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Abstract
In this paper we provide a broad survey of developments in active vision in robotic applications over the last 15 years.
With increasing demand for robotic automation, research in this area has received much attention. Among the many
factors that can be attributed to a high-performance robotic system, the planned sensing or acquisition of perceptions
on the operating environment is a crucial component. The aim of sensor planning is to determine the pose and settings
of vision sensors for undertaking a vision-based task that usually requires obtaining multiple views of the object to be
manipulated. Planning for robot vision is a complex problem for an active system due to its sensing uncertainty and
environmental uncertainty. This paper describes such problems arising from many applications, e.g. object recognition
and modeling, site reconstruction and inspection, surveillance, tracking and search, as well as robotic manipulation and
assembly, localization and mapping, navigation and exploration. A bundle of solutions and methods have been proposed
to solve these problems in the past. They are summarized in this review while enabling readers to easily refer solution
methods for practical applications. Representative contributions, their evaluations, analyses, and future research trends
are also addressed in an abstract level.

Keywords
Active vision, computer vision, purposive perception planning, robotics, sensor placement, uncertainty, viewpoint
scheduling

1. Introduction

About 20 years ago, Bajcsy, Cowan, Kovesi, and others dis-
cussed the important concept of active perception. Together
with other researchers’ initial contributions at that time, the
new concept (compared with the Marr paradigm in 1982)
on active perception, and consequently the sensor planning
problem, was thus initiated in active vision research. The
difference between the concepts of active perception and
the Marr paradigm is that the former considers vision per-
ception as the intentional action of the mind, while the latter
considers it as the procedural process of the matter.

Therefore, active perception mostly encourages the idea
of moving a sensor to constrain interpretation of its environ-
ment. Since multiple three-dimensional (3D) images need
to be taken and integrated from different vantage points
to enable all features of interest to be measured, sensor
placement which determines the viewpoints with a viewing
strategy thus becomes critically important for achieving full
automation and high efficiency. Today, the roles of sensor
planning can be widely found in most autonomous robotic
systems (Chen et al. 2008a).

Active sensor planning is an important means for
fulfilling vision tasks that require intentional actions, e.g.

complete reconstruction of an unknown object or dimen-
sional inspection of a workpiece. Constraint analysis,
active sensor placement, active sensor configuration, 3D
data acquisition, and robot action planning are the essential
steps in developing such active vision systems.

Research in active vision is concerned with determining
the pose and configuration for the visual sensor, plays an
important role in robot vision not only because a 3D sensor
has a limited field of view and can only see a portion of
a scene from a single viewpoint, but also because a global
description of objects often cannot be reconstructed from
only one viewpoint due to occlusion. Multiple viewpoints
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have to be planned for many vision tasks to make the entire
object strategically visible.

By taking active actions in robotic perception, the vision
sensor is purposefully configured and placed at several posi-
tions to observe a target. The intentional actions in pur-
posive perception planning introduce active behaviors or
purposeful behaviors. The robots with semantic perception
can take intentional actions according to its set goal such as
going to a specific location or obtaining the full information
of an object. The action to be taken depends on the environ-
ment and the robot’s own current state. However, difficulties
often arise due to sensor noise and the presence of unantic-
ipated obstacles in the workplace. To this end, a strategic
plan is needed to complete a vision task, such as navigat-
ing through an office environment or modeling an unknown
object.

In this paper, we review the advances in active vision
technology broadly. Overall, significant progress has been
made in several areas, including new techniques for indus-
trial inspection, object recognition, security and surveil-
lance, site modeling and exploration, multi-sensor coordi-
nation, mapping, navigation, tracking, etc. Owing to space
limitations, this review mainly focuses on the introduction
of ideas and high-level strategies.

The scope of this paper is very broad across the field
of robotics. The term active vision defined in this paper is
equivalent to the situation if and only if the robots have to
adopt strategies for decisions of sensor placement (replace-
ment) or sensor configuration (reconfiguration). It can be
used for either general purposes or specific tasks.

Actually, no review of this nature can cite every paper
that has been published. We include what we believe to be
a representative sample of important work and broad trends
from the last 15 years. In many cases, we provide references
in order to better summarize and draw distinctions among
key ideas and approaches. For further information regarding
the early contributions in this topic, we refer the interested
reader to a previous review (Tarabanis et al. 1995).

The remainder of this paper is structured as follows. Sec-
tion 2 briefly gives an overview of related contributions.
Section 3 introduces the tasks, problems, and applications
of active vision methods. Section 4 discusses the available
methods and solutions to specific tasks. We conclude in
Section 5 and offer our impressions of current and future
trends on the topic.

2. Overview of contributions

In the literature, there are about 2000 research papers pub-
lished during 1986–2010 that are closely related to the topic
of active vision perception in robotics, including sensor
modeling and optical constraints, definition of best next
view, placement strategy, and illumination planning. The
number of 2010 records is not complete since we searched
the publications only in the first quarter and most articles
have not come into the indexing databases yet. Figure 1

Fig. 1. Yearly published records from 1986 to 2010.

shows the yearly distribution of the published papers. We
can find from the plot that: (1) the subject emerged around
1988 and developed rapidly in the first 10 years, thanks to
the new concept of ‘active vision’; (2) it reaches a peak in
1998; (3) the subject cools down a little, probably due to the
reasons of many difficulties related to ‘intelligence’; (4) it
became very active again in the last 5 years because of its
wide applications; (5) we are currently at a second peak.

With regards to the research themes, there are several
directions that researchers have adopted in the past. In
Table 1, we list several classes that categorize the related
work of active vision perception; according to target knowl-
edge, sensor type, task or application, approach, evaluation
objective, and planning dimensions.

2.1. Representative work

Active vision has very wide application in robotics. Here
we summarize these applications in the following list where
we can find the most significant roles: purposive sensing,
object and site modeling, robot localization and mapping,
navigation, path planning, exploration, surveillance, track-
ing, search, recognition, inspection, robotic manipulation,
assembly and disassembly, and other purposes.

For the methods used in solving active vision problems,
we can also find a tremendous diversity. The most com-
monly used methods are: generate and test, synthesis, sen-
sor simulation, hypothesis and verification, graph theory,
cooperative network, space tessellation, geometrical anal-
ysis, surface expectation, coverage and occlusion, tagged
roadmap, visibility analysis, next best view, volumetric
space, probability and entropy, classification and Bayesian
reasoning, learning and knowledge-based, sensor structure,
dynamic configuration, finite element, gaze and attention,
lighting control, fusion, expert system, multi-agent, evo-
lutionary computation, soft computing, fuzzy inference,
neural network, basic constraints, and task-driven.

Among the huge variety of tasks and methods, we extract
a few representative contributions in Table 2 to represent the
state of the art.
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Table 1. Categories of active vision applications.

Knowledge model-based partial no a priori

Sensor intensity camera range sensor both others
Task inspection navigation modeling recognition
Approach generate and test synthesis graph AI
Objective visibility accuracy efficiency cost
Dimensions 1 2 2.5 3

Table 2. Representative contributions

Purpose/Task Method Representative

Inspection Constraint analysis (Trucco et al. 1997; Tarabanis et al. 1995; Dunn, Olague and Lutton 2006)
Inspection Genetic algorithm and graph (Chen and Li 2004)
Surveillance Linear programming,coverage (Sivaram et al. 2009; Bottino et al. 2009)
Grasping Kalman filter (Motai and Kosaka 2008)
Search Probability (Shubina and Tsotsos 2010)
Tracking Geometrical (Barreto et al. 2010)
Exploration Uncertainty driven (Whaite and Ferrie 1997)
Reinforcement learning Reinforcement learning (Royer et al. 2007)
Site modeling Prediction and verification (Reed and Allen 2000; Chang and Park 2009; Blaer and Allen 2009;

Marchand and Chaumette 1999b)
Object modeling Next best view (Banta et al. 2000; Chen and Li 2005; Pito 1999)
Object modeling Information entropy,rule based (Li and Liu 2005; Kutulakos and Dyer 1995)
Recognition Optimal visibility (de Ruiter et al. 2010)
Recognition Probabilistic (Farshidi et al. 2009; Roy et al. 2005)
Path planning Roadmap (Baumann et al. 2008; Zhang et al. 2009)
General Random occlusion (Mittal and Davis 2008)
Camera-lighting Geometrical (Marchand 2007)
Multirobot formation Graph theory (Kaminka et al. 2008)

2.2. Further information

For a quick understanding of the related work, it is rec-
ommended to read the representative contributions listed in
Table 2. For further intensive tracking of the literature, the
following reviews reflect different aspects of the topic:

1. review of active recognition (Arman and Aggarwal
1993);

2. review of industrial inspection (Newman and Jain
1995);

3. review of sensor planning in the early staged (Tarabanis
et al. 1995);

4. review of 3D shape measurement with active sensing
(Chen et al. 2000);

5. review of surface reconstruction from multiple range
images (Zhang et al. 2000);

6. review and comparison of view planning techniques for
3D object reconstruction and inspection (Scott et al.
2003);

7. review of free-form surface inspection techniques (Li
and Gu 2004);

8. review of active recognition through next view planning
(Roy et al. 2004);

9. review of 3D measurement quality metrics by environ-
mental factors (MacKinnon et al. 2008b);

10. review of multimodal sensor planning and integration
for wide area surveillance (Abidi et al. 2008);

11. review of computer-vision-based fabric defect detection
(Kumar 2008).

Of course, purposive perception planning remains an
open problem in the community. The task of finding a
suitably small set of sensor poses and configurations for
specified reconstruction or inspection goals is extremely
important for autonomous robots. The ultimate solution is
unlikely to ever exist as the complicated problems always
need better solutions along with the development of artifi-
cial intelligence.

3. Tasks and problems

Active vision endows the robot with the ability to actively
place the sensor at several viewpoints through a planning
strategy. It inevitably became a key issue in active systems
because the robot had to decide ‘where to look’. In an active
vision system, the visual sensor has to be moved frequently
for purposeful visual perception. Since the targets may vary
in size and distance to the camera and the task require-
ments may also change in observing different objects or
features, a structure-fixed vision sensor is usually insuffi-
cient. For a structured light vision sensor, the camera needs
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to be able to ‘see’ just the scene illuminated by the pro-
jector. Therefore the configuration of a vision setup often
needs to be changed to reflect the constraints in different
views and achieve optimal acquisition performance. On the
other hand, a reconfigurable sensor can change its structural
parameters to adapt itself to the scene to obtain maximum
3D information from the target. According to task condi-
tions, the problem is roughly classified into two categories,
i.e. model-based and non-model-based tasks.

3.1. Model and non-model-based approaches

For model-based tasks, especially for industrial inspections,
the placements of the sensor need to be determined and
optimized before carrying out operations. In general, in
these tasks, the sensor planning problem is to find a set of
admissible viewpoints within the permissible space, which
satisfy all of the sensor placement constraints and can com-
plete the required vision task. In most of the related works,
the constraints in sensor placement are expressed as a cost
function where the planning is aimed at achieving the min-
imum cost. However, the evaluation of a viewpoint has
normally previously been achieved by direct computation.
Such an approach is usually formulated for a particular
application and is therefore difficult to be applied to general
tasks. For a multi-view sensing strategy, global optimization
is desired but was rarely considered in the past (Boutarfa
et al. 2008).

The most typical task of model-based application is for
industrial inspection (Yang and Ciarallo 2001). Along with
the CAD model of the target, a sensing plan is generated
to completely and accurately acquire the geometry of the
target (Sheng et al. 2001b; Olague 2002). The sensing plan
comprises the set of viewpoints that defines the exact posi-
tion and orientation of the camera relative to the target
(Prieto et al. 2003). Sampling of the object surface and
viewpoint space is characterized, including measurement
and pose errors (Scott 2009).

For tasks of observing unknown objects or environments,
the viewpoints have to be decided in runtime because there
is no prior information about the targets. Furthermore, in
an inaccessible environment, the vision agent has to be able
to take intentional actions automatically. The fundamental
objective of sensor placement in such tasks is to increase
the knowledge about the unseen portions of the viewing
volume while satisfying all placement constraints such as
in-focus, field-of-view, occlusion, collision, etc. An optimal
viewpoint planning strategy determines each subsequent
vantage point and offers the obvious benefit of reducing and
eliminating the labor required to acquire an object’s surface
geometry. A system without planning may need as many
as seventy range images for recovering a 3D model with
normal complexity, with significant overlap between them.
It is possible to reduce the number of sensing operations to
less than 10 with a proper sensor planning strategy. Further-
more, it also makes it possible to create a more accurate and

complete model by utilizing a physics-based model of the
vision sensor and its placement strategy.

The most typical task of non-model-based application is
for target modeling (Banta et al. 2000). Online planning is
required to decide where to look (Lang and Jenkin 2000)
for site modeling (Reed and Allen 2000) or real-time explo-
ration and mapping (Kollar and Roy 2008). Of the published
literature in active vision perception over the years, Cowan
and Kovesi (1988) presented one of the earliest pieces of
research on this problem although some primary works can
be found in the period 1985–1987.

To date, there have been more than 2000 papers pub-
lished. At the early stage, these works focused on sen-
sor modeling and constraint analysis. In the first 10 years,
most of these research works were model-based and usu-
ally for applications in automatic inspection or recognition.
The generate-and-test method and the synthesis method are
mostly used. In the recent 10 years, while optimization was
still in development for model-based problems, the impor-
tance is being increasingly realized in planning viewpoints
for unknown objects or no a priori environment because
this is very useful for many active vision tasks such as
site modeling, surveillance, and autonomous navigation.
The tasks and problems are summarized in this section
separately.

3.2. Purposive sensing

The aim of purposive sensing in robotic tasks is to obtain
better images for robot understanding. Efficiency and accu-
racy are often the primary concerns in the acquisition of
3D images (Chen et al. 2008b; Fang et al. 2008; Li and
Wee 2008). Taking the most common example of using
stereo image sequences during robot movement, not all
input images contribute equally to the quality of the resul-
tant motion. Since several images may often contain sim-
ilar and hence overly redundant visual information. This
leads to unnecessarily increased processing times. On the
other hand, a certain degree of redundancy can help to
improve the reconstruction in more difficult regions of a
model. Hornung and colleagues proposed an image selec-
tion scheme for multi-view stereo which results in improved
reconstruction quality compared to uniformly distributed
views (Hornung et al. 2008).

People have also sought methods for determining the
probing points for efficient measurement and reconstruction
of freeform surfaces (Li and Liu 2003). For an object that
has a large surface or a local steep profile, a variable resolu-
tion optical profile measurement system that combined two
CCD cameras with zoom lenses, one line laser and a three-
axis motion stage was constructed (Tsai and Fan 2007). The
measurement system can flexibly zoom the lens in or out to
measure the object profile according to the slope distribu-
tion of the object. Model-based simulation system is helpful
for planning numerically controlled surface scanning (Wu
et al. 2005). The scanning-path determination is equivalent
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to the solution of next best view in this aspect (Sun et al.
2008).

In order to obtain a minimal error in 3D measurements
(MacKinnon et al. 2008a), an optimization design of the
camera network in photogrammetry is useful in 3D recon-
struction from several views by triangulation (Olague and
Mohr 2002). The combination of laser scanners and touch
probes can potentially lead to more accurate, faster, and
denser measurements. To overcome the conflict between
efficiency and accuracy, Huang and Qian developed a
dynamic sensing-and-modeling approach for integrating a
tactile point sensor and an area laser scanner to improve the
measurement speed and quality (Huang and Qian 2007).

Spatial uncertainty and resolution are the primary metrics
of image quality; however, spatial uncertainty is affected
by a variety of environmental factors. A review of how
researchers attempted to quantify these environmental fac-
tors was given by MacKinnon et al. (2008b), along with
spatial uncertainty and resolution, and an illustration of a
wide range of quality metrics was provided.

For reconstruction in large scenes having large depth
ranges with depth discontinuities, an idea is available to
integrate coarse-to-fine image acquisition and estimation
from multiple cues (Das and Ahuja 1996).

For the construction of realistic models, simultaneous
capture of the geometry and texture (Treuillet et al. 2007)
is inevitable. The quality of the 3D reconstruction depends
not only on the complexity of the object but also on its envi-
ronment. Good viewing and illumination conditions ensure
image quality and thus minimize the measurement error.
Belhaoua and colleagues investigated the placement prob-
lem of lighting sources moving within a virtual geodesic
sphere containing the scene, with the aim of finding posi-
tions leading to minimum errors for the subsequent 3D
reconstruction (Belhaoua et al. 2009; Liu 2009). It is
also found that automatic light source placement plays an
important role for maximum visual information recovery
(Vazquez 2007).

3.3. Object modeling

In order to reconstruct an object completely and accurately
(Shum et al. 1997; Banta et al. 2000; Lang and Jenkin 2000;
Doi et al. 2005; Li and Liu 2005), and at the same time
determine the scanning path (Larsson and Kjellander 2008;
Wang et al. 2009), multiple images have to be acquired from
different views (Pito 1999). An increasing number of views
generally improve the accuracy of the final 3D model but
it also increases the time needed to build the model. The
number of the possible views can, in principle, be infinite.
Therefore, it makes sense to try to reduce the number of
required views to a minimum while preserving a certain
accuracy of the model, especially in applications for which
the efficiency is an important issue. Approaches to next
view planning can not only can generate 3D shapes with
minimal views (Sablatnig et al. 2003; Zhou et al. 2008), but

also is especially useful for the acquisition of large-scale
indoor and outdoor scenes (Blaer and Allen 2007) or inte-
rior and exterior models (Null and Sinzinger 2006), even
with partial occlusions (Triebel and Burgard 2008).

To minimize the number of images for complete 3D
reconstruction where no prior information about the objects
is available, in the literature techniques are explored based
on characterizing the shapes to be recovered in terms of vis-
ibility and number and nature of cavities (Pito 1999; Chen
and Li 2005; Zetu and Akgunduz 2005; He and Li 2006a;
Lin et al. 2007; Loniot et al. 2007).

Typically, Callieri and colleagues designed a system to
reduce the three main bottlenecks in human-assisted 3D
scanning: the selection of the range maps to be taken
(view planning), the positioning of the scanner in the
environment, and the range maps’ alignment. The system
is designed around a commercial laser-based 3D scanner
moved by a robotic arm. The acquisition session is orga-
nized in two stages. First, an initial sampling of the surface
is performed by automatic selection of a set of views. Then,
some added views are automatically selected, acquired and
merged with the initial set in order to fill the surface regions
left unsampled (Callieri et al. 2004). Similar techniques of
free-form surface scanning were presented by Huang and
Qian (2008a, 2008b) and Fernandez et al. (2008).

The strategy of viewpoint selection for global 3D recon-
struction of unknown objects presented by Jonnalagadda et
al. (2003) has four steps: local surface feature extraction,
shape classification, viewpoint selection and global recon-
struction. An active vision system (Biclops) with two cam-
eras constructed for independent pan/tilt axes, extracts 2D
and 3D surface features from the scene. These local fea-
tures are assembled into simple geometric primitives. The
primitives are then classified into shapes, which are used
to hypothesize the global shape of the object. The next
viewpoint is chosen to verify the hypothesized shape. If
the hypothesis is verified, some information about global
reconstruction of a model can be stored. If not, the data
leading up to this viewpoint are re-examined to create a
more consistent hypothesis for the object shape.

Unless using 3D reconstruction from unordered view-
points (Liang and Wong 2010), incremental modeling is
the common choice for complete automation of scanning
an unknown object. An incremental model, representing
object surface and workspace occupancy, is combined
together with an optimization strategy to select the best
scanning viewpoints and generate adaptive collision-free
scanning trajectories. The optimization strategy attempts
to select the viewpoints that maximize the knowledge of
the object taking into account the completeness of the
current model and the constraints associated with the
sensor (Martins et al. 2003).

Most methods for model acquisition require the com-
bination of partial information from different viewpoints
in order to obtain a single, coherent model. This, in turn,
requires the registration of partial models into a common
coordinate frame, a process that is usually done off-line.
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As a consequence, holes due to undersampling and miss-
ing information often cannot be detected until after the
registration. Liu and Heidrich introduced a fast, hardware-
accelerated method for registering a new view to an existing
partial geometric model in a volumetric representation. The
method performs roughly one registration every second, and
is therefore fast enough for on-the-fly evaluation by the user
(Liu and Heidrich 2003). A procedure is also recently pro-
posed to identify missing areas from the initial scanning
data from default positions and to locate additional scan-
ning orientations to fill in the missing areas (Chang and
Park 2009). In contrast, He, Li and colleagues prefer to
use a self-determination criterion to inform the robot when
the model is complete (Li et al. 2005a, 2005b; He and Li
2006b).

3.4. Site modeling

It is very time-consuming to construct detailed models of
large complex sites using a manual process. Therefore, in
tasks of modeling unstructured environments (Craciun et al.
2008), especially in a wide outdoor area, perception plan-
ning is required to reduce unobserved portions (Asai et al.
2007). One of the main drawbacks is determining how to
guide the robot and where to place the sensor to obtain com-
plete coverage of a site (Reed and Allen 2000; Blaer and
Allen 2009). To estimate the computational complexity, if
the size of one dimension of the voxel space is n, then there
could be O( n2) potential viewing locations. If there are m
boundary unseen voxels, the cost of the algorithm could be
as high as O( n2 × m) (Blaer and Allen 2009).

For static scenes, the perception-action cycles can be
handled at various levels: from the definition of percep-
tion strategies for scene exploration down to the automatic
generation of camera motions using visual servoing. Marc-
hand and Chaumette use a structure from controlled motion
method which allows an optimal estimation of geometri-
cal primitive parameters (Marchand and Chaumette 1999b).
The whole reconstruction/exploration process has three
main perception–action cycles (Figure 2). It contains the
internal perception–action cycle which ensures the recon-
struction of a single primitive, and a second cycle which
ensures the detection, the successive selection, and finally
the reconstruction of all the observed primitives. It par-
tially solves the occlusion problem and obtains a high-level
description of the scene.

In field environments, it is usually not possible to pro-
vide robotic systems with valid/complete geometric mod-
els of the task and environment. The robot or robot teams
will need to create these models by performing appropri-
ate sensor actions. In addition, the robot(s) will need to
position its sensors in a task-directed optimum way. The
Instant Scene Modeler (iSM) is a vision system for gen-
erating calibrated photo-realistic 3D models of unknown
environments quickly using stereo image sequences (Se and
Jasiobedzki 2007). Equipped with iSM, unmanned ground

Fig. 2. The prediction/verification scheme for scene exploration
(with kind permission from Springer Science + Business Media:
Marchand E and Chaumette F (1999b) An autonomous active
vision system for complete and accurate 3D scene reconstruction.
Int J Comput Vision 32: 171–194).

vehicles (UGVs) can capture stereo images and create 3D
models to be sent back to the base station, while they
explore unknown environments. An algorithm based on
iterative sensor planning and sensor redundancy is pro-
posed by Sujan and Dubowsky to enable robots to effi-
ciently position their cameras with respect to the task/target
(Sujan and Dubowsky 2005a). Intelligent and efficient strat-
egy is developed for unstructured environment (Sujan and
Meggiolaro 2005).

A field robot for site modeling is usually equipped
with range sensors, DGPS/compass, an inertial measure-
ment unit (IMU), odometers, etc., such as the iSM (Se
and Jasiobedzki 2007). More sensors are set up with the
AVENUE, for localizing and navigating itself through vari-
ous environments (Figure 3).

3.5. Surveillance

Since vision contains much higher information content than
other sensors in describing the scene, cameras are fre-
quently applied for surveillance purposes. In these tasks,
cameras can be installed in fixed locations and directed,
through pan–tilt manipulations, toward the target in an
active manner. On the other hand, cameras can be installed
on mobile platforms. Surveillance is also tightly connected
with target search and tracking where the active vision
principle is regarded as an important attribute.

3.5.1. Surveillance with a set of fixed cameras This prob-
lem was addressed by Sivaram et al. (2009) who were
concerned with how to select the optimal combination of
sensors and how to determine their optimal placement in
a surveillance region in order to meet the given perfor-
mance requirements at a minimal cost for a multimedia
surveillance system. Therefore, the sensor configuration
for surveillance applications calls for coverage optimiza-
tion (Janoos et al. 2007; Yao et al. 2010). The goal in
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Fig. 3. The ATRV-2 AVENUE-based mobile robot for site model-
ing (Blaer and Allen 2009 (with permission of Wiley Blackwell)).

such problems is to develop a strategy of network design
(Saadatseresht and Varshosaz 2007).

Locating sensors in 2D can be modeled as an art gallery
problem (Howarth 2005; Bottino and Laurentini 2006a;
Bodor et al. 2007). Consider the external visibility cover-
age for polyhedra under the orthographic viewing model.
The problem is to compute whether the whole boundary
of a polyhedron is visible from a finite set of view direc-
tions, and if so, how to compute a minimal set of such view
directions (Liu and Ramani 2009). Bottino and colleagues
provide detailed formulation and solution in their research
(Bottino and Laurentini 2008; Bottino et al. 2009).

3.5.2. Surveillance with mobile robots Mobile sensors can
be used to provide complete coverage of a surveillance area
for a given threat over time, thereby reducing the num-
ber of sensors required. The surveillance area may have a
given threat profile as determined by the kind of threat, and
accompanying meteorological, environmental, and human
factors (Ma et al. 2009). UGVs equipped with surveillance
cameras present a flexible complement to the numerous sta-
tionary sensors being used in security applications today
(Ulvklo et al. 2004; Hernandez and Wang 2008). However,
to take full advantage of the flexibility and speed offered by
a group of UGV platforms, a fast way to compute desired
camera locations to cover an area or a set of buildings, e.g.,
in response to an alarm, is needed (Nilsson et al. 2008,
2009).

Such surveillance systems aim to design an optimal
deployment of vision sensors (Lim et al. 2006; Angella et al.
2007; Nayak et al. 2008). System reconfiguration is some-
times necessary for the autonomous surveillance of a tar-
get as it travels through a multi-object dynamic workspace
with an a priori unknown trajectory (Bakhtari et al. 2006;
Bakhtari and Benhabib 2007; Bakhtari et al. 2009).

Autonomous patrolling robots are to have significant
contributions in security applications for surveillance pur-
poses (Briggs and Donald 2000; Cassinis and Tampalini
2007). In the near future robots will also be used in home
environments to provide assistance for the elderly and chal-
lenged people (Nikolaidis et al. 2009; Biegelbauer et al.
2010).

In monitoring applications (Sakane et al. 1995; Mackay
and Benhabib 2008a), Schroeter et al. present a model-
based system for a mobile robot to find an optimal pose for
the observation of a person in indoor living environments.
The observation pose is derived from a combination of
the camera position and view direction as well as fur-
ther parameters such as the aperture angle. The optimal
placement of a camera is required because of the highly
dynamic range of the scenes near windows or other bright
light sources, which often results in poor image quality due
to glare or hard shadows. The method tries to minimize
these negative effects by determining an optimal camera
pose based on two major models: A spatial free space
model and a representation of the lighting (Schroeter et
al. 2009). A recent review of multimodal sensor planning
and integration for wide area surveillance can be found in
(Abidi et al. 2008).

3.5.3. Search Object search is also a model-based vision
task where the object is to find a given object in a
known or unknown environment. The object search task
not only needs to perform object recognition and localiza-
tion, but also involves sensing control, environment mod-
eling, and path planning (Shimizu et al. 2005; Wang et al.
2008).

The task is often complicated by the fact that portions
of the area are hidden from the camera view. Different
viewpoints are necessary to observe the target. As a conse-
quence, viewpoint selection for search tasks seems similar
to viewpoint selection for data acquisition of an unknown
scene. The problem of visual matching was shown to be
NP complete (Ye and Tsotsos 1999). It has exponential
time complexity relative to the size of the image. Suppose
one wishes a robot to search for and locate a particular
object in a 3D world. A direct search certainly suffices
for the solution. Assuming that the target may lie with
equal probability at any location, the viewpoint selection
problem is resolved by moving a camera to take images
of the previously not viewed portions of the full 3D space.
This kind of exhaustive, brute-force approach can suffice
for a solution; however, it is both computationally and
mechanically prohibitive.
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In practice, sensor planning is very important for object
search since a robot needs to interact intelligently and effec-
tively with the environment. Visual attention may be a
mechanism that optimizes the search processes inherent in
vision, but attention itself is a complex phenomenon (Shu-
bina and Tsotsos 2010). The utility of a search operation f
is given by

E( f) =
∑

p( ci, τ ) b( ci, f)

t( f)
(1)

where t(f) is the time when action f takes place. The knowl-
edge about the potential target locations is encoded as a
target probability distribution p( ci, τ ). The goal is to select
an operation with the highest utility value. Since the cost
of each action is approximately the same if the robot is
stationary, the next action is selected in such a way that
it maximizes the numerator of (1) (Shubina and Tsotsos
2010).

With the assumption of a realistic, high-dimensional and
continuous state space for the representation of objects
expressing their rotation, translation and class, Eidenberger
et al. present an exclusively parametric approach for the
state estimation and decision-making process to achieve
very low computational complexity and short calculation
times (Eidenberger et al. 2008).

3.5.4. Tracking Active tracking is part of the active vision
paradigm (Riggs et al. 2010), where visual systems adapt
themselves to the observed environment in order to obtain
extra information or perform a task more efficiently. An
example of active tracking is fixation, where camera control
assures that the gaze direction is maintained on the same
object over time. A general approach for the simultaneous
tracking of multiple moving targets using a generic active
stereo setup is studied by Barreto et al. (2010). The prob-
lem is formulated for objects on a plane, where cameras are
modeled as line scan cameras, and targets are described as
points with unconstrained motion.

Dynamically reconfigurable vision systems have been
suggested in an online mode (Reddi and Loizou 1995;
Wang et al. 2008), as effective solutions for achieving this
objective, namely, relocating cameras to obtain optimal vis-
ibility for a given situation. To obtain optimal visibility of a
3D object of interest, its six-degree-of-freedom (six-DOF)
position and orientation must be tracked in real time. An
autonomous, real-time, six-DOF tracking system for a pri-
ori unknown objects should be able to (1) select the object,
(2) build its approximate 3D model and use this model to
(3) track it in real time (de Ruiter et al. 2010).

Zhu and Sakane developed an adaptive panoramic stere-
ovision approach for localizing 3D moving objects (Zhou
and Sakane 2003). The research focuses on cooperative
robots involving cameras that can be dynamically com-
posed into a virtual stereovision system with a flexible base-
line in order to detect, track, and localize moving human
subjects in an unknown indoor environment. It promises an
effective way to solve the problems of limited resources,

view planning, occlusion, and motion detection of mov-
able robotic platforms. Theoretically, two interesting con-
clusions are drawn. (i) If the distance from the main camera
to the target, D1, is significantly greater (e.g. a factor of 10
greater) than the size of the robot (R), the best geometric
configuration is

B ≈ 2
√

D1R, cosφ1 = 3BD1

2D2
1 + B2

(2)

where B is the best baseline distance for the minimum dis-
tance error and φ1 is the main camera’s inner angle of the
triangle formed by the two robots and the target. (ii) The
depth error of the adaptive stereovision is proportional to
D1.5 where D is the camera–target distance, which is bet-
ter than the case of the best possible fixed baseline stereo
in which depth error is proportional to the square of the
distance ( D2).

Some problems such as camera fixation, object capturing
and detecting, and road following involve tracking or fix-
ating on 3D points and features (Biegelbauer et al. 2010).
The solutions to these problems also require an analysis of
depth and motion. Theoretical approaches based on opti-
cal flow are the most common solution to these problems
(Raviv and Herman 1994; Han et al. 2008).

Vision tracking systems for surveillance and motion cap-
ture rely on a set of cameras to sense the environment (Chen
and Davis 2008). There is a decision problem which corre-
sponds to answering the question: can the target escape the
observer’s view? Murrieta-Cid et al. defined this problem
and considered to maintain surveillance of a moving tar-
get by a non-holonomic mobile observer (Murrieta-Cid et
al. 2005). The observer’s goal is to maintain visibility of
the target from a predefined, fixed distance. An expression
derived for the target velocities is

(
ẋT ( t)
ẏT ( t)

)
=

(
cos θ −l cos φ

sin θ l cos φ

) (
u1

u3

)
(3)

where θ and φ are the observer’s orientation, u1 and u3

are moving speeds, and l is the predefined surveillance
distance.

To maintain the fixed required distance between the target
and the observer, the relationship between the velocity of
the target and the linear velocity of the observer is

f ( u1, u3) = u2
1 + 2u1u3l sin( θ − φ) +l2u2

3 = 1. (4)

The above equation defines an ellipse in the u1 − u3 plane
and the constraint on u1 and u3 is that they should be inside
the ellipse while assuming ẋ2

T + ẏ2
T ≤ 1. They deal specif-

ically with the situation in which the only constraint on the
target’s velocity is a bound on the speed, and the observer is
a non-holonomic, differential drive system having bounded
speed. The system model is developed to derive a lower
bound for the required observer speed.

To dynamically manage the viewpoint of a vision system
for optimal 3D tracking, Chen and Li adopt the effective
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sample size in the proposed particle filter as a criterion
for evaluating tracking performance and employ it to guide
the view-planning process to find the best viewpoint con-
figuration. The vision system is designed and configured
to maintain a largest number of effective particles, which
minimizes tracking error by revealing the system to a bet-
ter swarm of importance samples and interpreting posterior
states in a better way (Chen and Li 2008, 2009).

3.6. Mobile Robotics

In applications involving the deployment of mobile robots,
it is a fundamental requirement that the robot is able to
take perception of its navigation environment. When cam-
eras are equipped on mobile robots, it enables the robot to
observe its workspace and active vision naturally becomes
a very desirable ability to improve the autonomy of these
machines.

3.6.1. Localization and mapping As a problem of deter-
mining the position of a robot or its vision sensor, local-
ization has been recognized as one of the most fundamen-
tal problems in mobile robotics (Caglioti 2001; Flandin
and Chaumette 2002). Mobile robots often determine their
actions according to their positions. Thus, their observa-
tion strategies are mainly for self-localization (Mitsunaga
and Asada 2006). The aim of localization is to estimate the
position of a robot in its environment, given local sensorial
data. Stereo vision-based 3D localization is used in a semi-
automated excavation system for partially buried objects
in unstructured environments by Maruyama et al. (2010).
Autonomous navigation is also possible in outdoor situa-
tions with the use of a single camera and natural landmarks
(Royer et al. 2007; Chang et al. 2010).

Zingaretti and Frontoni present an efficient metric for
appearance-based robot localization (Zingaretti and Fron-
toni 2006). This metric is integrated in a framework that
uses a partially observable Markov decision process as posi-
tion evaluator, thus allowing good results even in partially
explored environments and in highly perceptually aliased
indoor scenarios. More details of this topic are related
to the research on simultaneous localization and mapping
(SLAM) which is also a challenging problem and has been
widely investigated (Gonzalez-Banos and Latombe 2002;
Borrmann et al. 2008; Frintrop and Jensfelt 2008a; Nuchter
and Hertzberg 2008).

In intelligent transportation systems, vehicle localization
usually relies on global positioning system (GPS) tech-
nology; however the accuracy and reliability of GPS are
degraded in urban environments due to satellite visibility
and multipath effects. Fusion of data from a GPS receiver
and a machine vision system can help to position the vehi-
cle with respect to objects in its environment (Rae and Basir
2009).

In robotics, maps are metrical and sometimes topolog-
ical. A map contains space-related information about the

environment, i.e. not all that a robot may know or learn
about its world need go into the map. Metric maps are sup-
posed to represent the environment geometry quantitatively
correctly, up to discretization errors (Nuchter and Hertzberg
2008).

Again for the SLAM problem (Ballesta et al. 2010; Kaess
and Dellaert 2010), the goal is to integrate the informa-
tion collected during navigation into the most accurate map
possible. However, SLAM does not address the sensor-
placement portion of the map-building task. That is, given
the map built so far where should the robot go next?
Gonzalez-Banos and Latombe (2002) proposed an algo-
rithm to guide the robot through a series of ‘good’ positions,
where ‘good’ refers to the expected amount and quality
of the information that will be revealed at each new loca-
tion. This is similar to the next-best-view (NBV) problem.
However, in mobile robotics the problem is complicated by
several issues, two of which are particularly crucial. One is
to achieve safe navigation despite an incomplete knowledge
of the environment and sensor limitations. The other is the
need to ensure sufficient overlap between each new local
model and the current map, in order to allow registration of
successive views under positioning uncertainties inherent
to mobile robots. They described an NBV algorithm that
uses the safe-region concept to select the next robot posi-
tion at each step. The new position is chosen within the safe
region in order to maximize the expected gain of informa-
tion under the constraint that the local model at this new
position must maintain a minimal overlap with the current
global map (Gonzalez-Banos and Latombe 2002).

In addition, because individual scans are registered into
a coherent 3D geometry map by SLAM, semantic knowl-
edge can help an autonomous robot act goal-directly, then,
consequently, part of this knowledge has to be related to
objects, functionalities, events, or relations in the robot’s
environment. A semantic map for a mobile robot is a map
that contains, in addition to spatial information about the
environment, assignments of mapped features to entities of
known classes (Nuchter and Hertzberg 2008).

While considerable progress has been made in the area
of mobile networks by SLAM or NBV, a framework
that allows the vehicles to reconstruct a target based on
a severely underdetermined data set is rarely addressed.
Recently, Mostofi and Sen present a compressive cooper-
ative mapping framework for mobile exploratory networks.
The cooperative mapping of a spatial function is based on
a considerably small observation set where a large percent-
age of the area of interest is not sensed directly (Mostofi and
Sen 2009).

3.6.2. Navigation, path planning, and exploration For
exploring unknown environments, many robotic systems
use topological structures as a spatial representation. If
localization is done by estimating the global pose from
landmark information, robotic navigation is tightly coupled
to metric knowledge. On the other hand, if localization is
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based on weaker constraints, e.g. the similarity between
images capturing the appearance of places or landmarks,
the navigation can be controlled by a homing algorithm.
Similarity-based localization can be scaled to continuous
metric localization by adding additional constraints (Whaite
and Ferrie 1997; Hovland and McCarragher 1999; Sheng et
al. 2001a; Kim and Cho 2003; Hubner and Mallot 2007;
Baker and Kamgar-Parsi 2010).

If the environment is partially unknown, the robot needs
to explore its work space autonomously. Its task is to
incrementally build up a representation of its surroundings
(Suppa and Hirzinger 2007; Wang and Gupta 2007). A local
navigation strategy has to be implemented for unknown
environment exploration (Amin et al. 2008; Radovnikovich
et al. 2010; Thielemann et al. 2010).

For navigation in an active way, an UGV is usu-
ally equipped with a ‘controllable’ vision head, e.g. a
stereo camera on a pan/tilt mount (Banish et al. 2010;
Borenstein et al. 2010). Kristensen presented the problem
of autonomous navigation in partly known environments
(Kristensen 1997). Bayesian decision theory was adopted in
the sensor planning approach. The sensor modalities, tasks,
and modules were described separately and Bayes’ decision
rule was used to guide the behavior. The decision prob-
lem for one sensor was constructed with a standard tree for
myopic decision. In other aspects, indoor navigation using
adaptive neuro-fuzzy controller is addressed by Budiharto
et al. (2010) and path recognition for outdoor navigation is
addressed by Shinzato et al. (2010).

The problem of path planning for a robotic sensor inves-
tigated by Zhang et al. (2009) is assumed with a platform
geometry A ⊂ R2, and a field-of-view geometry S ⊂ R2,
that navigates a workspace W ⊂ R2 for the purpose of
classifying multiple fixed targets based on posterior and
prior sensor measurements, and environmental information
(Figure 4). The robotic sensor path τ must simultaneously
achieve multiple objectives including: (1) avoid all obsta-
cles in W ; (2) minimize the traveled distance; and (3) max-
imize the information value of path (τ ), i.e. the measure-
ment set along a path τ . The robotic sensor performance is
defined by an additive reward function:

R( τ ) = wV V ( τ ) −wDD( τ ) (5)

where, V ( τ ) is the information value of path (τ ), and D( τ )
is the distance traveled along τ . The constants wV and wD

weigh the trade-off between the values of the measurements
and the traveled distance. Then, the Geometric Sensor Path
Planning Problem is defined as follows.

Problem: Given a layout W and a joint probability mass
function P, find a path τ* for a robotic sensor with platform
A and field-of-view S that connects the two ends, and max-
imizes the profit of information defined in (1) (Zhang et al.
2009).

In active perception for exploration, navigation, or path
planning, there is a situation that the robot has to work in

Fig. 4. An example of sensor path planning, where both the loca-
tion and geometry of targets and obstacles must be accounted for
in planning the sensor path (with kind permission from Springer
Science + Business Media: Zhang G, Ferrari S and Qian M (2009)
An information roadmap method for robotic sensor path planning.
J Intelligent Robotic Syst 56: 69–98).

a dynamic environment and the sensing process may asso-
ciate with many noises or uncertainties. Research in this
issue has become the most active in recent years. A rein-
forcement learning scheme is proposed for exploration in
Kollar and Roy (2008). Occlusion-free path planning was
studied by Baumann et al. (2008, 2010), Nabbe and Hebert
(2007), and Oniga and Nedevschi (2010).

3.7. Robotic manipulations

The use of robotic manipulators had shown a boost in
manufacturing productivity. This increase depends criti-
cally on the simplicity that the robot manipulator can be
re-configured or re-programmed to perform various tasks.
To this end, actively placing the camera to guide the manip-
ulator motion has become a key component of automatic
robotic manipulator systems.

3.7.1. Robotic manipulation Vision-guided approaches
are designed to robustly achieve high precision in manip-
ulation (Miura and Ikeuchi 1998; Nickels et al. 2010) or
to improve productivity (Park et al. 2006). For the assem-
bly/disassembly tasks, a long-term aim in robot program-
ming is the automation of the complete process chain, i.e.
from planning to execution. One challenge is to provide
solutions which are able to deal with position uncertain-
ties (Figure 5) (Thomas et al. 2007). Nelson et al. intro-
duced a dynamic sensor planning method (Nelson and
Papanikolopoulos 1996). They used an eye-in-hand sys-
tem and considered the resolution, field of view, depth of
view, occlusions, and kinematic singularities. A controller
was proposed to combine all of the constraints into a sys-
tem and resulted in a control law. Kececi et al. employed
an independently mobile camera with a six-DOF robot to
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Fig. 5. Vision sensor for solving object poses and uncertainties in
the assembly work cell (Thomas et al. 2007 (© 2007 IEEE)).

monitor a disassembly process so that it can be planned
(Kececi et al. 1998). A number of candidate view-poses are
being generated and subsequently evaluated to determine
an optimal view pose. A good view-pose is defined with
the criterion which prevents possible collisions, minimizes
mutual occlusions, keeps all pursued objects within the field
of view, and reduces uncertainties.

Stemmer et al. used a vision sensor, with color segmenta-
tion and affine invariant feature classification, to provide the
position estimation within the region of attraction (ROA)
of a compliance-based assembly strategy (Stemmer et al.
2006). An assembly planning toolbox is based on a the-
oretical analysis and the maximization of the ROA. This
guarantees the local convergence of the assembly process
under consideration of the geometry in part. The conver-
gence analysis invokes the passivity properties of the robot
and the environment.

Object verification (Sun et al. 2007), feature detectability
(Zussman et al. 1994), and real-time accessibility analy-
sis for robotics (Jang et al. 2007) are also major concerns
in robotic manipulation. The access direction of the object
to grasp can be determined through visibility query (Jang
et al. 2008; Motai and Kosaka 2008).

3.7.2. Recognition In many cases, a single view may not
contain sufficient features to recognize an object unambigu-
ously (Byun and Nagata 1996). Therefore, another impor-
tant application of sensor planning is active object recog-
nition (AOR) which has recently attracted much attention
within the computer vision community.

In fact, two objects may have all views in common with
respect to a given feature set, and may be distinguished only
through a sequence of views (Roy et al. 2000). Further,
in recognizing 3D objects from a single view, recognition
systems often use complex feature sets. Sometimes, it may
be possible to achieve the same result, incurring less error
and smaller processing cost by using a simpler feature set
and suitably planning multiple observations. A simple fea-
ture set is applicable for a larger class of objects than a

Fig. 6. The objects for active recognition experiments (Farshidi
et al. 2009 (with permission of Elsevier)).

model base with a specific complex feature set. Model base-
specific complex features such as 3D invariants have been
proposed only for special cases. The purpose of AOR is to
investigate the use of suitably planned multiple views for
3D object recognition. Hence, the AOR system should also
take a decision on ‘where to look’. The system developed by
Roy et al. is an iterative active perception system that exe-
cutes the acquisition of several views of the object, builds a
stochastic 3D model of the object and decides the best next
view to be acquired (Roy et al. 2005).

In computer vision, object recognition problems are often
based on single image data processing (Eggert et al. 1995;
SyedaMahmood 1997). In various applications this process-
ing can be extended to a complete sequence of images,
usually received passively. Deinzer et al. (2009) selectively
moved a camera around a target object. Reliable classifica-
tion results are desirable with a clearly reduced amount of
necessary views by optimizing the camera movement for
the access of new viewpoints. The optimization criterion is
the gain of class discriminative information when observ-
ing the appropriate next image (Gremban and Ikeuchi 1994;
Roy et al. 2000).

While relevant research in active object recognition/pose
estimation has mostly focused on single-camera systems,
Farshidi et al. propose two multi-camera solutions that can
enhance object recognition rate, particularly in the pres-
ence of occlusion. Multiple cameras simultaneously acquire
images from different view angles of an unknown, ran-
domly occluded object belonging to a set of a priori known
objects (Farshidi et al. 2009). Eight objects, as illustrated in
Figure 6, are considered in the experiments with four differ-
ent pose angles, each 90◦ apart. Also, five different levels of
occlusion have been designated for each camera’s image.

In the early stage, Ikeuchi et al. developed a sensor
modeler, called VANTAGE, to place the light sources
and cameras for object recognition (Ikeuchi and Robert
1991; Wheeler and Ikeuchi 1995). It mostly solves the
detectability (visibility) of both light sources and cam-
eras. Borotschnig and Paletta summarized a framework for
appearance-based AOR as in Figure 7 (Borotschnig and
Paletta 2000).

Among the literature of recognition, many solutions are
available (Kuno et al. 1991; Arman and Aggarwal 1993;
Dickinson et al. 1997; Callari and Ferrie 2001). Typically,
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Fig. 7. The framework of appearance-based active object recogni-
tion (Borotschnig and Paletta 2000 (with permission of Elsevier)).

we may refer to the fast recognition by learning (Grewe and
Kak 1995) and function-based reasoning (Sutton and Stark
2008), as well as multi-view recognition of time-varying
geometry objects (Mackay and Benhabib 2008b). A review
of sensor planning for active recognition can be found in
Roy et al. (2004).

3.7.3. Inspection Dimensional inspection using a contact-
based coordinate measurement machine is time consuming
because the part can only be measured on a point-by-point
basis (Prieto et al. 2002). The automotive industry has been
seeking a practical solution for rapid surface inspection
using a 3D sensor. The challenge is the capability to meet all
of the requirements including sensor accuracy, resolution,
system efficiency, and system cost. A robot-aided sensing
system can automatically allocate sensor viewing points,
measure the freeform part surface, and generate an error
map for quality control (Bardon et al. 2004; Shih and Ger-
hardt 2006; Shi et al. 2010). A geometric dimension and
tolerance inspection process is also needed in industries to
examine the conformity of manufactured parts with the part
specification defined at the design stage (Gao et al. 2006;
Sebastian et al. 2007).

In fact, in the literature, sensor planning for the model-
based tasks is mostly related to industrial inspection, where
a nearly perfect estimate of the object’s geometry and pos-
sibly its pose are known and the task is to determine how
accurately the object has been manufactured (Mason 1997;
Trucco et al. 1997; Sheng et al. 2001b; Yang and Ciarallo
2001; Sheng et al. 2003; Wong and Kamel 2004). It was said
that this problem in fact was a nonlinear multi-constraint
optimization problem (Chen and Li 2004; Dunn and Olague
2004; Rivera-Rios et al. 2005; Taylor and Spletzer 2007).
The problem comprises camera, robot, and environmental
constraints. A viewpoint is optimized and evaluated by a
cost function which uses a probability-based global search
technique. It is difficult to compute robust viewpoints which
satisfy all feature detectability constraints. Optimization
methods such as tree annealing and genetic algorithms are
commonly used to compute the viewpoints subjected to
multi-constraints (Olague and Mohr 2002; Chen and Li
2004; Olague and Dunn 2007).

Tarabanis et al. developed a model-based sensor planning
system, the machine vision planner (MVP), which works
with 2D images obtained from a CCD camera (Tarabanis

Fig. 8. The admissible domain of viewpoints (Tarabanis et al.
1995 (© IEEE 1995)).

et al. 1995, 1996). The MVP system takes a synthesis
rather than a generate-and-test approach, thus giving rise to
a powerful characterization of the problem. In addition, the
MVP system provides an optimization framework in which
constraints can easily be incorporated and combined. The
MVP system attempts to detect several features of interest
in the environment that are simultaneously visible, inside
the field of view, in focus, and magnified, by determining
the domain of admissible camera locations, orientations,
and optical settings. A viewpoint is sought that is both
globally admissible and central to the admissibility domain
(Figure 8).

Based on the work on the MVP system, Abrams et al.
made a further development for planning viewpoints for
vision inspection tasks within a robot work cell (Abrams
et al. 1999). The computed viewpoints met several con-
straints such as detectability, in focus, field of view, visi-
bility, and resolution. The proposed viewpoint computation
algorithm also fell into the ‘volume intersection method’
(VIM). This is generally a straightforward but very useful
idea. Many of the latest implemented planning systems can
be traced back to this contribution. For example, Rivera-
Rios et al. present a probabilistic analysis of the effect of the
localization errors on the dimensional measurements of the
line entities for a parallel stereo setup (Figure 9). The prob-
ability that the measurement error is within an acceptable
tolerance was formulated as the selection criterion for cam-
era poses. The camera poses were obtained via a nonlinear
program that minimizes the total mean square error of the
length measurements while satisfying the sensor constraints
(Rivera-Rios et al. 2005).

In order to obtain a more complete and accurate 3D
image of an object, Prieto et al. presented an automated
acquisition planning strategy utilizing its CAD model. The
work was focused on improving the accuracy of the 3D
measured points which is a function of the distance to the
object surface and of the laser beam incident angle (Prieto
et al. 2001, 2003).

In addition the minimum number of viewpoints is desired
in sensor planning, to further improve the efficiency of
robot manipulation, we need to reduce the traveling cost
of the robot placements (Wang et al. 2007; Martins et al.
2005; Chen and Li 2004). The whole procedure for generat-
ing a perception plan is described as: (1) generate a number
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Fig. 9. Stereo pose determination for dimensional measurement
(Rivera-Rios et al. 2005 (© IEEE 2005)).

of viewpoints; (2) reduce redundant viewpoints; (3) if the
placement constraints are not satisfied, increase the number
of viewpoints; (4) construct a graph corresponding to the
space distribution of the viewpoints; and (5) find a shortest
path to optimize robot operations.

Automated visual inspection systems are also developed
for defect inspection, such as specular surface quality con-
trol (Garcia-Chamizo et al. 2007), car headlight lens inspec-
tion (Martinez et al. 2008), and others (Chen and Liao 2009;
Martinez et al. 2009; Perng et al. 2010; Sun et al. 2010).
Related techniques are useful to improve the productivity
of assembly lines (Park et al. 2006). Self-reconfiguration
(Garcia and Villalobos 2007a, 2007b) and self-calibration
(Carrasco and Mery 2007; Treuillet et al. 2009) are
also mentioned in some applications. Further information
regarding early literatures can be found in the review by
Newman and Jain (1995).

3.8. General-purpose tasks

The automatic selection of good viewing parameters is a
very complex problem. In most cases the notion of good
viewing strongly depends on the concrete application,
but some general solutions still exist in a limited extent
(Chu and Chung 2002; Zavidovique and Reynaud 2007).
Commonly, two kinds of viewing parameters must be
set for active vision perception: camera parameters and
lighting parameters (number of light sources, its position,
and eventually the orientation of the spot). The former
determine how much of the geometry can be captured and
the latter have an influence on how much of it is revealed
(Vazquez 2007).

Some multiview strategies are proposed for different
application prospects (Al-Hmouz and Challa 2005; Fiore
et al. 2008). Mittal specifically addressed the state of the
art in the analysis of scenarios where there are dynamically
occurring objects capable of occluding each other. The visi-
bility constraints for such scenarios are analyzed in a multi-
camera setting. Also analyzed are other static constraints

such as image resolution and field of view, and algorith-
mic requirements such as stereo reconstruction, face detec-
tion and background appearance. Theoretical analysis with
the proper integration of such visibility and static con-
straints leads to a generic framework for sensor plan-
ning, which can then be customized for a particular task.
The analysis may be applied to a variety of applications,
especially those involving randomly occurring objects,
and include surveillance and industrial automation (Mittal
2006).

In some robotic vision tasks, such as surveillance,
inspection, image-based rendering, environment modeling,
require multiple sensor locations, or the displacement of
a sensor in multiple positions for fully exploring an envi-
ronment or an object. Edge covering is sufficient for tasks
such as inspection or image-based rendering. However, the
problem is NP-hard, and no finite algorithm is known for
its exact solution. A number of heuristics have been pro-
posed, but their performances with respect to optimality are
not guaranteed (Bottino et al. 2009). In 2D surveillance,
the problem is modeled as an art gallery problem. A sub-
class of this general problem can be formulated in terms
of planar regions that are typical of building floor plans.
Given a floor plan to be observed, the problem is then to
reliably compute a camera layout such that certain task-
specific constraints are met. A solution to this problem is
obtained via binary optimization over a discrete problem
space (Erdem and Sclaroff 2006). It can also be applied in
security systems for industrial automation, traffic monitor-
ing, and surveillance in public places, such as museums,
shopping malls, subway stations, and parking lots (Mittal
and Davis 2004, 2008).

With visibility analysis and sensor planning in dynamic
environments, in which the methods include computing
occlusion-free viewpoints (Tarabanis et al. 1996) and fea-
ture detectability constraints (Tarabanis et al. 1994), appli-
cations are widely existing in product inspection, assembly,
and design in reverse engineering (Tarabanis et al. 1995;
Scott 2009; Yegnanarayanan et al. 2009).

In other aspects, an approach was proposed by Marchand
(2007) to control camera position and/or lighting conditions
in an environment using image gradient information. An
auto-focusing technique is used by Quang et al. (2008) in
a projector–camera system. Smart cameras are applied by
Madhuri et al. (2009). A camera network is designed with
dynamic programming by Lim et al. (2007).

4. Methods and solutions

The early work on sensor planning was mainly focused
on the analysis of placement constraints, such as resolu-
tion, focus, field of view, visibility, and conditions for light
source placement in a 2D space. A viewpoint has to be
placed in an acceptable space and a number of constraints
should be satisfied. The fundamentals in solving such a
problem were established in the last few decades.
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Table 3. Sensor placement constraints (Chen and Li 2004).

Satisfaction Constraint

G1 Visibility
G2 Viewing angle
G3 Field of view
G4 Resolution constraint
G5 In-focus or viewing distance
G6 Overlap
G7 Occlusion
G8 Image contrast (affect (d, f, a) settings)
G9 Kinematic reachability of sensor pose

Here the review scope is restricted to some common
methods and solutions found in recently published con-
tributions regarding view-pose determination and sensor
parameter setting in robotics. It does not include: foveal
sensing, hand–eye coordination, autonomous vehicle con-
trol, landmark identification, qualitative navigation, path
following operation, etc., although these are also issues con-
cerning the active perception problem. We give little con-
sideration to contributions on experimental study (Treuillet
et al. 2007), sensor simulation (Wu et al. 2005; Loniot
et al. 2007), interactive modeling (Popescu et al. 2004), and
semi-automatic modeling (Liu and Heidrich 2003) either.

For the methods and solutions listed in the following,
they might be used independently, or as hybrids, in the
above-mentioned applications and tasks.

4.1. Formulation of constraints

An intended view must first satisfy some constraints, either
due to the sensor itself, the robot, or its environment. From
the work by Cowan et al., who highlighted the sensor
placement problem, detailed descriptions of the acceptable
viewpoints for satisfying many requirements (sensing con-
straints) have to be provided. Tarabanis et al. presented
approaches to compute the viewpoints that satisfy many
sensing constraints, i.e. resolution, focus, field of view, and
detectability (Tarabanis et al. 1994, 1995, 1996). Abrams
et al. also proposed to compute the viewpoints that satisfy
the constraints of resolution, focus (depth of field), field of
view, and detectability (Abrams et al. 1999).

A complete list of constraints is summarized and ana-
lyzed by Chen and Li (2004). An admissible viewpoint
should satisfy as many as nine placement constraints,
including the geometrical (G1, G2, G6), optical (G3, G5,
G8), reconstructive (G4, G6), and environmental (G9) con-
straints. These are listed in Table 3. Figure 10 intuitively
illustrates several constraints (G1, G2, G3, G5, G7). Con-
sidering the six points (A–F) on the object surface, it can
be seen in the figure that only point A satisfies all five con-
straints, while all other points violated one or more of the
constraints.

The formulation of perception constraints is mostly used
in model-based vision tasks (Trucco et al. 1997), such as
inspection, assembly/disassembly, recognition, and object
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Fig. 10. Illustration of sensor placement constraints (Chen and Li
2004 (© IEEE 2004)).

search (Tarabanis et al. 1995), but a similar formulation
is also valid in non-model-based tasks (Chen and Li 2005;
Chen et al. 2008a). For the autonomous selection and mod-
ification of camera configurations during tasks, Chu and
Chung consider both the camera’s visibility and the manip-
ulator’s manipulability. The visibility constraint guarantees
that the whole of a target object can be ‘viewed’ with no
occlusions by the surroundings, and the manipulability con-
straint guarantees avoidance of the singular position of the
manipulator and rapid modification of the camera position.
The optimal camera position is determined and the camera
configuration is modified such that visual information for
the target object can be obtained continuously during the
execution of assigned tasks (Chu and Chung 2002).

4.1.1. Cost functions Traditionally for sensor planning, a
weighted function is often used for objective evaluation. It
includes several components standing for placement con-
straints. For the object model, the NBV was defined as the
next sensor pose which would enable the greatest amount
of previously unseen three-dimensional information to be
acquired (Banta et al. 2000; Li and Liu 2005). Tarabanis
et al. chose to formulate the probing strategy as a function
minimization problem (Tarabanis et al. 1995). The opti-
mization function is given as a weighted sum of several
component criteria, each of which characterizes the qual-
ity of the solution with respect to an associated requirement
separately. The optimization function is written as

h = max( α1g1 + α2g2 + α3g3 + α4g4) (6)

subject to gi ≥ 0, to satisfy four constraints, i.e. the
resolution, focus, field of view, and visibility.

Equivalently with constraint-based space analysis, for
each constraint, the sensor pose is limited to a possible
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region. Then the viewpoint space is given as the intersection
of these regions and the optimization solution is determined
by the above function in the viewpoint space, i.e.

Vplacement = Vg1

⋂
Vg2

⋂
Vg3

⋂
Vg4 (7)

Marchand and Chaumette (1999a) took three factors into
account in the strategy of viewpoint selection: (i) the new
observed area volume G( φt+1), (ii) the cost function F in
order to reduce the total camera displacement C( φt, φt+1),
and (iii) constraints to avoid unreachable viewpoints and to
avoid positions near the robot joint limits B( φ). The cost
function Fnext to be minimized is defined as a weighted sum
of the different measures:

F( φt+1) = A( φ) +a1g( φt+1) +a2C( φt, φt+1) +a3B( φ)
(8)

Ye and Tsotsos considered the total cost of object search via
a function (Ye and Tsotsos 1999):

T[F] =
k∑

i=1

to( fi) (9)

where the cost to(f ) gives the total time needed to manip-
ulate the hardware to the status specified by f, to take a
picture, to update the environment and register the space,
and to run the recognition algorithm. The effort allocation
F =( f1, ..., fk) gives the ordered set of operations applied in
the search.

Chen and Li defined a criterion of lowest traveling cost
according to the task execution time

Tcos t = ( T1 + T2) n + lcκ (10)

where T1 and T2 are constants reflecting the time for image
digitalization, image preprocessing, 3D surface reconstruc-
tion, fusion and registration of partial models. n is the num-
ber of total viewpoints. k is the equivalent sensor moving
speed. lc is the total path length of robot operations, which
is computed from the sensor placement graph (Chen and Li
2004).

4.1.2. Data driven In active perception, data-driven sensor
planning makes sensing decisions according to local on-site
data characteristics and to deal with environmental uncer-
tainty (Whaite and Ferrie 1997; Miura and Ikeuchi 1998;
Callari and Ferrie 2001; Bodor et al. 2007).

In model-based object recognition, SyedaMahmood
presents an approach that uses color as a cue to perform
selection either based solely on image data (data-driven),
or based on the knowledge of the color description of the
model (model-driven). The color regions extracted form
the basis for performing data- and model-driven selection.
Data-driven selection is achieved by selecting salient color
regions as judged by a color-saliency measure that empha-
sizes attributes that are also important in human color per-
ception. The approach to model-driven selection, on the

other hand, exploits the color and other regional informa-
tion in the 3D model object to locate instances of the object
in a given image. The approach presented tolerates some of
the problems of occlusion, pose, and illumination changes
that make a model instance in an image appear different
from its original description (SyedaMahmood 1997).

Mitsunaga and Asada investigated how a mobile robot
selected landmarks to make a decision based on an informa-
tion criterion. They argue that observation strategies should
not only be for self-localization but also for decision mak-
ing. An observation strategy is proposed to enable a robot
equipped with a limited viewing angle camera to make deci-
sions without self-localization. A robot can make a decision
based on a decision tree and on prediction trees of obser-
vations constructed from its experiences (Mitsunaga and
Asada 2006).

4.2. Expectation

Local surface features and expected model parameters are
often used in active sensor planning for shape modeling
(Flandin and Chaumette 2001). A strategy developed by
Jonnalagadda et al. is to select viewpoints in four steps:
local surface feature extraction, shape classification, view-
point selection, and global reconstruction. When 2D and
3D surface features are extracted from the scene, they are
assembled into simple geometric primitives. The primitives
are then classified into shapes, which are used to hypoth-
esize the global shape of the object and plan the next
viewpoints (Jonnalagadda et al. 2003).

In purposive shape reconstruction, the method adopted
by Kutulakos and Dyer is based on a relation between the
geometries of a surface in a scene and its occluding contour:
If the viewing direction of the observer is along a principal
direction for a surface point whose projection is on the con-
tour, surface shape (i.e. curvature) at the surface point can
be recovered from the contour. They use an observer that
purposefully changes viewpoint in order to achieve a well-
defined geometric relationship with respect to a 3D shape
prior to its recognition. The strategy depends on only cur-
vature measurements on the occluding contour (Kutulakos
and Dyer 1994).

Chen and Li developed a method by analyzing the target’s
trend surface, which is the regional feature of a surface for
describing the global tendency of change. While previous
approaches to trend analysis usually focused on generat-
ing polynomial equations for interpreting regression sur-
faces in three dimensions, they propose a new mathematical
model for predicting the unknown area of the object sur-
face. A uniform surface model is established by analyzing
the surface curvatures. Furthermore, a criterion is defined
to determine the exploration direction, and an algorithm is
developed for determining the parameters of the next view
(Chen and Li 2005).

On the other hand, object recognition does also obviously
need to analyze local surface features. The appearance of
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Fig. 11. The Gauss map and visibility map for scanning planning
(Chang and Park 2009 (with permission of Elsevier)).

an object from various viewpoints is described in terms of
visible 2D features, which are used for feature search and
viewpoint decisions (Kuno et al. 1991).

4.2.1. Visibility A feature point target must be visible and
not occluded in a robotic vision system (Briggs and Donald
2000; Chu and Chung 2002). It is essential for real-time
robot manipulation in cluttered environments (Zussman
et al. 1994; Jang et al. 2008), or adaptation to dynamic
scenes (Fiore et al. 2008). Recognition of time-varying geo-
metrical objects or subjects needs to maximize the visibility
in a dynamic environment (Mackay and Benhabib 2008b).

As some missing areas may be found from the ini-
tial scans of an object (Fernandez et al. 2008), algorithms
can be developed to compute additional scanning orienta-
tions (Chang and Park 2009). The algorithm by Chang and
Park was designed by considering three major technologi-
cal requirements of the problem: dual visibility, reliability,
and efficiency. To satisfy the dual visibility requirement
for the structured light vision sensor, the algorithm uses
the concept of a visibility map as well as the diameter of
a spherical polygon. Once dual visibility is satisfied, the
algorithm attempts to locate the optimal scanning orienta-
tion to maximize the reliability. For a surface, the visibility
map can be derived from a Gauss map, which is the inter-
section of the surface normal vectors and the unit sphere
(Figure 11).

A model-based visibility measure for geometric primi-
tives is called a visibility map. It is simple to calculate,
memory efficient, accurate for viewpoints outside the con-
vex hull of the object and versatile in terms of possible
applications (Ellenrieder et al. 2005a). A global visibility
map is a spherical image built to describe the complete
set of global visible view directions for a surface. For the
computation of global visibility maps, Liu et al. (2009)
considered both the self-occlusions introduced by a region
and the global occlusions introduced by the rest of the sur-
faces on the boundary of the polyhedron. The occluded
view directions introduced between a pair of polyhedral
surfaces can be computed from the spherical projection of
the Minkowski sum of one surface and the reflection of
the other. A suitable subset of the Minkowski sum, which

shares the identical spherical projection with the com-
plete Minkowski sum, is constructed to obtain the spherical
images representing global occlusions (Liu et al. 2009).

4.2.2. Coverage, occlusion, and tessellation The sensor
coverage problem for locating sensors in 2D can be mod-
eled as an art gallery problem or museum problem (Bottino
and Laurentini 2006a; Bottino et al. 2007; Bottino and Lau-
rentini 2008). It originates from a real-world problem of
guarding an art gallery with the minimum number of guards
which together can observe the whole gallery. In the compu-
tational geometry, the layout of the art gallery is represented
by a simple polygon and each guard is represented by a
point in the polygon. A set S of points is said to guard a
polygon if, for every point p in the polygon, there is some
q ∈ S such that the line segment between p and q does not
leave the polygon.

The decision problem versions of the art gallery problem
and all of its standard variations are NP complete. Regard-
ing approximation algorithms, Eidenbenz et al. proved the
problem to be APX hard, implying that it is unlikely that
any approximation ratio better than some fixed constant can
be achieved by a polynomial time approximation algorithm.
Avis and Toussaint proved that a placement for these guards
may be computed in O(n log n) time in the worst case, via a
divide and conquer algorithm.

Recently, Nilsson et al. formulated the ‘minimum wall
guard problem’ as follows.

Problem: Let W = [( pi, qi) : pi, qi ∈ R2] be a set of
line segments corresponding to the walls that needs to be
surveyed. Furthermore, let O ⊂ R2 be the union of all obsta-
cles. The problem is to find a minimum set S ⊂ R2 of points
on the ground plane such that every wall wi in W is guarded
by a point sj in S. By guarded it means that sj and wi satisfy
the constraints of visibility, resolution, and field of view.

They further proposed the following algorithm to find a
solution.

Algorithm: (1) Find the candidate guard set S. (2) Calculate
the walls guarded by each s ∈ S, using the three constraints.
(3) Transcribe the problem of finding a subset of S that
guards all walls W to a minimum set cover problem. (4)
Solve the problem using a greedy approach.

In the algorithm, since the original problem is NP com-
plete, they do not seek to find the true optimal set of
guard positions. Instead, a near optimal subset of the can-
didate points is chosen with a known approximation ratio
of O(log(n)) (Nilsson et al. 2009).

As the art gallery problem is a well-studied visibility
problem in computational geometry, many other solutions
may be taken directly for visual sensor placement. Recently,
a lower bound for the cardinality of the optimal covering
solution, specific of a given polygon, has been proposed.
It allows one to assess the performances of approximate
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Fig. 12. A complex scenario with 19 walls to be guarded. The
solution requires seven guards to guard all walls while satisfy-
ing occlusion, resolution and field of view constraints (with kind
permission from Springer Science + Business Media: Nilsson
U, Ogren P and Thunberg J (2009) Towards optimal position-
ing of surveillance UGVs. In 8th International Conference on
Cooperative Control and Optimization, pp. 221–233).

sensor location algorithms. It can be computed in reason-
able time for environments with up to a few hundred edges
(Bottino et al. 2009).

An example of a complex scenario is depicted in Fig-
ure 12. Seven UGVs are required to cover the 19 walls of
the four buildings. Note that although no explicit obsta-
cles are present, the buildings themselves serve as obstacles
occluding the view of the UGVs.

However, if the problem is in three dimensions, then
putting a guard at each vertex will not ensure that all of the
museums are under observation. Although all of the surface
of the polyhedron would be surveyed, for some polyhedra
there are points in the interior which might not be under
surveillance.

To determine minimal orthographic view covers for poly-
hedra, a global visibility map-based method was developed
by Liu and Ramani (2009) to calculate an optimal or near-
optimal solution using object space segmentation and view-
point space sampling. The viewpoint space is sampled using
a generate-as-required heuristic. The problem is then mod-
eled as an instance of the classical set-cover problem and
solved using a minimal visible set based branch-and-bound
algorithm.

Coverage is also a cue in image selection for multi-
view 3D sensing (Hornung et al. 2008), urban driving (Seo
and Urmson 2008), multi-agent sensor planning (Bardon et
al. 2004), and model acquisition session planning. Impoco
et al. propose a solution to improve the coverage of auto-
matically acquired objects. Rather than searching for the
NBV in order to minimize the number of acquisitions, they

propose a simple and easy-to-implement algorithm limiting
our scope to closing gaps (i.e. filling unsampled regions) in
roughly acquired models. The idea is to detect holes in the
current model and cluster their estimated normals in order
to determine new views (Impoco et al. 2004).

While most existing camera placement algorithms focus
on coverage and/or visibility analysis, Yao et al. recently
argued that visibility is insufficient for automated persis-
tent surveillance. In some applications, a continuous and
consistently labeled trajectory of the same object should be
maintained across different camera views. Therefore, a suf-
ficient uniform overlap between the cameras’ fields of view
should be secured so that camera handoff can successfully
and automatically be executed before the object of inter-
est becomes untraceable or unidentifiable. They propose
sensor-planning methods that improve existing algorithms
by adding handoff rate analysis and preserve necessary
uniform overlapped fields of view between adjacent cam-
eras for an optimal balance between coverage and handoff
success rate (Lim et al. 2006; Yao et al. 2010).

There is a constraint in sensor planning that has not been
thoroughly investigated in the literature, namely, visibility
in the presence of random occluding objects (Mittal and
Davis 2004, 2008). Such visibility analysis provides impor-
tant performance characterization of multi-camera systems.
Furthermore, maximization of visibility in a given region of
interest yields the optimum number and placement of cam-
eras in the scene. Mittal and Davis presented such primary
contributions.

Although several factors contribute, occlusion due to
moving objects within the scene itself is often the dominant
source of tracking error. Chen and Davis introduced a con-
figuration quality metric based on the likelihood of dynamic
occlusion. Since the exact geometry of occluders cannot be
known a priori, they use a probabilistic model of occlusion
(Chen and Davis 2008).

There is another distinctive method used frequently for
object modeling, i.e. spatial tessellation. Usually it tessel-
lates a sphere or cylinder around the object to be modeled
as a viewpoint space (MacKinnon et al. 2008a), look-up
array, or grid maps (Se and Jasiobedzki 2007). Each grid
point is a possible sensor pose for viewing the object. The
object surface is partitioned as void surface, seen surface,
unknown surface, and uncertain surface. The working space
is also partitioned into void volume and viewing volume.
Finally, an algorithm is employed for planning a sequence
of viewpoints so that the whole object can be sampled. This
method is effective in dealing with some small and sim-
ple objects, but it is difficult to model a large and complex
object with many concave areas because it cannot solve
occlusion constraint.

4.2.3. Geometrical analysis Direct geometrical analysis is
the most fundamental way in solving computer vision prob-
lems. For example, the robot configuration space (C-space)
is adopted with pure geometric criteria (Wang and Gupta
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2006). For simultaneous tracking of multiple moving targets
using an active stereo, Barreto et al. propose to control the
active system parameters in such a manner that the images
of the targets in the two views are related by a homography.
This homography is specified during the design stage and,
thus, can be used to implicitly encode the desired tracking
behavior. Such formulation leads to an elegant geometric
framework that enables a systematic and thorough analy-
sis of the problem. In the case of using two pan–tilt–zoom
(PTZ) cameras with rotation and zoom control, it is proved
that such a system can track up to three free-moving targets,
while assuring that the image location of each target is the
same for both views. If considering a robot head with neck
pan motion and independent eye rotation, it is not possible
to track more than two targets because of the lack of zoom
(Barreto et al. 2010).

For optimal sensor placement in a surveillance region
with a minimal cost, the problem is solved by Sivaram et al.
by obtaining a performance vector, with its elements rep-
resenting the performances of subtasks, for a given input
combination of sensors and their placement. Then the opti-
mal sensor selection problem can be converted into the form
of Integer Linear Programming problem. The optimal per-
formance vector corresponding to the sensor combination n
(m-dimensional) is given by

P∗ = A × n (11)

where A is related to the performance matrix (l × m)
which is organized from the sensor types and surveillance
subtasks. The performance constraints can be written as

A × n ≥ b (12)

where b is the required performance, an l-dimensional vec-
tor. To demonstrate the utility of our technique, a surveil-
lance system is introduced which consists of PTZ cam-
eras and active motion sensors for capturing faces (Sivaram
et al. 2009).

In a robot motion-planning algorithm, Han et al. pro-
posed to capture a moving object precisely using the single
curvature trajectory. With the pre-determined initial states
(i.e. position and orientation of the mobile robot and the
final states), the mobile robot is made to capture a moving
object (Han et al. 2008).

4.2.4. Volumetric space Out of the existing approaches,
volumetric computation by region intersection is frequently
used by researchers since the early stages (Cowan and
Kovesi 1988). For example, it computes the region Ri

of acceptable viewpoints for each constraint. If multiple
surface features need to be inspected simultaneously, the
region Ri is the intersection of the acceptable regions Rij

for each individual feature. Finally, the region of acceptable
viewpoints is the intersection of all regions (Figure 13).

For scene reconstruction and exploration (Lang and
Jenkin 2000), the quality of a new position φi+1 is defined

Fig. 13. The volumes of resolution, depth-of-field, and field-of-
view constraints (Cowan and Kovesi 1988 (© IEEE 1988)).

by the volume of the unknown regions that appear in the
field of view of the camera (Marchand and Chaumette
1999a). The new observed region G( φi+1) is given by

G( φi+1) = V ( φi+1) −V ( φi+1) ∩V ( T t
0) (13)

where V ( φi+1) defines the part of the scene observed
from the position φi+1 and V ( φi+1) ∩V ( T t

0) defines the
subpart of V ( φi+1) that has already been observed.

Martins et al. presented a method to automate the pro-
cess of surface scanning using optical range sensors and
based on a priori known information from a CAD model. A
volumetric model implemented through a 3D voxel map is
generated from the object CAD model and used to define
a sensing plan composed of a set of viewpoints and the
respective scanning trajectories. Surface coverage with high
data quality and scanning costs are the main issues in
sensing plan definition (Martins et al. 2003, 2005).

Bottino and Laurentini presented a general approach
to interactive, object-specific volumetric algorithms, based
on a condition for the best possible reconstruction. The
approach can be applied to any class of objects. As an exam-
ple, an interactive algorithm is implemented for convex
polyhedra (Bottino and Laurentini 2006b).

4.3. Multi-agent approach

4.3.1. Cooperative network Consider a mobile cooperative
network that is given the task of building a map of the spa-
tial variations of a parameter of interest, such as an obstacle
map or an aerial map. Mostofi and Sen proposed a frame-
work that allows the nodes to build a map with a small
number of measurements. By compressive sensing, they
studied how the nodes can exploit the sparse representa-
tion in the transform domain in order to build a map with
minimal sensing (Mostofi and Sen 2009).

The surveillance of a maneuvering target with multi-
ple sensors in a coordinated manner requires a method for
selecting and positioning groups of sensors in real time
(Naish et al. 2003). Heuristic rules are used to determine
the composition of each sensor group by evaluating the
potential contribution of each sensor. In the case of dynamic
sensors, the position of each sensor with respect to the tar-
get is specified. The approach aims to improve the quality
of the surveillance data in three ways: (i) the assigned sen-
sors are maneuvered into ‘optimal’ sensing positions, (ii)
the uncertainty of the measured data is mitigated through
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sensor fusion, and (iii) the poses of the unassigned sen-
sors are adjusted to ensure that the surveillance system can
react to future object maneuvers. If a priori target trajec-
tory information is available, the system performance may
be further improved by optimizing the initial pose of each
sensor off-line.

As a single sensor system would not provide adequate
information for a given sensor task, it is necessary to incor-
porate multiple sensors in order to obtain complete informa-
tion. Hodge and Kamel presented an automated system for
multiple sensor placement based on the coordinated deci-
sions of independent, intelligent agents. The overall goal is
to provide the surface coverage necessary to perform fea-
ture inspection on one or more target objects in a cluttered
scene. This is accomplished by a group of cooperating intel-
ligent sensors. In the system, the sensors are mobile, the
target objects are stationary and each agent controls the
position of a sensor and has the ability to communicate with
other agents in the environment. By communicating desires
and intentions, each agent develops a mental model of the
other agents’ preferences, which is used to avoid or resolve
conflict situations (Hodge and Kamel 2003).

Bakhtari et al. developed another agent-based method
for the dynamic coordinated selection and positioning of
active-vision cameras for the simultaneous surveillance of
multiple objects as they travel through a cluttered environ-
ment with unknown trajectories. The system dynamically
adjusts the camera poses in order to maximize the sys-
tem’s performance by avoiding occlusions and acquiring
images with preferred viewing angles (Bakhtari et al. 2006;
Bakhtari and Benhabib 2007).

In other aspects, camera networking by dynamic pro-
gramming is addressed by Lim et al. (2007). Issues of
scalability and flexibility of multiple sensors are studied by
Hodge et al. (2004). Cooperative localization using relative
bearing constraints is used for error analysis by Taylor and
Spletzer (2007).

4.3.2. Fusion When multiple optical sensors such as
stereo vision, a laser-range scanner and a laser-stripe pro-
filer are integrated into a multi-purpose vision system,
fusion of range data into a consistent representation is nec-
essary to allow for safe path planning and view planning.
Suppa and Hirzinger dealt with such 3D sensor synchro-
nization and model generation (Suppa and Hirzinger 2007).
Cohen and Edan presented a sensor fusion framework for
selecting online the most reliable logical sensors and the
most suitable algorithm for fusing sensor data in a robot
platform (Cohen and Edan 2008).

Visual sensors provide exclusively uncertain and partial
knowledge of a scene. A suitable scene knowledge repre-
sentation is useful to make integration and fusion of new,
uncertain, and partial sensor measures possible. Flandin and
Chaumette develop a method based on a mixture of stochas-
tic and set membership models. Their approximated repre-
sentation mainly results in ellipsoidal calculus by means of

a normal assumption for stochastic laws and ellipsoidal over
or inner bounding for uniform laws. These approximations
allow us to build an efficient estimation process integrating
visual data online. Based on this estimation scheme, opti-
mal exploratory motions of the camera can be automatically
determined (Flandin and Chaumette 2002).

While wide-area video surveillance is an important appli-
cation, it is sometimes not practical to have video cam-
eras that completely cover the entire region of interest. For
obtaining good surveillance results in a sparse camera net-
works, it requires that they be complemented by additional
sensors with different modalities, their intelligent assign-
ment in a dynamic environment, and scene understanding
using these multimodal inputs. Nayak et al. propose a prob-
abilistic scheme for opportunistically deploying cameras to
the most interesting parts of a scene dynamically given data
from a set of video and audio sensors. Events are tracked
continuously by combining the audio and video data. Cor-
respondences between the audio and video sensor observa-
tions are obtained through a learned homography between
the image plane and ground plane (Bakhtari et al. 2006;
Nayak et al. 2008).

For 3D tracking, Chen and Li proposed a method to
fuse sensing data of the most current observation into a
3D visual tracker with particle techniques. The importance
density function in particle filter can be modified to rep-
resent posterior states by particle crowds in a better way.
Thus, it makes the tracking system more robust to noise
and outliers (Chen and Li 2008).

For vehicle localization, data fusion from GPS and
machine vision is proposed by Rae and Basir (2009). Data
association is needed to identity the detected objects, and to
identity the road driven by the vehicle. For this purpose they
employ multiple hypothesis tracking to consider multiple
data association hypotheses simultaneously. Results show
that using machine vision improves the localization accu-
racy and helps in the identification of the road being driven
by the vehicle.

4.4. Statistical approaches

4.4.1. Probability and entropy Statistics, probability,
Kalman filters, and associative Markov networks have
been widely used in active object recognition (Wheeler
and Ikeuchi 1995; Dickinson et al. 1997; Roy et al. 2000;
Caglioti 2001), grasping (Motai and Kosaka 2008), and
modeling (Triebel and Burgard 2008). In the research of
multi-camera solutions, Farshidi et al. investigated the
feasibilities of recognition algorithms to classify the object
if its pose can be determined with a high confidence level,
by processing the available information within a recursive
Bayesian framework at each step. Otherwise, the algorithms
compute the next most informative camera positions for
capturing more images. The principle component analysis
(PCA) is used to produce a measurement vector based on
the acquired images. Occlusions in the images are handled
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by a probabilistic modeling approach that can increase the
robustness of the recognition process with respect to struc-
tured noise. The camera positions at each recognition step
are selected based on two statistical metrics regarding the
quality of the observations, namely the mutual information
(MI) and the Cramer–Rao lower bound (CRLB) (Farshidi
et al. 2009). For the state sn being the variable of interest,
the MI is a measure of the reduction in the uncertainty in
sn due to the observation g and is defined as

I( sn; g|an) = H( sn|an) −H( sn|g, an) (14)

where an is the vector of camera positions, g is the obser-
vation vector, and H(…) is the entropy function defined in
(16). CRLB is computed by

Cn = E{( ŝn − sn) ( ŝn − sn)T } ≥ J−1
n (15)

where Jn is the Fisher information matrix.
Significant improvement is observed in the success

rates of both MI-based and CRLB-based approaches. This
enhancement was gained by incorporating a model of
occlusion into the algorithms. The recognition rate in
experiments without occlusion modeling is 48–50%, and
improved to 98% if with occlusion modeling.

Borotschnig and Paletta also presented an active vision
system for recognizing objects which are ambiguous from
certain viewpoints (Borotschnig and Paletta 2000). The
system repositions the camera to capture additional views
and uses probabilistic object classifications to perform
view planning. Multiple observations lead to a significant
increase in recognition rate. The view planning consists
of attributing a score to each possible movement of the
camera. The movement obtaining the highest score will be
selected next. It was based on the expected reduction in
Shannon entropy over object hypotheses given a new view-
point, which should consist in attributing a score sn( �ψ) to
each possible movement �ψ of the camera. The movement
obtaining the highest score will be selected next:

�ψn+1 := arg max sn( �ψ) (16)

In sensor planning for object search, each robot action is
defined by a viewpoint, a viewing direction, a field of view,
and the application of a recognition algorithm. Ye and Tsot-
sos formulate it as an optimization problem: the goal is to
maximize the probability of detecting the target with mini-
mum cost. Since this problem is proved to be NP complete,
in order to efficiently determine the sensing actions over
time, the huge space of possible actions with fixed camera
position is decomposed into a finite set of actions that must
be considered. The next action is then selected from among
these by comparing the likelihood of detection and the cost
of each action. When detection is unlikely at the current
position, the robot is moved to another position where the
probability of target detection is the highest (Ye and Tsotsos
1999).

The Shannon entropy was also applied to the problem of
automatic selection of light positions in order to automat-
ically place light sources for maximum visual information
recovery (Vazquez 2007).

The 3D site modeling of Wenhardt et al. (2007) is based
on a probabilistic state estimation with sensor actions. The
next best view is determined by a metric of the state
estimation’s uncertainty. Three metrics are addressed: D-
optimality, which is based on the entropy and corresponds
to the determinant of the covariance matrix of a Gaus-
sian distribution, E-optimality, and T-optimality, which are
based on eigenvalues or on the trace of matrices, respec-
tively.

The entropy H(q) of a probability distribution p(q) is
defined as (Li and Liu 2005; Farshidi et al. 2009)

H( q) =
∫

p( q) log p( q) dq. (17)

For an n-dimensional Gaussian distribution, the entropy can
be calculated in a closed form:

H( q) = 1

2
[n + log( 2πn|P|) ]. (18)

The entropy depends only on the covariance P and the
expected covariance is independent of the next observa-
tions. This allows us to use the entropy as an optimality
criterion for sensor planning (Wenhardt et al. 2007).

For sensor-based robot motion planning, the robot plans
the next sensing action to maximally reduce the expected C-
space entropy, called the maximal expected entropy reduc-
tion (MER) criterion. From a C-space perspective, MER
criterion consists of two important aspects: sensing actions
are evaluated in C-space (geometric aspect); these effects
are evaluated in an information theoretical sense (stochas-
tic aspect). Wang and Gupta investigate how much of the
performance is attributable to the paradigmatic shift to eval-
uating the sensor action in C-space and how much to the
stochastic aspect, respectively (Wang and Gupta 2006).

In an intelligent and efficient strategy for unstructured
environment sensing using mobile robot agents, a metric
is derived from Shannon’s information theory to determine
optimal sensing poses (Sujan and Meggiolaro 2005). The
map is distributed among the agents using an information-
based relevant data reduction scheme. The method is par-
ticularly well suited to unstructured environments, where
sensor uncertainty is significant. In their other contribu-
tions for site modeling and exploration, in addition to using
Shannon’s information theory to determine optimal sensing
poses, the quality of the information in the model is used to
determine the constraint-based optimum view for task exe-
cution. The algorithms are applicable for both an individual
agent as well as multiple cooperating agents (Sujan and
Dubowsky 2005b). The NBV is found by fusing a Kalman
filter in the statistical uncertainty model with the measured
environment map (Sujan and Dubowsky 2005a).
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4.4.2. Bayesian reasoning Bayesian reasoning and classi-
fication methods are used in active perception for object
recognition, search, surface reconstruction, and object mod-
eling (Carrasco and Mery 2007; Mason 1997). Sutton
and Stark also applied function-based reasoning for goal-
oriented image segmentation (Sutton and Stark 2008) and
Zhang et al. proposed a Bayesian network approach to
sensor modeling and path planning (Zhang et al. 2009).

Bayesian inference is statistical inference in which evi-
dence or observations are used to update or to newly
infer the probability that a hypothesis may be true. Bayes’
theorem adjusts probabilities given new evidence in the
following way:

H( H |E) = P( E|H) P( H)

P( E)
(19)

where H represents a specific hypothesis, which may or
may not be some null hypothesis. Here P(H) is called the
prior probability of H that was inferred before new evi-
dence, E, became available. We call P(E |H) the conditional
probability of seeing the evidence E if the hypothesis H
happens to be true. It is also called a likelihood function
when it is considered as a function of H for fixed E. We
call P(E) the marginal probability of E: the a priori prob-
ability of witnessing the new evidence E under all possible
hypotheses.

For active recognition, the probability distribution of
object appearance is described by multivariate mixtures
of Gaussians which allows the representation of arbitrary
object hypotheses (Eidenberger et al. 2008). In a statistical
framework, Bayesian state estimation updates the current
state probability distribution based on a scene observation
which depends on the sensor parameters. These are selected
in a decision process which aims at reducing the uncer-
tainty in the state distribution (Eidenberger et al. 2008).
For online recognition and pose estimation of a large iso-
lated 3D object, Roy et al. propose a probabilistic reason-
ing framework for recognition and next-view planning (Roy
et al. 2005).

Kristensen et al. proposed the sensor planning approach
using the Bayesian decision theory. The sensor modalities,
tasks, and modules were described separately and the Bayes
decision rule was used to guide the behavior (Kristensen
1997). Li and Liu adopted a B-spline for modeling the
freeform surface. In the framework of Bayesian statistics for
determining the probing points for efficient measurement
and reconstruction, they developed a model selection strat-
egy to obtain an optimal model structure for the freeform
surface. In order to obtain reliable parameter estimation
for the B-spline model, they analyzed the uncertainty of
the model and used the statistical analysis of the Fisher
information matrix to optimize the locations of the probing
points needed in the measurements (Li and Liu 2003).

4.4.3. Hypothesis and verification The method of ‘obser-
vation, modeling, hypothesis, and verification’ is powerful

for 3D model matching. In a semi-automated excavation
system, the 3D object localization method used consists of
three steps (Maruyama et al. 2010): (i) candidate regions
are extracted from a range image obtained by an area-
based stereo-matching method; (ii) for each region, mul-
tiple hypotheses for the position and orientation are gener-
ated for each object model; (iii) each hypothesis is verified
and improved by an iterative method. The operator veri-
fies the object localization results and then selects one of
the objects as the best object that is suitable for grasping
by the robot. The robot grasps objects based on the object
localization result (Maruyama et al. 2010).

For path planning, a strategy by Nabbe and Hebert (2007)
is based on a ‘what-if ’ analysis of hypothetical future con-
figurations of the environment. Candidate sensing positions
are evaluated based on their ability to observe anticipated
obstacles.

Hypothesis and verification is also used in viewpoint
planning for 3D model reconstruction by Jonnalagadda
et al. (2003) and Marchand and Chaumette (1999b). Jon-
nalagadda et al. presented a strategy to select viewpoints
for global 3D reconstruction of unknown objects. The NBV
is chosen to verify the hypothesized shape. If the hypothe-
sis is verified, some information about global reconstruction
of a model can be stored. If not, the data leading up to
this viewpoint is re-examined to create a more consistent
hypothesis for the object shape. The NBV algorithm uses
only the local geometric features of an object and the visi-
bility constraint is not used in the function to compute next
viewpoint (Jonnalagadda et al. 2003).

To perform the complete and accurate reconstruction of
3D static scenes, Marchand and Chaumette used a struc-
ture from controlled motion method. As the method is based
on particular camera motions, perceptual strategies able to
appropriately perform a succession of such individual prim-
itive reconstructions are proposed in order to recover the
complete spatial structure of the scene. Two algorithms are
suggested to ensure the exploration of the scene. The former
is an incremental reconstruction algorithm based on the use
of a prediction/verification scheme managed using decision
theory and Bayes nets. It allows the visual system to get
a high-level description of the observed part of the scene.
The latter, based on the computation of new viewpoints,
ensures the complete reconstruction of the scene (Marchand
and Chaumette 1999b).

4.5. Soft and intelligent computation

4.5.1. Learning and expert system Interactive learning
(Grewe and Kak 1995) or reinforcement learning (Kollar
and Roy 2008) is frequently used for active recognition,
localization, planning, and modeling (Wang et al. 2008).
For example, inter-image statistics can be used for 3D envi-
ronment modeling (Torres-Mendez and Dudek 2008). An
expert knowledge-based sensor planning system was devel-
oped for car headlight lens inspection by Martinez et al.
(2008).
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For active viewpoint selection for object recognition,
Deinzer et al. attempted an unsupervised reinforcement
learning algorithm for modeling of continuous states, con-
tinuous actions, sequential fusion of gathered image infor-
mation, and supporting rewards for an optimized recog-
nition. The combined viewpoint selection and viewpoint
fusion approach is to improve the recognition rates (Deinzer
et al. 2009). Roy et al. attempted probabilistic reasoning for
recognition of an isolated 3D object. Both the probability
calculations and the next view planning have the advantage
that the knowledge representation scheme encodes feature-
based information about objects as well as the uncertainty
in the recognition process. The probability of a class (a
set of aspects, equivalent with respect to a feature set) was
obtained from the Bayes rule (Roy et al. 2000).

For robotic real-time localization with a single camera
and natural landmarks, Kwok employed an evolutionary
computing approach (Kwok 2006) in the SLAM context to
build a map simultaneously. Royer et al. gave a three-step
approach. In a learning step, the robot is manually guided
on a path and a video sequence is recorded with a front
looking camera. Then a structure from motion algorithm is
used to build a 3D map from this learning sequence. Finally
in the navigation step, the robot uses this map to compute
its localization in real time and it follows the learning path
or a slightly different path if desired (Royer et al. 2007).

Consider the task of purposefully controlling the motion
of an active, monocular observer in order to recover a
global description of a smooth, arbitrarily-shaped object.
Kutulakos and Dyer formulate global surface reconstruc-
tion as the task of controlling the motion of the observer
so that the visible rim slides over the maximal, connected,
reconstructible surface regions intersecting the visible rim
at the initial viewpoint. They develop basic strategies that
allow reconstruction of a surface region around any point
in a reconstructible surface region. These strategies control
viewpoint to achieve and maintain a well-defined geometric
relationship with the object’s surface, rely only on informa-
tion extracted directly from images, and are simple enough
to be performed in real time. Global surface reconstruction
is then achieved by (i) appropriately integrating these strate-
gies to iteratively grow the reconstructed regions, and (ii)
obeying four simple rules (Kutulakos and Dyer 1995).

Robots often use topological structures as a spatial repre-
sentation for exploring unknown environments. A method
was developed by Hubner and Mallot (2007) to scale a
similarity-based navigation system (the view-graph model)
to continuous metric localization. Instead of changing the
landmark model, they embed the graph into the 3D pose
space. Therefore, recalibration of the path integrator is only
possible at discrete locations in the environment. The nav-
igation behavior of the robot is controlled by a homing
algorithm which combines three local navigation capabil-
ities, obstacle avoidance, path integration, and scene-based
homing. This homing scheme allows automated adapta-
tion to the environment. It is further used to compensate

Fig. 14. Example of the constraint network with semantic map-
ping for scene interpretation (Nuchter and Hertzberg 2008 (with
permission of Elsevier)).

for path integration errors, and therefore allows a robot to
derive globally consistent pose estimates based on weak
metric knowledge. It is tested to explore a large, open, and
cluttered environment.

Rule-based planning. Semantic maps and reasoning
engines are useful in addition to geometry maps when the
robot interacts with its environment in a goal-directed way.
A semantic stance enables the robot to reason about objects;
it helps disambiguate or round off sensor data; and the
robot knowledge becomes reviewable and communicable.
Nuchter and Hertzberg proposed an approach and an inte-
grated robot system for semantic mapping. Coarse scene
features are determined by semantic labeling. More deli-
cate objects are then detected by a trained classifier and
localized. Finally, the semantic maps can be visualized for
inspection (Nuchter and Hertzberg 2008). Figure 14 shows
an example of the object relationship for scene interpre-
tation. The semantic mapping is performed through the
following steps: (i) SLAM for acquiring 3D scans of the
environment; (ii) scene interpretation by feature extract-
ing and labeling; (iii) object detection for identification of
known objects and their poses; and (iv) visualization of the
semantic map.

4.5.2. Fuzzy and neural network Fuzzy inference and neu-
ral network are useful in sensor planning for prediction and
recognition. Saadatseresht et al. solved automatic camera
placement in vision metrology based on a fuzzy inference
system (Saadatseresht et al. 2005). Martinez et al. recently
proposed a methodology to include the inspection guide-
line in an automated headlamp lens inspection system. As
the way in which the guideline includes the knowledge of
an expert in the inspection of lenses is inherently qualita-
tive and vague, a fuzzy rule-based system is developed to
model this information (Martinez et al. 2009). Budiharto et
al. used an adaptive neuro-fuzzy controller for servant robot
indoor navigation (Budiharto et al. 2010).

Visibility uncertainty prediction was solved by an artifi-
cial neural network (ANN) by Saadatseresht and Varshosaz
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(2007). For outdoor navigation, Shinzato et al. used ANN
for path recognition (Shinzato et al. 2010).

4.5.3. Evolutionary computation The model-based sensor
placement problem has been formulated as a nonlinear
multi-constraint optimization problem as described in Sec-
tion 4.2. It is difficult to compute robust viewpoints which
satisfy all constraints. However, evolutionary computation
is especially powerful in solving such problems. Chen and
Li use a hierarchical genetic algorithm (GA) to determine
the optimal topology in the sensor placements which will
contain minimum number of viewpoints with the high-
est accuracy while satisfying all of the constraints. In the
hierarchical chromosome, parametric genes represent the
sensor poses and optical settings and control genes repre-
sent the topology of viewpoints. A plan of sensor place-
ments is evaluated by a min–max criterion, which includes
three objectives and a fitness evaluation formula (Chen
and Li 2004). Similarly, a hybrid GA is used to solve the
highly complicated optimization problem by Al-Hmouz and
Challa (2005).

Although evolutionary computation is mostly used in
model-based inspection (Olague 2002; Yang and Ciarallo
2001; Dunn and Olague 2003, 2004), the method has wider
applications in active vision perception, e.g., path planning
in assembly lines (Park et al. 2006) and monitoring (Sakane
et al. 1995). Kang et al. applied the virus coevolution-
ary partheno-genetic algorithm (VEPGA), which combined
a partheno-genetic algorithm (PGA) with virus evolution-
ary theory, for determining sensor placements (Kang et al.
2008).

4.6. Dynamic configuration

In an active vision system, since the robot needs to move
from one place to another to perform a multi-view task, a
traditional vision sensor with fixed structure is often inad-
equate for the robot to perceive the object features in an
uncertain environment as the object distance and size are
unknown before the robot sees it. A dynamically recon-
figurable sensor can help the robot to control the con-
figuration and gaze at the object surfaces. For example,
with a structured light system, the camera needs to see the
object surface illuminated by the projector, to perform the
3D measurement and reconstruction task. Active recalibra-
tion means that the vision sensor is reconfigurable during
runtime to fit in the environment and can perform self-
recalibration as required before visual perception (Chen et
al. 2008a; Chu and Chung 2002).

In the literature, self-reconfiguration of automated visual
inspection systems is addressed by Garcia and Villalobos
(2007a, 2007b). Bakhtari et al. presented a reconfiguration
method for the surveillance of an object as it travels through
a multi-object dynamic workspace with unknown trajectory
(Bakhtari et al. 2006, 2009).

In an environment of large scenes having large depth
ranges with depth discontinuities, it is necessary to aim
cameras in different directions and to fixate at different
objects. An active approach is suggested by coarse-to-fine
image acquisition by Das and Ahuja (1996), which involves
the following steps. (i) A new fixation point is selected
from among the non-fixated, low-resolution scene parts of
current fixation. (ii) A reconfiguration of the cameras is
initiated for re-fixation. As reconfiguration progresses, the
images of the new fixation point are gradually deblurred and
the accuracy of the position estimate of the point improves
allowing the cameras to be aimed at it with increasing pre-
cision. (iii) The improved depth estimate is used to select
focus settings of the cameras, thus completing fixation.
Similarly, an active stereo head is implemented with visual
behaviors by Krotkov and Bajcsy (1993), including func-
tions of (i) aperture adjustment to vary depth of field and
contrast, (ii) focus ranging followed by fixation, (iii) stereo
ranging followed by focus ranging, and (iv) focus ranging
followed by disparity prediction followed by focus ranging.

4.6.1. Gaze and attention Gaze and attention are impor-
tant functions for a human to actively perceive in the envi-
ronment, and as the same is true for robots. Visual per-
ceptual capability starts with an early vision process that
exhibits changes in visual sensitivity such as night vision
and flash blindness under changing scene illumination.
Visual attention directs the limited gaze resource to resolve
visual competition with the cooperation of top-down atten-
tion and conspicuous bottom-up guidance. Grounded in
psychological studies, it has four factors, i.e. conspicuity,
mental workload, expectation and capacity, which deter-
mine successful attention allocation. For purposive percep-
tion, many devices and systems have been invented for
robotics (Dickinson et al. 1997).

Active gaze control allows us to overcome some of the
limitations of using a monocular system with a relatively
small field of view. To implement active gaze control in
SLAM, a system was addressed by Frintrop and Jensfelt
(2008b), which specializes in creating and maintaining a
sparse set of landmarks based on a biologically motivated
feature-selection strategy. A visual attention system detects
salient features that are highly discriminative and ideal can-
didates for visual landmarks that are easy to redetect. It
supports (i) the tracking of landmarks that enable a bet-
ter pose estimation, (ii) the exploration of regions without
landmarks to obtain a better distribution of landmarks in the
environment, and (iii) the active redetection of landmarks
to enable close loop. It is concluded that active camera con-
trol outperforms the passive approach (Frintrop and Jensfelt
2008a).

Attention is often related to visual search. Consider the
problem of visually finding an object in an unknown space.
This is an optimization problem, i.e. optimizing the prob-
ability of finding the target given a fixed cost limit in
terms of total number of robotic actions required to find the

 at University of New South Wales on October 9, 2011ijr.sagepub.comDownloaded from 



1366 The International Journal of Robotics Research 30(11)

Fig. 15. The active vision system involving attention and gaze for
action decision (Bjorkman and Kragic 2004 (© IEEE 2004)).

visual target. Shubina and Tsotsos present an approximate
solution and investigate its performance and properties
(Shubina and Tsotsos 2010).

With a pre-determined sensor lens, the system may be
not able to deal with the scenes that have objects at different
distances. Quang et al. presented a projector auto-focusing
technique based on local blur information of the image
that can overcome the above limitation. The algorithm is
implemented on a projector–camera system, in order to
focus the pattern which is projected by the projector on all
objects in the scene sequentially. The proposed algorithm
first obtains a blur map of the scene on the image by using
a robust local blur estimator, and then the region of interest
is decided by thresholding the obtained blur map. Since the
main light source is provided by the projector, the proposed
auto-focusing algorithm achieves a good performance with
different light conditions (Quang et al. 2008).

With ego-motion (Shimizu et al. 2005), the robot is able
to control the orientation of a single camera, while still
allowing the robot to preview a wider area. In addition,
controlling the orientation allows the robot to optimize its
environment perception by only looking where the most
useful information can be discovered (Radovnikovich et al.
2010).

Bjorkman and Kragic introduced a real-time vision sys-
tem that consists of two sets of binocular cameras: a periph-
eral set for disparity-based attention and a foveal one for
higher-level processes (Figure 15). Thus, the conflicting
requirements of a wide field of view and high resolution
can be overcome. The steps taken from task specification
through object recognition to pose estimation are com-
pletely automatic, combining both appearance and geomet-
ric models. It was tested in a realistic indoor environment
with occlusions, clutter, changing lighting and background
conditions (Bjorkman and Kragic 2004).

4.6.2. Tagged roadmap Probabilistic roadmap methods
are a class of randomized motion planning algorithms that

have recently received considerable attention because they
are capable of handling problems with many degrees of
freedom, and large workspaces with many obstacles, for
which other motion planning methods are computationally
infeasible. Baumann et al. augments probabilistic roadmaps
with vision-based constraints. The designed planner finds
collision-free paths that simultaneously avoid occlusions of
an image target and keep the target within the field of view
of the camera (Baumann et al. 2008, 2010).

Another probabilistic roadmap method is presented for
planning the path of a robotic sensor deployed in order
to classify multiple fixed targets located in an obstacle-
populated workspace (Zhang et al. 2009). Existing roadmap
methods are not directly applicable to robots whose primary
objective is to gather target information with an on-board
sensor. In the proposed information roadmap, obstacles, tar-
gets, sensor’s platform and field of view are represented as
closed and bounded subsets of a Euclidean workspace. The
information roadmap is sampled from a normalized infor-
mation theoretic function that favors samples with a high
expected value of information in the configuration space.
The method is applied to a landmine classification prob-
lem to plan the path of a robotic ground-penetrating radar,
based on prior remote measurements and other geospatial
data. Results show that paths obtained from the informa-
tion roadmap exhibit classification efficiency several times
higher than that of other existing search strategies. Also, the
information roadmap can be used to deploy non-overpass
capable robots that must avoid targets as well as obstacles
(Zhang et al. 2009; Oniga and Nedevschi 2010).

The research group of Allen et al. developed a system for
automatic view planning called VuePlan. When combined
with their mobile robot, AVENUE, the system is capable
of modeling large-scale environments with minimal human
intervention throughout both the planning and acquisition
phases. The system proceeds in two distinct stages. In the
initial phase, the system is given a 2D site footprint with
which it plans a minimal set of sufficient and properly con-
strained covering views. It then uses a 3D laser scanner
to take scans at each of these views. The planning system
automatically computes and executes a tour of these view-
ing locations and acquires them with the robot’s onboard
laser scanner. These initial scans serve as an approximate
3D model of the site. The planning software then enters
a second phase in which it updates this model by using a
voxel-based occupancy procedure to plan the NBV (Blaer
and Allen 2009). They have successfully used the two-phase
system to construct precise 3D models of real-world sites
located in New York City (Figure 16).

4.6.3. Solution for next best view problem A solution for
the NBV problem is of particular importance for automated
object modeling. Given a partial model of the target, we
have to determine the sensor pose or scanning path to scan
all of the visible surfaces of an unknown object. The solu-
tion to this problem would ideally allow the model to be
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Fig. 16. 16 Complex site modeling by view planning with a foot-
print (Blaer and Allen 2009 (with permission of Wiley Black-
well)).

obtained from a minimum number of range images (Banta
et al. 2000; Kim and Cho 2003; He and Li 2006a; Null
and Sinzinger 2006; Blaer and Allen 2007; Huang and Qian
2008a, 2008b; Sun et al. 2008).

The NBV may be computed in two steps. First, the explo-
ration direction for the next view is determined via a mass
vector chain-based scheme. Then the accurate position of
the next view is obtained by computing the boundary inte-
gral of the vectors fields. The position with the maximum
integral value is selected as the NBV (Chen and Li 2005; Li
et al. 2005a).

It is argued that solutions to the NBV problem are con-
strained by other steps in a surface acquisition system and
by the range scanner’s particular sampling physics. Another
method for determining the unscanned areas of the view-
ing volume was presented by Pito (1999). The NBV is
determined by maximizing the objective function N(i)

max N( i) = o( ov( i) , os( i)) , i ∈ [1, n] (20)

where the parameters of o(…) are understood to be the
confidence-weighted area of the void patch and partial
model visible by the scanner. The number of costly compu-
tations needed to determine whether an area of the viewing
volume would be occluded from some scanning position is
decoupled from the number of positions considered for the
NBV, thus reducing the computational cost of choosing a
viewpoint.

A self-termination criterion can be used for judging
the completion condition in the measurement and recon-
struction process. Li et al. derived such a condition based
on changes in the volume computed from two successive
viewpoints (Li et al. 2005a; He and Li 2006b).

4.6.4. Graph-based placement Graph theory played an
important role in developing methods for automatic sensor
placement (Sheng et al. 2001b; Kaminka et al. 2008; Yegna-
narayanan et al. 2009). The general automatic sensor plan-
ning system (GASP) reported by Trucco et al. is to compute
optimal positions for inspection tasks using feature-based
object models (Trucco et al. 1997). This exploits a feature
inspection representation which outputs an explicit solution
off-line for the sensor position problem. The viewpoints are

Fig. 17. The shortest path planned to take a stereo pair through
the viewpoints for object inspection (Trucco et al. 1997 (© IEEE
1997)).
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Fig. 18. Sensor placement graph (Chen and Li 2004 (© IEEE
2004)).

planned by computing the visibility and reliability. In order
to find a shortest path through the viewpoints in space, they
used the convex hull, cheapest insertion, angle selection, or-
optimization (CCAO) as the algorithm to solve the traveling
salesman problem in the constructed graph (Figure 17).

The method was further explicitly described by Chen
and Li (2004), who gave detailed definition of the sensor
placement graph and the traveling cost standard (Wang et
al. 2007). A plan of viewpoints is mapped onto a graph
G =( V ( G) , E( G) , ψG, wE) with weight w on every edge
E, where the vertices V i represent viewpoints. Edge Eij rep-
resents a shortest collision-free path between viewpoint V i

and V j, and weight wij represents the corresponding dis-
tance. Figure 18 shows an example topology of a viewpoint
plan. A practical solution to the sensor placement problem
provides a number of viewpoints reachable by the robot and
there must exist a collision-free path between every two
acceptable viewpoints.
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Fig. 19. The aspect graph of an object (with kind permission from
Springer Science + Business Media: Eggert D, Stark L and Bowyer
K (1995) Aspect graphs and their use in object recognition. Ann
Math Artificial Intelligence 13: 347–375).

Eggert and colleagues attempted the use of the aspect
graph for 3D object recognition (Eggert et al. 1995). The
basic idea is that an iterative solution is generated for each
of a set of candidate aspects and the best of these is cho-
sen as the recognized view. Two assumptions are required:
(i) the iterative search for the correct candidate aspect must
converge to the correct answer, and (ii) the solution found
for the correct aspect must be better than that found for any
of the incorrect candidate aspects. In order to explore the
validity of these assumptions, a simple aspect graph-based
recognition system was implemented. The general defini-
tion of the aspect graph is that it is a graph structure in
which: (i) there is a node for each general view of the object
as seen from some maximal connected cell of viewpoint
space, and (ii) there is an arc for each possible transition
across the boundary between the cells of two neighboring
general views, called an accidental view or a visual event
(Figure 19).

In another method of object recognition by Kuno et
al. (1991), features are ranked according to the number
of viewpoints from which they are visible. The rank and
feature extraction cost of each feature are used to generate
a tree-like strategy graph. This graph gives an efficient fea-
ture search order when the viewpoint is unknown, starting
with commonly occurring features and ending with fea-
tures specific to a certain viewpoint. The system searches
for features in the order indicated by the graph. After detec-
tion, the system compares a line representation generated
from the 3D model with the image features to localize the
object.

In 3D reconstruction and shape processing for reuse of
the geometric models by Doi et al. (2005), a topology which
defines the vertex (sampling point) connectivity and the
shape of the mesh is assigned and conserved to meet the
desired meshing. Stable meshing, and, hence, an accurate
approximation free from the misconnection unavoidable in
modeling, is then accomplished.

4.7. Active lighting

Basically, the light position should be determined to achieve
adequate illumination, mathematically through the light
path, i.e. surface absorption, diffused reflectance, spec-
ular reflectance, and image irradiance. Illumination now
becomes the most challenging part of system design, and is
a major factor when it comes to implementing color inspec-
tion (Garcia-Chamizo et al. 2007). Here, when illumination
is also considered, the term ‘sensor’ has a border meaning
(Quang et al. 2008; Scott 2009).

Eltoft and deFigueiredo found that illumination control
could be used as a means of enhancing image features
(Eltoft and deFigueiredo 1995). Such features are points,
edges, and shading patterns, which provide important cues
for the interpretation of an image of a scene and the recog-
nition of objects present in it. Based on approximate expres-
sions for the reflectance map of Lambertian and general
surfaces, a rigorous discussion on how intensity gradients
are dependent on the direction of the light is presented.

Measuring reflection properties of a 3D object is useful
for active lighting control. Lensch et al. presented a method
to select advantageous measurement directions based on
analyzing the estimation of the bi-directional reflectance
distribution function (BRDF) (Lensch et al. 2003). Ellen-
rieder et al. derived a phenomenological model of the
BRDF of non-Lambertian metallic materials typically used
in industrial inspection. They showed how the model can
be fitted to measured reflectance values and how the fit-
ted model can be used to determine a suitable illumination
position. Together with a given sensor pose, this illumina-
tion position can be used to calculate the necessary shutter
time, aperture, focus setting, and expected gray value to
successfully perform a given inspection task (Ellenrieder et
al. 2005b).

When the reflectance of the scene under analysis is uni-
form, the intensity profile of the image spot is a Gaussian
and its centroid is correctly detected assuming an accu-
rate peak position detector. However, when a change of
reflectance occurs on the scene, the intensity profile of the
image spot is no longer Gaussian. Khali et al. present two
heuristic models to improve the sensor accuracy in the case
of a variable surface reflectance (Khali et al. 2003).

To better describe the properties, Ikeuchi and Robert
showed a sensor modeler, VANTAGE, to place the light
sources and cameras for object recognition (Ikeuchi and
Robert 1991). It was proposed to solve the detectability of
both light sources and cameras. It determined the illumi-
nation/observation directions using a tree-structured repre-
sentation and AND/OR operations. The sensor is defined
as consisting of not only the camera, but multiple compo-
nents, e.g. a photometric stereo. It is represented as a sensor
composition tree (SC tree). Finally, the appearance of object
surfaces is predicted by applying the SC tree to the object
and is followed by the action of sensor planning.

In order to automatically place light sources for maxi-
mum visual information recovery (Vazquez 2007) defined
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a metric to calculate the amount of information relative
to an object that is effectively communicated to the user
given a fixed camera position. This measure is based on an
information-based concept, the Shannon entropy, and will
be applied to the problem of automatic selection of light
positions in order to adequately illuminate an object.

For the surveillance task of a mobile robot in indoor
living space, in addition to the real conditions and poses,
it was demonstrated that an illumination model is neces-
sary for a planning behavior and good image quality results
(Schroeter et al. 2009). The luminance of an object surface
at position (x; y) depends on the observer direction ϕ is
modeled as L = f (x; y; ϕ). The update of the illumination
model can be done using a sequence of exposures with a
standard camera.

To determine the optimal lighting position in view of 3D
reconstruction error minimization, Belhaoua et al. proposed
an evaluation criterion for each tentative position uses the
contrast across object edges and the variance-based edge
detection results. The best lighting position corresponds to
the minimum variance and the maximum contrast values.
Results show that the optimization of the lighting position
leads indeed to minimization of the 3D measurement errors.
The search procedure for optimal lighting source position is
being fully automated using situation graph trees (SGTs) as
a planning tool and is included in a complete dynamic re-
planning tool for 3D automated vision-based reconstruction
tasks (Belhaoua et al. 2009).

Marchand et al. proposed an approach to control camera
position and/or lighting conditions in an environment using
image gradient information. The goal is to ensure a good
viewing condition and good illumination of an object to
perform vision-based tasks such as recognition and track-
ing. Within the visual servoing framework, the solution is
to maximize the brightness of the scene and maximize the
contrast in the image. They consider arbitrary combinations
of either static or moving lights and cameras. The method is
independent of the structure, color, and aspect of the objects
(Marchand 2007). For examples, illuminating the Venus de
Milo is planned as in Figure 20.

5. Conclusions and future trends

In this paper we have summarized the recent development
of active visual perception strategies in robotic applica-
tions. Typical contributions have been given for inspection,
surveillance, recognition, search, exploration, localization,
navigation, manipulation, tracking, mapping, modeling,
assembly, and disassembly. Representative works have been
listed for readers to have a general overview of the state of
the art. A bundle of methods have been investigated with
regards to solutions of visual perception acquisition prob-
lems, including visibility analysis, coverage and occlusion,
spatial tessellation, data fusion, geometrical and graphic
analysis, cost function evaluation, cooperative network,
multi-agent, evolutionary computation, fuzzy inference,

Fig. 20. An example of a camera and light source position control
(Marchand 2007 (© IEEE 2007)).

neural network, learning and expert system, information
entropy, Bayesian reasoning, hypothesis and verification,
etc. Issues of gaze, attention, dynamic configuration, and
active lighting have also been addressed, while they are not
emphasized in this survey. The largest volume of literature
reviewed is related to inspection and object modeling,
which correspond to model-based and non-model-based
vision tasks. They contribute about 15% and 9% in the
number of total publications, respectively.

Now let us look back from today at the survey by Tara-
banis et al. (1995), where we can find that almost all of
the ‘future directions’ pointed out 15 years ago have been
studied with considerable advancements. While some typ-
ical problems still need to have better solutions, new chal-
lenges and requirements are emerging in the field. To make
active perception even more effective in practical robotics,
the challenges either are currently under investigation in
research groups worldwide or need to be solved in the
future. The following suggest some trends.

5.1. Internet of things

Internet of things refers to the networked interconnection
of everyday objects whose purpose would be to make all
things communicable. Every human being (as well as robot)
is surrounded by 1,000 to 5,000 objects. The Internet of
things would encode trillions of objects and follow the
movement of those objects. If all objects of daily life can
be identified and managed by computers in the same way
humans can, the robots would have no difficulty in deciding
their actions and would therefore be able to instantaneously
identify any kind of object. Of course, it is impossible to
encode all things. Robot vision can be a part of ambient
intelligence between the environment and human beings.
The visual knowledge obtained by active perception might
be combined with other information from the Internet of
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things. Therefore, the robot itself should be included in the
Internet of things and become the most intelligent object.

5.2. Data fusion and reliable decision

Today, multiple data sources are often obtained in a robotic
system. When more than one kind of video camera, range
sensor, sonar, infrared, ultrasound, GPS, compass, IMU,
odometer, etc., are used together, vision perception can be
made more reliable by data fusion. Consequently, a con-
sistent representation should be developed so that fusion
of positional data, range data, and appearance data can be
realized to allow for safe path planning and effective view
planning.

5.3. Cooperative networks

For a complex vision task in a large-scale environment,
multiple robots can be adopted to accomplish the goal
efficiently. This, however, requires a good scheme of sys-
tem integration. Real-time data communication among
all agents is required for systematic coordination. When
exchanging detailed 2D/3D imagery data is impossible,
extraction and representation of high-level abstract data
should be implemented. Control and decision making in
such systems will then become a critical issue.

5.4. On-site solution of uncertainty

In purposive perception planning for exploration, naviga-
tion, modeling, or other tasks, there is a situation that the
robot has to work in a dynamic environment and the percep-
tion may associate with noise or uncertainties. Research in
this issue has long been active in the field, but it seems that
no complete solutions will be available in the near future.

5.5. Reconfigurable systems

As autonomous robots are expected to work in com-
plex environments, fixed component structures are not
capable of dealing with all situations. A flexible design
makes the system reconfigurable during the task execution.
Researchers are clearly aware of this issue, but it is a very
slow progress to implement such a device due to high cost.
In addition to the hardware mechanism, software for control
and recalibration has to be developed concurrently.

5.6. Understanding and semantic representation

Relying solely on spatial data, active perception could not
be very intelligent. Initially, the scene is seen in terms
of a cloud of surface points, which would include mil-
lions of points. For scene interpretation, labeling can be
processed to mark meaningful structures. Converting from
source image data to geometrical shapes makes the scene
understandable, and converting from geometrical shapes to

semantic representation makes it much more understand-
able to the robot. By constructing a geometrical map and
semantic map, knowledge of the spatial relationship about
the environment can be used for reasoning to find objects
and events. Such high-level representation and reasoning
depend on, but also affect, the low-level vision perception.

5.7. Application in practical robots

In recent years, although researchers have continued work-
ing on the theoretical formulation of active sensor plan-
ning, many works tend to combine the existing methods
with industrial applications such as inspection, recognition,
search, modeling, tracking, exploration, assembly, and dis-
assembly. Theoretical solutions are rarely perfect in practi-
cal engineering applications. Many sophisticated practical
techniques have to be developed.
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