Inverse scattering problem at ⁻xed energy for the Schrädinger operator with external Yang-Mills potentials.

G.Eskin, Department of Mathematics, UCLA, USA

December 17, 2001

Consider the Schrädinger equation of the form

(1)
$$(i i \frac{@}{@x} + A(x))^2 u(x) + V(x)u_i k^2 u = 0; x 2 R^n;$$

where n $_{3}$; A(x) = (A₁(x); ...; A_n(x)); A_j(x) and V (x) are m £ m matrices, k > 0. We assume that Yang-Mills potentials A(x); V (x) have compact support and A(x) is smooth up to the order n₀, n + 3.

Theorem 1. If two Schrodinger operators with potentials (A(x); V(x)) and $(A^{0}(x); V^{0}(x))$ respectively have the same scattering amplitude $a(\mu; !; k)$ for $k \ xed$ and all $\mu; ! \ 2 \ S^{n_{i} \ 1}$ then (A(x); V(x)) and $(A^{0}(x); V^{0}(x))$ are gauge equivalent.

To prove Theorem ?? we consider the inverse boundary value problem for (??) in a smooth bounded convex domain in \mathbb{R}^n . Then the well-known connection between the inverse scattering problem at \neg xed energy and the inverse boundary value problem gives Theorem ??.

References

[E] G.Eskin, Global uniqueness in the inverse scattering problem for the Schrädinger operator with external Yang-Mills potentials, to appear in Commun. Math. Phys.