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Abstract—Heterophilous graphs are characterized by con-
nections predominantly occurring between nodes of differing
classes, resulting in highly non-smooth or “highly varying” label
distributions across the graph. This structural property challenges
conventional graph learning methods, which often rely on the
assumption of label and feature smoothness. Motivated by the
need to better align with the intrinsic heterophily in such
graphs, we propose a general parameterized system of high-
variance graph framelets. These framelets are designed to generate
feature representations that are themselves highly varying, thereby
enhancing the expressiveness and discriminative power of node
features in heterophilous settings. The proposed high-variance
framelets can be flexibly constructed without requiring data
leakage or task-specific training, making them a lightweight yet
effective addition to existing models. Experimental results on
two representative heterophilous graph datasets demonstrate that
our method consistently improves node classification accuracy,
highlighting the potential of high-variance representations for
addressing the challenges of heterophilous graph learning. This
work opens up promising avenues for developing more adaptive
and theoretically grounded spectral methods, particularly in
settings where smoothness assumptions fail to hold.

Index Terms—Graph neural networks, Graph learning, Het-
erophilous graphs, Node classification, Graph framelets.

I. INTRODUCTION

Due to its flexibility, a variety of complex systems in real
life, such as social networks, traffic networks, etc., can be
described using graphs. A typical task on graphs is to identify
the classes to which each node belongs. Such classification
corresponds to determining the group an account belongs to in
a social network or the type of traffic conjunction in a traffic
network. There are abundant works in the literature that deal
with node classification, where graph neural networks (GNNs)
approaches are currently one of the most active topics [1],
[2]. However, graphs are often assumed to connect similar
entities. In node classification, such assumptions mean that
connected nodes are more likely to be of the same classes,
which is described as being homophilous. The datasets adopted
in the early works are primarily homophilous and that these
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GNNs implicitly perform graph smoothing [3], [4]. In recent
years, an ongoing active topic is to deal with the counterpart of
homophilous graphs, the so-called heterophilous graphs [5], [6].
Intuitively, heterophily means that connected nodes are more
likely to be of different classes. As a result, such a reversing
nature of heterophilous graphs brings challenges to the GNNs
that perform smoothing. Other types of GNNs were therefore
proposed to handle node classification on heterophilous graphs.

The adaptions for heterophilous graphs in current GNNs are
based on two observations: 1) Spatial aspect: For a fixed node,
other nodes from the same class are distributed more outside
the 1-hop neighborhood. 2) Spectral aspect: Target signals on
heterophilous graphs have larger oscillation with respect to the
graph Laplacian. Thus, its frequency distribution can hardly be
confined to the low-frequency part. GNNs for heterophilous
graphs mainly utilize graph-induced aggregations in multiple
layers, which resembles the idea in deep convolution neural
networks. These GNNs can be further categorized into two
types according to whether the aggregations are spatially [7], [8]
or spectrally defined [9]–[11]. Recently, there has been a third
perspective in GNNs, in which the multiple layers of neural
networks are simply linear, and all graph-induced aggregations
are only involved in forming inputs for the networks [12],
[13]. These methods aim at jointly generating new features
for all nodes. Then, with these new features as inputs, the
following training is completely supervised. Such approaches
have demonstrated superior performances in heterophilous node
classification despite not using complicated neural network
architectures. In our view, these methods can be categorized
as feature engineering for heterophilous graphs.

Inspired by this new perspective, we aim to provide new
features that are rich, sparse, and, above all, highly varying.
Rich features mean that we can choose among various candidate
features. Features being sparse means that when regarded as a
column vector for all nodes, the feature vector is sparse and thus
alleviates storage and computational burden. Finally, features
that are highly varying suit the need for heterophilous graphs.
The idea of obtaining highly varying features comes from the
mathematical intuition that neural networks are continuous
maps, and therefore, similar outputs imply similar inputs. As
for heterophilous graphs of which the ground truth outputs are
by definition highly varying, this further implies that the inputs



should also be highly varying.
To achieve our goal, we propose a general parameterized

system of graph framelets based on finite frame theory [14]
and multi-resolution analysis (MRA) on graphs [6], [15], [16].
Frames are redundant sets that span the whole vector space.
Different from orthogonal bases, the redundancy in frames
is robust to the loss of vectors for representing signals. On
the other hand, combined with multi-resolution analysis on
graphs, vectors in frames will be supported on a portion of the
nodes. Consequently, these vectors will have lots of zero terms.
Such sparse vectors are thus called framelets. Moreover, the
supports of the framelets are induced by a modified graph that
only connects each node with its 2-hop neighbors. Assigning
values to the node in such supports will intuitively result in
vectors that are highly variated with respect to the original
graph. Finally, the parameterized system allows us to adjust the
number of framelets. The framelets are then sorted according
to variance on the graph, and the top ones are selected as the
new features. Experiments will demonstrate the effectiveness
of our approach.

In summary, the contribution of this paper is as follows:
1) We propose a general parametrized system of graph
framelets for generating new features with high variance. 2)
We demonstrate the effectiveness of such generated features
for node classification on heterophilous graphs.

II. PRELIMINARIES

We first introduce some necessary notation, definitions,
and preliminary results. We denote an undirected weighted
graph with n vertices as G := (V, E ,W ) (or simply
G := (V, E)), where V := {v1, v2, . . . , vn}, E ⊂ V × V ,
W = (wij)1≤i,j≤n ∈ Rn×n denote the set of vertices, the
set of edges, and the weight (adjacency) matrix, respectively.
The space L2(G) := {f | V → R} is the collection of graph
functions on G and can be regarded as Rn with the usual
Euclidean inner-product ⟨·, ·⟩ and induced norm ∥·∥ :=

√
⟨·, ·⟩.

The cardinality of a set is denoted by | · |.
Let L := D−1/2(I −W )D−1/2 denote the normalized

graph Laplacian matrix, where the diagonal matrix D :=
diag(d1, d2, . . . , dn) with di :=

∑n
j=1 wij , 1 ≤ i ≤ n being

the degree matrix. L is positive semidefinite and has n
eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn associated with real
orthonormal eigenvectors u1,u2, . . . ,un. The quadratic form
fLf⊤,f ∈ R1×n equals

2
∑
e∈E

(fi − fj)2√
DiiDjj

, vi, vj are connected by e,

which measures the variance of a function f on graph by
summing (normalized) value differences on all edges. For unit-
norm f , fLf⊤ ∈ [0, 2] [13].

For K ∈ N, the set {1, . . . ,K} is denoted as [K]. We denote
I the identity matrix of a certain size and omit its size for
simplicity. Vectors in Rd, d ∈ N are assumed to be row vectors,
or equivalently matrices in R1×d. Given a set {Xi}mi=1 ⊆
Rs×t of m matrices, we use JXiKi∈[m] := [X⊤

1 , . . . ,X⊤
m]⊤

to denote the matrix in Rms×t constructed by concatenating
X1,X2, . . . ,Xm along the rows.

A finite set of row vectors {fi}Mi=1 of RN is called a tight
frame (with constant 1) [14] of RN if and only if

∥g∥2 =

M∑
i=1

|⟨fi, g⟩|2, ∀g ∈ RN ,

The condition above is equivalent to

F⊤F = I, F := JfiKi∈[M ] (1)

Thus, we can decompose and reconstruct any g using {fi}Mi=1

alone. The focus of this paper is to construct tight graph
framelet systems for L2(G) ≡ Rn.

Under an abuse of notation, we regard span(X) as the span
of the row vectors of a matrix X . Since it is finite dimensional,
the definition of tight frame on span(X) is similar. We have
the following key lemma concerning the characterization of
the span of a matrix.

Lemma 1. Let X := JξiKi∈[m] ∈ Rm×n be defined from the
set {ξi}mi=1 of orthonormal row vectors in Rn. LetA ∈ Rm1×m

and B ∈ Rm2×m be two matrices such that 1 ≤ m1 < m.
Define Φ := JφiKi∈[m1] := AX and Ψ := JψiKi∈[m2] :=
BX . Then the following two statements are equivalent.
(a) The matrices A and B satisfy AA⊤ = I , BA⊤ = 0,

and rank(B) = m−m1.
(b) span(X) = span(Φ)⊕ span(Ψ) and the set {φi}i∈[m1]

is an orthonormnal basis for span(Φ).
Moreover, with the additional assumption of either (a) or (b),
the following statements are equivalent.
(i) A⊤A+B⊤B = I .

(ii) Φ⊤Φ+Ψ⊤Ψ =X⊤X .
(iii) BB⊤B = B.
(iv) {ψi}i∈[m2] is a tight frame of span(Ψ).

III. HIGH-VARIANCE GRAPH FRAMELETS

A. Construction of V-Framelet Systems

We next provide the details for the construction of framelet
systems based on a partition tree for a vertex set V , which
are the fundamental structures for our construction of graph
framelet systems.

Definition 1. Let J ∈ N and V = {v1, . . . , vn} be a set of n
vertices. A partition tree TJ(V) of V with J + 1 levels is a
rooted tree such that
(a) The root node p0,1 is associated with S0,1 := V .
(b) Each leaf pJ,k, k ∈ [nJ ] with nJ := n is associated with

the singleton SJ,k := {vi}. The path from p0,1 to each
pJ,k contains exactly J edges.

(c) Each tree node pj,k, k ∈ [nj ] on the j ∈ [J − 1] level
(i.e. the path from p0,1 to pj,k contains exactly j edges)
is associated with a set Sj,k ⊂ V of vertices such that
(i) ∪nj

k=1Sj,k = V , Sj,k1
∩ Sj,k2

= ∅ for k1 ̸= k2,
1 ≤ k1, k2 ≤ nj , and

(ii) ∪k′∈Cj,k
Sj+1,k′ = Sj,k with Sj+1,k′ ⊊ Sj,k,



where nj < n is the number of tree nodes on level j and
Cj,k ⊆ [nj+1] is the index set of children nodes of pj,k.

See Figure 1 for an illustration. In short, each level in the
partition tree is associated with a partition on V , and the
partitions in the lower levels are formed by merging clusters in
the higher levels. Note that by the condition in item (c), each
non-leaf node has at least 2 children, i.e., |Cj,k| > 1.

Fig. 1: A partition tree TJ(V) for a vertex set V of 12 vertices
and with J = 3 (4 levels).

In order to construct graph framelet systems analog to the
classical wavelet/framelet systems with the multiscale structure,
based on a partition tree TJ(V), we associate each level j
with a linear subspace Vj such that V0 ⊊ V1 ⊊ · · · ⊊ VJ .
Following Mallat’s idea in multi-resolution analysis (MRA)
[17], if we have

Vj = Vj−1 ⊕Wj−1, Vj−1 ⊥ Wj−1, j ∈ [J ], (2)

then by doing the decomposition J − 1 times, we have

VJ = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕WJ−1 (3)

and that V0,W0,W1, . . . ,WJ−1 are mutually orthogonal.
Therefore, to construct a tight frame on VJ , it is sufficient
to construct tight frames for each V0,W0,W1, . . . ,WJ−1 and
take the union.

The partition tree TJ(V) suggests that each Vj and Wj

should be further decomposed such that

Vj := ⊕nj

k=1Vj,k, Wj := ⊕nj

k=1Wj,k, (4)

where each element in Vj,k or Wj,k is supported on Sj,k and
thus Vj,k, k ∈ [nj ] (or Wj,k, k ∈ [nj ]) are mutually orthogonal.
Furthermore, the nested structure of TJ(V) further suggests
that

⊕k′∈Cj,k
Vj+1,k′ = Vj,k ⊕Wj,k, Vj,k ⊥ Wj,k (5)

for j ∈ {0, . . . , J − 1} and k ∈ [nj ].
Assuming that each VJ,k is supported on SJ,k = {vk}

at the finest level J , we can define VJ := span{ek | k ∈
[n]} = ⊕n

k=1VJ,k, where VJ,k := span({ek}) is simply
the one-dimensional linear space associated with the vertex
vk and generated by the k-th canonical basis vector ek :=
[0, . . . , 0, 1, 0 . . . , 0] ∈ Rn. Note that by the parent-children
relation, we can rewrite VJ as

VJ = ⊕k∈[nJ−1](⊕k′∈CJ−1,k
VJ,k′). (6)

It is straightforward to see that (4) and (5) implies (2),
which eventually implies (3) since we can decompose
⊕k′∈CJ−1,k

VJ,k′ as

⊕k′∈CJ−1,k
VJ,k′ = VJ−1,k ⊕WJ−1,k (7)

for each k ∈ [nJ−1], and the procedure can continue from
bottom j = J to top j = 0. Hence, it remains to define a
general procedure of decomposition for each non-leaf node in
TJ(V) such that (5) is satisfied. Our next result shows that we
indeed can define such a general (bottom-up) procedure and
obtain a tight framelet system for VJ based on Lemma 1 and
the partition tree TJ(V).

Definition 2. Let TJ(V) be a partition tree as in Definition 1.
Let A[j,k] ∈ R1×|Cj,k| and B[j,k] ∈ Rmj,k×|Cj,k| be two filter
matrices associated with the tree node pj,k for j = 0, . . . , J−1
and k ∈ [nj ].
(1) (Initialization) Define VJ,k := span({ek}) and Φ[J,k] :=

ek for k ∈ [n]. Let VJ := ⊕k∈[n]VJ,k and rJ := 1.
(2) (Bottom-up Procedure) Recursively define at each level j

from J − 1 to 0:
(a) For each tree node pj,k, obtain Vj,k := span(Φ[j,k])

and Wj,k = span(Ψ[j,k]) by Lemma 1 with subspace
matrices {Xk′ := Φ[j+1,k′] | k′ ∈ Cj,k} and the two
filter matrices A[j,k] and B[j,k]. More precisely, let
X := JXk′Kk′∈Cj,k

. Then we have

Φ[j,k] = A[j,k]X, Ψ[j,k] = B[j,k]X, (8)

where A[j,k],B[j,k] are matrices corresponding to
A,B in Lemma 1.

(b) Define Vj := span(Φj) with Φj := JΦ[j,k]Kk∈[nj ]

and Wj := span(Ψj) with Ψj := JΨ[j,k]Kk∈[nj ].
(3) (Finalization) For each J0 = 0, . . . , J , define the V-

framelet system associate with the partition tree TJ(V)
and determined by the filter matrices as

FJ
J0
(V) :=FJ0

({(A[j,k],B[j,k]) | k ∈ [nj ]}J−1
j=J0

)

:=ΦJ0
∪ΨJ0

∪ · · · ∪ΨJ−1.
(9)

Now we are ready to state the main theorem for the
construction of a general tight V-framelet system for VJ .

Theorem 1. Adopt the notations in Definition 2. Assume that
the filter matrices A[j,k] and B[j,k] satisfy

A[j,k](A[j,k])⊤ = I, (10)

B[j,k](A[j,k])⊤ = 0, (11)

(B[j,k])⊤B[j,k] = I − (A[j,k])⊤A[j,k], (12)

for j ∈ {0, . . . , J − 1} and k ∈ [nj ]. Then the following
statements hold.
(i) Vj = ⊕nj

k=1Vj,k, Wj = ⊕nj

k=1Wj,k for j = 0, . . . , J − 1,
and Vj = Vj−1 ⊕Wj−1,Vj−1 ⊥ Wj−1 for j ∈ [J ].

(ii) VJ = Vj⊕Wj⊕Wj+1⊕· · ·⊕WJ−1 for j = 0, . . . , J−1.
In particular, VJ = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕WJ−1.

(iii) FJ
J0
(V) is a tight frame for VJ for all J0 = 0, . . . , J − 1.



Remark 1. Note that the construction of V-framelet systems
only involves the vertex set V and the partition tree TJ(V).
No graph structure, such as the edge set E or the adjacency
matrix, is involved. Such construction based on the hierarchical
partitions of a vertex set has the benefit of providing a
mathematical generality. We discuss the graph framelet systems
in the next subsection that utilize both the vertex set V and
the edge set E .

B. Construction of Framelet Systems with High Variance

As we point out in Remark 1, the V-framelet systems do
not involve the other graph structure such as the edge set E .
However, they do depend on the partition tree TJ(V) and
how to obtain such a partition tree is closely related to the
graph G = (V, E ,W ). We next discuss how we can obtain the
partition tree from a given graph G and define the so-called
graph-involved G-framelet systems.

We first discuss the realization of the nested structure of
a partition tree. It is known that edges in graphs intuitively
represent a notion of proximity among nodes. Thus, to represent
scales (levels) on graphs analog to the Euclidean domains, a
common practice is to apply a series of clustering (coarsing) on
graphs. In detail, given G = (V, E ,W ) with V := {v1, . . . , vn},
the clusters on V are formed through certain algorithms, e.g.,
K-means clustering, based on E such that connected nodes
are more likely to be in the same clusters. Assuming that the
clustering algorithm on G resulted in n′ clusters, denoted as
V ′ = {v′1, . . . , v′n′}, where each v′i = {vi1 , . . . , vini

} ⊆ V ,
v′i ∩ v′j = ∅ for i ̸= j, and ∪n′

i=1v
′
i = V . Then a graph

G′ := (V ′, E ′,W ′) can be formed from these clusters through
the definition of its adjacency matrix W ′ = (w′

ij)1≤i,j≤n′ as

w′
ij :=

∑
p∈v′

i

∑
q∈v′

j

wpq, i, j = 1, . . . , n′,

where w′
ij is the weight between v′i, v

′
j ∈ V ′ while wpq is the

original weight between vertices p, q ∈ V .
In summary, the nodes of G′ represent clusters and the edge

weight on G′ is determine by summing of the edge weight
among nodes of two clusters. We called G′ a coarse-grained
graph of G [16]. Based on the coarse-grained graph, we can
give the definition of multi-graph partition trees.

Definition 3. A multi-graph partition tree TJ(G) of G =
(V, E ,W ) with J + 1, J ∈ N levels is a partition tree TJ(V)
as defined in Definition 1 such that each j ∈ {0, . . . , J} is
associated with a coarse-grained graph Gj = (Vj , Ej) of G
and Vj = {Sj,k | k ∈ [nj ]}. In particular, GJ ≡ G, where we
consider a vertex in GJ as a cluster of singleton.

An intuitive and equivalent interpretation of the definition
above is that a multi-graph partition tree is a partition tree
by generating successively forming coarse-grained graphs
GJ−1,GJ−1 . . . ,G0 such that Gj is a coarse-grained graph
of Gj+1, j ∈ [J − 1]. Since TJ(G) is associated with a
partition tree TJ(V), we can construct V-framelet systems
as in Definition 2.

Fig. 2: Assigning non-zero values to only the blue node and
its 2-hop neighbor (the green node). Variance occurs on all
edges.

However, it is obvious that such constructions result in
piecewise constant functions on graphs, in which the pieces are
precisely the supports Sj,k. Therefore, the variance is generally
smaller for framelets in larger scales (i.e., smaller J) since there
is no value difference on larger clusters of connected nodes.
Such a phenomenon contradicts the purpose of generating high-
variance framelets. To solve this problem, instead, we form
coarse-grained graphs based on a modified graph G2hop at the
beginning. In detail, G2hop consists of the same node set of
G, and a new edge set which is constructed by connecting
each node with nodes that are precisely two hops away in
G, i.e. connecting node pairs with shortest-path distance of
2 (assuming G is an unweighted graph). By using G2hop, we
expect the supports in the partition tree contain nodes that are
“scattering” with respect to the original G. The intuition of
such constructions can be understood in Figure 2. Each edge
on circle graphs has a value difference if we skippingly assign
values to the nodes, even if we assign the same value. We have
the following definition.

Definition 4. Let TJ(G2hop) be a multi-graph partition tree
associated with a induced 2-hop graph G2hop from G. Let
{A[j,k], B[j,k] | j = 0, . . . , J − 1; k ∈ [nj ]} be the filter
matrices satisfying the assumptions of Theorem 1. Then for
J0 = 0, . . . , J − 1, the V-framelet system FJ

J0
(V) as in

(9) is a tight frame for Rn, which we call a high-variance
framelet (HVF) system. In such a case, we simply denote
FJ

J0
(G) := FJ

J0
(V) to indicate the role played by G. In

particular, we define for the special case J0 = 0, the HVF
system FJ

0 (G) as

HVFJ(G) := FJ
0 (G) = Φ0 ⊕Ψ0 ⊕ · · · ⊕ΨJ−1. (13)

C. Further Details

Since V0 is one-dimensional, we want its basis vector to
be the constant unit-norm vector, which has the least variance.
To do so, we simply let each A[j,k] be the constant unit-norm
vector of its relevant size. As each A[j,k] is decided, according
to Lemma 1, each B[j,k] should be a tight frame of the vector
space orthogonal to span(A[j,k]). The simplest example is
letting B[j,k] be the remaining |Cj,k| − 1 orthonormal vectors
in the complement of span(A[j,k]), which can be computed
using singular value decomposition. However, in this case,



Fig. 3: Distributions of variance on Chameleon of unit-norm vectors. Left: 2277 eigenvectors; Right: 23239 framelets, sorted
non-decreasingly according to fLf⊤.

the HVFJ(G) will be an orthonormal basis, which has no
redundancy. Instead, we find a tight frame F [j,k] in R|Cj,k|−1

as the coefficient matrix for remaining orthonormal vectors
(denoted as B̃[j,k]). Then the B[j,k] := F [j,k]B̃[j,k] will be
our final B filters. In details, F [j,k] is obtained via frame
completion [18] given |Cj,k| − 1 vectors of size |Cj,k| − 1
sampled from Gaussian distribution. In this way, the size of
F [j,k] is (|Cj,k| − 1)2 × (|Cj,k| − 1).

IV. EXPERIMENTS

A. Settings

We conducted experiments on two heterophilous graphs
Chameleon and Squirrel from [19],. These graphs are actually
directed, and the adjacency matrices have many zeros columns.
To form the HVFJ(G), we still needed an undirected graph and
its 2-hop modified version. This was done by converting the
directed graph into an undirected one, in which each directed
edge became undirected. In forming the partition tree, we
controlled that each |Cj,k| ≤ 16 by adopting the Python package
scikit-network. Then the HVFJ(G) was formed as described in
Def. 2. Each framelet was further normalized to have unit norm
and sorted non-increasingly according to fLf⊤. We selected
the top 3000 framelets as another feature matrix’s columns,
which we denoted as F . See Fig. 3 for a comparison between
the eigenvectors of L and the framelets. Take Chameleon as
an example; the majority of framelets have variance ≥ 1, and
the number of such framelets (18213) is almost 9 times the
number of eigenvectors (2277). This shows the HVFJ(G)’s
capability of generating rich high-variance framelets.

As for the network, we used the same architecture and
training setup as in [12] except that we replaced the input
channels with two matrices {X,F } where X is the original
node feature matrix. The detailed definition is as follows:

H1 = α1 · RN(XW1) ∥ α2 · RN(FW2),

Ŷ = softmax(ReLU(H1)W3),

where ∥ denotes concatenation operation along columns,
α1, α2 ∈ (0, 1) are trainable attention weights satisfying
α1 + α2 = 1, RN is the row normalization operation, and
{W1,W2,W3} are trainable parameters.

TABLE I: Dataset statistics, classification accuracy. Results are
averaged over 10 public data splits. Percentage: training, 48%;
validation, 32%; testing: 20%.

Chameleon Squirrel

Node 2,277 5,201
Feature 2,325 2,089
Edge 36,101 217,073
Class 5 5

Framelet 23239 53667

MLP(X) [12] 46.05 30.24
Ours 53.42 32.69

B. Avoiding Improper Uses of Adjacency Matrices

The datasets Chameleon and Squirrel are commonly used
in heterophilous GNNs for benchmarking. However, there
is some issue concerning the strong relation between the
connection patterns and the classes of nodes. In fact, it is
pointed in [20] that almost half of the nodes are duplicates with
identical connection patterns and classes but different features.
This is considered as data leakage in [20] and is a crucial
factor for achieving high classification accuracy. Following this
perspective, we can say that almost all GNNs for heterophilous
graphs exploit such data leakage since it is very common to
apply aggregation using adjacency matrices. Nonetheless, one
might still argue that this is a nice property of the datasets,
while it might be too “nice”.

For the reasons above, we avoid using the adjacency matrices
as aggregations or input features in our model. However, this
also makes comparison with a variety of GNNs unreasonable
since they do directly apply the adjacency matrices. Therefore,
we intend to show that it is possible to improve classification
without using adjacency matrices in such ways. This can be



seen in Table I in which the results of a 2-layer multilayer
preceptron (MLP) are also presented. Note that our method
relies on adjacency matrices indirectly by forming coarse-
grained graphs and that the goal is to obtain high-variance
framelets as features. With F alone as new features, our method
still leads to noticeable increases in accuracy.

V. CONCLUSION AND FURTHER REMARKS

In this paper, we have proposed a novel design of high-
variance graph framelets to generate highly varying features that
complement the low-frequency information typically captured
in spectral graph methods. These high-variance framelets
serve as supplemental features that enhance the expressive
power of graph neural networks, especially in the context
of heterophilous graphs where traditional message-passing
architectures tend to underperform. Our approach is lightweight,
intuitively motivated, and avoids the pitfalls of overfitting to
specific benchmarks, as it does not rely on data leakage, which
remains a critical issue in many existing datasets.

Despite these advantages, the current framework is primarily
guided by heuristic and intuitive reasoning. There remains
significant room for refining both the theoretical and practical
aspects of our design. In particular, a more systematic study
on the mathematical selection and characterization of high-
variance framelets, possibly guided by task-specific objectives,
would enhance the robustness and generality of our method.
Additionally, while our current implementation uses fixed
framelet bases, it is a promising direction to explore param-
eterized or learnable framelet systems that can be optimized
end-to-end within a graph learning pipeline. From a spectral
perspective, our proposed method offers richer spanning sets
with substantially more high-frequency components compared
to Laplacian eigenvectors, making it a promising building
block for the design of future spectral GNN architectures.
Nevertheless, a more rigorous comparison with alternative
basis functions, as well as a deeper understanding of their con-
vergence properties and stability, is necessary. Experimentally,
further validation is needed on newly proposed heterophilous
benchmarks that mitigate data leakage, to better assess the
practical effectiveness of our method in realistic scenarios.
Beyond empirical evaluations, extending our analysis to other
graph tasks such as link prediction or community detection
under heterophily is another natural step.

Importantly, a compelling future research direction lies
in extending our work to heterophilous hypergraph learning
[21]. Hypergraphs provide a powerful tool to capture high-
order relationships, and applying high-variance framelet ideas
in this setting could significantly advance the modeling of
heterophilous interactions among groups of nodes, rather than
just pairs. Designing hypergraph framelets that preserve or
amplify variance across hyperedges—particularly under varying
degrees of heterophily—requires new theoretical formulations
and computational strategies, but it holds great promise for
expanding the applicability of spectral techniques to more
complex, non-pairwise graph structures.

In summary, our study opens several promising avenues for
exploration, both in terms of theoretical depth and practical
breadth. By improving the mathematical formulation, enhancing
empirical robustness, and generalizing to the hypergraph
domain, especially under heterophily, we expect this line
of work to contribute meaningfully to the development of
more expressive and versatile graph representation learning
frameworks.

Finally, we would like to point out that our work presented
in this paper is a specific realization of a general system
proposed by us in [22], where detailed discussions and results
concerning different aspects, such as proofs of the theorems,
computation and storage complexity for constructing the
framelets, implementation details, and experiments on larger
heterophilous graphs under alternative perspectives and boarder
comparison are given.
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