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Abstract -- A novel hybrid genetic algorithm is 
proposed in this paper for solving inverse problems in 
MEMS. The new algorithm presents two hybridization 
operations in order to speed up the convergence 
process. It takes only 4.1% ~ 4.7% number of function 
evaluations required by the conventional genetic 
algorithm to reach global optima for the benchmark 
functions tested. The new algorithm is then used for 
solving two inverse problems. One is the identification 
of flow-pressure characteristic parameters of the valve-
less micropumps. The other is the identification of 
material property parameters and bonding quality of the 
piezoelectric patches. Numerical simulations have 
shown the very satisfactory results. 
Keywords: Genetic algorithm; Inverse problems; 
MEMS  
 
INTRODUCTION 
 
    Hybrid genetic algorithms (GAs) have been known 
as the effective optimization technique for solving the 
complicated optimization problems [1-3]. As the hybrid 
algorithms combine the globe explorative power of 
conventional GAs with the local exploitation behaviors 
of deterministic optimization methods, they usually 
outperform the conventional GAs or deterministic 
optimization methods to be individually used in 
engineering practice. 
    In this study, a new hybrid genetic algorithm (called 
nhGA) is proposed. It presents two hybridization 
operations. The first one is to use a simple interpolation 
method to move the best individual produced by the 
conventional genetic operations to an even better 
neighboring point in each of generations. The second 
one is to use a hill-climbing search to move a randomly 
selected individual to its local optimum. This is may be 
done only when the first hybrid operation fails to 
improve the best individual consecutively in several 
generations. Compared with  
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the other hybrid GAs, the nhGA is not only excellent in 
the convergence performance, but also very simple and 
easy to be implemented in engineering practice.  
    As an effective optimization method, the nhGA is 
used for solving two inverse problems in MEMS. The 
first one is to identify the dynamic flow-pressure 
characteristic parameters of the valve-less micropumps. 
The second one is to identify the material property 
parameters and bonding quality of the piezoelectric 
patches. Both of them have demonstrated the excellent 
performance of the nhGA for inverse problems. 
 
HYBRID GENETIC ALGORITHM  (nhGA) 
 
Algorithm Description 
    Basically, the nhGA proposed in this study is the 
further development for the hybrid GA called hGA [4]. 
As the hGA has been discussed in detail in Ref. [4], 
which may be used as a reference to explain the 
mechanism of nhGA, it is decided herein to only give a 
brief description for the implementation process of 
nhGA as follows: 
    (1) j=0, start up the evolutionary process.  

(a) Select the operation parameters including 
population size N, crossover possibility pc, 
mutation possibility pm, random seed id, 
control parameter α and β [4], etc. 

(b) Initialize N individuals, P(j)=(pj1, pj2,…,pjN), 
using a random method. Every individual pji 
(i=1,…,N) is a candidate solution. 

(c) Evaluate the fitness values of P(j). 
    (2) Check the termination condition. If “yes”, the 

evolutionary process ends. Otherwise, j=j+1 and 
proceed to next step. 

    (3) Carry out the conventional genetic operations in 
order to generate the offspring, i.e. the next 
generation of solutions, C(j)=(cj1, cj2,…,cjN). 
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These operations to be used include niching [5], 
selection [1], crossover [1], elitism [5], etc.  

    (4) Implement the first hybridization operation.  

(a) Construct the move direction 
−
d of best 

individual.  
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Where b
jc 1−  is the best individual in C(j-1) at 

the j-1-th generation, b
jc  and s

jc  are the best 
and second best individuals in C(j) at the j-th 
generation, respectively. 

(b) Generate two new individuals c1, c2, and 
evaluate their fitness values. 
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where α and β are control parameters. They 
are recommended to be within 0.1 ~ 05 and 
0.3 ~ 0.7, respectively. 

(c) Select a better individual cm, 
 f(cm) = max{f(c1), f(c2)}  cm∈ {c1, c2}       

(5) 
f(.) is the fitness function. 

(d) Replace the individual b
jc  in C(j) with the 

individual cm. This results in a upgraded 
offspring Cu(j)=(cj1, cj2,…,cm,…,cjN-1). 

(e) Check if there occurs population convergence 
in Cu(j). If “yes”, implement restarting strategy 
[4] to generate the new C(j). 

    (5) Check if the best individual keeps unimproved 
consecutively in the M generations (M=3~5). If 
“yes’, implement the second hybrid operation as 
follows.  

(a) Randomly select a individual cji in Cu(j). 
(b) Take cji as an initial point to start the hill-

climbing search. 
(c) Replace individual cji with the local optimum 

cjL obtained by the hill-climbing search. 
    (6) Go back to step (2). 
    It is clear from the above description that the newly 
proposed nhGA, compared with the previous hGA, 
does not incur any deterioration of population diversity 
when incorporated with the hybridization operations.  
 
Performance Tests 
    Three benchmark functions are used to test the 
nhGA. Each of benchmark functions has lots of local 

optima and one or more global optima. Figure 1 shows 
the search space of function F1. 
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          Fig. 1.  Search space of benchmark function F1. 

 
   
    For each of benchmark functions, the nhGA runs 10 
times with the different random seed id. The 10 random 
seeds are -1×102, -5×102, -1×104, -1.5×104, -2×104, -
3×104, -3.5×104, -4×104, -4.5×104, -5×104, respectively. 
The other operation parameters are N=5, pc=0.5, 
pm=0.02, α=0.2, β = 0.5 and M=3. Tournament 
selection, one child, niching, elitism are chosen to use. 
Table 1 shows the mean numbers of function 

evaluations, n  and mn , that are taken to reach the 
global optima using the nhGA and conventional mGA 
[5], respectively. It can be found that the nhGA 
demonstrates a much faster convergence than the 
conventional mGA. 
 
 

Table 1 
Mean numbers of function evaluations to convergence 

No. Global Func. n  mn  mnn /  

X1 
X2 
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Optimum Value (%) 

F1 (0.0669, 
0.0669) 1.0 141 3365 4.2 

F2 (1, 10, 1) 0.0 237 5745 4.1 

F3 (1, 1, 1, 
1, 1, 1) 0.0 6637 139915 4.7 
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Fig. 2.  (a) Convergence process in view of generations. 
(b) Hill-climbing process in hybridization operation.  
 
 
    Figure 2 shows the convergence processes of 
benchmark function F1 when using the nhGA against 
the mGA, from which comparison of the convergence 
processes between nhGA and mGA can be seen more 
clearly.  
 
INVERSE PROBLEM SOLVING 
 

Parameter Identification of the Valve-less 
Micropumps 
    Figure 3 schematically shows a valve-less 
micropump. The pressure-loss coefficients, ζp and ζn, in 
the flow channels can be optimally solved from the 
following objective function [6]: 
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             i=1,…, K,  ζpmax≤ζp≤ζpmin,  ζnmax≤ζn≤ζnmin  
 
Qi(ζp, ζn) is the mean flux calculated from a 
complicated model [5] using the trial ζp and ζn, 

i
mQ  is 

the measured mean flux at the i-th trial. K is the number 
of trials. 
 
 
 
 
 
 
 
      
 
        
 
 
 
 

                
              Fig. 3.  Cross-sectional view of a micropump. 

 
 

Table 2 
Solutions for 3 simulated cases 

 n ζp ζn 
e(ζp) 
(%) 

e(ζn) 
(%) 

Case I 790 1.389 0.918 -4.9 -3.4 
Case II 767 1.307 0.894 2.1 2.8 
Case III 525 1.112 0.443 5.9 5.5 

 
    The nhGA is used for solving this problem. Table 2 
shows the corresponding solutions for 3 simulated 
cases. In Table 2, n is the number of function 
evaluations taken by the nhGA, ζp and ζn are the solved 
pressure-loss coefficients, e(ζp) and e(ζn) are the errors 
with respect to their true values, respectively. It can be 
seen that nhGA converges to the satisfactory results 
very fast. The maximal error of solved ζp and ζn are 
only -4.9%, 2.8% and 5.9% for 3 simulated cases, 
respectively.  
 
Property Parameter and Bonding Equality 
Identification of the Piezoelectric Patches 
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    Piezoelectric (PZT) patches have been widely used 
as actuators and sensors in MEMS. Their property 
parameters and bonding equalities are usually required 
to calibrate in order to obtain the accurate analysis 
results [7]. As usually done, an optimization problem is 
formed as follows to this end.  
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N is the number of frequency sampling, Re(Yi) and 
Re(Ym) are the real parts of calculated and measured 
electric admittance of PZT patch at sampling point i, 
respectively. ξ is a coefficient representing the equality 
of bonding layer [7]. Figure 4 shows its effect on the 
electric admittance for a one-dimension example [7]. In 
this study, only dielectric constant σε 31 , piezoelectric 

constant 31d , elastic modulus EE11  and coefficient ξ 
are assumed to be varied and need to be identified 
using the nhGA. The other parameters can be found in 
Ref. [7]. 
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Fig. 4.  Effect of coefficient ξ on admittance. 
 
 
    It is set 3 simulated cases where the 4 parameters to 
be identified are 85%, 100% and 115% of their 
nominal values, respectively [7]. With the given 
parameter values in each case, the electric admittance 
calculated from Eq. (8) is taken as the measured Ym. 
Then, these parameters are allowed to vary within the 
range of from 50% to 150% off from their nominal 
values. The nhGA is used to find the optimal solution. 
It is found out that the maximal errors of identified 4 
parameters with respect to their specified values are 

only 4.3%, 3.7% and 4.8%, respectively. The 
computation costs are also very low. The maximal 
number of function evaluations required is 873. 
 
CONCLUSIONS 
 
    In this study, a novel nhGA is proposed and 
validated using 3 benchmark functions. It is also used 
to solve two typical inverse problems in MEMS. 
Numerical examples have demonstrated its 
effectiveness and efficiency. This provides a new 
choice for solving complicated optimization problems 
as well as inverse problems in engineering practice.  
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