Uniqueness in an inverse optics problem

Masahiro Yamamoto
Department of Mathematical Sciences
The University of Tokyo
3-8-1 Komaba, Meguro, Tokyo 153 Japan
e-mail : myama@ms.u-tokyo.ac.jp

Abstract:

We consider the scattering by the perfectly reflecting periodic structure and we discuss the two dimensional modelling. Let $f 5 C^{2}>\mathrm{R}$ fibe 2^{\wedge}-periodic, $f>x \mathrm{fi}<0$ for $x 5 \mathrm{R}$. We set

$$
\mathrm{I}_{f}=\cdot>x, y \mathrm{fi} y>f>x \mathrm{fi}, x 5 \mathrm{R}, .
$$

Then we regard $/ I_{f}=\cdot>x, y \mathrm{fi} y=f>x \mathrm{fi} x 5 \mathrm{R}$, as a periodic interface which we should determine by scattering data. For this, we introduce an incident field $u^{I}>x, y ; k f i g i v e n ~ b y ~$

$$
u^{I}>x, y ; k \mathrm{fi}=\exp \cdot i k>x \sin \mathrm{~S} ? y \cos \mathrm{Sfi},
$$

which is a time-harmonic electromagnetic plane wave, and S is considered as incident angle.
Then the resulting scattering field $u^{S}>x, y$; k fisatisfies the Helmholtz equation (1) with the perfect reflection boundary condition (2) and the outgoing wave condition (3):

$$
\begin{gathered}
\mathrm{A} u^{S}+k^{2} u^{S}=0 \quad \text { in } \quad \mathrm{I}_{f .} \\
u^{S}+u^{I}=0 \quad \text { on } \quad / \mathrm{I}_{f .}
\end{gathered}
$$

u^{S} satisfies the outgoing wave condition: $u^{S}>x, y \mathrm{fi}=\underset{n 5 z}{>} u_{n} e^{i \supset{ }_{n} x+\mathrm{K}_{n} y \mathrm{fi}}$ if $y>\mathrm{qfq}_{C f(, 2 \mathcal{F}}$.
Here and henceforth, we set

$$
\left\{\mathrm{J}_{n}=n+k \sin \mathrm{~S}, \mathrm{~K}_{n}=\sqrt{k^{2} ?>n+k \sin \mathrm{Sf}^{2}}, \quad 0 \leq \arg \mathrm{K}_{n}<\wedge .\right.
$$

Moreover we pose the $>k \sin$ Sfiquasi-periodicity condition for u^{S} :

$$
u^{S}>x+2 \wedge, y ; k \mathrm{fi}=\exp >2 \wedge i k \sin \mathrm{Sfi} u^{S}>x, y ; k \mathrm{fi}
$$

for all $>x, y f i 5 R^{2}$.

We consider an inverse optics problem.

Inverse Problem of Diffractive Optics

Determine $y=f>x$ fi $x 5 \mathrm{R}$, from measurement

$$
u^{S}>x, 0 ; k \mathrm{fi} \quad x 5>0,2^{\wedge} f i
$$

where u^{S} satisfies (1) - (4).
For this inverse problem, the uniqueness is proved for a lossy medium (i.e., $\operatorname{Im} k>0$) by Bao [1], and for the case of $k 5 \mathrm{R}$ by Hettlich and Kirsch [2] where one has to measure $u^{S}>x, 0 ; k_{j} \mathrm{fi}$ $1 \leq j \leq N$, after $k_{j}, 1 \leq j \leq N$, are suitably chosen. We will show new types of uniqueness results:

