OPTIMAL CALIBRATION OF THE LIBOR MARKET MODEL

LIXIN WU

DEPARTMENT OF MATHEMATICS UNIVERSITY OF SCIENCE AND TECHNOLOGY

HONG KONG

In this paper we claim to have developed the optimal methodology for the non-

parametric calibration of market model to the benchmark at-the-money (ATM) cap/floor

and swaption prices, as well as the historic correlation of the LIBOR rates. It is already

known that the calibration to the correlations and the prices can be decoupled. The former

requires a rank-reduction pre-processing on the historic correlation matrices, while the latter

typically poses as a constrained minimization problem with quadratic objective function and

nonlinear constraints. For practical use, standard methods may be too slow due to the high

number of unknowns. Along the approach of Lagrange multiplier, we convert the constrained

minimization problems into minimization-maximization problems (without constraint). For

properly chosen objective functions, the inner maximization problems are solved with a

single matrix eigenvalue decomposition. The outer minimization problems, meanwhile, are

easily subdued by gradient-based descending methods due to the convexity of the objective

functions. In the calibration of prices, we have used the corresponding Black's volatilities

instead of prices themselves. The well-posedness of the Lagrange multiplier problems and the

convergence of the descending methods are rigorously justified. Numerical results show that

we have achieved very quality calibration. We have also developed a technique to calculate

the hedging ratios of a derivative security with respect to the benchmark instruments, using

the auxiliary results of the calibration.

Key words: LIBOR market model, non-parametric calibration, constrained optimiza-

tion, Lagrange multiplier method.

JEL Classification: C51, C61

Mathematics Subject Classification (2000): 60J60, 90C47

Department of Mathematics, University of Science and Technology, Hong Kong; e-mail: malwu@ust.hk,

Tel: 2358-7435.

1