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Abstract. In order to avoid the complex calculation and poor robustness in automatic visual modeling process,
a man-machine interaction based stereo vision system is developed for modeling an unknown environment. The
operator’s knowledge about a scene is used as a guidance for modeling 3D environment. The modeling technique
has advantage in terms of reliability and robustness over other automatic modeling approaches. The data points
needed for modeling an objects are obtained through the intersection of lines, or calculation from equations of curve,
derived via fitting from human guided edge detection. The modeling accuracy is ensured by using image feature
extraction. A multi-viewpoint modeling approach has been developed in order to deal with occlusion problems.

Both accuracy and speed issues are addressed in this paper. The system implementation and some 3D measure-
ments on real scene have been performed using cameras lenses of 16 mm and 8 mm with an accuracy 0.5 mm and
0.8 mm over the field of view, respectively. The virtual environment rendering based on the modeling data of real
scenes with known model of mobile robot is given at the end of this paper.
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1. Introduction

Virtual Environment (VE) modeling has been a key
problem in robotics (Ishiguro et al., 1995). In many
robotic systems, e.g., telerobotic manipulator system,
an operator utilizes 2D images from a remote camera
to execute the task (Johnson et al., 1995). This limits
the effectiveness of such teleoperated system since
an image provides only 2D information. 3D informa-
tion is of vital importance in many applications. Many
researchers have studied the issues on how to build
virtual environment using images taken from vision
sensors while exploring the unknown environment, in-
cluding automatic modeling (Chen and Trivedi, 1993)
and semi-automatic modeling (Johnson et al., 1995),
with minimum human interaction employed in the
latter. Due to the complexity and robustness issues in-
volved in automatic modeling, a new method has been
studied to combine human and machine intelligence for
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environment modeling, where the use of virtual real-
ity graphics environment provides an efficient method,
such that human operators can use their knowledge
about the geometric or physical attributes of objects in
a real scene and guide the robot in modeling the envi-
ronment and executing the task. An integrated robotic
manipulator system using virtual reality concepts has
been intensively studied in (Chen and Trivedi, 1993;
Trivedi and Chen, 1993), where real-time simulation,
visualization are utilized to create advanced, flexible
and intelligent user interface. One of their planned
activities of this project is to best match/build the vir-
tual world model to the real world automatically, based
on real and simulated sensory information. A virtual
reality calibration technology is provided in (Bejczy
et al., 1990; Kim, 1994; Kim et al., 1993; Kim, 1996)
where an operator-interaction method was adopted to
provide the correspondence information between 3D
object model points of the robot arm and 2D camera
image points, as well as the reliable correspondence
data for object localization. Interactive model building
was set as the planned work of their project. Interac-
tive perception utilizes computer power for precision
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measurement, and human perception for recognition,
scene segmentation, and approximate location designa-
tion where reliable and efficient computer algorithms
are unavailable (Backes et al., 1994). An interactive
modeling system was proposed to allow modeling re-
mote physical environment by two CCD cameras, voice
command (Cooke and Stansfield, 1994; Miner and
Stansfield, 1994). Edge information was used for stereo
matching and triangulation to extract geometric and
positional information of the object. The vision sys-
tem was able to extract and model blocks and cylin-
ders only. The block model was used as a bounding
box for more complex objects. The system was limited
to camera motion aboutZ axis only. A human-robot
interface, which integrates real images, characters, di-
agrams, and voice, was adopted in (Nakashima et al.,
1995). A model-based robot system, which executes
a manipulation task, is presented in (Hasegawa et al.,
1991). The 3D data is provided by laser pointer, but no
occluded part processing was considered.

There are two distinct types of environments: known
and unknown. The location and orientation of the ob-
jects in the first case can be reconstructed by using
monocular vision with known models of objects
(Michel et al., 1989). For the latter, the environment
can be modeled with binocular stereo vision and multi-
viewpoint observation strategy. In order to avoid the
complex calculation of image feature matching and
poor robustness of binocular stereo vision on un-
known environment modeling, a man-machine inter-
action based stereo vision system is proposed in this
paper. It is easy for human to recognize the objects and
give some cues in real scene, but it is time consuming
and complicated for a robot. In this system, interactive
modeling is used to reconstruct an environment model
through an operator giving the system necessary mini-
mum cues about object attributes and features, match-
ing methods and so on. The precision of the modeling
method is ensured by human guided edge detection and
line or curve fitting technique. The features needed for
modeling an object are obtained by the intersection of
the lines or by calculation of equation of the curve. A
multi-viewpoint vision modeling scheme is proposed to
deal with occlusion problems. First, local models of ob-
jects are built from different viewpoints. Then a global
3D model of an environment is reconstructed by match-
ing and merging of the local models. When the environ-
ment is constructed, we render a virtual environment
to allow an operator to see the environment from any
viewpoint and to teleoperate robot to execute the task,
e.g., grasp or part mating, more reliably. In this way,

human intelligence can be effectively employed in ex-
ecuting robotic tasks. The system implementation and
the experimental results are presented.

We present our man-machine interactive modeling in
Section 2. Then the multi-viewpoint modeling for oc-
clude situation is addressed in Section 3. Finally, some
experiment results are given in Section 4, followed by
some conclusions in Section 5.

2. Man-Machine Interaction-based Modeling

A stereo vision uses two cameras, the left and right.
When calibrated, two transformation matrices, [HL ]
and [HR] between the cameras and a world frame (de-
fined asW) are obtained respectively. The 3D coor-
dinates of feature points inW, corresponding to the
known image coordinate of feature points, can be cal-
culated by using [HL ] and [HR]. Here, both [HL ] and
[HR] are [3× 4] matrices.

Assume a 3D vector inW is represented by [V3d]
and its correspondent 2D vector on image is represe-
nted by [V2d]. Using a least-squares fitting algorithm,
there exists

[H ] = [V2d][V3d]T [[V3d][V3d]T ]−1 (1)

We can calculate the rotation and translation param-
eters of [H ], as well as the focal lengths and image
center coordinates of the two cameras by decomposing
matrix [H ].

Assuming [HL ] and [HR] are available, we can then
calculate the 3D coordinate [X] = [x, y, z] of a feature
point in W with its corresponding image coordinates
[xa, ya], [xb, yb] on the two images

[ A][ X]T = [B] (2)

where [A] = [ai j ], i = 1, . . . ,3, j = 1 · · ·4, [B] =
[bj ], j = 1, . . . ,4, can be obtained from [HL ] and
[HR], and [X] can be obtained

[X] = [[ A]T [ A]]−1[ A]T [B] (3)

A major difficulty in stereo vision is the correspon-
dence problem between the feature points in two
images. Existing feature extraction and matching al-
gorithms suffer from the poor robustness. However,
a human operator can easily identify the objects in
most scene images. The operator can prompt the vision
system to locate and detect some object attributes
or special corresponding features (such as edges and
vertices of objects) in an image by man-machine
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interaction, so that the image coordinates of the features
can be acquired and their 3D position inW calculated
using Eq. (3).

Using the man-machine interaction paradigm, an op-
erator can carry out the modeling task easily and ro-
bustly by utilizing VR techniques. In our work, we also
developed a human guided feature extraction scheme in
order to ensure the modeling accuracy. Since an object
can be defined as a composite of some primitive mod-
els. An operator can recognize the attribute of object
primitives and guide the vision system to find some cor-
respondent feature points of the primitives using human
guided edge detection in the image. Then a binocular
stereo vision system can be used to construct the local
models of objects directly. Although there may exist
many kinds of objects in an environment, the modeling
system through man-machine interaction can recon-
struct the models of objects by merging all primitive
models and eventually build whole environment model.

2.1. Primitive and Composite Models

In our test system, the primitive models consist of
cuboid, sphere, cylinder, cone etc. An object, e.g., a
table, can be represented by a composite of those prim-
itives.

2.1.1. Cuboid. A cuboid can be reconstructed using
its four vertices. In our system, the four vertices of
a cuboid are given by an operator when he points out
the corresponding points in the images which are de-
fined as the feature points of the cuboid. For instance,
there are four points for a cuboid, numbered as 1, 2,
3, 6, pointed by an operator on the left and right im-
ages, respectively. The cuboid will be determined in
a world frame when the corresponding 3D coordinate
(x1, y1, z1), (x2, y2, z2), (x3, y3, z3) and (x6, y6, z6) of
the four vertices are calculated by the stereo vision al-
gorithm, as shown in Fig. 1.

Figure 1. Definition of the feature points for modeling of a cuboid.

Figure 2. Modeling of a sphere.

2.1.2. Sphere. In general, the projective image of a
sphere is an ellipse. We can fit the ellipse using at
least five points on the ellipse. Then the coordinates
of image points (u1, v1), (u3, v3), which are the two
vertices of the major axis of the ellipse as shown in
Fig. 2, can be calculated. The angle of6 AOC, defined
by the points (u1, v1), (u3, v3), and the center of camera
(i.e., pointO(cx, cy, cz) in Fig. 2), is equally divided by
the projective line (Bθ ), givingβ = γ = α/2 as shown
in Fig. 2. We can then calculate the image coordinates
(u2, v2) of the sphere centerθ . As shown in Fig. 2, in
4AOC, we have:

AB/BC= AO/CO.

Then we arrive at:

u2 = (u1+ r ∗ u3)/(1+ r ),

v2 = (v1+ r ∗ v3)/(1+ r )
(4)

wherer = ((u1 − u0)
2/k2

1 + (v1 − v0)/k2
2 + 1)1/2/

((u3 − u0)
2/k2

1 + (v3 − v0)
2/k2

2 + 1)1/2 and k1=
f/ur , k2 = f/vr , ur is the length of a pixel inu di-
rection, vr is the length of a pixel inv direction on
the image, andf is the focal length of the camera.
The 3D coordinate(θx, θy, θz) of the sphere center can
be obtained by the binocular stereo vision algorithm
when the image coordinates of the sphere center are
calculated using the above equations in the left and
right images, respectively. If the 3D coordinate of the
camera center is(cx, cy, cz), obtained from camera cal-
ibration, then the radius of the sphere will be

radius= Z ∗ sin(α/2) (5)
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where

Z =
√
(cx − θx)2+ (cy − θy)2+ (cz− θz)2

α is calculated using the cosine law within4ACOusing
pointsA(u1, v1),C(u3, v3), D(u0, v0). This gives

AC2 = AO2+ CO2− 2 ∗ AO∗ CO∗ cos(α)

AC2 = AD2+ DO2

CO2 = CD2+ DO2

Then we have

α = cos−1
((

r 2
1 + r 2

2 − r 2
3

)/
(2 ∗ r1 ∗ r2)

)
(6)

where

r1 =
(
(u1− u0)

2
/

k2
1 + (v1− v0)

/
k2

2 + 1
)1/2

r2 =
(
(u2− u0)

2
/

k2
1 + (v2− v0)

/
k2

2 + 1
)1/2

r3 =
(
(u2− u1)

2
/

k2
1 + (v2− v1)

/
k2

2

)1/2
A sphere is thus determined in 3D space when its center
and radius are given.

2.1.3. Other Primitives. Other primitives can also be
constructed in a way similar to the above. For example,
since both the top and bottom of a cylinder are circles of
the same radius and the projective image of the two cir-
cles are elliptic, we can fit the two ellipses using at least
five points on them. Then, the pose and position of the
cylinder can be determined using quadratic curve based
on stereo vision. A circular cone can be processed sim-
ilarly, with a vertex needed. Other polygonal cones can
also be modeled by their vertices. For example, a tri-
angular pyramid can be determined by four vertices,
i.e., one top vertex and three bottom vertices.

2.1.4. Composite Objects.Composite objects can be
modeled by using the primitive models. For example,
a table is composed of some cuboids. It can be built
using a top cuboid and a leg cuboid (assume the legs
are symmetric in their geometry). The man-machine
interactions will be used in all the modeling exercises.
Other objects such as door, window, wall can also be
built in a similar way. For example, a wall is formed
by its corner points.

2.2. Operator Guided Feature Extraction

In order to improve the precision and reliability in the
modeling, an operator guided edge detection method
was adopted in our work. All of the edges needed
for modeling an object can be extracted one-by-one
through human-machine interactions. All the user
needs to do is to draw a rectangle that encompass im-
age edge using mouse and to give a threshold. The
edge detection then will be done based on an detection
operator and the threshold specified. The edge detec-
tion results will be fitted as a line or curve using least-
squares fitting algorithm. The vertexes of the object
are found through the intersection of the correspond-
ing lines. Different edge detectors, such as Roberts,
Sobel, Laplacian, Kirsch, and threshold can be used
as selected by the user. The region following method
has been used before in the fitting operation in order to
reduce the effect of noise. Figure 3 shows the feature

Figure 3. Human guided feature extraction.
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extraction in a part mating experiment. Figure 3(a)
shows the result of edges detection and Fig. 3(b) shows
the line fitting result and vertexes location through the
intersection of the lines. In general, a vertex can be
found by the intersection of two or more lines.

For other objects, similar approach can be adopted
in using operator guidance. For example, a sphere or
cylinder feature extraction can be achieved by edge de-
tection and corresponding ellipse fitting, i.e., vertexes
of major axis.

3. Multi-Viewpoint Modeling

In general, a global description of objects cannot be
reconstructed from only one viewpoint due to occlu-
sion or limited field of view in a real situation. There-
fore, a multi-viewpoint modeling strategy needs to
be developed. In this paper, we developed a multi-
viewpoint modeling strategy that uses controlled view
points. In this way, the local models of objects or en-
vironment are built by different viewpoints separately.
With these local models, the global model of an object
or environment can be derived by merging the local
models.

The scene images observed from the different view-
points are changed as the camera moves around. The
feature representations also change corresponding to
the different frames when the viewpoint is changed.
So we must know the pose transformation of the
vision system between two viewpoints. Here, a spe-
cial method is used in obtaining the transformation
(M) by using at least two common feature vectors of
some objects which are taken as images from different
viewpoint (Dong et al., 1997; McCarthy, 1990). The

(a) (b)

Figure 4. (a) Procedure of multi-viewpoint modeling and (b) transformation of multi-viewpoint modeling.

common feature vectors are pointed by man-machine
interaction.

The scheme mentioned above is illustrated in Fig. 4,
whereA and B represent two viewpoints 1 and 2 re-
spectively,W represents an object frame in the world
space.C andC′ represent the coordinate relationships
betweenA andW, B andW respectively, andM repre-
sents the pose transformation of the vision system be-
tweenA and B. When the vision system moves from
viewpoint A to viewpoint B, the object will have a
transformationM−1. If we can determineM , then the
two local models of the object which are modeled from
two viewpoints separately, can be merged to generate
a global model of the object.

Let W andW′ represent the 3D poses of the object
in framesA andB respectively, then we have

C′ = M−1C (7)

W = M−1W′ (8)

In determiningM , we solve for its rotation and trans-
lation separately. First, a space vector defined by two
special points on an object is obtained using the stereo
vision system observing from two viewpoints. With
the property of invariant 3D coordinate of a rigid body,
the rotational relationship betweenW andW′ can be
given (from Rodrigues equation) by

(W −W′) = U (W +W′) (9)

and

R= [ I +U ][ I −U ]−1
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To calculateU , there will be at least two such vectors
which could be obtained from three feature points on
the object. These feature points could be taken by stereo
vision with man-machine interaction.R will be ob-
tained whenU is calculated and translation ofM is
calculated byT = W − [R]W′. Here

M = [R T] (10)

where

R=

R00 R01 R02

R10 R11 R12

R20 R21 R22

 , T =

Tx

Ty

Tz



Figure 5. Matching of multi-viewpoint modeling (1 and 1′, 2 and 2′, 3 and 3′, 4 and 4′ are common points).

The 3D modeling data from viewpointB can be trans-
formed to viewpointA usingM ,

W′′ = [R]W′ + [T ] (11)

Using W′′, the whole model of the object can be ob-
tained through the complementary 3D data that can be
calculated from viewpoint 2 but cannot be calculated
from viewpoint 1.

An example of a simple object modeling is shown in
Fig. 5, where Fig. 5(a) and (b) represent the local mod-
els of an object that were constructed from different
viewpointsA and B, respectively. Figure 5(c) repre-
sents a translated 3D model of Fig. 5(b), which is con-
structed from viewpoint 2 into viewpoint 1 (dot line)
and overlaid with Fig. 5(a). After the edge detection
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and feature extraction, the operator prompts the vision
system for the common points: point 1 and point 1′, 2
and 2′, 3 and 3′, 4 and 4′ in the images taken from two
viewpoints. The translations between these points are
represented as the vectors we need. Then,M can be
calculated as above followed by merging of the local
models in Fig. 5(a) and (b) withM . The global model
can be reconstructed when the local models are enough
to merge the object completely. For example, point 6′′

in Fig. 5(c), transformed from point 6′ in Fig. 5(b) using
M , will be added to the 3D local model of viewpoint 1
in order to obtain the whole model of the object shown
in Fig. 5(d).

The precision of the procedure can be given in two
ways. Firstly, it can be represented by the distance be-
tween every two common points in whole model, such
as points 1 and 1′′, 2 and 2′′, 3 and 3′′, 4 and 4′′, 5
and 5′′, 7 and 7′′ in Fig. 5(c). Secondly, it can be rep-
resented by the difference between measured and real
size of the object. In this paper, a non-regular cube has
been modeled using the multi-viewpoint method. The
precision obtained using above two ways are both less

Figure 6. The system architecture.

than 0.5 mm in our experiments. The multi-viewpoint
algorithm we have developed can be extend easily to
the situation that over two viewpoints are needed for
modeling a whole object/scene.

4. Man-Machine Interaction
and Experimental Results

4.1. Configuration and Calibration
of the Stereo System

As an application, the man-machine interaction based
stereo vision system as an interface for a teleoperated
mobile robot is built using a PC-based computer sys-
tem. A hierarchical structure in the virtual environment
database and a special description language of virtual
environment are also developed on an SGI workstation.
The results in modeling an environment are transferred
from the PC to an SGI workstation via local internet
or to another PC via RS-232 serial port. The system
architecture is shown in Fig. 6.



96 Wang and Li

Figure 7. The modeling system flowchart based on man-machine interaction.

The operator can observe and recognize objects in
a real scene on the monitor. He can also prompt the
system for some object’s name and guide their edge de-
tection in finding correspondent feature points needed
for modeling the object, on the screen through the inter-
face. The 3D data of the features and transformations of
the vision system between different viewpoints are cal-
culated automatically. Then, the models of objects are
overlaid to the original images to verify the modeling
results. Finally, the environment will be reconstructed
with these models and their locations in a reference
frame. It will be transmitted to SGI workstation when
the operator confirms it. The known models of mobile
robots and the manipulators are stored in the model
database so that the global scene model can be gen-
erated in virtual environment automatically. The op-
erator can observe the pose relationship between the
robot and the obstacles or between the manipulator
and the object from any viewpoints. In the virtual en-
vironment, the system offers a great help to an oper-
ator working in an unknown environment. This will
strengthen the efficiency and reliability of the teleop-
eration. The schematic representation of the virtual en-
vironment modeling is shown in Fig. 7.

Figure 8 shows our human-machine interaction
modeling system. TwoMINTRON MTV-1881EXCCD
cameras are used. The two cameras are connected to
the red and green channel of a color image grabber,
respectively. The internal synchronization is used, i.e.,
the two cameras are synchronized by the same output
signal from the image grabber card. A plate marked
with black squares is mounted on a one-dimension

Figure 8. Human-assistance environment modeling system.
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Figure 9. Experiment setup for cameras calibration.

movable calibration apparatus is used to calibrate the
cameras, as is shown in Fig. 9. In order to improve
the calibration precision, the vertexes of the squares
marks are detected using human guided edge detec-
tion method as described in Section 2.1. The image
coordinates of these vertexes and their corresponding
3D coordinates are used to calibrate the cameras using
pseudo-inverse fitting. A total of 99 points are used in
calibrating the two cameras. 9 points can be captured
from one position and 11 steps each with a 10 mm step
size are used in the calibration. Two AVENIR CCTV
16 mm lens cameras are calibrated. The transformation
matrices derived are as follows:

[HL ]=


39.126310 8.214318 16.881193 −100.456096

−3.622237 43.831757 −12.297145 331.765558

−0.006779 0.006904 0.019769 1.000000



[HR]=


47.205679 −2.942710 −11.715263 −310.788084

0.584861 49.994324 −13.079590 324.279067

0.009651 0.007713 0.021737 1.000000



To increase the precision of the stereo vision system,
the 3D coordinates of another 99 points and 54 points
are calculated using the corresponding image coordi-
nates from the left and right images for lenses of 16 mm
and 8 mm, respectively. Then they are compared with
the known 3D coordinates. The errors of the stereo
vision system with the calibrated cameras of 16 mm
and 8 mm lenses are shown in Fig. 10(a) and (b), re-
spectively. The errors are found to be less than 0.6 mm
and 0.8 mm respectively over the field of view.

(a)

(b)

Figure 10. The errors of the vision system with (a) 16 mm and (b)
8 mm lens camera.

4.2. Experiment Results

Using the stereo vision system, we conducted several
3D experiments including object/environment model-
ing, multi-viewpoint modeling and vision guided part
mating.

4.2.1. Object/Environment Modeling Experiment.
Figure 11 shows an environment modeling example,
where the environment consist of a desk, a sphere, a
cuboid (book) and a cylinder. The necessary points
for modeling these objects are detected. The desk,
book and sphere can be modeled based on the extracted

Figure 11. Object/environment modeling experiment.
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features required as described in Section 2. The cylin-
der can be modeled using curve-based stereo vision
method based on the extracted ellipse feature. The
modeling accuracy turned out to be satisfactory. For ex-
ample, the model of a sphere (with a radius of 1.885 cm)
is tested using two cameras with the same lens 8 mm
in two positions. After edge detection and ellipse fit-
ting, the image coordinates(u1, v1), (u3, v3), which are
the two vertices of the major axis of the ellipse shown
in Section 2, can be calculated from the ellipse equa-
tion. In position 1, (285.73, 252.38), (407.35, 244.17)
in the left image, (184.13, 254.25), (308.30, 248.63)
in the right image. In position 2, (376.08, 80.45),
(472.81, 108.06) in the left image, (60.87, 86.40),
(159.62, 122.28) in the right image. The 3D coordinate
of the center and the radius of the sphere are given in
Table 1.

(a) (b)

(c) (d)

Figure 12. Modeling of a irregular cube using multi-viewpoint.

Table 1. The modeling result of a sphere.

Measuring (cm) Real (cm)

Position θx θy θz Radius Radius
Error of
radius

1 5.79 5.43 17.46 1.869526 1.885 0.82%

2 5.57 5.09 31.09 1.871000 1.885 0.74%

4.2.2. Multi-Viewpoint Modeling. The multi-view-
point algorithm we have developed is tested using a
irregular cube. The experimental results are shown
in Fig. 12. The modeled result in the first and second
viewpoints are shown in Fig. 12(a) and (b) respectively.
The projection from the second viewpoint to the first
viewpoint using calculated rotation and translation ma-
trix is shown in Fig. 12(c). The final modeling result
of the irregular cube is shown in Fig. 12(d).
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The rotation and translate transformation derived are
as follows:

[R] =

 0.234953 0.030250 0.971536

−0.008533 0.999541 −0.029057

−0.971969 −0.001468 0.235104


[T ] = [−5.481626 0.455810 21.924350]

The distances of the six common vertexes are consid-
ered as errors as indicated in Section 3. The errors are
given as follows, in the order of the vertex numbers
given in Fig. 5:

Vertex Error (mm)

1 0.000000

2 0.508750

3 0.259458

4 0.124624

5 0.174559

6 0.337252

It can be seen that the multi-viewpoint algorithm per-
formed quite well with the errors smaller than 0.6 mm.

4.2.3. Virtual Environment Rendering. Using the
above modeling method, we have modeled a scene cap-
tured by the vision system mounted on a mobile robot.
The known models of mobile robot and the manipula-
tor are stored in the model database so that the global
scene model can be generated in virtual environment
automatically. A virtual environment including the mo-
bile robot and modeled 3D world is shown in Fig. 13.
A rotation of about 90◦ is use between the viewpoints

Figure 13. Virtual environment rendering.

of the real vision system mounted on the mobile robot
to observe the objects in the scene.

4.2.4. Vision Guided Part Mating. Figure 14 illus-
trates the part mating experiment we conducted. Part 1
(left) is required to be inserted into part 2 (right). Here,
we model part 1 with three points 1, 2, 3, and part 2 with
another three points 4, 5, 6. These points can be cal-
culated from the feature detection and stereo vision as
described above. Then we can calculate the lines nor-
mal to the two planesπ1 andπ2, determined by points
1, 2, 3 and points 4, 5, 6, respectively. The angle be-
tween the two normal lines needs to be small enough
so that the two planes are approximately parallel. Then
the points 1, 2 and 3 are projected onto the planeπ2

(determined by 1′, 2′ and 3′ as seen in Fig. 11) along the
normal line vector of planeπ1. Part 1 can be inserted
into part 2 if the following conditions are satisfied:

(1) The angle between line 1′, 2′ and line 4, 5 is small
enough, i.e., line 1′, 2′ is approximately parallel to
line 4, 5.

(2) Point 1′ and 2′ lie between line 4, 7 and line 5, 6.
(3) Point 2′ and 3′ lie between line 4, 5 and line 6, 7.

Some intermediate steps in carrying out the vision
guided part mating task are shown in Fig. 15. Two cam-
eras both with a 16 mm lens are used in the experiment.
Part 1 is designed with a width of 50.2 mm and height of
19.9 mm. Part 2 is designed with the width of 102.6 mm
and height of 20.3 mm respectively. The test result is
given in Table 2.

In this table, width-1, height-1 and width-2, height-2
represent the width and length of part 1 and part 2 res-
pectively. Thedistancein the table represents the dis-
tance between the two planes. Angle-1 represents the
angle between the two normal lines of the two planes in
Fig. 13. Angle-2 represents the angle between line 3, 4
and line 1′, 2′. The three steps brought part 1 into part 2
without further adjustment. In the three positions, the
errors in the distance are calculated using the values of
the real distance and the calculated distance via model-
ing approach. The real distance between the two planes
of the parts are obtained from a ruler fixed on the mov-
able equipment. These distances are 9.1 cm, 8.1 cm
and 7.1 cm, respectively in the three steps. Figure 16
shows the results in another part mating experiment,
with the measurement data listed in Table 3. This ex-
periment shows the vision guided insertion when there
exist a larger error in initial position of the peg which
needs to be adjusted using the vision guidance.
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Table 2. Some results in the part mating task.

Width-2 Height-2 Width-1 Height-1 Distance Angle-1 Angle-2 Error of
Position (mm) (mm) (mm) (mm) (cm) (degree) (degree) distance

1 102.13658 20.09293 50.79605 19.77494 9.121807 0.862527 0.565099 0.241%

2 102.36857 20.05565 50.36557 19.53886 8.129533 0.807698 0.727662 0.35%

3 102.14636 20.08093 50.64573 19.67485 7.127684 0.813467 0.584093 0.39%

Table 3. Results of three steps of another part mating task.

Width-2 Height-2 Width-1 Height-1 Distance Angle-1 Angle-2
Position (mm) (mm) (mm) (mm) (cm) (degree) (degree)

1 102.51714 20.28692 50.13752 19.04528 5.016932 5.022622 0.434312

2 102.65296 20.47162 50.87478 19.52097 4.090957 2.047162 0.161952

3 102.151714 20.28692 50.3958 19.91999 0.797795 1.633507 0.501241

Figure 14. The vision guided part mating experiment.

In position 1, the part 1 needs to be tilted up by an
angle of 5 degree and lifted up 1.2 cm based on the
measured result. In position 2, part 1 is needs to be
lifted up 0.1 cm. In position 3, part 1 has been inserted
into part 2 correctly. In order to measure the mating
accuracy, we remove part 2 while keeping part 1 in
position 3, i.e., the position when part 1 is inserted
in part 2, and then model part 1. Next using the model
of part 2 derived previously, the gaps between part 1
and part 2 at position 3 are calculated and they are found
to be 0.72224 mm and 0.34293 mm for the upper and
lower planes respectively. The modeling result of part
1 is projected and overlaid on the previous case shown
in Fig. 16(c). From measurements of the real parts,
we know that the real gap between part 1 and part 2 is
0.4 mm. Therefore, we conclude that our vision system

can execute this kind of part mating task when a 0.6 mm
gap or more exists between part 1 and part 2. When
a higher precision is required with a smaller tolerance
given between the parts, force sensing needs to be em-
ployed to guide the mating process.

In the experiment here, the human-machine inter-
actions (choosing the rectangles for the edge detec-
tion) constitute the most time consuming operation.
The speed is measured in our test, where aPentium
PC with 16MB memory is used. Using the human-
machine interaction, a vertex can be detected within
8 s in our experiment. The part mating experiment
here should include the detection of 12 vertexes (6
vertexes on the left and right images respectively).
Therefore, the time taken in such a modeling is about
1.5 min.
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(a)

(b)

(c)

Figure 15. Some steps in a part mating experiment: (a) Position 1,
(b) Position 2 and (c) Position 3.

(a)

(b)

(c)

Figure 16. Some steps of another part mating experiment: (a)
Position 1, (b) Position 2 and (c) Position 3.
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5. Conclusions

A virtual environment modeling system for robotic ap-
plications has been developed. A man-machine inter-
action and a multi-viewpoint observation strategy us-
ing a binocular stereo vision system have been studied
to build an unknown environment model. The human
guided image feature extraction and multi-viewpoint
approach are theoretically and experimentally proven
be viable for the environment modeling. The compli-
cated calculation and poor robustness in automatic vi-
sual modeling are overcome due to the use of human
knowledge about the scene. The efficiency and accu-
racy is measured in experiments. A 3D environment
can be reconstructed based on the acquired models
from stereo vision and the known models of a robot
and manipulator on a PC or SGI workstation. Oper-
ators can observe the real environment on the screen
and operate in the virtual environment from any view-
points on the virtual reality system. By using human’s
intelligence, the system can greatly improve the tele-
operation of a mobile robot working in an inaccessible
environment. Future work is underway in investigating
new camera calibration methods to further improve the
accuracy of the modeling.
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