AN INVERSE PROBLEM FOR THE WAVE EQUATION

V.Yurko Saratov University, Russia

Consider the following Cauchy problem for the wave equation

$$u_{xx} i u_{tt} = \$q_1(x)u_t i q_0(x)u; i 1 < x < 1; t > 0; = u_{it=0} = 0; u_{tit=0} = 2±(x); ; (1)$$

where $\pm(x)$ is the Dirac delta-function, $q_j(x)$ are complex-valued functions, $q_j(i x) = q_j(x)$; $q_j(x) \ge W_1^j(0; 1)$: Denote $r^{\S}(t) := u^{\S}(0; t)$; where $u^{\S}(x; t)$ is the solution of (1).

We study the inverse problem of recovering $coe \pm cients$ of equation (1) from the given functions $r^{S}(t)$.

We note that this inverse problem is equivalent to the inverse spectral problem of recovering the $coe \pm cients$ of non-selfadjoint pencil

$$y^{00} + (\frac{1}{2} + i\frac{1}{2}q_1(x) + q_0(x))y = 0; \quad x > 0$$
⁽²⁾

from the given Weyl function $M(\mathcal{H}) := \mathbb{O}(0; \mathcal{H})$; where $\mathbb{O}(x; \mathcal{H})$ is the solution (2) under the conditions $\mathbb{O}^{0}(0; \mathcal{H}) = 1$; $\mathbb{O}(x; \mathcal{H}) = O(\exp(\Si\mathcal{H}x))$; x ! 1; $\SIm \mathcal{H} > 0$:

Theorem. The speci⁻cation of $r^{\S}(t)$; t _ 0; uniquely determines the functions $q_1(x)$ and $q_0(x)$; x _ 0:

Using the method of spectral mappings (see [1]) we also obtain a constructive procedure for calculating the global solution of the inverse problem considered along with necessary and su \pm cient conditions for its gl obal solvability. We note that in [2] local solution of the inverse problem for equation (1) is obtained in a neighbourhood of the origin.

Remark. The speci⁻cation of only one of the functions r^+ (or r^i) is not su ± cient for the unique determination of the function q_1 and q_0 : However the speci⁻cation r^+ (or r^i) uniquely

determines one of the coe \pm cients q₁ (or q₀) provided that the second one is known a priori.

dskip Acknowledgment. This research was supported in part by Grant no. 00-01-00741 of Russian Foundation for Basic Research.

References

- [1] Yurko V.A., Inverse Spectral Problems for Di[®]erential Operators and their Applications. Gordon and Breach, New York, 2000.
- [2] Romanov V.G. and Kabanikhin S.I., Inverse problems for Maxwell's equations. Inverse and III-posed Problems Series. VSP, Utrecht, 1994.