Image Restoration by Minimizing Cost-Functions with Non-smooth Data-Fidelity Terms and Application to the Processing of Outliers

Mila Nikolova (CNRS)

Abstract.

We present a theoretical study of the recovery of an unknown image or signal x 2^p from noisy data y 2^q by minimizing with respect to x a regularized cost-function (x; y) = ^a (x; y) + [®] (x), where ^a is a data-⁻delity term, [©] is a smooth regularization term and [®] > 0 is a parameter. Typically, ^a (x; y) = kAx i yk² where A is a linear operator. The data-⁻delity terms ^a involved in regularized cost-functions are generally smooth functions; only a few papers make an exception and they consider restricted situations. Non-smooth data-⁻delity terms are avoided in image processing. In spite of this, we consider both smooth and non-smooth data-⁻delity terms. Our ambition is to catch essential features exhibited by the local minimizers of regularized cost-functions in relation with the smoothness of the data-⁻delity term.

In order to \bar{x} the context of our study, we consider $a(x; y) = \prod_{i} \tilde{A}(a_i^T x_i y_i)$, where a_i^T are the rows of A and \tilde{A} is m on nf0g. We show that if $\tilde{A}^0(0^i) < \tilde{A}^0(0^+)$, typical data y give rise to local minimizers \hat{x} of (:; y) which \bar{t} exactly a certain number of the data entries: there is a possibly large set h of indexes such that $a_i^T \hat{x} = y_i$ for every i 2 h. In contrast, if \tilde{A} is smooth on , for almost every y, the local minimizers of (:; y) do not \bar{t} any entry of y. Thus, the possibility that a local minimizer \bar{t} some data entries is due to the non-smoothness of the data- \bar{t} delity term. This is a strong mathematical property which is useful in practice. By way of application, we construct a cost-function allowing aberrant data (outliers) to be detected and to be selectively smoothed. Our numerical experiments advocate the use of non-smooth data- \bar{t} delity terms in regularized cost-functions for special purposes in image and signal processing.