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Appendix 1
Selection of High-Pass Subband Features and Block

Size of Feature Map

This appendix first provides a detailed explanation of how images are processed through the Two-level
Non-stationary Tight Framelet (TNTF) system to extract features. First, the input image undergoes feature
extraction using the DHF tight framelet system. This process is accomplished through the filter bank
corresponding to the DHF tight framelet, as shown in Equation (1). Here, τ0 is the low-pass filter, and the
other filters are high-pass filters designed to capture directional information in the image. Specifically, τ1 ,
τ2, τ3 and τ4 are used to extract feature information in the 45◦ and 135◦, horizontal and vertical directions,
respectively. The roles of τ5 and τ6 are the same as τ3 and τ4. To avoid redundancy, only τ1 ∼ τ4 are
used for feature extraction in practice.

Next, the low-pass subband extracted by the DHF is further processed by the DCT tight framelet system
using the filter bank shown in Equation (2). Here, κ0 is the low-pass filter. κ1 and κ3 are used to extract
first-order features in the horizontal and vertical directions, respectively. κ2 and κ6 are used to extract
second-order features in the horizontal and vertical directions. The remaining filters are used to extract
higher-order image features.
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Here, we present the feature maps extracted from real image by the TNTF system. We use the color
image in Fig. 1 as an example. After converting the image to grayscale, it is first processed by the DHF
tight frame, which extracts one low-pass subband and four high-pass subbands, as shown in Figure 1.
Specifically, Fig. 1(c) and (d) contain first-order features in the 45◦ and 135◦ directions, while Fig. 1(e)
and (f) contain first-order features in the horizontal and vertical directions.

Next, the low-pass subband extracted by the DHF is further processed by the DCT, extracting additional
features. This yields one low-pass subband and eight high-pass subbands, as shown in Figure 2. Here,
Fig. 2(c) and (d), (e) and (h) contain first-order and second-order features in the horizontal and vertical
directions, while Fig. 2(f), (g), (i), and (j) contain higher-order features of the image.

It should be noted that the DCT uses the low-pass subband extracted by the DHF as input. According
to the reference [1], this is because the DCT tight framelet involves the extraction of higher-order feature
information, which is more susceptible to image noise. The low-pass subband results from the original
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Fig. 1. A color sample image and its DHF tight framelet features. (a) Input grayscale image, converted from the color sample image. (b)
Low-pass subband extracted by the DHF system. (c)-(f) High-pass subbands extracted by the DHF system.

Fig. 2. High-pass features of the low-pass subband in Fig. 1(a) by the DCT tight framelet. (a) Low-pass subband extracted by the DHF
system in Fig. 1(a). (b) Low-pass subband extracted by the DCT system. (c)-(j) High-pass subbands extracted by the DCT system.

image after smoothing, reducing the effect of noise. Therefore, using the low-pass subband as input makes
the feature extraction process of the DCT more reliable.

The proposed VTFF focus measure uses high-pass subband combinations from the TNTF system to
form the feature map, which is then divided into image blocks of specified sizes. The focus measure value
is calculated by computing the variance of the sum of features within all image blocks. This framework
involves two key aspects: the selection of high-pass subband combinations and the setting of the block size
for the feature map. This Appendix will explore the performance of the VTFF using noise-free and noisy
blurred image sequences, which are generated from 2000 images in the Kadis-700K database [2]. Through
experimental comparative analysis, we aim to determine the optimal high-pass subband combinations and
the appropriate block size for the feature map.
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Fig. 3. The re-named DHF and DCT tight framelet high-pass subbands.

I. SELECTION OF HIGH-PASS SUBBAND COMBINATIONS

For the 12 high-pass subbands extracted from the TNTF, this section will name the 8 high-pass subbands
extracted by the DCT as ‘DCTF1’ to ‘DCTF8’, and the 4 high-pass subbands extracted by the DHF as
‘DHFF1’ to ‘DHFF4’, as shown in Fig. 3. These 12 high-pass subbands contain edge and texture details
of the image.

Despite the denoising and smoothing operations during feature extraction by the TNTF system, some
high-pass subbands remain sensitive to noise, potentially affecting VTFF performance. Therefore, this
experiment first analyzes the extent to which each subband is affected by noise and its sensitivity to
noise. Based on this analysis, we select appropriate subband combinations and verify their noise robustness.
Through experimental analysis, we aim to identify the optimal combination of high-pass subbands for
achieving the best performance of the VTFF.

Firstly, Gaussian noise with a mean of 0 and a variance of 0.02, or Speckle noise with a variance of
0.02 (the parameters remain the same throughout the subsequent experiments), is added to the sample
image shown on the left side of Fig. 1. The image features extracted by TNTF are shown in Fig. 4.
Comparing these features with Fig. 3, it is evident that noise affects each high-pass subband to different
extents. To evaluate this, Mean Square Error (MSE) is employed in this experiment to assess the extent
to which the 12 high-pass subbands are affected by noise.

In this appendix, 2000 sets of experimental data are used, with each image sequence containing 15
frames. For the kth set of experimental data, Iktn and Îktn represent the nth high-pass subband extracted
by the TNTF from the tth frame of the noise-free and nosiy blurred sequence, respectively. The resolution
of the high-pass subbands is M × N . The MSE between the two high-pass subbands is calculated as
shown below:

MSEktn =
1

M ×N

M∑
i=1

N∑
j=1

(
Îktn(i, j)− Iktn(i, j)

)2

.
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Fig. 4. The 12 high-pass subbands extracted from the color sample image in Fig. 1 after adding Gaussian noise.

All MSEktn values can be used to further calculate the average MSE for each high-pass subband, denoted
as MSEn, as shown below:

MSEn =
1

K × T

K∑
k=1

T∑
t=1

MSEktn,

where, K represents the number of experimental data sets, and T is the total number of frames in the
image sequence. Specifically, K = 2000 and T = 15. A larger MSEn value signifies a greater impact of
noise on that high-pass subband. Depending on the type of noise, MSEn values for high-pass subbands
extracted by the TNTF system under Gaussian noise and speckle noise are shown in Table I and Table
II, respectively.

TABLE I
MSEn OF HIGH-PASS SUBBANDS EXTRACTED BY THE TNTF SYSTEM UNDER GAUSSIAN NOISE

Subband DCTF1 DCTF2 DCTF3 DCTF4 DCTF5 DCTF6

MSEn ↓ 14.20 14.12 13.81 13.65 13.93 13.64

Subband DCTF7 DCTF8 DHFF1 DHFF2 DHFF3 DHFF4

MSEn ↓ 13.73 13.87 62.30 62.35 62.11 62.45

The MSEn index in Tables I and II indicates that the eight high-pass subbands extracted by the DCT
are similarly affected by noise. The same observation applies to the four high-pass subbands extracted
by the DHF, with the former being less affected by noise than the latter. This is related to the feature
extraction process of the TNTF system. As mentioned earlier, the DHF takes the original image as input,
whereas the DCT uses the low-pass subband extracted by the DHF as input. The low-pass subband is
the result of the original image being smoothed and denoised. Therefore, the DCT processes images with
less noise, making its extracted high-pass subbands less susceptible to noise. If the image features were
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TABLE II
MSEn OF HIGH-PASS SUBBANDS EXTRACTED BY THE TNTF SYSTEM UNDER SPECKLE NOISE

Subband DCTF1 DCTF2 DCTF3 DCTF4 DCTF5 DCTF6

MSEn ↓ 4.24 4.33 4.27 4.18 4.20 4.20

Subband DCTF7 DCTF8 DHFF1 DHFF2 DHFF3 DHFF4

MSEn ↓ 4.18 4.20 19.04 19.04 19.05 19.11

directly extracted by the DCT without processing by the DHF, the MSEn of the high-pass subbands
under different types of noise would be as shown in Tables III and IV.

TABLE III
MSEn OF THE HIGH-PASS SUBBANDS EXTRACTED USING ONLY THE DCT SYSTEM UNDER GAUSSIAN NOISE

Subband DCTF1 DCTF2 DCTF3 DCTF4 DCTF5 DCTF6 DCTF7 DCTF8

MSEn ↓ 55.47 55.79 55.27 55.14 55.88 54.70 55.30 55.01

TABLE IV
MSEn OF THE HIGH-PASS SUBBANDS EXTRACTED USING ONLY THE DCT SYSTEM UNDER SPECKLE NOISE

Subband DCTF1 DCTF2 DCTF3 DCTF4 DCTF5 DCTF6 DCTF7 DCTF8

MSEn ↓ 17.00 16.87 16.84 16.87 16.93 16.89 17.07 16.92

By comparing the MSEn values for corresponding high-pass subbands in Tables I, II, III, and IV, it
is evident that the extent to which high-pass subbands are affected by noise significantly increases when
using only the DCT system to extract image features. This demonstrates that using the low-pass subband
extracted by the DHF as input makes the DCT extraction process more effective and reliable.

The data from the MSEn metric suggest that the high-pass subbands extracted by the DCT system are
relatively less affected by noise than those extracted by the DHF system, making them suitable candidates
for application in VTFF. To further select the appropriate high-pass subbands from the eight candidates,
this experiment uses the Noise Energy Ratio (NER) metric to analyze the sensitivity of the candidate
high-pass subbands to noise. The specific definition of NER is as follows:

NERktn =

∣∣∣Êktn − Ektn

∣∣∣
Ektn

,

where, Êktn represents the energy contained in the nth high-pass subband extracted by the DCT from the
tth frame of the noisy blurred sequence in the kth set of experimental data, termed as noise signal energy,
given by Êktn =

∑M
i=1

∑N
j=1(Îktn(i, j))

2. Ektn is the original signal energy, which is the energy contained
in the nth high-pass subband extracted by the DCT system from the tth frame of the noise-free blurred
sequence, defined as Ektn =

∑M
i=1

∑N
j=1(Iktn(i, j))

2. The difference between these two values represents
the energy produced by noise in the nth high-pass subband, known as the noise energy. The NERktn

values computed from all experimental data are used to obtain the average NER for each high-pass subband
using Equation

NERn =
1

K × T

K∑
k=1

T∑
t=1

NERktn,
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where K and T are the same as before. A larger NERn indicates greater sensitivity of high-pass subband
to noise. The NERn values for the candidate high-pass subbands under Gaussian noise and speckle noise
are shown in Tables V and VI, respectively.

TABLE V
NERn OF THE HIGH-PASS SUBBANDS EXTRACTED BY THE DCT SYSTEM UNDER GAUSSIAN NOISE

Subband DCTF1 DCTF2 DCTF3 DCTF4 DCTF5 DCTF6 DCTF7 DCTF8

NERn ↓ 0.87 0.73 16.17 694.81 10.51 184.16 163.95 11.64

TABLE VI
NERn OF THE HIGH-PASS SUBBANDS EXTRACTED BY THE DCT SYSTEM UNDER SPECKLE NOISE

Subband DCTF1 DCTF2 DCTF3 DCTF4 DCTF5 DCTF6 DCTF7 DCTF8

NERn ↓ 0.27 0.24 5.22 229.92 3.33 60.88 53.40 3.70

According to the data in the Tables V and VI, DCTF 1 and DCTF 2 are less sensitive to noise
compared to other high-pass subbands. Therefore, combinations formed solely by these two subbands
{DCTF1} and {DCTF2}, or the combination of the two {DCTF1, DCTF2}, or combinations formed by
adding other high-pass subbands to these two {DCTF1, DCTF2, DCTF3}, {DCTF1, DCTF2, DCTF4},
{DCTF1, DCTF2, DCTF5}, {DCTF1, DCTF2, DCTF6}, {DCTF1, DCTF2, DCTF7}, {DCTF1, DCTF2,
DCTF8}, {DCTF1, DCTF2, DHFF1}, {DCTF1, DCTF2, DHFF2}, {DCTF1, DCTF2, DHFF3}, and
{DCTF1, DCTF2, DHFF4}, a total of 13 high-pass subband combinations, are all potential candidates
for providing good noise robustness in the VTFF.

Therefore, this experiment evaluates the noise robustness of the VTFF using these 13 high-pass subband
combinations, using DoC, DoER, and DoSDA as performance metrics. Since each DoC metric corresponds
to a single set of experiments, the average value of the DoC metrics from multiple sets of experiments,
DoC, is used to ensure the validity of the experiment. To control variables, the experiment does not
partition the total feature map, but instead calculates the variance of the feature map on a per-pixel basis.
Based on the aforementioned experimental setup, the noise robustness of the VTFF using the 13 high-pass
subband combinations under Gaussian noise and speckle noise is shown in Tables VII and VIII.

TABLE VII
ANTI-NOISE PERFORMANCE OF VTFF WITH DIFFERENT HIGH-PASS SUBBAND COMBINATIONS UNDER GAUSSIAN NOISE (WITHOUT

BLOCK PARTITIONING OF FEATURE MAPS)

High-pass Subband Combinations DoC ↓ DoER ↓ DoSDA ↓
{DCTF1} 0.2895 5.6880 1.3666
{DCTF2} 0.2581 4.9144 1.1857

{DCTF1, DCTF2} 0.1850 3.9204 0.8912
{DCTF1, DCTF2, DCTF3} 0.2784 6.0418 1.2632
{DCTF1, DCTF2, DCTF4} 0.3518 6.6495 1.3808
{DCTF1, DCTF2, DCTF5} 0.2671 5.8424 1.2188
{DCTF1, DCTF2, DCTF6} 0.3290 6.6641 1.3682
{DCTF1, DCTF2, DCTF7} 0.3281 6.6826 1.3649
{DCTF1, DCTF2, DCTF8} 0.2595 5.8538 1.2178
{DCTF1, DCTF2, DHFF1} 0.4799 8.9803 2.1718
{DCTF1, DCTF2, DHFF2} 0.4820 8.9993 2.1795
{DCTF1, DCTF2, DHFF3} 0.5266 9.3527 2.2953
{DCTF1, DCTF2, DHFF4} 0.5189 9.2407 2.2718

According to the data in Tables VII and VIII, when the feature maps are not partitioned into blocks,
the VTFF using {DCTF1, DCTF2} as the high-pass subband combination achieves the smallest values
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TABLE VIII
ANTI-NOISE PERFORMANCE OF VTFF WITH DIFFERENT HIGH-PASS SUBBAND COMBINATIONS UNDER SPECKLE NOISE (WITHOUT

BLOCK PARTITIONING OF FEATURE MAPS)

High-pass Subband Combinations DoC ↓ DoER ↓ DoSDA ↓
{DCTF1} 0.0832 2.2640 0.5259
{DCTF2} 0.0757 1.9202 0.4570

{DCTF1, DCTF2} 0.0512 1.2927 0.2990
{DCTF1, DCTF2, DCTF3} 0.0888 2.2963 0.4950
{DCTF1, DCTF2, DCTF4} 0.1319 2.8782 0.5685
{DCTF1, DCTF2, DCTF5} 0.0842 2.1558 0.4725
{DCTF1, DCTF2, DCTF6} 0.1142 2.7490 0.5575
{DCTF1, DCTF2, DCTF7} 0.1138 2.7575 0.5561
{DCTF1, DCTF2, DCTF8} 0.0795 2.1708 0.4643
{DCTF1, DCTF2, DHFF1} 0.1571 3.7477 0.8872
{DCTF1, DCTF2, DHFF2} 0.1580 3.7521 0.8894
{DCTF1, DCTF2, DHFF3} 0.1859 4.1789 0.9791
{DCTF1, DCTF2, DHFF4} 0.1813 4.0669 0.9610

for DoC, DoER, and DoSDA under the influence of Gaussian and speckle noise. This indicates that the
method has the best anti-noise performance. Therefore, the {DCTF1, DCTF2} combination will be used
as the high-pass subband combination for the VTFF.

II. FEATURE MAP BLOCK SIZE SETTING

After selecting the appropriate high-pass subband combination, this section further analyzes the impact
of total feature map block size on the performance of the VTFF through experiments. The goal is to
determine the optimal block size for the total feature map. The experiments measure the anti-noise
performance of the VTFF using the DoC, DoER, and DoSDA metrics for seven common block size
schemes: no blocking, and block sizes of 2, 4, 8, 16, 32, and 64. Similarly, the average value DoC of
the DoC metric results from multiple experiments is used in this section. Tables IX and X present the
experimental results under the influence of Gaussian noise and speckle noise, respectively.

TABLE IX
ANTI-NOISE PERFORMANCE OF VTFF WITH DIFFERENT BLOCK SIZES UNDER GAUSSIAN NOISE (USING THE HIGH-PASS SUBBAND

COMBINATION {DCTF1,DCTF2})

Total Feature Map Block Size DoC ↓ DoER ↓ DoSDA ↓
No Blocking 0.1850 3.9204 0.8912

Block Size of 2 0.1276 4.3015 0.2429
Block Size of 4 0.1028 3.0699 0.1734
Block Size of 8 0.0826 2.2287 0.1282

Block Size of 16 0.0715 1.8338 0.1108
Block Size of 32 0.0662 1.7345 0.1126
Block Size of 64 0.0653 1.8330 0.1343

The experimental results of Tables IX and X indicate that under Gaussian noise, the VTFF demonstrates
better anti-noise performance with block sizes of 16, 32, and 64. Under speckle noise, the VTFF performs
better with block sizes of 8, 16, and 32. Therefore, when using the {DCTF1, DCTF2} combination as
the high-pass subband combination, a block size of 16 is suitable for both Gaussian and speckle noise,
showing good anti-noise performance. Consequently, setting the block size of the total feature map to 16
is most appropriate.
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TABLE X
ANTI-NOISE PERFORMANCE OF VTFF WITH DIFFERENT BLOCK SIZES UNDER SPECKLE NOISE (USING THE HIGH-PASS SUBBAND

COMBINATION {DCTF1,DCTF2})

Total Feature Map Block Size DoC ↓ DoER ↓ DoSDA ↓
No Blocking 0.0512 1.2927 0.2990

Block Size of 2 0.0442 1.5436 0.0729
Block Size of 4 0.0393 1.2401 0.0571
Block Size of 8 0.0355 1.0576 0.0540

Block Size of 16 0.0349 1.0280 0.0633
Block Size of 32 0.0371 1.1428 0.0913
Block Size of 64 0.0432 1.4805 0.1693

Based on the experimental analysis in these two aspects, the VTFF finally adopts {DCTF1, DCTF2}
as the high-pass subband combination and sets the block size of the total feature map to 16 to
ensure optimal performance.
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Appendix 2
Detailed definitions of the measurement capability

and noise robustness metrics

In the letter, we outline the experimental setup used to evaluate the method’s performance. Initially, the
experimental data is generated by convolving the original images in the database with Gaussian functions
of 15 different variances, starting from 0 and increasing by increments of 0.25 up to 3.75. This process
simulates the defocusing process, yielding a sequence of blurred images. Subsequently, Gaussian noise
with a mean of 0 and a variance of 0.02 or speckle noise with a variance of 0.02 is added to each frame
of the blurred image sequence to generate the noisy blurred image sequences, as shown in Figure 1.

Fig. 1. The process of generating experimental data.

We apply one focus measure (RHLD [1]) to both the blurred image sequence and the noisy blurred image
sequence in Figure 1, yeilding two focus measure curves as shown in Figure 2. By analyzing these curves,
we can quantitatively evaluate the method’s performance based on various metrics, including the range
of curve variation, differences between adjacent values, and other relevant information. The evaluation
metrics used in the letter include measurement capability, noise robustness, and real-time performance.

Firstly, the metrics for measurement capability and real-time performance are referenced from [2] and
[3]. For real-time performance, the average runtime of the program is used as the evaluation criterion. For
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Fig. 2. Results of RHLD applied to the blurred image sequences with and without noise in Figure 1.

measurement capability, two metrics are employed: Sensitivity Detection Ability (SDA) [2] and Effective
Range (ER) [3]. This appendix provides a detailed introduction to the SDA and ER metrics.

A. Measurement Capability Metrics
1) Sensitivity Detection Ability (SDA): The calculation formula for SDA is as follows:

SDA =
1

T − 1

T−1∑
t=1

(
1− e

−
∣∣∣Mt+1−Mt

σt+1−σt

∣∣∣ 1
σt+1

)
,

where T is the total number of frames in the blurred image sequence, Mt is the focus measure value of the
tth frame in the sequence, and σt is the standard deviation of the Gaussian function used in the tth frame.
In the experimental data used in this study, the standard deviation of the Gaussian function increases by
a constant value. In this case, a larger SDA indicates that the focus measure values between adjacent
lens positions have greater differences, meaning the focus measure values can effectively distinguish
different degrees of blur. Therefore, a larger SDA value indicates better measurement capability of the
focus measure.

2) Effective Range (ER): The specific form of the ER metric is as follows:

ER =
σ

µ
,

where σ is the standard deviation of the focus measure curve and µ is the mean of the focus measure curve.
When the focus measure has good measurement capability, the obtained focus measure curve is similar to
the without noise curve in Figure 2. The focus measure value decreases rapidly as the target becomes more
blurred, exhibiting a large range of variation. In this case, the standard deviation of the focus measure
curve is large, while the mean is small, resulting in a large ER. Conversely, the focus measure curve
measured by the method is like the with noise curves in Figures 2, where the focus measure value shows
a smaller range of variation, and the focus measure value no longer changes When the target reaches a
certain level of blur. In this situation, the variation in the focus measure value cannot correctly reflect
the changes in the target contrast. The standard deviation of the focus measure curve is small, and the
mean is large, resulting in a small ER. Therefore, the larger the ER, the greater the range of variation in
the focus measure values measured by the method, which can effectively reflect changes in the degree of
target blur and indicate better measurement capability.
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B. Noise Robustness Metrics
The noise robustness of the focus measure is a key focus of the study in the letter. To evaluate this, we

use existing experimental data and metrics are used to assess the stability of the curve trend, ER metric,
and SDA metric under noise through three metrics: Difference of Curve, Difference of ER, and Difference
of SDA. These metrics reflect the noise robustness of the method. In the following content, this appendix
will provide a detailed introduction to the implementation principles and specific definitions of these three
metrics, thereby demonstrating their rationality and effectiveness.

1) Difference of Curve (DoC): When measuring the same blurred image sequence with and without
noise, the measurement results of a focus measure with poor noise robustness are shown in Figure 2. The
two curves will have significant differences in overall trend. Conversely, when the method has good noise
robustness (such as the DoG [3]), the overall trends of the two curves are basically the same, as shown
in Figure 3.

Fig. 3. Results of DoG applied to the blurred image sequences with and without noise in Figure 1.

Based on this point, the difference in trend between the measurement results of the focus measure with
and without noise can serve as a basis for evaluating the noise robustness of the method. Accordingly,
we calculates the difference between the focus measure curves measured on noisy and noise-free blurred
sequences using the following formula:

DoC =

√√√√ T∑
t=1

(MNt −MOt)2,

where T is the total number of frames in the blurred image sequence, MOt and MNt are the focus measure
values obtained by the focus measure for the tth frame of the noise-free and noisy blurred sequences,
respectively. A smaller DoC indicates that the two curves are more similar in overall trend, suggesting
better noise robustness of the method.

2) Difference of ER (DoER) and Difference of SDA (DoSDA): Under the interference of noise, the
measurement capability of the focus measure will also be affected. Similarly, taking the DoG [3] with
good noise robustness and the RHLD [1] with poor noise robustness as examples, the corresponding ER
and SDA metrics for the two methods when measuring the blurred image sequences with and without
noise in Figure 1 are shown in Table I.

From the data in the table I, it can be seen that the ER and SDA metrics for the DoG are very close
under both noisy and noise-free conditions. However, for the RHLD, both ER and SDA metrics show
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TABLE I
ER AND SDA FOR DOG AND RHLD WHEN MEASURING BLURRED IMAGE SEQUENCES WITH AND WITHOUT NOISE IN FIG. 1

Focus Measure
Blurred Image Sequence

Blurred Image Sequence
with Gaussian Noise

ER ↑ SDA ↑ ER ↑ SDA ↑
DoG 0.7279 0.3652 0.6842 0.3625

RHLD 0.9496 0.3713 0.0078 0.0842

a significant decrease when affected by Gaussian noise. These results indicate that the variability in the
measurement capability of focus measures under noise interference can reflect their noise robustness.
Therefore, we will calculate the difference in ER metrics between corresponding noisy and noise-free
blurred sequences, specifically examining how the method’s ER metric changes due to noise interference,
thereby reflecting its noise robustness. The formula is

DoER =

√√√√ K∑
k=1

(ERNk − EROk)
2,

where, K represents the number of experimental groups. For the kth group of experimental data, ERNk

and EROk respectively denote the ER metrics of the focus measure when measuring the corresponding
noisy and noise-free blurred sequences of that group. A smaller DoER indicates that the method maintains
its measurement capability under noise influence, demonstrating better noise robustness. Similarly, this
concept applies to the SDA metric. We evaluates the stability of the focus measure’s SDA metric under
noise influence, thereby reflecting its noise robustness. The specific formula is:

DoSDA =

√√√√ K∑
k=1

(SDANk − SDAOk)2

where, SDANk and SDAOk represent the SDA metric of the method when measuring the corresponding
noisy and noise-free blurred sequences of the kth group of experimental data. A smaller value of DoSDA
suggests that the method’s measurement capability is less affected by noise, demonstrating better noise
robustness.

REFERENCES

[1] X. Nie, B. Xiao, X. Bi, W. Li, and X. Gao, “A focus measure in discrete cosine transform domain for multi-focus image fast fusion,”
Neurocomputing, vol. 465, pp. 93–102, Nov. 2021.

[2] Z. Zhang, Y. Liu, Z. Xiong, J. Li, and M. Zhang, “Focus and Blurriness Measure Using Reorganized DCT Coefficients for an Autofocus
Application,” IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 1, pp. 15–30, Jan. 2018.

[3] L. Guo and L. Liu, “A Perceptual-Based Robust Measure of Image Focus,” IEEE Signal Process. Lett., vol. 29, pp. 2717–2721, 2022.


