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Dynamic View Planning by Effective Particles
for Three-Dimensional Tracking

Huiying Chen and Youfu Li, Senior Member, IEEE

Abstract—In this paper, we propose a new approach to dynam-
ically manage the viewpoint of a vision system for optimal 3-D
tracking using particle techniques. We adopt the effective sample
size in the proposed particle filter as a criterion for evaluating
tracking performance and employ it to guide the view-planning
process for finding the best viewpoint configuration. In our ap-
proach, the vision system is designed and configured to achieve
the largest number of effective particles, which minimizes tracking
error by revealing the system to a better swarm of importance
samples and interpreting posterior states in a better way. Superior-
ities of our method are shown by comparison with the resampling
particle filter and other view-planning methods.

Index Terms—Best viewpoint configuration, dynamic view plan-
ning, effective sample size, particle filter, 3-D tracking.

I. INTRODUCTION

A. Background

THREE-DIMENSIONAL tracking deals with continuous
3-D state estimation and update of a moving object [1].

The task of 3-D tracking is of paramount importance for many
applications and has been considered from widely different
perspectives of various theoretical backgrounds and interests.
As one of the state-space estimation problems, 3-D tracking can
be modeled with the aid of parametric models. However, due to
varying degrees of uncertainty inherent in system modeling and
complexity of system noise, visual system is often subject to el-
ements of non-Gaussianity, nonlinearity, and high dimensional-
ity, which unfortunately, usually precludes analytic solutions. It
is a strong belief that the issue of state measurement ultimately
remains best handled within the framework of statistical infer-
ence. Instead of using linearization techniques, the estimation
problem is directly solved with Bayesian methodology [2], [3].
However, the Bayesian paradigm involves calculation of high-
order integrals of the time state estimation. Thus, in the last
few decades, many approximation filtering schemes, which are

Manuscript received October 1, 2007; revised January 30, 2008 and
May 23, 2008. This work was supported by the Research Grants Council of
Hong Kong under Project CityU117605. This paper was recommended by
Associate Editor Q. Ji.

H. Chen was with the City University of Hong Kong, Kowloon, Hong Kong.
She is now with the Department of Industrial and Systems Engineering,
Hong Kong Polytechnic University, Kowloon, Hong Kong (e-mail: velvet.
chen@polyu.edu.hk).

Y. Li is with the Department of Manufacturing Engineering and Engineering
Management, City University of Hong Kong, Kowloon, Hong Kong (e-mail:
meyfli@cityu.edu.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2008.2005113

well-known as methods of particle filtering (PF), also known as
condensation or sequential Monte Carlo methods [4]–[7], have
been developed to seek a simulation-based way to surmount the
problems.

In this paper, an improved particle filter, which always
has the largest effective sampling size, is employed to fulfill
3-D tracking task. Such improvement is attained with a re-
configurable vision system, where the viewpoint can actively
be controlled in 3-D tracking. We name this viewpoint control
process as dynamic view planning.

The objective of view planning is to find a suitably short view
plan satisfying the specified goals and achieve this within an
acceptable computation time for a given imaging environment
and a target object [8], [9]. In a visual tracking context, view
planning dynamically involves determining a time sequence of
the best viewpoint configurations (or camera configurations)
which optimize certain tracking indices [10]. Dynamic view
planning endows the observer with the ability of actively plac-
ing the camera at different viewpoints for compensating the
limitation in sensing scope as well as achieving better tracking
performance. The main thrust of this paper is focused on how
to accomplish dynamic view planning for 3-D tracking.

B. Related Work

In view-planning literature, much effort has been devoted
into the research on static view planning for object recognition,
scene reconstruction, inspection, feature detection, robot navi-
gation, etc. [8], [9], [11], [12], whereas research that has been
conducted on dynamic view planning with a self-configuring
sensor space is relatively less. Furthermore, in the majority
cases when dynamic view planning for tracking has been
studied, the view-planning strategies employed were sensor
driven, that is to say, view-planning algorithms were designed
for specific sensor settings (such as sensor network setting)
and configurations, which may not be easy to apply to other
systems. Gupta and Das [12] developed a simple algorithm that
detected and tracked a moving target, with Berkeley motes [13],
a kind of radio sensor network. Besides, Schiff and Goldberg
[14] introduced an estimation method based on PF with a bi-
nary motion sensor network to automatically track and capture
photos of an intruder. These are two examples of sensor-driven
strategies.

In nonsensor-driven strategies, research on how to explore
the property of Kalman filter (or extended Kalman filter) to set
up criteria for optimization in dynamic view planning has been
studied a lot [15]. Denzler et al. [16] presented an approach
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that allowed the optimal selection of the focal lengths of two
cameras during active 3-D object tracking. The selection was
based on the uncertainty in the 3-D estimation with Kalman
filtering techniques. Tordoff and Murray [17] described a prac-
tical method of zoom control for object tracking by a camera
with a variable focal-length lens, with the aid of the tuning
of a constant velocity Kalman filter. Clemente et al. [18]
presented a method for simultaneous localization and mapping
with a monocular camera using the extended Kalman filter.
Martinez and Bullo [19] proposed a method of motion co-
ordination for range sensors in a tracking application. They
investigated the determinant of Fisher information matrix [20]
to guarantee the increase of sensitivity with respect to sensor
measurements and implemented the algorithm within an ex-
tended Kalman filtering framework. However, the limitation
of the above methods may lie in the point that Kalman filter,
even the extended Kalman filter, cannot handle problems in
a system with non-Gaussian models. Therefore, some other
researchers have pursued view-planning methods within the
particle framework to accurately model the underlying dynam-
ics. Spletzer and Taylor [21] presented an approach to the
tracking problem of actively controlling the configuration of
a team of mobile agents equipped with cameras to optimize
the quality of estimates derived from their measurements. Their
idea was inspired by work on PF, and they defined a quality
function which corresponded to the expected tracking error
in their estimation. This method is in fact an error-orientated
view-planning method. Nevertheless, their approach involved
direct backward calculations from the measurement space to the
parameter space. As it was not a one to one projection, unique
solutions might not be obtained in those calculations. Moreover,
random search steps in their algorithm may harm the real-time
property of tracking.

C. Our Approach

In this paper, we propose a new approach to dynamic view
planning for optimal 3-D tracking with particle techniques.
We adopt the effective sample size as a criterion for evalu-
ating tracking performance and employ it to guide the view-
planning process for finding the best viewpoint configuration.
In our approach, the vision system is designed and configured
actively to achieve the largest effective sample size for particle
sampling. On one hand, this technique minimizes tracking
error by revealing the system to a better swarm of importance
samples and interpreting the posterior state in a better way. On
the other hand, it prevents particles’ degeneracy, reduces total
number of particles, and eliminates the necessity of resampling
procedure as well, thus reinforces real-time properties and
increases tracking speed. Simulation results have proved that
the maximum effective sample size actually corresponds to the
minimum tracking error. Superiorities of our method are also
shown by comparison with the generic resampling PF and other
view-planning methods.

In Section II, we present the task of 3-D tracking using
particle techniques. Dynamic view-planning constraints and
strategies are addressed in Section III. We then give some
discussions on simulation results in Section IV. In Section V,

experimental results are given to verify the effectiveness of the
proposed method.

II. 3-D TRACKING WITH PARTICLE TECHNIQUES

A. Problem Statement

Consider a tracking task conducted by a reconfigurable
vision system, whose viewpoint can be modified during the
tracking process. Let C

v denote the configuration space of
the viewpoints in the vision system. Considering the evolution
of system state sequence, let ζk ∈ C

v denote an element of
this configuration space at state k (k ∈ N). Without loss of
generality, ζk can be written in a vector form of “generalized
viewpoint” [22] as (xv

k, yv
k , zv

k , αv
k, βv

k , γv
k)T which indicates

the 3-D spatial position and orientation of the viewpoint with
viewpoint configuration v at state k. The objective of dynamic
view planning, in this case, is to find a the best configuration
ζ∗k of the vision system, which optimizes certain performance
index PIk of tracking ζ∗k = arg minζk

(PIk).
A 3-D tracking problem is formulated as an estimation of

state vector of the target object given by

xk =
(
xt

k, yt
k, zt

k

)T
(1)

where (xt
k, yt

k, zt
k)T is 3-D spatial position of the target. Note

that increasing the number of tracked points can introduce
other state variables (such as orientation parameters) into the
definition. When taking the continuity of target motion into
account, we employ a second-order autoregressive model

xk = A1xk−1 + A2xk−2 + εk (2)

as the dynamic model and it can be rewritten as

Xk = AXk−1 + Ek (3)

where Xk =
[

xk

xk−1

]
, A =

[
A1 A2

I3×3 03×3

]
, Ek =

[
εk

03×1

]
,

and εk is an independent identically distributed (i.i.d.) process
Gaussian noise sequence with zero mean and covariance Qk,
i.e., εk ∼ N(0, Qk).

The objective of tracking is to recursively estimate xk from
measurements

yk = hk(xk, ηk) (4)

where hk is a nonlinear function in general and ηk is an i.i.d.
process Gaussian noise sequence.

According to camera perspective projection rule [23], the
following observation relation can be employed among the
augmented vectors of xk, yk, and ηk, which can be obtained
with homogeneous coordinates

ỹk = sFD−1x̃k + C(x̃k) + η̃k (5)

where s is a scale factor, F is the projection matrix of the
vision system, D is the rigid transformation matrix of camera

motion, D =
[

R t
0T

3 1

]
with R and t being the rotational

motion and the translational motion, and C is a function for
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modeling nonlinearity (such as lens distortion). Obviously, D
is a function of viewpoint configuration ζk.

B. Developing the Particle Framework

At time step k, when a measurement yk becomes available,
according to the Bayes’ rule [2], the posterior probability func-
tion of the state vector can be calculated using the following
equation:

p(xk|y1:k) =
p(xk|xk−1)p(yk|xk)

p(yk|y1:k−1)
. (6)

P (y) is a normalizing constant. It can be calculated as
p(yk|y1:k−1) =

∫
p(xk|xk−1)p(yk|xk) dxk. Because P (y)

is a constant, (6) can be written as

p(xk|y1:k) ∝ p(xk|xk−1)p(yk|xk). (7)

Suppose at time step k there is a set of particles, {xi
k, i =

1, . . . , Ns} with associated weights {wi
k, i = 1, . . . , Ns} ran-

domly drawn from importance sampling [24], [25], where Ns

is the total number of particles. The weight of particle i can be
defined as

wi
k ∝ wi

k−1

p
(
xi

k

∣∣xi
k−1

)
p

(
yk

∣∣xi
k

)
q
(
xi

k

∣∣xi
k−1,y1:k

) (8)

where q(xi
k|xi

k−1,y1:k) is the importance density function.
In this paper, we use the transition prior p(xk|xk−1) as the
importance density function. Then, (8) can be simplified as

wi
k ∝ wi

k−1p
(
yk

∣∣xi
k

)
. (9)

Furthermore, if we use Grenander’s factored sampling algo-
rithm [26], (9) can be modified as

wi
k = p

(
yk

∣∣xi
k

)
. (10)

The particle weights then can be normalized using

w∗i
k =

wi
k∑Ns

i=1 wi
k

(11)

to give a weighted approximation of the posterior density in the
following form:

p(xk

∣∣y1:k) ≈
Ns∑
i=1

w∗i
k δ

(
xk − xi

k

)
(12)

where δ is the Dirac’s delta function.
In order to calculate p(yk|xi

k) in (10), xi
k is projected

according to (5), and the reprojection error on the image plane is
calculated. The error is defined as a Euclidean distance between

the observed location and the reprojected location in the image
space. A Gibbs distribution was employed to transform this to
a probability.

III. BEST CONFIGURATION VIA DYNAMIC

VIEW PLANNING

A. View-Planning Strategies

Degeneracy phenomenon is a common problem with parti-
cle filter. As a result of degeneracy, all but one particle will
have negligible weight after a few state transitions. Degen-
eracy implies the wastage of computational resources that a
large effort is engaged to update particles whose contribu-
tion to the approximation to posterior states is almost zero.
Doucet [25] has shown that the variance of the importance
weights can only increase over time so that degeneracy is
an inevitable phenomenon with general sequential importance
sampling scheme. There are commonly three methods to tackle
the degeneracy problem [27]: 1) brute force approach; 2) good
choice of importance density; and 3) use of resampling. The
brute force approach uses a large enough sampling size to
cover the effect of weight degeneration. However, it is often
impractical in real-time estimation system. The method of
choosing the optimal importance density [25] can maximize the
effective sampling size [24], [28], which is a suitable measure
of degeneracy. However, it involves drawing samples from the
importance density coupled with the latest observation, which
may not be straightforward. The third method involves using
the resampling process to reduce degenerate effects [4], [29],
[30]. Notwithstanding, it introduces additional computation
complexity. Although resampling has been employed a lot
in generic particle filter to avoid degeneracy as one of the
most popular methods, it cannot directly be used to guide the
view-planning process, and it is not our focus in this paper.
Dynamic view planning gives us additional degrees of freedom
in system optimization, and we are interested in dealing with
the degeneracy problem by taking benefit of that freedom.
We will later compare the tracking results of our approach to
those of the resampling method in the simulation and expe-
riment part.

In this paper, we intend to use the reconfigurability of the
visual tracking system to reduce those effects of degeneracy
in particle filter. This approach is based on the thought that
optimizing the algorithm of PF is equivalent to optimizing
tracking performance, as we employ particle techniques for
tracking. We develop a method to guide dynamic view planning
for optimizing viewpoint configuration via maximizing the
effective sampling size in particle filter. We will discuss later
in next section that the best viewpoint configuration at which
the effective sampling size reaches its maximum is actually
consistent with the one at which the tracking system achieves
its minimum tracking error.

According to [24] and [28], the effective sampling size N eff
k

at state k is defined as

N eff
k =

Ns

1 + Var
(
wi

k

) (13)
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TABLE I
DYNAMIC VIEW-PLANNING ALGORITHM

where wi
k is referred to as the “true weight” indicated in (10)

and Ns is the number of samples. As N eff
k cannot exactly be

evaluated [27], an estimate N̂ eff
k of N eff

k can be calculated by

N̂ eff
k =

1
Ns∑
i=1

(
w∗i

k

)2
(14)

where w∗i
k is the normalized weight indicated in (13).

We then define the rate of effective particles as

λeff
k =

N̂ eff
k

Ns
. (15)

Finally, the view-planning task is achieved by computing the
best configuration ζ∗k in the viewpoint configuration space C

v
k

through the following equation:

ζ∗k = arg min
ζk

(
Ns∑
i=1

(
w∗i

k

)2

)∣∣∣∣∣
ζk∈Cv

k

= arg max
ζk

(
N̂ eff

k

)∣∣∣∣∣
ζk∈Cv

k

.

(16)

TABLE II
CAMERA PARAMETERS

Fig. 1. Number of effective particles.
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Fig. 2. Testing different evaluation criteria with position parameter x (3-D).

Our dynamic view-planning algorithm is described in
Table I. At state k, first, for every candidate of viewpoint
configuration ζk, we sample xi

k from the prior P (xi
k|xi

k−1) and
calculate its corresponding particle weights w∗i

k and rate of ef-
fective particles λeff

k . Then, we use the least-squared method to
search for the best configuration ζ∗k which maximizes λeff

k , and
mark its particle weights and samples. Finally, these samples
and weights are used to calculate the posterior by a weighted
sum indicated in (12).

B. View-Planning Constraints

The follow constraints can be considered in dynamic view-
planning process for tracking.

1) Detectability Constraint: This constraint is to guarantee
that the target object can be detected by the vision system.
Denote A as a point on the object surface, n as its normal, S as
the vision sensor, v as its pose, and va as the viewing direction
from S to A. We say point A is visible if the dot product of its
normal and the viewing direction is negative. That is

G1 : n · va < 0. (17)

This means that the point is visible if the angle (θ) between
its normal and the view direction is less than 90◦. However, we
should set a limit (θmax) for this angle as the sampling will not
be reliable when it is close to 90◦. According to (17), we have

G2 : θ = π − cos−1 n · va

‖n‖ × ‖va‖
< θmax. (18)

Most charge-coupled device (CCD) cameras have a field of
view limited by the size of the viewing area and the focal
length of the lens. An object point beyond the sensor’s field
of view will be projected outside the sensor area and will
not be detectable. The location, which satisfies the field of
view constraint for a set of surface features enclosed by a
circumscribing sphere, is given by the following equation:

G3 : v · va − ‖v‖ · ‖va‖ cos(αs/2) ≥ 0 (19)

where αs is the field-of-view angle of the sensor.
2) In-Focus Constraint: This constraint is to guarantee that

the target object is in focus. It introduces a tolerance in position
for which the target is still considered acceptably focused based
on the resolution of the image sensor [11]. If a point is imaged
to a blur circle of a given size c, it is sufficiently considered in

Fig. 3. Testing different evaluation criteria with position parameter x (2-D).

focused for a range of depths from dmax, the far limit of the
depth of field, to dmin, the near limit [31], thus the in-focus
constraint can be expressed as

G4 : f < dmin < dmax < 2f. (20)

3) View Plan Cost Constraint: This constraint is to guar-
antee that the time used for view planning (computational
complexity) and view plan executing meets the real-time
requirement of tracking. Assume that z is the target depth
location, Nres is resolution alone the shortest direction on the
image plane, and vmax is the maximum target velocity, then we
can define a constraint for view plan cost time Tvp as

G5 : Tvp ≤ κ · Nresf

vmaxz
(21)

where κ is a scale factor 0 < κ < 1.
4) Mechanical Feasibility Constraint: Because a view plan

must be executed by vision system’s reconfiguration, the kine-
matical reachability, feasibility of manipulator of the camera,
and constraint for avoiding collision with the environment
should also be considered. We thus define a constraint for the
viewpoint configuration space as

G6 : C
v ∈ {xmin < xv < xmax, ymin < yv < ymax

zmin < zv < zmax, αmin < αv < αmax

βmin < βv < βmax, γmin < γv < γmax}.
(22)
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Fig. 4. Testing different evaluation criteria with orientation parameter α (3-D).

IV. SIMULATION RESULTS AND DISCUSSIONS

In the following simulations, we use a fixed camera model
given in (5) for observation. Considering lens distortion, we can
modify function F in (5) with

F =

⎛⎝ f · (1 + d) · ku −f · (1 + d) · ku · cot ϑ u0 0
0 f · (1 + d) · kv/ sin ϑ v0 0
0 0 1 0

⎞⎠
(23)

where f is the focal length, ku and kv are the pixel transform
factor along u and v axes, respectively, ϑ is the angle between
u and v axes, (u0, v0) is the location of image center, and d
represents nonlinear distortion with

d = K1r
2 + K2r

2. (24)

K1 and K2 are distortion parameters, r2 can be calculated
with the object location in 3-D space, with r2 = (x2 + y2)/z2.

The values of these parameters are listed in Table II.

A. Effectiveness of the Proposed View-Planning Method

1) Number of Effective Particles: In this simulation, we

compared the effective particles (sample size) N̂ eff
k of the

proposed view-planning method to the generic particle filter
with a fixed viewpoint. We used 100 particles for each methods
and ran the simulation for 100 times with nine state transitions.
The average number of effective particles of the two methods
are plotted, as shown in Fig. 1. The generic PF with view
planning obtained a very low rate of effective particles (7%),
while our approach maximized the rate of effective particles
λeff at about 53% via dynamic view planning.

2) Tracking Error: Our algorithm realizes view planning
and achieves the best configurations of the vision system

by maximizing N̂ eff
k (or minimizing

∑Ns
i=1(w

∗i
k )2). In this

simulation, we checked tracking errors of different view-
point configurations (camera locations) to prove that the best
configuration in the sense of sampling efficiency is consistent
with the best configuration in the sense of minimizing tracking
error. As position and orientation parameters of viewpoints may
have different properties in view planning, we tested view-
planning results with these two kinds of parameter separately.
For position parameters, as shown in Fig. 2, average values
of

∑Ns
i=1(w

∗i
k )2 and tracking errors are plotted with different

Fig. 5. Testing different evaluation criteria with orientation parameter α
(2-D).

configurations and estimation states. Here, the tracking error is
defined as the distance between the estimated location and its
true location. 100 tests each with 100 particles were employed.
Nine viewpoint locations in camera coordinates, xi = 170 ×
i(mm), when i = 1, . . . , 9, were employed. These locations
were empirically chosen considering both the sensitivity and
the kinematics constraints of the system.

As shown in Fig. 2 that these two evaluation criteria shared
the same tendency in viewpoint configuration. The comparison
in 2-D figure at the sixth estimation state is shown in Fig. 3.
Different evaluation values with their values of standard
deviation are plotted. Fig. 3 clearly shows that tracking error
reaches its minimum (at the fourth x location, x = 680 mm)
when

∑Ns
i=1(w

∗i
k )2 reaches its minimum value. In other words,

the view planning driven by optimizing particle sampling
actually minimizes the tracking error and improves tracking
performance.

Similar results can be found in the simulation with orien-
tation parameters shown in Figs. 4 and 5. At this time, also
nine viewpoint locations in camera orientation parameter, αi =
20◦ × i(mm), when i = 1, . . . , 9, were employed. As shown in
Fig. 5, both tracking error and

∑Ns
i=1(w

∗i
k )2 reach their mini-

mum at the sixth α location (α = 120◦), which indicates that
the effect of maximizing the effective particle rate is consistent
with the effect of minimizing tracking error.

B. Comparison With Other Methods

We first compared our view-planning method to the generic
resampling PF with a fixed viewpoint. 100 tests were
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Fig. 6. Comparing with resampling PF (100 particles), when A1 =
diag(2, 0, 0), A2 = diag(−1, 0, 0), and Qk = diag(0.9, 0, 0).

Fig. 7. Comparing with resampling PF (1000 particles), when A1 =
diag(1.5, 0, 0), A2 = diag(−1, 0, 0), and Qk = diag(0.9, 0, 0).

run, respectively, with a 100-particle resampling PF and a
1000-particle resampling PF. Only 100 particles were used
in our view-planning algorithm for the best configuration as
comparison. Tracking results are shown in Figs. 6 and 7.
Because our view planning with effective particles actually
minimized the tracking error, it showed its advantage even over
both resampling PFs.

Then, we compared our method with the “centering” view-
planning method. The centering method has usually been
adopted in visual servoing [32], which controls the viewpoint to
keep the image feature of the target object always at the center
point of the image screen. Considering distortion errors and
other errors caused by decentering, the centering view-planning
method helps in minimizing the sensing error of vision system.
One hundred tests with 100 particles for each method were
conducted. The average estimation results are shown in Fig. 8.
Our method clearly showed its superiority to the centering
method.

Finally, we compared our best configuration method with
the “error-orientated” view-planning method [21] reviewed in
Section I, in which the view-planning process was directly
driven by minimizing the estimated tracking error. Fig. 9 shows
the average tracking results with 100 tests.

The tracking errors of the aforementioned methods are
shown in Fig. 10, and their tracking performances are evaluated

Fig. 8. Comparing with the centering view planning, when A1 =
diag(1.5, 0, 0), A2 = diag(−0.5, 0, 0), and Qk = diag(0.9, 0, 0).

Fig. 9. Comparing with the error-orientated view planning, when A1 =
diag(0.95, 0, 0), A2 = diag(−0.5, 0, 0), and Qk = diag(0.9, 0, 0).

Fig. 10. Tracking errors using different methods, when A1 =
diag(0.95, 0, 0), A2 = diag(0.5, 0, 0), and Qk = diag(0.5, 0, 0).

in Table III. In these tests, our view-planning method by ef-
fective particles was superior to others in tracking performance
with the smallest tracking error and reasonable tracking speed.
When the resampling method was used, although it could
reduce the effects of weight degeneracy, the tracking error
was large when using a small number of particles, whereas
tracking speed was slow when using a large number of par-
ticles. Without testing the particle weights to obtain the best
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TABLE III
TRACKING PERFORMANCE WITH DIFFERENT METHODS

configuration, the centering method showed its advantage in
tracking speed. However, because it can only compensate for a
part of the sensing error and because it still suffers from particle
degeneracy, its tracking error was larger than our method.
The error-orientated method was supposed to be the one that
could achieve good results in tracking accuracy. However,
practically, it needs direct backward calculations and random
search in the parameter space which may preclude unique
solutions and, yet, cannot overcome the degeneration, which
affects its tracking accuracy and the achievable tracking speed
as well.

Our method with effective particles minimizes tracking er-
ror by revealing the system to a better swarm of importance
samples and interpreting the posterior state in a better way.
Furthermore, it significantly reduces particles’ degeneracy so
that a relative smaller particle crowd can be used to achieve the
same level of tracking performance and, thus, increases possible
tracking speed.

Note that the setup of this simulation was different from that
of the simulation shown in Fig. 6. Although the object did not
slow down in the end, all tracking errors happened to converge
to near zero values after 42 steps.

V. EXPERIMENT

A. System Setup

The implementation of the proposed dynamic view-planning
method was conducted using our reconfigurable vision system,
with a PC-based IM-PCI system and a variable scan frame grab-
ber. This system supports many real-time processing functions
including some feature extraction such as edge detection. Our
algorithms were developed in VC++ programming language
and run as imported functions by ITEX-CM. The system setup
consists of a color CCD camera (model Pulnix TMC-6), with
a resolution of 640 × 480 pixels, a pan-tilt unit (model PTU-
46-17.5) for two-axis angular motion, and a linear motion sys-
tem with a guideway (model KK86-20) and motion controller
(model Elmo BAS-3/320-2). A photo of this 3-DOF system is
shown in Fig. 11.

Fig. 11. Reconfigurable vision system with 3 DOF.

Fig. 12. Uniform circular motion at different diameters.

B. Tracking Error

For simplicity’s sake, we used a point object for the exper-
iment and made the object undergo uniform circular motion
around the center with different diameters on a plane perpendic-
ular to the optical axis of the camera at its original location (see
Fig. 12). Using this motion, we can eliminate both influence
of image feature location and influence of velocity on tracking
error (see [1] for detailed discussion). The object was made to
move along different circles at 0.6 m/s. Then, the magnitude
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Fig. 13. Tracking error on a circle.

TABLE IV
ABSOLUTE TRACKING ERRORS WITH DIFFERENT

VIEW-PLANNING METHODS

of tracking error was defined as the spatial distance between
the estimated value of the object location and its true value
(see Fig. 13). The target object was detected and tracked by
the segmentation based on color and contour cues.

Since the generic resampling PF does not change viewpoint
configuration, it is not a view-planning method. We compared
our view-planning method with the centering method and error-
orientated view-planning method discussed in the previous
section. We used 100 particles for each method, and the depth
location (z location to the camera) was fixed at 1300 mm. Then,
we made the object moved along each of the concentric circles
repeatedly and tracked it using different methods. The average
tracking errors on different concentric circles with different
methods were calculated and are given in Table IV. These
results show that our view-planning method with effective par-
ticles can achieve small tracking error then other two methods.
This superiority in tracking performance can clearly be found
in Fig. 14.

We also investigated the number of effective particles during
those tracking procedures with different methods. The results
are listed in Table V. Using dynamic view planning to max-
imize the number of effective particles, our method obtained

Fig. 14. Probability density functions of estimated tracking errors (con-
structed from their means and standard deviations).

much more effective particles in tracking, and it is also consid-
ered the reason why our method was superior to other methods
in tracking performance.

C. Tracking Speed

Average tracking speeds with different methods are listed in
Table VI. Because our method and centering method do not in-
volve random search procedure that the error-orientated method
uses, they both achieved very nice real-time performance.
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TABLE V
NUMBER OF EFFECTIVE PARTICLES WITH DIFFERENT

VIEW-PLANNING METHODS

TABLE VI
TRACKING SPEED WITH DIFFERENT VIEW-PLANNING METHODS

D. Tracking Constraints

1) BFL: Our previous study [33] on the depth (z) locations
shows that there is an optimal z location at which the tracking
error reaches its global minimum. This location was called
the best focus location (BFL). This is because the tracking
resolution is inversely proportional to z, which indicates that
a large z is desirable for better tracking. However, when z
becomes large, the vision system becomes less sensitive to the
object motion. Therefore, the optimal z location is based on
the best compromise between the positioning uncertainty and
the sensitivity of the vision system. In a dynamic view-planning
theme, BFL can be used to provide a constraint for the view
plan as well as to guide the reconfiguration of vision system to
obtain better tracking performance.

We here used experiment to identify the value of BFL. We
made a point object undergo uniform circular motion on a
plane perpendicular to the optical axis of the camera at its
original location at different z locations (note that according to
the aforementioned experimental results, tracking error seemed
to have no relation with the diameter of the circular motion).
Then, we used our view-planning method to track the object.
By comparing to the ground true trajectory, the tracking error

Fig. 15. Effect of z on tracking error.

Fig. 16. Image feature location during view planning with our method of
effective particles.

was obtained and is shown in Fig. 15. A z location at 1320 mm
can be considered as the BFL in our experiment setup.

2) Optimal Targeting Area: Intuitively, the centering
method that always keeps the target object on the image center
can reduce the influence of image distortion, particularly radial
distortion, and it has been widely used under visual servoing
categories. Unlike the centering method, our view-planning
method and the error-orientated method are not necessary to
keep the object on the image center. With our setup of the
reconfigurable vision system, we can try to keep the target
feature point at a specific position on the image to minimize
tracking error, and this position was called the optimal targeting
area (see [1]).

Figs. 16 and 17 show the feature location of the target object
on the image during dynamic view planning. Both our method
(Fig. 16) and the error-orientated method (Fig. 17) kept the
target feature in the neighborhood of the image center, which
help reduce influences of distortion. However, as the result of
using our method, image feature was located in a donut shape
avoiding the image center. This result is in fact consistent with
our previous research on optimal targeting area [1], which helps
to minimize tracking error.
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Fig. 17. Image feature location during view planning with the error-orientated
method.

Fig. 18. Dynamic view planning in 3-D tracking by our method.

E. Dynamic View Planning in 3-D Tracking

Our dynamic view-planning method with effective particles
was then implemented to track a pen tip which was moving
randomly with an average speed about 1 m/s. The pen tip was
detected and tracking based on the segmentation with color and
contour cues. Some examples of snapshots in the tracking with
their corresponding viewpoint locations (best configurations)
are shown in Fig. 18. In this experiment, every pair of two
sequential frames was employed and compared to calculate
the depth information z, and beside the current configuration
information, the Chinese calligraphy background was used as
correspondence between every two frames for further modifi-
cation. Even with this process, a tracking rate of about 17 ft/s
was achieved in the implementation. We then reprojected the
estimated 3-D locations of the pen tip onto the image space for

tracking error analysis. The red target marks in Fig. 18 represent
those estimations from our tracking algorithm. Experimental
results show that the tracking was conducted with very good
accuracy, with an average tracking error of 2.8 pixels.

VI. CONCLUSION

In this paper, a new method of dynamic view planning for
3-D tracking has been presented. The proposed view-planning
method is based on the use of an improved particle filter, whose
effective sample size has been maximized. In our approach, the
vision system has been designed and configured to achieve the
largest number of effective particles, which actually minimizes
the tracking error by revealing the system to a better swarm
of importance samples and interpreting the posterior state in
a better way. Simulation and experimental results verified the
effectiveness of the proposed method and showed superiorities
of our method in accuracy and tracking speed as well by
comparing to other view-planning methods. In particular, for a
real-time 3-D tracking case, the proposed method can obtain a
tracking rate of about 17 ft/s with very accurate tracking results.
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