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ABSTRACT

In this paper, we discuss the construction and applications of decimated tight framelets on graphs. Based on graph
clustering algorithms, a coarse-grained chain of graphs can be constructed where a suitable orthonormal eigen-
pair can be deduced. Decimated tight framelets can then be constructed based on the orthonormal eigen-pair.
Moreover, such tight framelets are associated with filter banks with which fast framelet transform algorithms
can be realized. An explicit toy example of decimated tight framelets on a graph is provided.
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1. INTRODUCTION

On Euclidean domains, harmonic analysis has been an active research branch of mathematics since the work of
Fourier. In the past two centuries, it has become a vast subject with applications in areas as diverse as signal
processing, representation theory, number theory, quantum mechanics, tidal analysis and neuroscience. In the
last four decades, one of its sub-branches, called wavelet analysis, has been intensively studied and well developed
by many pioneered as well as currently active researchers.1–5 In recent years, there has been a great interest in
developing wavelet-like representation systems for data defined on non-Euclidean domains, including manifolds
and graphs. One of the motivations is from the interdisciplinary area of machine learning, where data concerned
are massive and typically from social networks, biology, physics, finance, etc., which can be naturally organized
as graphs or graph data. Such ‘Big Data’ can be regarded as random samples from some smooth manifold, where
its ‘graph Laplacian’ is connected to the ‘manifold Laplacian’6 encoding the essential information of the data to
be exploited by various machine/deep learning approaches.7–9

In this paper, we focus on the construction of wavelet-like representation systems (framelets or wavelet frames)
on graphs for Graph Signal Processing (GSP). Based on sequences of affine systems, we construct decimated tight
framelets on a graph and provide discrete framelet transforms (decomposition and reconstruction) on graph for
GSP.

2. DECIMATED TIGHT FRAMELETS ON A GRAPH

In this section, we investigate the characterization and construction of decimated tight framelets on a graph G.

2.1 Graphs, chains, and orthonormal bases

An undirected and weighted graph G is an ordered triple G = (V,E,w) with a non-empty finite set V of vertices,
a set E ⊆ V × V of edges between vertices in V , and a non-negative weight function w : E → R. We denote |V |
and |E| the number of vertices and edges. An edge e ∈ E with vertices p, v ∈ V is an unordered pair denoted by
(p, v) or (v, p). We extend w from E to V ×V by w(p, v) := 0 for (p, v) /∈ E. Note that for an undirected graph,
the weight w is symmetric in the sense that w(p, v) = w(v, p) for all p, v ∈ V . The degree of a vertex v ∈ V ,
denoted as d(v), is d(v) :=

∑
p∈V w(v, p). We denote vol(G) := vol(V ) =

∑
v∈V d(v) the volume of the graph,

which is the sum of degrees of all vertices of G. Throughout the paper, we only consider connected graphs, where
between any two vertices there exists a path.
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Let G = (V,E,w) and Gc = (Vc, Ec,wc) be two graphs. We say that Gc is the coarse-grained graph of G if Vc
is a partition of V ; i.e., there exists subsets V1, . . . , Vk of V for some k ∈ N such that

Vc = {V1, V2, . . . , Vk}, V1 ∪ · · · ∪ Vk = V, Vi ∩ Vj = ∅, 1 ≤ i < j ≤ k.

In such a case, each vertex Vj of Gc is called a cluster for G. The edges of Gc are edges between clusters of G.
Clusters in Gc define an equivalence relation on G: two vertices p, v ∈ G are equivalent, denoted by p ∼ v, if p
and v belong to the same cluster. An equivalent class (cluster) in G, which is a vertex in Gc, associated with a
vertex v ∈ V can then be denoted as [v]Gc := {p ∈ G : p ∼ v}, and we have Vc = V/∼ = {[v]Gc : v ∈ V }. If no
confusion arises, we will drop the subscript Gc and simply use [v] to denote a cluster in G with respect to the
coarse-grained graph Gc. Note that a vertex v ∈ G can be viewed as [v]G = {v}, which is a singleton.

Given a graph G = (V,E,w), there are tremendous many clustering algorithms to obtain clusters of G, either
spectral10–12 or non-spectral13–17 based. For example, the NHC algorithm18 is a non-spectral algorithm for
clustering. Once we obtain clusters {V1, . . . , Vk} =: Vc from G, we can define17 a weight function wc on Vc × Vc
by

wc([p], [v]) :=
∑
p∈[p]

∑
v∈[v]

w(p, v)

vol(G)
, [p], [v] ∈ Vc, (1)

which determines an (undirected) edge set Ec by Ec := {([p], [v]) : wc([p], [v]) > 0}. The new graph Gc :=
(Vc, Ec,wc) is then a coarse-grained graph of G. Recursively doing this step, we would obtain a chain of
graphs from the original graph G. More precisely, let J ≥ J0 be two integers. We say that the sequence
GJ→J0 := (GJ ,GJ−1, . . . ,GJ0) with GJ ≡ G is a coarse-grained chain of G if Gj = (Vj , Ej ,wj) is a coarse-grained
graph of G for all J0 ≤ j ≤ J and [v]Gj ⊆ [v]Gj−1

for all j = J, . . . , J0 + 1 and for all v ∈ V . Note that, we
treat each vertex v of the finest level graph GJ ≡ G as a cluster of singleton. See Figure 3 for an illustration of
a coarse-grained chain.

By L2(G) := L2(G, 〈·, ·〉G), we denote the Hilbert space of vectors f : V → C on the graph G equipped with
the inner product 〈·, ·〉G :

〈f , g〉G :=
∑
v∈V

f(v)g(v), f , g ∈ L2(G),

where g is the complex conjugate to g. The induced norm ‖·‖G is then given by ‖f‖G :=
√
〈f ,f〉G for f ∈ L2(G).

For simplicity, we shall drop the subscript G, and simply use 〈·, ·〉 and ‖·‖. Let N := |V |. A set {u`}N`=1 of
vectors in L2(G) is an orthonormal basis for L2(G) if

〈u`,u`′〉 = δ`,`′ , 1 ≤ `, `′ ≤ N,

where δ`,`′ is the Kronecker delta satisfying δ`,`′ = 1 if ` = `′ and 0 otherwise.

We say that {(u`, λ`)}N`=1 is an orthonormal eigen-pair for L2(G) if {u`}N`=1 is an orthonormal basis for L2(G)
with u1 ≡ 1√

N
and {λ`}N`=1 ⊆ R is a nondecreasing sequence of nonnegative numbers satisfying 0 = λ1 ≤ · · · ≤

λN . A typical example of orthonomral eigen-pairs is the set of pairs of the eigenvectors and eigenvalues of the
(combinatorial or unnormalized) graph Laplacian L : L2(G)→ L2(G) defined by

[Lf ](p) := d(p)f(p)−
∑
v∈V

w(p, v)f(v), p ∈ V,f ∈ L2(G). (2)

One can verify that 〈f ,Lf〉 = 1
2

∑
p,vw(p, v)|f(p)− f(v)|2 ≥ 0. The eigenvalues λ` of L are then nonnegative,

associate with eigenvectors u` : Lu` = λ` u`, ` = 1, . . . , N , and satisfying 0 = λ1 ≤ . . . ≤ λN with u1 ≡ 1√
N

.

The set {(u`, λ`)}N`=1 is then an orthonormal eigen-pair for L2(G). An orthonormal eigen-pair can be deduced
from other positive semi-definite operators on L2(G), for example, diffusion operators.19



2.2 Tight frames and filter banks

Orthonormal bases are non-redundant systems for L2(G). This paper is concerned with construction of redundant
systems for L2(G), which are frames with certain good properties for L2(G). Let {g`}M`=1 be a set of elements
from L2(G). We say that {g`}M`=1 is a frame for L2(G) if there exist constants 0 < A ≤ B < ∞, called frame
bounds, such that

A ‖f‖2 ≤
M∑
`=1

| 〈f , g`〉 |2 ≤ B ‖f‖
2 ∀f ∈ L2(G). (3)

When A = B = 1, {g`}M`=1 is said to be a tight frame for L2(G), and by polarization identity, (3) is then
equivalent to

f =

M∑
`=1

〈f , g`〉 g`. (4)

When {g`}M`=1 is a tight frame and ‖g`‖ = 1 for ` = 1, . . . ,M , we must have M = N and {g`}N`=1 becomes an
orthonormal basis for L2(G). Tight frames are of significance as we can use coefficients 〈f , g`〉 to represent the
vector f .

A filter or mask h := {hk}k∈Z ⊆ C is a complex-valued sequence in l1(Z) := {h = {hk}k∈Z ⊆ C :
∑
k∈Z |hk| <

∞}. A filter bank η = {a; b(1), . . . , b(r)} is a set of filters where a is usually a low-pass filter while others are

high-pass filters. The Fourier series of a sequence {hk}k∈Z is defined to be the 1-periodic function ĥ(ξ) :=∑
k∈Z hke

−2πikξ, ξ ∈ R.

Let Ψ := {α;β(1), . . . , β(r)} be a set of functions in L1(R), which is the space of absolutely integrable functions
on R with respect to the Lebesgure measure. The Fourier transform γ̂ of a function γ ∈ L1(R) is defined to be
γ̂(ξ) :=

∫
R γ(t)e−2πitξ dt, ξ ∈ R. The Fourier transform on L1(R) can be naturally extended to the space L2(R)

of square integrable functions on R. For L2(R), one can consider the (nonstationary nonhomogeneous) affine
system

ASJ({Ψj}∞j=J) = {αj(2J · −k) : k ∈ Z} ∪ {β(n)
j (2j · −k) : k ∈ Z, n = 1, . . . , rj , j ≥ J}, (5)

where Ψj := {αj ;β(1)
j , . . . , β

(rj)
j } ⊆ L2(R) are framelet generators at level j and two consecutive sets of framelet

generators could be associated with a filter bank (see (7)). The sequences of affine systems have been extensively
explored, such as for framelets on Rd and framelets on compact Riemannian manifolds.20–24 Under certain
extension principles such as the unitary extension principle (UEP),25,26 the affine system ASJ({Ψj}∞j=J) can be
built to be a tight frame for L2(R). In such a case, the elements in the affine system ASJ({Ψj}∞j=J) are called
tight framelets for L2(R).

The purpose of this paper is to construct tight framelets for L2(G), which are based on affine systems on R.
We next introduce one of such tight framelets on L2(G), call decimated tight framelets on G.

2.3 Decimated tight framelets on G
Let G = (V,E,w) be a graph and GJ→J0 := (GJ , . . . ,GJ0) be a coarse-grained chain of G. For each vertex [p] in
Gj = (Vj , Ej ,wj), we assign a real number ωj,[p] ∈ R, called the (associated) weight. For the bottom level when
j = J , we let ωJ,[p]GJ ≡ 1 for all [p]GJ = {p} in VJ . Let Qj := {ωj,[p] : [p] ∈ Vj} be the set of weights on Gj and

QJ→J0 := (QJ , . . . ,QJ0) be the sequence of weights for the coarse-grained chain GJ→J0 .

Let {(u`, λ`)}N`=1 be an orthonormal eigen-pair for L2(G). For Qj = {ωj,[p] : [p] ∈ Vj} on Gj , we define

U`,`′(Qj) :=
∑

[p]∈Vj

ωj,[p] u`([p])u`′([p]). (6)

Note that U`,`′(QJ) = δ`,`′ since ωJ,[p] ≡ 1 and [p]GJ = {p} is a singleton.



Let Ψj = {αj ;β(1)
j , . . . , β

(rj)
j } be a set of functions in L1(R) at level j for j = J0, . . . , J . Ψj and Ψj−1 are

connected by a filter bank ηj := {aj ; b(1)
j , . . . , b

(rj−1)
j } in that, for ξ ∈ R and 0 < ΛJ0 ≤ ΛJ0+1 ≤ · · · ≤ ΛJ <∞,

α̂j−1(ξ/Λj−1) = âj(ξ/Λj)α̂j(ξ/Λj),

β̂
(n)
j−1(ξ/Λj−1) = b̂

(n)
j (ξ/Λj)α̂j(ξ/Λj), n = 1, . . . , rj−1.

(7)

Typical example of Λj = 2j . The decimated framelets ϕj,[p](v) and ψ
(n)
j,[p](v), p, v ∈ V , at level j = J0, . . . , J for

the coarse-grained chain GJ→J0 of the graph G and framelet generators in (7) are

ϕj,[p](v) :=
√
ωj,[p]

N∑
`=1

α̂j

(
λ`
Λj

)
u`([p])u`(v), [p] ∈ Vj ,

ψ
(n)
j,[p](v) :=

√
ωj+1,[p]

N∑
`=1

β̂
(n)
j

(
λ`
Λj

)
u`([p])u`(v), [p] ∈ Vj+1, n = 1, . . . , rj ,

(8)

where for j = J , we let VJ+1 := VJ and ωJ+1,[p] := ωJ,[p], and u`([p]) can be defined by u`([p]) := minv∈[p] u`(v).

The (decimated) framelet system DFS({Ψj}Jj=J1 , {ηj}
J
j=J1+1) on G (starting at level J1) is a (nonhomogeneous

nonstationary) affine system given by

DFS({Ψj}Jj=J1 , {ηj}
J
j=J1+1) := DFS({Ψj}Jj=J1 , {ηj}

J
j=J1+1;GJ→J1 ,QJ→J1)

:= {ϕJ1,[p] : [p] ∈ VJ1} ∪ {ψ
(n)
j,[p] : [p] ∈ Vj+1, j = J1, . . . , J}.

(9)

The following theorem gives equivalence conditions of the tightness of a sequence of decimated framelet
systems for a coarse-grained chain of a graph.

Theorem 2.1. Let Ψj := {αj ;β(1)
j , . . . , β

(rj)
j }, j = J0, . . . , J be a sequence of framelet generators sets in L1(R)

associated with a sequence of filter banks ηj = {aj ; b(1)
j , . . . , b

(rj−1)
j }, j = J0 + 1, . . . , J , see (7). Let GJ→J0 be a

coarse-grained chain of a graph G with a weight sequence QJ→J0 . Let DFS({Ψj}Jj=J1 , {ηj}
J
j=J1+1), J1 = J0, . . . , J

be a sequence of decimated framelet systems for the coarse-grained chain GJ→J0 with framelets in (8). Then, the
following statements are equivalent.

(i) The decimated framelet system DFS({Ψj}Jj=J1 , {ηj}
J
j=J1+1) is a tight frame for L2(G) for all J1 = J0, . . . , J ,

that is, for all J1 = J0, . . . , J ,

‖f‖2 =
∑

[p]∈VJ1

∣∣∣ 〈f ,ϕJ1,[p]〉 ∣∣∣2 +

J∑
j=J1

rj∑
n=1

∑
[p]∈Vj+1

∣∣∣ 〈f ,ψ(n)
j,[p]

〉 ∣∣∣2 ∀f ∈ L2(G). (10)

(ii) The framelet generators in Ψj and the weights in Qj satisfy

1 =

∣∣∣∣α̂j ( λ`ΛJ

)∣∣∣∣2 +

rJ∑
n=1

∣∣∣∣β̂(n)
j

(
λ`
ΛJ

)∣∣∣∣2 , ` = 1, . . . , N, (11)

α̂j+1

(
λ`

Λj+1

)
α̂j+1

(
λ`′

Λj+1

)
U`,`′(Qj+1)− α̂j

(
λ`
Λj

)
α̂j

(
λ`′

Λj

)
U`,`′(Qj)

=

rj∑
n=1

β̂
(n)
j

(
λ`
Λj

)
β̂

(n)
j

(
λ`′

Λj

)
U`,`′(Qj+1), (12)

for all 1 ≤ `, `′ ≤ N and j = J0, . . . , J − 1, where U`,`′(Qj) is given by (6).



(iii) The identities in (11) hold and

âj

(
λ`
Λj

)
âj

(
λ`′

Λj

)
U`,`′(Qj−1) +

rj−1∑
n=1

b̂
(n)
j

(
λ`
Λj

)
b̂
(n)
j

(
λ`′

Λj

)
U`,`′(Qj) = U`,`′(Qj), (13)

for all (`, `′) ∈ σ(j)
α,α and for all j = J0 + 1, . . . , J , where

σ
(j)
α,α :=

{
(`, `′) ∈ N× N : α̂

(
λ`
Λj

)
α̂

(
λ`′

Λj

)
6= 0

}
. (14)

In particular, if

σ
(j)
α,α ⊆ σ

(j+1)
α,α and U`,`′(Qj) = δ`,`′ ∀(`, `′) ∈ σ(j)

α,α, j = J0, . . . , J − 1. (15)

then (12) is reduced to ∣∣∣α̂j+1

(
λ`

Λj+1

) ∣∣∣2 =
∣∣∣α̂j ( λ`

Λj

) ∣∣∣2 +

rj∑
n=1

∣∣∣β̂(n)
j

(
λ`
Λj

) ∣∣∣2 (16)

for j = J0, . . . , J − 1 and ` = 1, . . . , N , and (13) is reduced to

∣∣∣âj ( λ`
Λj

) ∣∣∣2 +

rj−1∑
n=1

∣∣∣b̂(n)
j

(
λ`
Λj

) ∣∣∣2 = 1, (17)

for j = J0 + 1, . . . , J and ` = 1, . . . , N .

3. FAST DISCRETE FRAMELET TRANSFORMS ON G
Given a vector of data f defined on a graph G and a sequence of decimated tight framelets as in (9), the framelet
decomposition algorithm produces a sequence of the vectors of the framelet approximation and detail coefficients

{vJ0} ∪ {w
(n)
j : n = 1, . . . , rj , j = J0, . . . , J} (18)

where for level j = J0, . . . , J , vj is the vector of the approximation framelet coefficients on Gj and w
(n)
j ,

n = 1, . . . , rj , are the vector of the detail framelet coefficients on Gj+1 given as follows:

vj([p]) :=
〈
f,ϕj,[p]

〉
, [p] ∈ Vj ,

w
(n)
j ([p]) :=

〈
f,ψ

(n)
j,[p]

〉
, [p] ∈ Vj+1, n = 1, . . . , rj .

(19)

The framelet reconstruction algorithm is to reconstruct f with the framelet coefficients in (18). As follows, we
investigate the constructive implementation of the framelet reconstruction.

Let {(u`, λ`)}N`=1 be an orthonormal eigen-pair for L2(G). For j = J0, . . . , J , let Qj := {ωj,[p] : [p] ∈ Vj} be
the set of weights on Gj and QJ→J0 := (QJ , . . . ,QJ0) for the coarse-grained chain GJ→J0 which satisfies (15).
For a finite index set Ω, we denote by l(Ω) := {c : Ω→ C} all sequences supported on Ω. For j = J0, . . . , J , let
Ωj := {` : 1 ≤ ` ≤ Nj}, where Nj := |Vj |, and l(Ωj) and l(Vj) the sequences supported on Ωj and Vj respectively.

Define Fj : l(Λj)→ l(Vj) the discrete Fourier transform (DFT) operator on Gj as

[Fjc]([p]) :=
∑
`∈Ωj

c`
√
ωj,[p] u`([p]), [p] ∈ Vj , c = (c`)

Nj

`=1 ∈ l(Ωj). (20)

We say the sequence (Fjc) a (Ωj , Vj)-sequence and F̂jc := c the sequence of discrete Fourier coefficients of Fjc.
Let l(Ωj , Vj) be the set of all (Ωj , Vj)-sequences.
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Figure 1: Two-level G-framelet decomposition and reconstruction based on the filter banks

{aj−1; b
(1)
j−1, . . . , b

(rj−1)

j−1 } and {aj ; b
(1)
j , . . . , b

(rj)

j }.

The adjoint discrete Fourier transform (ADFT) F∗j : l(Vj)→ l(Ωj) on Gj is

(F∗jv)` :=
∑

[p]∈Vj

v([p])
√
ωj,[p] u`([p]), ` ∈ Ωj . (21)

We say the sequence F∗jv a (Vj ,Ωj)-sequence and let l(Vj ,Ωj) be the set of all (Vj ,Ωj)-sequences.

Proposition 1. Let {(u`, λ`)}N`=1 be an orthonormal eigen-pair for L2(G). Let QJ→J0 be a weight sequence
for GJ→J0 which satisfies (15). Let Fj and F∗j be the DFT and ADFT for {(u`, λ`)}N`=1 given in (20) and (21).
Then, Fj and F∗j satisfy

F∗jFj = IVj
and FjF

∗
j = IΩj

,

where IVj and IΩj are the identity operators on l(Vj) and l(Ωj), respectively.

Consequently, for every (Ωj , Vj)-sequence v, there exists a unique sequence c ∈ l(Ωj) such that Fjc = v.
Hence, the discrete Fourier coefficients v̂ := c = F∗jvj of v are well-defined.

Based on the discrete Fourier transform operators, we next define convolution, downsampling, and upsampling
operators.

Let h ∈ l1(Z) be a filter and v ∈ l(Ωj , Vj) be a (Ωj , Vj)-sequence. Let v̂ := (v̂`)`∈Ωj
be its discrete Fourier

coefficient sequence. The discrete convolution v ∗j h is defined as the following sequence in l(Ωj , Vj):

[v ∗j h]([p]) :=
∑
`∈Ωj

v̂` ĥ

(
λ`
λNj

)
√
ωj,[p] u`([p]), [p] ∈ Vj . (22)

That is, (v̂ ∗j h)` = v̂` ĥ
(
λ`

2j

)
for ` ∈ Ωj . We define the downsampling operator ↓j : l(Ωj , Vj)→ l(Ωj−1, Vj−1) for

a (Ωj , Vj)-sequence v by

[v↓j ]([p]) :=
∑

`∈Ωj−1

v̂`
√
ωj−1,[p] u`([p]), [p] ∈ Vj−1. (23)

The upsampling operator ↑j : l(Ωj−1, Vj−1)→ l(Ωj , Vj) for a sequence v ∈ l(Ωj−1, Vj−1) is defined by

[v↑j ]([p]) :=
∑

`∈Ωj−1

v̂`
√
ωj,[p] u`([p]), [p] ∈ Vj . (24)

For a filter h ∈ l1(Z), we denote h? a filter such that ĥ?(ξ) = ĥ(ξ), ξ ∈ R. For a sequence of data
vJ1 ∈ l(ΛJ1 ,ΩJ1), J0 ≤ J1 ≤ J on G, the multi-level framelet decomposition on G is

vj−1 = (vj ∗j a?j )↓j , w
(n)
j−1 = (vj ∗j (b

(n)
j )?), n = 1, . . . , rj−1, j = J, . . . , J1 + 1.



For a sequence (w
(1)
J−1, . . . ,w

(rJ−1)

J−1 , . . . ,w
(1)
J0
, . . . ,w

(rJ0
)

J0
,vJ0) of the framelet coefficients derived from a multi-level

decomposition, the multi-level G-framelet reconstruction is

vj = (vj−1↑j) ∗j aj +

rj−1∑
n=1

w
(n)
j−1 ∗j b

(n)
j , j = J0 + 1, . . . , J.

Figure 1 illustrates the flowchart for the two-level decomposition and reconstruction G-framelet transforms.

4. A TOY EXAMPLE TO ILLUSTRATE CONSTRUNCTIONS

In this section, we show the full steps of the constructions of the decimated framelet system on a graph using
the following toy example. Consider a graph G = (V,E,w) determined by

V := {a, b, c, d, e, f} and E = {(a, b), (a, c), (c, d), (c, e), (c, f), (d, e)}.

a b c d e f1 1 1

1

1

1

Figure 2: Graph G, where the vertices are represented by the boxes and the edges are by the lines for the pairs
of connected vertices, and the weight for each edge is 1.

We apply the NHC clustering algorithm18 to the graph G =: G3 which is at the bottom level 3 with three
initial centers {a}, {c}, {f} to cluster G3 to G2 at level 2, which has 3 clusters, and next cluster G2 to G1 at level
1 with 2 clusters, and eventually to G0 with 1 cluster at the root. See Figure 3 for the resulting coarse-grained
chain of G. The details of the coarse-grained chain G3→0 = (G3,G2,G1,G0) are as follow.

a b c d e f1 1 1

1

1

1

G3

a b c d e f1 1

2 6

G2

a b c d e f1

2 8

G1

a b c d e f G0

Figure 3: Coarse-grained chain of G. Here the arc on a same cluster indicates a self-loop.

(1) At level 3, G3 := G, of which each vertex is a leaf and a cluster of singleton. The graph G is associated with
the adjacency matrix w, the degree matrix d, and the graph Laplacian matrix L := d−w:

w =


0 1 1 0 0 0
1 0 0 0 0 0
1 0 0 1 1 1
0 0 1 0 1 0
0 0 1 1 0 0
0 0 1 0 0 0

 , d =


2 0 0 0 0 0
0 1 0 0 0 0
0 0 4 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 1

 , L =


2 −1 −1 0 0 0
−1 1 0 0 0 0
−1 0 4 −1 −1 −1
0 0 −1 2 −1 0
0 0 −1 −1 2 0
0 0 −1 0 0 1

 , (25)



where the row or column is with respect to the vertices ordered as a, b, c, d, e, f .

(2) At level 2, we obtain three clusters [a]G2 = {a, b}, [c]G2 = {c, d, e}, and [f ]G2 = {f} for the coarse-grained
graph G2 := (V2, E2,w2) of G3, where V2 = {[a]G2 , [c]G2 , [f ]G2}, E2 = {([a]G2 , [a]G2), ([a]G2 , [c]G2), ([c]G2 , [c]G2),
([c]G2 , [f ]G2)}, and

w2 =
1

12

2 1 0
1 6 1
0 1 0

 , d2 =
1

12

3 0 0
0 8 0
0 0 1

 , L2 =
1

12

 1 −1 0
−1 2 −1
0 −1 1

 . (26)

(3) At level 1, we obtain two clusters [a]G1 = {a, b} and [c]G1 = {c, d, e, f} for the coarse-grained graph G1 :=
(V1, E1,w1) of G2, where V1 =

{
[a]G1 , [c]G1

}
, E1 =

{
([a]G1 , [a]G1), ([a]G1 , [c]G1), ([c]G1 , [c]G1)

}
, and

w1 =
1

12

[
2 1
1 8

]
, d2 =

1

12

[
3 0
0 9

]
, L1 =

1

12

[
1 −1
−1 1

]
. (27)

(4) At level 0, we reach the root G0 := (V0, E0,w0), where V0 = {[a, b, c, d, e, f ] =: [a]G0} has only one cluster
[a]G0 which contains all vertices from G, E0 = {([a]G0 , [a]G0)}, and w0 = 1

12 .

Next, we build an orthonormal eigen-pair {(u`, λ`)}6`=1 for L2(G) using information of the coarse-grained
chain G3→0 from level 0 to level 3 so that it satisfies for j = 0, 1, 2, 3

u`(v) ≡ const ∀v ∈ [v]Gj and ∀` ≤ |Vj |. (28)

(5) At level 0, G0 is a graph of singleton. In this case, λG01 = 0 and uG01 = 1. Simply set

u1 =
1√
6

[
1 1 1 1 1 1

]>
.

(6) At level 1, the eigenvalues of L1 as in (27) are λG11 = 0 and λG12 = 2
12 . The eigenvectors of L1 with respect

to 0, 2
12 are

uG11 =
1√
2

[
1 1

]>
, uG12 =

1√
2

[
1 −1

]>
.

We extend uG12 , with respect to clusters [a]G1 and [c]G1 , to u
(1)
2 on G as

u
(1)
2 =

1√
6

[
1 1 −1 −1 −1 −1

]>
.

Apply the Gram-Schmidt orthonormalization process to {u1,u
(1)
2 }, we then obtain a new vector u2:

u2 =
1

4
√

3

[
4 4 −2 −2 −2 −2

]>
.

(7) At level 2, the eigenvalues of L2 in (26) are λG21 = 0, λG22 = 1
12 , λG23 = 3

12 . The eigenvectors of L2 with
respect to 0, 1

12 , 3
12 are

uG21 =
1√
3

[
1 1 1

]>
, uG22 =

1√
2

[
1 0 −1

]>
, uG23 =

1√
6

[
1 −2 1

]>
.

We extend uG23 , with respect to clusters [a]G2 , [c]G2 and [f ]G2 , to u
(2)
3 on G as

u
(2)
3 =

1√
6

[
1 1 −1 −1 −1 1

]>
.

Apply the Gram-Schmidt orthonormalization process to {u1,u2,u
G3
3 }, we then obtain a new vector u3:

u3 =
1

4
√

3

[
0 0 −2 −2 −2 6

]>
.



(8) Continue the above similar steps, at level 3, from the graph Laplacian in (25), we obtain an orthonormal
basis {u1, . . . ,u6} for L2(G) satisfying (28) as

u1 =
1√
6

[
1 1 1 1 1 1

]>
,

u2 =
1

4
√

3

[
4 4 −2 −2 −2 −2]

]>
,

u3 =
1

4
√

3

[
0 0 −2 −2 −2 6

]>
,

u4 =
1√
6

[
0 0 2 −1 −1 0

]>
,

u5 =
1√
2

[
0 0 0 1 −1 0

]>
,

u6 =
1√
2

[
1 −1 0 0 0 0

]>
.

We set λ` = `− 1 for ` = 1, . . . , 6.

Based on the orthonormal eigen-pair {(u`, λ`)}6`=1, we next construct decimated framelet systems as in (9).

(9) At level 3, G3 ≡ G and [p]G3 = {p} ∈ V3 are singletons. Simply set ωj,[p] = 1 for all p ∈ V . Setting

α̂3

(
λ`

Λ3

)
≡ 1 for all `, by (8), we get

ϕ3,[p](v) = ϕ3,p = δ[p],v, p, v ∈ V.

No framelets ψ
(n)
j,[p](v) at this level. The system {ϕ3,[p] : [p] ∈ V3} = {δp,v : p, v ∈ V } is the trivial orthonormal

basis.

(10) At level 2, set

α̂2

(
λ`
Λ2

)
=


1 ` = 1, 2;
1√
2

` = 3;

0 otherwise.

β̂
(1)
2

(
λ`
Λ2

)
=


1√
2

` = 3, 5;

1 ` = 4;

0 otherwise.

β̂
(2)
2

(
λ`
Λ2

)
=


1√
2

` = 5;

1 ` = 6;

0 otherwise.

Note that |α̂2|2 + |β̂(1)
2 |2 + |β̂(2)

2 |2 ≡ 1 for all `. Set the weights on V2 as

ω2,[a]G2
= 2, ω2,[c]G2

= 3, ω2,[f ]G2
= 1.

According to (8), we get ϕ2,[p], ψ
(1)
2,[p],ψ

(2)
2,[p] as in Table 1.

(11) At level 1, set

α̂1

(
λ`
Λ2

)
=


1 ` = 1;
1√
2

` = 2;

0 otherwise.

β̂
(1)
1

(
λ`
Λ2

)
=


1√
2

` = 2;
1√
2

` = 3;

0 otherwise.

Note that |α̂1|2 + |β̂(1)
1 |2 = |α̂2|2 for all `. Set the weights on V1 as ω1,[a]G1

= 2, ω2,[c]G1
= 4. According to

(8), we get ϕ1,[p], ψ
(1)
1,[p] as in Table 2.

(12) At level 0, set

α̂0

(
λ`
Λ2

)
=

{
1 ` = 1;

0 otherwise.
β̂

(1)
0

(
λ`
Λ2

)
=

{
1√
2

` = 2;

0 otherwise.



a b c d e f
ϕ2,[a]G2

1√
2

1√
2

0 0 0 0

ϕ2,[c]G2
0 0

√
3

4 +
√

6
24

√
3

4 +
√

6
24

√
3

4 +
√

6
24

√
3

4 −
√

6
8

ϕ2,[f ]G2
0 0 1

4 −
√

2
8

1
4 −

√
2

8
1
4 −

√
2

8
1
4 + 3

√
2

8

ψ
(1)
2,[a]G3

0 0 0 0 0 0

ψ
(1)
2,[b]G3

0 0 0 0 0 0

ψ
(1)
2,[c]G3

0 0 2
3 +

√
2

24 − 1
3 +

√
2

24 − 1
3 +

√
2

24 −
√

2
8

ψ
(1)
2,[d]G3

0 0 − 1
3 +

√
2

24
1
6 + 7

√
2

24
1
6 −

5
√

2
24 −

√
2

8

ψ
(1)
2,[e]G3

0 0 − 1
3 +

√
2

24
1
6 −

5
√

2
24

1
6 + 7

√
2

24 −
√

2
8

ψ
(1)
2,[f ]G3

0 0 −
√

2
8 −

√
2

8 −
√

2
8

3
√

2
8

ψ
(2)
2,[a]G3

1
2 − 1

2 0 0 0 0

ψ
(2)
2,[b]G3

− 1
2

1
2 0 0 0 0

ψ
(2)
2,[c]G3

0 0 0 0 0 0

ψ
(2)
2,[d]G3

0 0 0
√

2
4 −

√
2

4 0

ψ
(2)
2,[e]G3

0 0 0 −
√

2
4

√
2

4 0

ψ
(2)
2,[f ]G3

0 0 0 0 0 0

Table 1: Decimated framelets ϕ2,[p]G2
,ψ

(1)

2,[p]G3
,ψ

(2)

2,[p]G3
at level j = 2

.
a b c d e f

ϕ1,[a]G1

1
3 +

√
2

6
1
3 +

√
2

6 − 1
6 +

√
2

6 − 1
6 +

√
2

6 − 1
6 +

√
2

6 − 1
6 +

√
2

6

ϕ1,[c]G1

1
3 −

√
2

6
1
3 −

√
2

6
1
3 +

√
2

12
1
3 +

√
2

12
1
3 +

√
2

12
1
3 +

√
2

12

ψ
(1)
1,[a]G2

1
3

1
3 − 1

6 − 1
6 − 1

6 − 1
6

ψ
(1)
1,[c]G2

−
√

6
12 −

√
6

12

√
6

12

√
6

12

√
6

12 −
√

6
12

ψ
(1)
1,[f ]G2

−
√

2
12 −

√
6

12 −
√

2
12 −

√
2

12 −
√

2
12 − 5

√
2

12

Table 2: Decimated framelets ϕ1,[p]G1
,ψ

(1)

1,[p]G2
at level j = 1

.
a b c d e f

ϕ1,[a]G1

1
6

1
6

1
6

1
6

1
6

1
6

ψ
(1)
1,[a]G2

1
3

1
3 − 1

6 − 1
6 − 1

6 − 1
6

ψ
(1)
1,[c]G2

−
√

2
6 −

√
2

6

√
2

12

√
2

12

√
2

12

√
2

12

Table 3: Decimated framelets ϕ0,[p]G0
,ψ

(1)

0,[p]G1
at level j = 0

.

Note that |α̂0|2 + |β̂(1)
0 |2 = |α̂1|2 for all `. Set the weights on V0 as ω1,[a]G0

= 6. According to (8), we get

ϕ0,[p], ψ
(1)
0,[p] as in Table 3.

It is easy to check that conditions in (15) and (16) hold. Hence, by Theorem 2.1 the decimated framelet
system

{ϕJ1,[p] : [p] ∈ VJ1} ∪ {ψ
(n)
j,[p] : [p] ∈ Vj+1, j = J1, . . . , J}

constructed through the above steps (1)–(12) is a decimated tight frame for L2(G) for all J1 = 0, 1, 2, 3.
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