial differential equations. Further development
(more theoretical results and examples) and applications (in
denoising and inpainting) of cptTP-CTFn will be reported
elsewhere.
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