A n Inverse Problem of Derivative Security Pricing

Guanquan Zhang Pei-jun Li

State K ey Laboratory of Scienti ${ }^{-}$c and E ngineering Computing, Insitute of Computational M athematics and Scienti ${ }^{-}$c/ Engineering Computing, AM SS, CAS, B eijing 100080, China

A bstract
In this article an inverse problem on derivative security of interest rate is discussed.
Suppose that the short term interest rate r follows a random walk(IT O Process)

$$
\mathrm{dr}=\mu(\mathrm{r}) \mathrm{dt}+\mathrm{w}(\mathrm{r}) \mathrm{dz} ;
$$

where $d z$ is a normally distributed random varible with zero mean and variance $d t, r 2$ [$0 ; R$], mean reverting function $\mu(r)$ and volatility $w(r)$ are su \pm ciently di ®erentiable functions, satifying

$$
\mu(0), 0 ; \quad \mu(R) \cdot 0 ; \quad \text { and } w(0)=w(R)=0:
$$

$\mathrm{V}(\mathrm{t} ; \mathrm{r} ; \mathrm{T})$, price of zero-coupon bond, satis ${ }^{-}$es the following partial dißerential equation

$$
\frac{@ V}{@}+\frac{w^{2}(r)}{2} \frac{@^{2} V}{@^{2}}+(\mu(r)+,(t) w(r)) \frac{@}{@} i r V=0
$$

where T is maturity, t is time,,$(t)=\frac{{ }^{1} i r}{3 / 4}$ is r isk maket price of interest rate $r,{ }^{1}$ and $3 / 4$ are the expected return and volatility of the derivative security of the interest rate. The ${ }^{-}$nal condition is given by

$$
\mathrm{V}(\mathrm{~T} ; \mathrm{r} ; \mathrm{T})=\mathrm{Z} ; \quad 0<\mathrm{T} \cdot \mathrm{~T}_{\max } ;
$$

where Z is face value of bond.
The inverse problem discussed in the article is to determine the risk market price of interest rate, (t) from the speci- ed current market prices

$$
\mathrm{V}\left(\mathrm{t}=0 ; \mathrm{r}_{0} ; \mathrm{T}\right)=\mathrm{V}(\mathrm{~T}) ; \quad 0<\mathrm{T} \cdot \mathrm{~T}_{\max }:
$$

The inverse problem for, (t) is transformed into the system of adjoint equation

$$
\frac{@}{@} i \frac{1}{2} \frac{@}{@^{2}}\left(w^{2}(r) U\right)+\frac{@}{@}((\mu(r)+,(t) w(r)) U)+r U=0 ;
$$

$$
\text { (t;r) } 2(0 ; 1) £[0 ; R] ;
$$

with boundary conditions

$$
\mathrm{U}(\mathrm{t} ; 0)=\mathrm{U}(\mathrm{t} ; \mathrm{R})=0 ;
$$

and initial condition

$$
U(t=0 ; r)= \pm\left(r ; r_{0}\right) ;
$$

where $\left.\# r_{i} r_{0}\right)$ is Delta function, and the integral equation with current market price data

$$
\text { ,(T) } \int_{0}^{Z_{R}} w(r) U(T ; r) d r+{ }_{0}^{Z_{R}}\left(\mu(r) i r^{2}\right) U(T ; r) d r=i \frac{V^{0 q}(T)}{Z}
$$

The integral equation is nonlinear, because $U(T ; r)$ depends on, (t) in itself.
The numerical algorithm to solve this system is const ructed and some numerical experiments for the data without error and with random error are performed. The numerical results show that the algorithm is quite $\mathrm{e} \pm$ cient and robust.

