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A Method for Dynamics Identification for Haptic
Display of the Operating Feel in Virtual Environments

Y. F. Li, Senior Member, IEEE,and D. Bi, Member, IEEE

Abstract—Realistic dynamics models are important for haptic
display for virtual reality systems. Such dynamic models are
desirably obtained via experimental identification. However,
traditional dynamics identification methods normally require
large sized training data sets, which maybe difficult to meet in
many practical applications. To obtain the dynamics models, we
present, in this paper, an identification method using support
vector machines regression algorithm which is more effective than
traditional methods for sparse training data. This method can
be used as a generic learning machine or as a special learning
technique that can make full use of the available knowledge
about the dynamics structure. The experimental results show
the application of our method for identifying friction models for
haptic display.

Index Terms—Dynamics identification, haptic display, support
vector machines (SVM), virtual-reality (VR)-based training.

I. INTRODUCTION

H APTIC display is an effective interaction aid in improving
the realism of virtual worlds [1]. The ability to touch,

feel, and manipulate objects in virtual environments can pro-
vide much greater immersion than before [2]–[4]. However, suc-
cessful implementation of haptic display in practical applica-
tions desires dynamics models to be incorporated [5]. Among
the dynamic effects to be modeled, friction is a factor impor-
tant to many applications such as virtual-reality (VR)-based sur-
gical training [6], [7]. Friction modeling has been extensively
explored in robotics community [8]. The modified Karnopp fric-
tion model proposed by Cutkoskyet al.[9] introduced stick–slip
and viscous friction effect. The LuGre model [10] can capture
the experimentally observed static and dynamic characteristics
of friction. The cost paid for the dynamics characteristic pre-
diction of this model is the dependency of the friction on an
immeasurable internal state. Neural-network-based learning has
also been studied for friction modeling [11]. The limitation with
this method lies in the overfitting problem when the training
data are sparse. In general, a problem with the traditional least
square and neural-network-based identification method is that
they are based on empirical risk minimization principle, so that
they need a large number of training data sets and they tend to
be sensitive to unknown error distribution models.

Recently, the support vector machine (SVM) [12] has been
explored for data classification and regression. Based on struc-
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ture risk minimization (SRM), SVM serves as a favorable tool
for reconstructing the approximation of a function from sparse
training data. The interesting feature of the SVM-based method
is that the resulting model is only recorded by the informa-
tion of the most important training data (the so-called support
vectors), whose number does not grow exponentially with the
number of training data. In other words, SVM is able to au-
tomatically select the number and the parameters of the basic
functions according to the complexity of a function to be esti-
mated but independent of the dimensionality of training data.
Up to now, the use of SVM for dynamics modeling and iden-
tification has not been exploited much, especially when exper-
imental implementation is concerned. In this paper, we present
our study in dynamic-model identification using SVM, for en-
hancing the haptic display of the operating feel in using VR for
medical training applications.

This paper is organized as follows. In Section II, we present
the SVM-based friction modeling method. In Section III, some
experimental results in identifying frictions are given. Sec-
tion IV summarizes the conclusions drawn from the research
work.

II. SVM-BASED FRICTION IDENTIFICATION

A. SVM Algorithm

The SVM algorithm has its origin in the theory of statistical
learning. Here, we present its algorithm via our identification
case study. See [12] for more details about the theory. Assume
that denotes the relationship between the contact friction force

and a multidimensional input vector(such as velocity and
normal force ) through the mapping . Here,
for positive and negative velocities, the mapping will be treated
in the same way, but the models will be given separately. In the
examples presented in this paper, we assume positive velocity.
We trivially assume that evolves over some bounded set

. Given the training data , where
for each and is the number of the training data

points, the identified friction model can be obtained
by seeking the solution of the following regularization problem:

(1)

in a reproducing kernel Hilbert space (RKHS) defined by
kernel [13]. The first term in is the cost of the
training error, in which is the loss function mea-
suring the error we make when predicting the friction forceby

at some input . The second term is a stabilizer that reflects
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the effort for smoothing. is a regularization constant to
make a tradeoff between the training error and the smoothing
constraint. The kernel is a (strict) positive definite func-
tion defined over , that is, for any , the
matrix is (strict) positive definite. In addition, we
assume that has the expression in the form of

(2)

where is the set of linearly independent functions
defined over . A typical example of is a radial basis
function (RBF) in the form of

(3)

where is a radial width parameter. From the property
of RKHS, given a kernel in the form of (2), can be
described in the following form:

(4)

for any , , equipped with the scalar product

(5)

To obtain a solution of the above regularization problem (1),
we choose the-insensitive loss function

where is the Vapnik’s -insensitive norm defined as

if
otherwise.

(6)

Substituting (4)–(6) into (1), we obtain

(7)

As the -insensitive norm is hard to handle mathematically, the
above minimization is transformed into the following equivalent
problem:

(8)

subject to the constraints

(9)

where and in (8) denote the slack vectors
and , respectively. Applying Lagrangian mul-

tipliers to this constrained optimization problem (8) and (9), we
can obtain the identified friction model

(10)

where and are parameter values obtained by
solving the optimal problem. The correspondingis nonzero
only when the distance of the training points from the target is
no less than. These training points are called support vectors.
This friction identification method is referred to as SVM-based
identification method. If the kernel is linear, the identified fric-
tion model can be expressed as

(11)

where is a constant obtained by solving the optimization
problem.

B. Friction Identification Examples

Friction is an important dynamics for incorporation into the
virtual environment to increase the reality. Yet, it is still hard to
find a universally applicable model. For different materials, the
parameters in the friction model change accordingly. It is there-
fore desired that the friction model be identified for particular
applications. Here, we present three cases in friction identifica-
tion: hard object, soft object, and needle puncture.

1) Hard Surface Friction Identification:Previous studies
show that dynamics friction is related to the normal force
applied to the surface. Experiments have also proved that
the dynamics structure of this relationship is linear for hard
surface contact. When using SVM-based friction identification
algorithm, we can take advantage of this prior knowledge by
choosing a linear kernel. The learning data pairs are “pressure

and friction .” By solving the optimization
problem (8) and (9), the friction model is given as

2) Soft Surface Friction Identification:If the deformation of
the soft material is not large, we can assume that the friction-
pressure relation for a constant velocity is linear. Based on this
assumption, the soft material friction identification procedure is
given as follows.

1) Identify the friction-pressure function by identifying the
parameters , in (11) at some constant velocity.

2) Record the , , data.
3) Choose a different velocity value and repeat step 1 and 2.
4) After a set of training data is obtained, iden-

tify the , relationship function in the fol-
lowing two steps.

a) Choose a kernel. Here, we chose the Gaussian RBF
kernel.

b) Estimate the function
.

After the above steps, the friction-pressure-velocity relation-
ship is obtained. Given velocity and pressure, we can first obtain
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Fig. 1. Schema of the experimental setup.

the corresponding, , and then compute the friction by (11)
using the identified values of, .

3) Needle Puncture Dynamics Identification:A simple ex-
ample involving dynamics interactions in surgical training is the
puncturing operation using a needle. Here, we assume no prior
knowledge about the puncturing dynamics model. To identify
the model, we just use the SVM as a universal learning machine.
The identification procedure is given as follows.

• Choose the Gaussian RBF as the kernel. The input is the
needle’s displacement and velocity .

• Acquire the training data.
• Measure the dynamics input neglecting the mass of the

needle. The measured output is the resistant force.
• Apply SVM algorithm to identify the dynamics model

.

III. EXPERIMENTS

In this section, we first present the experimental system setup
and then show the experimental results corresponding to the
three cases described above.

A. Experimental Setup

The experimental system was designed for dual use as a de-
vice for acquiring data for the identification purpose and as
a haptic interface for subsequent force display purpose. The
system setup simulates a simplified human finger exploring an
unknown environment. It has two degrees of freedom: a rota-
tional degree and a linear motion degree. The schema are illus-
trated in Fig. 1. The “finger” includes a three-dimensional (3-D)
force sensor with an aluminum cover at the tip.

The force sensor can measure 3-D forces simultaneously. A
picture of the sensor head is given in Fig. 2. Mechanically, the
force sensor consists of three pairs of flat steel plates. The stiff-
ness of each pair of plates is made low in only one direction so
that it is sensitive to deformations in this direction. Three pairs
of strain gauges are attached to the sensitive surfaces to measure
the deformations which are related to the forces being experi-
enced. The measurable force range in each direction is2 kg–2
Kg, with linearity errors less than 0.5% of the full span.

To achieve an accurate conversion of the rotational motion of
a motor to the linear motion of the first degree of motion of the

Fig. 2. Force sensor structure.

Fig. 3. Cross section of the PRS.

device, a special planetary roller screw (PRS) was employed.
The principal components of the PRS are lead-screw, rollers,
and nut as shown in Fig. 3. The features of this kind of structure
include: large power increase, high efficiency, high position ac-
curacy, high input speed, and low wear. The pitch of the PRS is
0.166 mm and its stroke is 35 mm.

The closed loop control of the two motion degrees of freedom
is developed on a dSPACE controller. The dSPACE DS1103
PPC Controller Board is used here for the implementation of the
high-speed multivariable digital controllers and real time simu-
lations. The controller board is directly plugged into the host PC
using the ISA bus as a backplane. This setup provides a platform
for the measurements for the identification and for the haptic
display as well.

B. Hard Surface Friction Identification

The first experiment conducted involved contact between the
mechanical finger and a hard surface of an aluminum plate as
shown in Fig. 4. For the contact surface friction identification,
the training data pair is the “pressure force and friction force”
which were measured by the-axis and -axis channel of the
force sensor. In this experiment, we controlled motor 1 to move
the “finger” along the surface of the aluminum plate following
a sine wave trajectory. The normal force was controlled via
motor 2.

Using the method described in Section II-B, we obtained the
friction model training data. Here, we chose ,
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Fig. 4. Hard contact experiment.

Fig. 5. Identified friction in hard contact.

for 31 training data pairs . Solving the optimiza-
tion (8) and (9), we can obtain the identified friction model

(12)

The training data and the identified result are also given in Fig. 5.
An error of about 0.0033 is observable at the origin. This error
results from the imperfect measurement hardware of the system
but is considered acceptably small.

C. Soft Surface Friction Identification

The experimental setup for soft contact experiments is same
as that for hard contact shown in Fig. 4, except that a sponge type
of material is used in place of the aluminum plate. Following the
procedures given in Section II-B, we conducted the experiments
by first controlling motor 1 to move at a constant velocity along
the soft material surface. Changing the pressure force by con-
trolling motor 2, we obtained a set of pressure-friction training
data for identifying the parameters, . Then, with a different
velocity by controlling motor 1, the above was repeated. We
used an optical encoder as the position sensor in the experi-
ment. To obtain the velocity signal, we differentiated the po-
sition signal. This has a potential disadvantage of introducing

Fig. 6. Identified function for��.

Fig. 7. Identified function for�m.

noise. To improve the velocity estimation, we used a high-reso-
lution optical encoder. Furthermore, a digital filter is employed
where the estimated velocity is computed as

(13)

where is the measured displacement,is the estimated ve-
locity, is the sampling period, andis a small time constant.

Figs. 6 and 7 show the result of the identified function
and .

After , functions are identified, the soft material
friction model can be constructed as a two-dimensional (2-D)
function as shown Fig. 8, where the dynamic inputs consist of
the velocity and pressure force.

This soft surface friction model was identified with only 56
support vectors from the 320 training data. For comparison,
we also conducted the identification experiments using the
same training data set but applying two traditional methods: the
physical model (Columb viscous) based method [9] and the
RBF network-based method [11]. For the physical-model-based
method, the Columb friction was given as proportional to the
normal pressure and the viscous friction as proportional to
the relative velocity. Using the least-mean-square technique,
the Columb and viscous parameter values were identified as
0.7648 and 0.8333, respectively. For the RBF network method,
Matlab’s Neural-Network Toolbox was used for the implemen-
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Fig. 8. Identified friction for a soft material.

TABLE I
EXPERIMENTAL COMPARISON FORSURFACEFRICTION IDENTIFICATIONS

tation. To compare the three friction identification algorithms,
the average integral squared error (AISE), defined as

AISE

with a trajectory observation duration of 10 s was used as
the assessment index, whereis the estimation error. The sam-
pling step used was 0.2 s. Table I shows the results obtained by
the three identification methods. Here, is taken
as the identification error bound, and is the actual mea-
sured friction force. The AISE values shown in Table I indicate
the advantages of our method over the other two. From the re-
sults, it can be inferred that using the traditional physical models
such as the Columb Viscous model here, it is difficult to fully
characterize the nonlinear nature in the friction model. This is
overcome in our SVM-based method as indicated by the im-
proved AISE in the results. The RBF network method seems
to improve on the physical model in its modeling capability.
However, its resulting AISE is still worse than the SVM-based
method. This confirms the advantage of SVM over a traditional
neural network when only limited training data are available.
The increased error bound in the RBF network method can be at-
tributed to the overfitting by this method as we observed at some
data point in our tests. In general, the SVM based method of-
fers a more acceptable identification results than the traditional
methods.

D. Needle Puncture Dynamics Identification

In this experiment, a needle is attached to the tip of the force
sensor as shown in Fig. 9. The test object is a portion of fresh

Fig. 9. Needle puncture experiment.

Fig. 10. Identified puncture dynamics.

TABLE II
EXPERIMENTAL COMPARISON FORNEEDLE PUNCTUREMODEL IDENTIFICATION

meat. The resistant force in the puncture is measured from the
-axis reading of the force sensor. The insertion distance is mea-

sured using the encoder reading. The velocity is estimated by
the aforementioned approach via (13). Motor 2 controls the in-
sertion of the needle. Following the procedures given in Sec-
tion II-B, we identified the puncturing dynamics, with the re-
sults given in Fig. 10.

From the identified result, we can see that the resistant force
is nonlinear in relation to the insertion distance and the needle
speed. This 2-D model can be given by only 98 support vec-
tors from 350 training data, making it suitable for the high up-
dating rate required in haptic force display. The identified func-
tion turned out to be quite continuous, thanks to the filtering ef-
fect by the -insensitive function. We also experimented with the
same training data but using traditional methods. As the needle
puncture force is highly nonlinear in relation to both the in-
sertion distance and needle speed, traditional parameter based
physical model is unsuitable. The results of using the RBF net-
work method are given in Table II for comparison with our SVM
method. The results in the AISE and error bound values again
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Fig. 11. Control schema for the haptic interface.

show that the SVM-based method outperforms the RBF network
based method in the identification.

E. Haptic Display of Identified Dynamics

As an implementation case study, we incorporated the iden-
tified needle puncture dynamics model in a virtual environment
to test the training on a VR system. In this experiment, the haptic
display is implemented using the same 2-degrees-of-freedom
device we developed and used in our needle puncture dynamics
identification tests. However, in this case, the needle is to be
held and moved by the operator.

The system is a desktop VR system. The computer is a PC
installed with a graphics acceleration card, under Windows NT
system. The haptic display device is controlled by the dSPACE
Controller. The software programming is based on Visual C++
using OPENGL Graphics Lib. The core part of the haptic dis-
play system is the identified needle puncturing dynamics model
which serves as the reference output for the haptic display con-
trol system as shown in Fig. 11. Different methods can be used
for dealing with the contact forces including impedance con-
trol [14]. Here, we implemented admittance control scheme to
suit the hardware adopted in the system. When using the haptic
display, the operator applies a force to the haptic interface. The
control law here uses the measured interaction force between
the needle and the operator’s hand, and derives the control sig-
nals based on the desired motion output, to drive the actuator to
produce the corresponding motion. The virtual contact force is
displayed to the operator via the haptic interface so that he feels
as if he is puncturing some real flesh.

Fig. 12 shows the force-displacement history experienced by
the operator during a typical virtual puncturing process. This
force-displacement relationship is the control results using the
identified needle puncture model. The identified friction was
highly nonlinear and affected by the needle puncturing speed.

With a traditional finite-element method (FEM), it is very dif-
ficult to incorporate even some simplest dynamics and it is even
harder to obtain the model parameters describing the properties
of the material in the model accurately. The identified model via
SVM offers its advantage in its easy and efficient implementa-
tion in VR for high-rate haptic display. For traditional identifi-
cation algorithms, such as neural networks, large training data
sets are needed, which may not be easily feasible in real appli-

Fig. 12. Forces experienced during virtual puncturing.

cations. The SVM-based method on the other hand provides a
more flexible way for practical applications by removing such
a need. Finally, the self-learning capability of SVM allows im-
provement of the identified model whenever new experimental
data are available.

IV. CONCLUSION

This paper presents an approach for identifying dynamics
models using the SVM regression algorithm, which overcomes
the limit of traditional identification methods that require large
training data sets. With SVM-based identification, the model is
only recorded by the information of the support vectors, whose
number does not grow exponentially with the number of training
data. This algorithm can automatically select the number and
the parameters of the basic functions according to the com-
plexity of dynamics function to be estimated but independent
of the dimensionality of the training data. The identified dy-
namics models were incorporated into a virtual environment
for authentic display of the dynamics interactions between the
operator and the virtual objects. Our implementation indicates
that the SVM regression algorithm provides a useful tool for
dynamics model identification with sparse training data com-
pared with traditional methods. The experiments show that by
incorporating the experimentally identified dynamics for haptic
display, the operator’s immersion in a virtual environment can
be significantly improved. The learning capability of SVM will
allow easy incorporation of updated/improved dynamics models
in the training platform whenever new experimental data are
available.
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