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A Method for Dynamics Identification for Haptic
Display of the Operating Feel in Virtual Environments

Y. F. Li, Senior Member, IEEEand D. Bi Member, IEEE

~ Abstract—Realistic dynamics models are important for haptic ~ ture risk minimization (SRM), SVM serves as a favorable tool
display for virtual reality systems. Such dynamic models are for reconstructing the approximation of a function from sparse
desirably obtained via experimental identification. However, training data. The interesting feature of the SVM-based method

traditional dynamics identification methods normally require . . . .
large sized training data sets, which maybe difficult to meet in 'S that the resulting model is only recorded by the informa-

many practical applications. To obtain the dynamics models, we tion of the most important training data (the so-called support
present, in this paper, an identification method using support vectors), whose number does not grow exponentially with the
vector machines regression algorithm which is more effective than number of training data. In other words, SVM is able to au-
traditional methods for sparse training data. This method can yomatically select the number and the parameters of the basic
be used as a generic learning machine or as a special learning . - . ) .
technique that can make full use of the available knowledge functions a_ccordlng to the Comp_IeX|ty 9f af_uncUon 'Fo_be esti-
about the dynamics structure. The experimental results show Mmated but independent of the dimensionality of training data.

the application of our method for identifying friction models for ~ Up to now, the use of SVM for dynamics modeling and iden-

haptic display. tification has not been exploited much, especially when exper-
Index Terms—Dynamics identification, haptic display, support  imental implementation is concerned. In this paper, we present
vector machines (SVM), virtual-reality (VR)-based training. our study in dynamic-model identification using SVM, for en-
hancing the haptic display of the operating feel in using VR for
I. INTRODUCTION medical training applications.

) ) o S ) This paper is organized as follows. In Section II, we present
H APTIC display is an effective interaction aid inimprovinghe SvM-based friction modeling method. In Section I1l, some
the realism of virtual worlds [1]. The ability to touch, experimental results in identifying frictions are given. Sec-

feel, and manipulate objects in virtual environments can pr@on |v summarizes the conclusions drawn from the research
vide much greater immersion than before [2]-[4]. However, SUgrork.

cessful implementation of haptic display in practical applica-
tions desires dynamics models to be incorporated [5]. Among
the dynamic effects to be modeled, friction is a factor impor-
tant to many applications such as virtual-reality (VR)-based suk- SVM Algorithm

gical training [6], [7]. Friction modeling has been extensively The svM algorithm has its origin in the theory of statistical
explored in robotics community [8]. The modified Karmnopp friciearning. Here, we present its algorithm via our identification
tion model proposed by Cutkoskyal.[9] introduced stick-slip case study. See [12] for more details about the theory. Assume
and viscous friction effect. The LuGre model [10] can captuigat f denotes the relationship between the contact friction force
the experimentally observed static and dynamic characteristieing a multidimensional input vector(such as velocity and

of friction. The cost paid for the dynamics characteristic prejormal forcep) through the mapping : = — F = f(z). Here,
diction of this model is the dependency of the friction on afyr positive and negative velocities, the mapping will be treated
immeasurable internal state. Neural-network-based learning figghe same way, but the models will be given separately. In the
also been studied for friction modeling [11]. The limitation withexamples presented in this paper, we assume positive velocity.
this method lies in the overfitting problem when the trainingye trivially assume thaf(z) evolves over some bounded set

data are sparse. In general, a problem with the traditional legst % Given the training datd = {(z;, F;)}"_,, where
square and neural-network-based identification method is that _ £( : =

A ! (UETIHHE e x;) for eachj and N is the number of the training data
they are based on empirical rlsk.m|n|m|zat|on principle, so th(%éints, the identified friction modei’ = f'(z) can be obtained
they need a large number of training data sets and they ten¢,{seeking the solution of the following regularization problem:
be sensitive to unknown error distribution models.
Recently, the support vector machine (SVM) [12] has been N
explored for data classification and regression. Based on struc-  min Ryeq(f) = I Z c(Fy, f(z:)) +
1=1

Il. SVM-BASED FRICTION IDENTIFICATION

N | =

feH
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the effort for smoothingL > 0 is a regularization constant totipliers to this constrained optimization problem (8) and (9), we
make a tradeoff between the training error and the smoothiogn obtain the identified friction model
constraint. The kerndk (-, -) is a (strict) positive definite func- N
tion Qeflned over) X Q, that is, fgf anyry, Ty, . .. I3 GQ the f(g;) _ Za‘K zi,2) + m (10)
matrix | K (x;,z;)] is (strict) positive definite. In addition, we
assume thak( has the expression in the form of
whereg; (i € 1,...N) andm are parameter values obtained by
solving the optimal problem. The correspondifgis nonzero
K(z1,22) = Z Pn(21)Pn (w2) ) only when the distance of the training points from the target is
n=0 no less than. These training points are called support vectors.
where{¢, (z)}22, is the set of linearly independent functionsr his friction identification method is referred to as SVM-based
defined over. A typical example ofK (-, -) is a radial basis identification method. If the kernel is linear, the identified fric-
function (RBF) in the form of tion model can be expressed as

K(r1,72) = exp <—%> 3) fle)=m-z4+m (11)

oo

where 7 is a constant obtained by solving the optimization
wheres > 0 is a radial width parameter. From the propertproblem.
of RKHS, given a kerneK in the form of (2), f(z) can be
described in the following form: B. Friction Identification Examples

. Friction is an important dynamics for incorporation into the
- Z () + b (4) Vvirtual environment to increase the reality. Yet, it is still hard to
find a universally applicable model. For different materials, the
parameters in the friction model change accordingly. It is there-
fore desired that the friction model be identified for particular
oo oo oo applications. Here, we present three cases in friction identifica-
<Z U pn(z) + b, Z dppn(z) + b> - Z and,. (5) tion:hard object, soft object, and needle puncture.
- — — 1) Hard Surface Friction Identification:Previous studies
show that dynamics friction is related to the normal force
To obtain a solution of the above regularization problem (1éppl|ed to the surface. Experiments have also proved that
we choose the-insensitive loss function the dynamics structure of this relationship is linear for hard
surface contact. When using SVM-based friction identification
o(F, f |F [ | algorithm, we can take advantage of this prior knowledge by
where|-|_ is the Vapnik'sz-insensitive norm defined as Choos‘”% a linear _ke_rnel. Th”e Iearning data pairs are “p_ressure
€ (1 = [p] ) and friction F' .” By solving the optimization

for anya,, d,, b € R equipped with the scalar product

) 0 if |[F = f(z)| < e problem (8) and (9), the friction model is given as
|F = f(@)le = { |F — f(z)] —e, otherwise. ©) N
Substiuting (41-6) o (1), we optn F(p) = dpip +m.

i=1

. 2) Soft Surface Friction Identificationif the deformation of
Ten Rieg(f) = L Z |Fi = f(ai)le + Z @ (1) the soft material is not large, we can assume that the friction-
pressure relation for a constant velocity is linear. Based on this
As thee-insensitive norm is hard to handle mathematically, th@ssumption, the soft material friction identification procedure is
above minimization is transformed into the following equivaler@iven as follows.
problem: 1) Identify the friction-pressure function by identifying the
parameters, m in (11) at some constant velocity
2) Record ther, m, v data.
3) Choose a different velocity value and repeat step 1 and 2.
4) After a set of training datér;, m;,v;) is obtained, iden-
subject to the constraints tify the (v, ), (v, m) relationship function in the fol-
~ lowing two steps.
Fy = f(zi) <e + & a) Choose a kernel. Here, we chose the Gaussian RBF
flz) — F; <e + & kernel.
&, 65 >0 9) b) E?ti)mate thév, ), (v, m) functionm = f(v),m =
f(v).
whereé andé* in (8) denote the slack vectojg, o, . . . 7£N]T After the above steps, the friction-pressure-velocity relation-
and[&r, &5, N] respectively. Applying Lagrangian mul-ship is obtained. Given velocity and pressure, we can first obtain

N o
min, Ryeg( [,6,6) = Z &+E Zai 8
Feg i=1 i:l
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Fig. 2. Force sensor structure.

Fig. 1. Schema of the experimental setup.

the corresponding, m, and then compute the friction by (11) Nut
using the identified values of, m.

3) Needle Puncture Dynamics Identificatio®& simple ex-
ample involving dynamics interactions in surgical training is the
puncturing operation using a needle. Here, we assume no prior
knowledge about the puncturing dynamics model. To identify
the model, we just use the SVM as a universal learning machine.

The identification procedure is given as follows.
» Choose the Gaussian RBF as the kernel. The input is the
needle’s displacement and velocity= [s, v]*.
» Acquire the training data.
« Measure the dynamics input neglecting the mass of the
needle. The measured output is the resistant férge. Fig. 3. Cross section of the PRS.
* Apply SVM algorithm to identify the dynamics model

leadscrew

roller

= f(z). device, a special planetary roller screw (PRS) was employed.
The principal components of the PRS are lead-screw, rollers,
lIl. EXPERIMENTS and nut as shown in Fig. 3. The features of this kind of structure

In this section, we first present the experimental system set{ilude: large power increase, high efficiency, high position ac-
and then show the experimental results corresponding to f##acy, high input speed, and low wear. The pitch of the PRS is

The closed loop control of the two motion degrees of freedom
A. Experimental Setup is developed on a dSPACE controller. The dSPACE DS1103

PPC Controller Board is used here for the implementation of the

_The experimental system was designed for dual use as a gy, sneed multivariable digital controllers and real time simu-
vice for acquiring data for the identification purpose and gSsiqns The controller board is directly plugged into the host PC

a haptic interface for subsequent force display purpose. Th&nq the |SA bus as a backplane. This setup provides a platform

system setup simulates a simplified human finger exploring g} e measurements for the identification and for the haptic
unknown environment. It has two degrees of freedom: a ro@fsplay as well.

tional degree and a linear motion degree. The schema are illus-
trated in Fig. 1. The “finger” includes a three-dimensional (3-D - e
force sensor with an aluminum cover at the tip. % Hard Surface Friction Identification

The force sensor can measure 3-D forces simultaneously. AThe first experiment conducted involved contact between the
picture of the sensor head is given in Fig. 2. Mechanically, teechanical finger and a hard surface of an aluminum plate as
force sensor consists of three pairs of flat steel plates. The stiffrown in Fig. 4. For the contact surface friction identification,
ness of each pair of plates is made low in only one direction Hte training data pair is the “pressure force and friction force”
that it is sensitive to deformations in this direction. Three paiwghich were measured by theaxis andy-axis channel of the
of strain gauges are attached to the sensitive surfaces to meane sensor. In this experiment, we controlled motor 1 to move
the deformations which are related to the forces being expdte “finger” along the surface of the aluminum plate following
enced. The measurable force range in each directielRikg—2 a sine wave trajectory. The normal force was controlled via
Kg, with linearity errors less than 0.5% of the full span. motor 2.

To achieve an accurate conversion of the rotational motion ofUsing the method described in Section 1I-B, we obtained the
a motor to the linear motion of the first degree of motion of thisiction model training data. Here, we choge= 10'!, ¢ =
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Pressure (Kgf) noise. To improve the velocity estimation, we used a high-reso-

_ o lution optical encoder. Furthermore, a digital filter is employed
Fig. 5. Identified friction in hard contact. where the estimated velocity is computed as
0.003 for 31 training data pairsP;, F;). Solving the optimiza-
tion (8) and (9), we can obtain the identified friction model p(z) = z -1

= mw(z) (13)

F'=0.1647P + 0.0033. (12) wherez is the measured displacementjs the estimated ve-

Thet data and the identified it | Fi Iomty T is the sampling period, andis a small time constant.
€ training data and the identified result are aso given in Fig. 5 Flgs 6 and 7 show the result of the identified function=
An error of about 0.0033 is observable at the origin. This err and m = f(v)

results from the imperfect measurement hardware of the syst ft (m, v) functions are identified, the soft material

butis considered acceptably small. friction model can be constructed as a two-dimensional (2-D)
function as shown Fig. 8, where the dynamic inputs consist of
the velocity and pressure force.

The experimental setup for soft contact experiments is sameThis soft surface friction model was identified with only 56
as that for hard contact shown in Fig. 4, except that a sponge tygugport vectors from the 320 training data. For comparison,
of material is used in place of the aluminum plate. Following th#e also conducted the identification experiments using the
procedures given in Section 11-B, we conducted the experimeisame training data set but applying two traditional methods: the
by first controlling motor 1 to move at a constant velocity alonghysical model (Columb- viscous) based method [9] and the
the soft material surface. Changing the pressure force by c&®BF network-based method [11]. For the physical-model-based
trolling motor 2, we obtained a set of pressure-friction trainingnethod, the Columb friction was given as proportional to the
data for identifying the parametexs m. Then, with a different normal pressure and the viscous friction as proportional to
velocity by controlling motor 1, the above was repeated. Whe relative velocity. Using the least-mean-square technique,
used an optical encoder as the position sensor in the expére Columb and viscous parameter values were identified as
ment. To obtain the velocity signal, we differentiated the p@.7648 and 0.8333, respectively. For the RBF network method,
sition signal. This has a potential disadvantage of introducimgatlab’s Neural-Network Toolbox was used for the implemen-

C. Soft Surface Friction ldentification
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Fig. 8. Identified friction for a soft material.

TABLE |

EXPERIMENTAL COMPARISON FORSURFACE FRICTION |DENTIFICATIONS =
Friction modeling AISE value A L‘?)
method |F mea F © g
SVM 2.3445E-4 | 0.0369 &
Columb+ Visious 3.5190E-4 | 0.0415
method [9]

RBF Network [11] 3.1868E-4 0.0451

Needle Speed ( mm/s ) 00

Insertion Distance (cm )

tation. To compare the three friction identification algorithm%g 10

. . Identified puncture dynamics.
the average integral squared error (AISE), defined as P Y

1T TABLE I
AISE = T / e2dt EXPERIMENTAL COMPARISON FORNEEDLE PUNCTURE MODEL |IDENTIFICATION
0 g

. . . . Fricti delin; AISE value A
with a trajectory observation duratidh of 10 s was used as mr;ihlc?; me & 'F mea F
the assessment index, wheris the estimation error. The sam- i
pling step used was 0.2 s. Table | shows the results obtained___SVM 8.9225E-3 0.2369
the three identification methods. Hellé ... — F|- is taken _RBF Network 1.5179E-2 0.3647

as the identification error bound, arifd,., is the actual mea-

sured friction force. The AISE values shown in Table | indicatg,eat. The resistant force in the puncture is measured from the
the advantages of our method over the other two. From the teayis reading of the force sensor. The insertion distance is mea-
sults, itcan be inferred that using the traditional physical mod&j§red using the encoder reading. The velocity is estimated by
such as the Columb Viscous model here, itis difficult to fully the aforementioned approach via (13). Motor 2 controls the in-
characterize the nonlinear nature in the friction model. This é&rtion of the needle. Following the procedures given in Sec-
overcome in our SVM-based method as indicated by the ifjon |1-B, we identified the puncturing dynamics, with the re-
proved AISE in the results. The RBF network method seerggjig given in Fig. 10.

to improve on the physical model in its modeling capability. From the identified result, we can see that the resistant force
However, its resulting AISE is still worse than the SVM-based nonlinear in relation to the insertion distance and the needle
method. This confirms the advantage of SVM over atradltlongbeed_ This 2-D model can be given by only 98 support vec-
neur.al network when only_Iimited training data are availablggrs from 350 training data, making it suitable for the high up-
The increased error bound in the RBF network method can begéting rate required in haptic force display. The identified func-
tributed to the overfitting by this method as we observed at SOmgn turned out to be quite continuous, thanks to the filtering ef-

data point in our tests. In general, the SVM based method gért py the--insensitive function. We also experimented with the
fers a more acceptable identification results than the traditiongjme training data but using traditional methods. As the needle
methods. puncture force is highly nonlinear in relation to both the in-
sertion distance and needle speed, traditional parameter based
physical model is unsuitable. The results of using the RBF net-
In this experiment, a needle is attached to the tip of the foreerk method are givenin Table Il for comparison with our SVM
sensor as shown in Fig. 9. The test object is a portion of frestethod. The results in the AISE and error bound values again

D. Needle Puncture Dynamics Identification
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Fig. 11. Control schema for the haptic interface.

show that the SVM-based method outperforms the RBF network &= 2. 5
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to testthe training on a VR system. In this experiment, the haptic 4
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display is implemented using the same 2-degrees-of-freedom
device we developed and used in our needle puncture dynamics
identification tests. However, in this case, the needle is to be
held and moved by the operator. Fig. 12. Forces experienced during virtual puncturing.
The system is a desktop VR system. The computer is a PC

installed with a gr_aph_ics accele_rati_on card, under Windows N: tions. The SVM-based method on the other hand provides a
system. The haptic display device IS co_ntrolled by the_ dSPA re flexible way for practical applications by removing such
Controller. The software programming is based on Visual CJ'a"'need. Finally, the self-learning capability of SVM allows im-

using OPEN.GL Graph@; Lib. The core part of the hgptlc di yrovement of the identified model whenever new experimental
play system is the identified needle puncturing dynamics mo

. o ta are available.
which serves as the reference output for the haptic display con-

trol system as shown in Fig. 11. Different methods can be used
for dealing with the contact forces including impedance con-
trol [14]. Here, we implemented admittance control scheme toThis paper presents an approach for identifying dynamics
suit the hardware adopted in the system. When using the hapticdels using the SVM regression algorithm, which overcomes
display, the operator applies a force to the haptic interface. Tthe limit of traditional identification methods that require large
control law here uses the measured interaction force betwerining data sets. With SVM-based identification, the model is
the needle and the operator’'s hand, and derives the control sigly recorded by the information of the support vectors, whose
nals based on the desired motion output, to drive the actuatontamber does not grow exponentially with the number of training
produce the corresponding motion. The virtual contact forcedsta. This algorithm can automatically select the number and
displayed to the operator via the haptic interface so that he fettle parameters of the basic functions according to the com-
as if he is puncturing some real flesh. plexity of dynamics function to be estimated but independent

Fig. 12 shows the force-displacement history experienced bf/the dimensionality of the training data. The identified dy-
the operator during a typical virtual puncturing process. Thisamics models were incorporated into a virtual environment
force-displacement relationship is the control results using tfa@ authentic display of the dynamics interactions between the
identified needle puncture model. The identified friction wasperator and the virtual objects. Our implementation indicates
highly nonlinear and affected by the needle puncturing speedhat the SVM regression algorithm provides a useful tool for

With a traditional finite-element method (FEM), it is very dif-dynamics model identification with sparse training data com-
ficult to incorporate even some simplest dynamics and it is evpared with traditional methods. The experiments show that by
harder to obtain the model parameters describing the properiesorporating the experimentally identified dynamics for haptic
of the material in the model accurately. The identified model vidisplay, the operator's immersion in a virtual environment can
SVM offers its advantage in its easy and efficient implementae significantly improved. The learning capability of SVM will
tion in VR for high-rate haptic display. For traditional identifi-allow easy incorporation of updated/improved dynamics models
cation algorithms, such as neural networks, large training datathe training platform whenever new experimental data are
sets are needed, which may not be easily feasible in real applailable.

IV. CONCLUSION
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