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Abstract

Motion trajectory can be an informative and descriptive clue that is
suitable for the characterization of motion. Studying motion trajec-
tory for effective motion description and recognition is important in
many applications. For instance, motion trajectory can play an im-
portant role in the representation, recognition and learning of most
long-term human or robot actions, behaviors and activities. How-
ever, effective trajectory descriptors are lacking and most reported
work just uses motion trajectory in its raw data form. In this paper,
we propose a novel motion trajectory signature descriptor and study
its rich descriptive invariants which benefit effective motion trajec-
tory recognition. These invariants are key measures of the flexibility
and effectiveness of a descriptor. Substantial descriptive invariants
can be deduced from the proposed trajectory signature, which is at-
tributed to the computational locality of the signature components.
We first present the signature definition and its robust implemen-
tation. Then the signature’s invariants are elaborated. A non-linear
inter-signature matching algorithm is developed to measure the sig-
nature’s similarity for trajectory recognition. Experiments are con-
ducted to recognize human sign language, in which both synthetic
and real data are used to verify the signature’s invariants, and to il-
lustrate the effectiveness in the signature recognition.

KEY WORDS—invariants, signature, trajectory descriptor,
motion trajectory recognition, robot vision.

1. Introduction

A motion trajectory here consists of a set of position vectors
of sampled points of interest in spatiotemporal motion. It is an
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informative and meaningful description due for the character-
ization of motion. Motion trajectory based motion description
is the foundation for many applications such as robot motion
analysis, motion modeling for robot learning (Bennewitz et al.
2005) and human behavior recognition (Psarrou et al. 2002). A
typical situation is that most long-term human or robot actions,
behaviors and activities can be well described by the underly-
ing motion trajectories. Therefore, studying motion trajectory
for effective motion description and recognition is of practical
importance.

Motion trajectories have been extensively explored in re-
cent research. Yang and Ahuja (1999) investigated hand ges-
ture recognition using extracted gestures motion trajectory.
Meyer et al. (1998) performed gait classification using a hid-
den Markov model with multiple motion trajectories extracted
from several human body parts. As the motion of human body
is usually small in relation to a full human body, Min and
Kasturi (2004) proposed a significant motion points (SMPs)
method to track stable trajectories from human hands and
feet for motion recognition. In the work by Black and Jepson
(1998), human motion was modeled as motion trajectory and
the condensation algorithm was applied for trajectory match-
ing in gesture and expression recognition. Aleotti and Caselli
(2005) studied robot task representation via modeling motion
trajectory using NURBS (Non-Uniform Rational B-spline).
Ude et al. (2000) investigated the use of a B-spline wavelet to
describe humanoid joint motion trajectory for robot learning.

However, in most existing work, motion trajectory was ei-
ther used directly in its raw data form or represented by simple
descriptors without considering their effectiveness. Raw tra-
jectory data are quite inflexible to use because they rely much
on absolute positions. The effectiveness of a trajectory descrip-
tor can be measured in terms of three criteria. First, a descriptor
is supposed to be able to capture complete shape and detailed
motion features for motion description and (high-level) analy-
sis. Second, high accuracy and efficiency in computation and
classification are desired. Third, the invariants (Forsyth et al.
1991) are important measures for a flexible and adaptable in
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motion description. Improvements on any of the abovemen-
tioned aspects will enhance the performance of a descriptor.

In this paper, we propose a novel and generic signature
mechanism to serve as an effective descriptor for free form
motion trajectory modeling. As a computationally local de-
scriptor, the signature can fully describe a trajectory’s shape
and capture the detailed motion features. More importantly,
the signature has its advantage in descriptive invariants. In ad-
dition to the rigid invariant and metric invariant, the signature
is also invariant with respect to visual projection and viewpoint
changes. In addition, the speed invariant and occlusion invari-
ant can also be deduced from the signature. Once attributed
to the six invariants, motion trajectory can be described and
recognized more effectively using the signature descriptor.

In the existing work, some shape descriptors have been
built for both motion trajectories and still curves. Simple con-
tour functions such as chain code, centroid—contour distance
(CCD) and R-S curve just admit limited invariants (Kin-
dratenko 2003). Geometric moments based descriptors are
widely adopted for region oriented shape representation (Hu
1962), which can be regulated in translation, rotation, metric
and skew invariant forms. However, moment functions suffer
from occlusion since they use global features.

Mathematical descriptors based on algebraic curve, spline
(Chand and Doty 1985), B-spline (Cohen et al. 1995;
Charlebois et al. 1999) and NURBS (Aleotti and Caselli 2005)
can be used to model the motion trajectory, object contour
or surface. These kinds of descriptors need data fitting to ob-
tain descriptive parameters for shape representation, inevitably
causing inaccuracy in the fitting. The B-spline based descrip-
tion may even result in recognition ambiguity as it is hard to
compare B-spline parameters directly for recognition because
a piece of trajectory is not uniquely described by a single set
of control points (Cohen et al. 1995). An algebraic curve is
not invariant to rigid transformation unless it is centering the
polynomial at the origin of the coordinate system (Kindratenko
2003). Both B-spline and NURBS are affine invariant. NURBS
is even invariant under perspective transformation as studied
by Alferez and Wang (1999). However, this kind of invariant
is just a structure invariant, in which the fitting and operation
of the control points and weights are complicated.

The descriptors based on principal components analysis
(PCA; Jiang and Motai (2005)), Fourier descriptor (FD; Hard-
ing and Ellis (2004)), wavelet transform (Chuang and Kuo
1996) and curvature scale space (CSS; Mokhtarian et al. 1996)
can represent shape in a coarse-to-fine or multi-scale man-
ner, in which only partially salient features are of concern
in the shape description. This explains why they are inca-
pable of fully capturing motion properties because much of the
less-important information is ignored. In particular, in Fourier
transform, it is difficult to perform local motion analysis in the
frequency domain because time information is lost. In terms of
invariants, while linear PCA is rotation, translation and met-
ric invariant, the invariants of the non-linear PCA rely on the

property of the kernel used. FD is translation, rotation and met-
ric invariant subject to simple normalization, provided that the
zero-frequency component (shape center) is ignored. Wavelet
transform can remain rigid invariant, but it still depends on an
extra normalization process. Curvature in Euclidean space is
rigid invariant, but the CSS representation is inexact as the tra-
jectory’s length shrinks with trajectory evolution.

It is feasible to combine more than one of the abovemen-
tioned descriptors to design multi-level descriptors, such as
FD plus wavelet (Kunttu et al. 2003), B-spline plus moments
(Huang and Cohen 1996) as well as moments plus wavelet and
FD (Bui and Chen 1997). Also, FD, wavelet, CSS and mo-
ments can be further regulated by developing affine invariants
(Khalil and Bayoumi 2002; Chaker et al. 2003). As for the
visual projective (imaging) invariant, several geometric invari-
ants (Weiss 1993) were investigated such as the cross ratio,
four coplanar lines (meeting at one point) and some mathe-
matical elements such as conic sections. However, they only
work for simple shapes and it is hard to see benefit for the
description for complex shapes.

For a comparison of more descriptors, readers are referred
to the surveys by Forsyth et al. (1991) and Kindratenko (2003).
In essence, a descriptor’s performance, especially the invari-
ant, depends much on its structure and the kind of the feature
we are interested in. Instead of a global description, the intrin-
sic features such as differential invariants (Kehtarnavaz and
Figueiredo 1988) and integral invariants (Manay et al. 2006)
admit richer invariants. The signature descriptor proposed here
is based on local differential invariants, which is the basis for
deducing the abovementioned six descriptive signature invari-
ants.

The paper is organized as follows. In Section 2, the sig-
nature descriptor is formulated and implemented. Section 3 is
dedicated to the elaboration of the signature invariants. After
that, a metric for signature recognition is developed in Section
4. Section 5 proceeds with experiments, followed by a general
discussion and conclusion in Section 6.

2. Motion Trajectory Signature Descriptor
2.1. Signature Principle

Motivated by the two-dimensional still curve representation in
differential geometry (Calabi et al. 1998), we propose the fol-
lowing three-dimensional trajectory signature definition using
differential invariants: for a free form space motion trajectory
I'(¢) parameterized by

() ={X(1), Y (), Z(r) | t € [1, N1}, (1

where N is the trajectory length (number of the sampled
points), its three-dimensional Euclidean signature S is defined
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in terms of four differential invariants, say, curvature (x), tor-
sion (7) and their first-order derivatives with respect to Euclid-
ean arc-length parameter s (x; and 7;), in the following form:

S =A{lr(@), ks@), 7(1), 751 | € [1, N]}. @

For a point sampled at temporal index ¢, its curvature x (¢)
and torsion 7 (¢) are calculated by

k() IT@) x T/ |To), 3)

() = O xFO)-Fo/|foxTo| . @

As the Euclidean arc-length is calculated by s(r) =
Jo IT®]| dt, we have ds(r)/dt = ||T(r)||. Hence, x,(t) and
74(t) can be derived as follows:

de(t) dr(t) dt  dx(t) 1
ds — dr ds  dr |[FQ)

\ >
dt(t) dt(t) dt dz(t) 1 6
is ~ ar as ar Jro] ©
The signature descriptor models a discretely sampled mo-
tion trajectory in terms of points and arc-lengths. First, the
Euclidean curvature and torsion are two intrinsic curve fea-
tures that are sufficient to describe a three-dimensional point
in Euclidean space. Intuitively, the curvature measures how far
a point is from being on a straight line and torsion measures
how far it is from being in a plane. Second, the modeling of a
trajectory needs to take into account the description of the en-
tire arc-length or, in other words, the arc-lengths between con-
secutive points. To this end, the local quantities [x(¢), 75(¢)]
are introduced as the other two signature components that can
measure trajectory arc-length. As can be seen from equations
(3)—(6), all four of the signature components are computed in
a local sense without involving global constraints. This is the
computational locality of the signature and it is the foundation
of the six signature invariants.

Within the signature based description, the representation
of motion trajectory is switched to the signature space. To en-
sure the mathematical existence of the signature, equation (1)
is assumed to be regular which means that there is no station-
ary point along a trajectory, that is, for all 7, I'(r) # 0. For an
irregular trajectory, a prior segmentation can be carried out at
the stationary points to obtain multiple regular segments.

The above signature principle is actually applicable to both
three- and two-dimensional motion trajectories. As a special
case, we give the two-dimensional signature by simplifying
equation (2) for two-dimensional trajectory description. For a
planar trajectory parameterized by I'2(z) = {X(¢),Y () | t €
[1, N1}, its signature S; is defined by S, = {[x(¢), ks (t)] | t €
[1, N]}. It is observed that S, just has two components and the
torsion pair [z (¢), 7,(¢)] is no longer there. This is because, in
essence, the curvature feature is sufficient to fully describe a
two-dimensional point.

ks(t) = &)

(1) =

Fig. 1. Signature approximation with multiple points.

2.2. Numerical Signature Approximation

The above-formulated accurate signature depends on high-
order derivatives that are usually sensitive to noise and round-
off errors. To reduce this effect and make the signature robust,
a so-called approximate signature is numerically implemented
for practical use. To avoid high-order derivatives, the differen-
tial invariants in the accurate signature are replaced by the joint
differential invariants which are computed based on multiple
consecutive points rather than only a single point for the differ-
ential invariants. Note that the joint invariants are not sensitive
to noise because they involve only the lowest-order derivatives
(Calabi et al. 1998). Following this, the joint Euclidean invari-
ants (i.e. the inter-point Euclidean distances) are employed to
approximate the four signature components. As joint Euclid-
ean invariants are local features, the approximate signature ad-
mits the computational locality too.

As illustrated in Figure 1, let P, P,_y, P;, Piy; and
P;1» be five consecutively sampled points along a three-
dimensional trajectory I', in which the inter-point Euclidean
distances are denoted by from a to n. Denote by HT(H™)
the height of the tetrahedron with sides a, b, ¢, d, e, f (a,
b, c, g, n, m) with respect to the point P;>(P;—;). Then
at P; the signature quaternion of the approximate signature
S* ={x*,k};, t*, 75} can be obtained by extending the deriva-
tions in Boutin (2000).

First, the curvature x* at point P; can be approximated by
the curvature of the circle passing through points P;_;, P; and
P; 1. It has been proved that the curvature of a circle is equal
to the reciprocal of its radius. Denote by A, the area of the
triangle with sides a, b and ¢, and define s = (a + b + ¢)/2;
the curvature x* is approximated by

Bure _ NSE=aG =BG =0
abc abc '

Based on Taylor series manipulations, the torsion 7 * is cal-
culated by

K'(P) =4 (7

1( H* H~

(P) = 2 6def -k*(Py) +6gnm -K*(Pi)> - ®
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300
200 100
100 qm "
iy o -200 *

Fig. 2. A three-dimensional motion trajectory Il (length: 183
frames).

Here H*(H™) can be derived via the calculation of the
tetrahedron’s (signed) volume, as formulated in the following
equation:

Xi Yi Zi 1
1 Xi—1 Yi-1 Zi-1 1 Agpe - HY
; . l l l = Vabcdef — %5 (9)
ol Xipr Vit Zipn 1
X2 Yit2 Zigz 1
where {x;, y;, z j}f}i%_, denote the coordinates of vertex P;.
Furthermore, x} and 7 are approximated as follows:
KRy = 3R, 10y
* _ T (Piy )T (P )+ (T (P)rg (Py) /6™ (Pr)
ti(P) = 44— G Ty =, (1)

where r =2a +2b —2d — 3h + g.

Thus, combining equations (7), (8), (10) and (11), we obtain
an approximate version of the trajectory signature,

S ={lc"(P), k(P), T (P), rg(P)] | P e T} (12)

Visually, the signature curve is shown by two sub-
signatures. One is the curvature sub-signature coordinated by
curvature in the horizontal axis versus its derivative in verti-
cal axis, and the other is the torsion sub-signature coordinated
by torsion in the horizontal axis versus its derivative in ver-
tical axis. As an example, for the trajectory IT shown in Fig-
ure 2, the basic forms of its accurate and approximate signa-
tures are illustrated in Figures 3 and 4, respectively. We have
two observations by comparing their signature curves. First,
the high similarity in the signature shapes verifies that the ap-
proximate algorithms are able to preserve the signature fea-
tures. Second, the approximate signature looks smoother and
more stable than the accurate signature, as the sawteeth ef-
fects and disturbing saltation in Figure 3, which were caused
by calculating the high-order derivatives, are reduced. Hence,
the approximate signature is more robust.

2.3. Trajectory Smoothing and Noise Reduction

In addition to the approximate signature, trajectory smooth-
ing is also helpful for stable signature calculation. Noise and
unsteadiness usually exist in the acquired trajectories. There-
fore, using raw trajectory data directly would not be advisable
for signature calculation. Rather, a smoothing preprocessing
should be employed to improve the signature’s computational
stability. The problem is that the trajectory shape may also be
affected by the smoothing. Therefore, a compromise needs to
be made between shape preservation and trajectory smoothing.
For example, the anisotropic Perona—Malik diffusion smooth-
ing algorithm (Perona and Malik 1990) is widely used to re-
duce noise to smooth the image while preserving the key edge
features.

Here, two trajectory smoothers are designed to reduce tra-
jectory noise. The first is an adaptive moving average filter,
which smoothes trajectories by using the weighted average
of the neighbor points. Smoothing and shape preservation
can be balanced by interactively setting a tunable span para-
meter. The other trajectory smoother is a wavelet smoother.
Although wavelet descriptor would become inaccurate when
much detailed information is lost, wavelet analysis is still ef-
fective for noise reduction. To try to preserve the underly-
ing trajectory shape, the wavelet decomposition level for ap-
proximate coefficients exaction can be tuned according to the
noise strength. In normal situations when we do not know the
noise strength in advance, in principle the decomposition level
should be restricted to a relatively low range (e.g. 1-3) to avoid
over-influencing the trajectory shape. The two filters can be
used individually or combined in practice (see Section 5.3 for
the application and comparison of the two smoothers).

3. Signature Invariants

In this section, six signature invariants are investigated. The
proof is based on the accurate signature, but is verified using
the approximate signature. With these invariants, trajectories
can be treated independently of the condition changes in the
space position, viewing distance (the distance between human
motion and camera), viewpoint, speed and occlusion.

3.1. Euclidean Group Invariant

Trucco and Verri (1998) defined invariant as the property of
geometric configurations which do not change under a cer-
tain class of transformations. For the Lie group based transfor-
mation, Cartan’s theory (Olver 2001) states that the solution
to the equivalence and symmetry problems of a submanifold
is based on the functional interrelationships among the fun-
damental differential invariants. The equivalence means that
the unique representation of a submanifold and the symmetry
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Fig. 3. The accurate signature of trajectory II: (a) curvature sub-signature (x versus x); (b) torsion sub-signature (z versus 7).
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Fig. 4. The approximate version of the accurate signature shown in Figure 3.

corresponds to invariant representation with respect to group
transformations. Since the signature components are based on
four typical Euclidean differential invariants, the trajectory sig-
nature can remain invariant with respect o Euclidean (rigid)
group transformations (translation, rotation or both).

As can be seen from equations (3)—(6), all of the signature
components are based on dot and cross products of derivatives,
which are purely local quantities of the trajectory features.
Hence, we can also conclude that the signature is Euclidean
invariant.

3.2. Metric Group Invariant

Following the Euclidean group invariant, the metric group in-
variant can be easily achieved by normalization. Denote the
metric transformations by

XMemC =0 - X + Tguclidean - X (13)
where 0 is a scaling factor. In view of the Euclidean invariant,
only the scaling factor has an influence on the signature’s vari-
ability. Applying a scaling of ¢ to a trajectory y (), we obtain
anew trajectory 7 (¢) = -y (¢). Then we have y (1) = J-y (¢),

F0 =0-50.50 =5-50. |[f 0] = 2- 17 ) and

5(t) = J-s5(¢). Based on these quantities and referring to equa-
tions (3)-(6), the signature of j (¢) are derived as follows:

IG5 @) x @-F@)ll _ 1

0= 165 @I 5 K 4B
GO XG M) 6T D)
(1) = : - 2
167 @) x 67O
- é.z(z), (15)
d(1/6- 1
fo) = %3—2«50), (16)
d(1/6- 1
) = (d/((s—gt”z?nm. a7

The above equations reveal that the signature is relatively
invariant with respect to metric actions. In trajectory recogni-
tion, the effect of scaling can be removed by normalizing the
four items & (¢), 7(¢), \/k3(¢) and \/7;(¢) (see Section 4.2 for
details). The metric relative invariant is useful in making the
recognition independent of the viewing distance of the tracked
motion trajectories.

The metric invariant is illustrated in Figures 5-7 using a
scaling trajectory I1. Compared with the original signature in
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Fig. 5. Metric transformations of trajectory Il by scaling factors of (a) 0.7 and (b) 1.6.
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Fig. 6. The signature of the trajectory shown in Figure 5(a).
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Fig. 7. The signature of the trajectory shown in Figure 5(b).

Figure 4, it is observed that the signatures of the scaled trajec-
tories are either zoomed in or zoomed out. Actually, applying
the formulae in (14)—(17) backwards, the scaled signatures in
Figures 6 and 7 can be restored to be identical to the signature

in Figure 4.

3.3. Visual Projective Invariant

For the visual imaging process, we need camera calibration
for space data reconstruction from projected images (views).

100

0 zop 0

(b)

1
i

5
oo -1
5 . . . .
a -5 -4 -2 0 2
(b) ]
5
<]
e 0 =
5 . . . .
8 5 -4 2 g 2

|

If the description is projective invariant, calibration and recon-
struction can be skipped because projective invariance ensures
that the projected image can be used directly. Geometric in-
variants have been widely explored to achieve projective in-
variants. Classical geometric invariants are based on relation-
constrained geometric elements such as a number of inter-
related points, lines and/or planes. Unfortunately, the over-
constrained conditions imposed on the invariant limit its appli-
cations. They may be applied to simple and regular man-made
objects, but it is hard to use them to represent complex sub-
jects. On the contrary, the curve-oriented descriptor with pro-
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jective invariant will be more generic because curve is capable
of representing general shapes.

Since it has been proved that there is no real three-
dimensional projective invariant from a single view (Burns
et al. 1992), we explore the signature’s projective invari-
ant in two-dimensional space, which is useful for pure two-
dimensional motion, when the relative depth of a motion is
much smaller than the viewing distance or when the distance
between the camera projection centers is negligible compared
with the viewing distance (in the case of camera motion). In
these cases, motion projection can be described by the weak-
perspective camera model and, consequently, it is possible to
deduce the signature’s two-dimensional projective invariant.

Assume that the projected image of space two-dimensional
motion trajectory I'2(¢) is represented by y ,(¢) = {x(¢), y(?)},
the weak-perspective model gives the following relations:

X(1)

0= N+, Yo

y@)y=«- f)7 + 0, (18)

where Z is the average depth of the trajectory, f - [ is the fo-
cal parameter and [xg, yo] is the image center. It is observed
that the projection from I';(¢) to y,(¢) is just a metric action
(( - f)/Z is a constant). Therefore, according to the above-
deduced metric invariant, we can infer that the relations be-
tween the signature S, of y,(t) and the signature S, of I'»(z)
satisfy equations (14)—(17). Hence, projective invariance can
be claimed for the two-dimensional trajectory signature, which
enables the space trajectory I';(¢) to be recognized invariantly
by using the image signature S,.

3.4. Viewpoint Invariant

For the visual projection, the same trajectory view may result
from different space motions, and the same motion may result
in different projected trajectory views, both of which depend
on the viewpoint (camera pose) through which the motion is
seen. An effective trajectory descriptor should be able to build
a consistent description for all of the different views of the
same motion. Since it is not efficient to register all of the pos-
sible views, the viewpoint invariant is important.

3.4.1. Discussion

Viewpoint invariant was studied mostly in two ways. The first
is to derive the invariant based on projective invariant, and the
second is a so-called canonical view method (Rao and Shah
2001). While the first relies on the projective invariant, the sec-
ond merely targets the projected two-dimensional views.

For the first method, the recognition is about the space data
of a subject (motion or object), and the description of the sub-
ject is supposed to remain invariant in the case of viewpoint
(camera pose) changes. Hence, making use of the projective

invariant features, we can prove that the descriptions based
on the projected views are invariant with respect to viewpoint
changes. Relying on projective invariance, this method is a
little restrictive for two reasons: (1) since there is no gen-
eral three-dimensional to two-dimensional projective invari-
ant, we have to use a weak-perspective model or focus on
two-dimensional space subjects (Parameswaran and Chellappa
2006); (2) it is not always easy to find an effective projective
invariant for complex subjects.

For the second method, however, the operational entity
for labeling and recognition is the projected two-dimensional
views rather than the (reconstructed) space data. This occurs
often in database-oriented image storage and retrieval. Focus-
ing on the two-dimensional views, the transformation relations
among different views (such as rough affine transformation
(Rao and Shah 2001), homography (Malis et al. 2003) and fun-
damental matrix (Caspi et al. 2006)) are studied for inter-view
matching. This can give rise to a viewpoint (or view) invari-
ant by measuring the matching error of the transformation ma-
trix between a canonical view and a transformed view. This
method is able to take into account the complicated projective
models such as the perspective (in essence, it does not care
about the type of projective model). However, as no projective
invariant is required to ensure unique correspondence between
a projected view and a space subject, the recognition may not
be the same as the case for recognizing space subjects.

In the following, we study the viewpoint invariant for both
two- and three-dimensional signatures. In particular, the three-
dimensional viewpoint invariant is developed based on stereo
views.

3.4.2. Two-dimensional Viewpoint Invariant

Extending the two-dimensional projective invariant in Sec-
tion 3.3, we can prove the signature’s two-dimensional view-
point invariant. The viewpoint change results from a rigid ac-
tion applied to the space trajectory or the observing cameras.
Assume that at viewpoint ¢, the space and image signatures
of trajectory F‘f (t) are denoted by Sf and 3‘;’5 , respectively. By
applying a rigid action M;f to the trajectory, we obtain a new
trajectory variation Ty (1) = M - IJ(t), and the viewpoint
is now changed to ¢, where we denote the space and image
signatures by S¢ and §Y, respectively. From the rigid invariant
and considering that M ;f is a rigid action, we have

s$ =2 (19)

Meanwhile, according to the projective invariant, we have
the following relations (A = (I - f)/Z):

1

~ 1 ~
Sf:Z.Sf, Sg’:Z-sg). (20)
Combining equations (19) and (20), we have
§ =30, 1)
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This relation shows that the 2-D signature remains invariant
when viewpoint (camera pose) changes. Although it is based
on the weak-perspective model, the viewpoint invariant is still
advantageous because the signature is capable of describing
complex and irregular trajectories.

3.4.3. Three-dimensional Viewpoint Invariant

Here, a stereo vision based viewpoint invariant is developed
for the three-dimensional signature. Since it is impractical to
calculate signature directly from the stereo image pairs, we
have to reconstruct the space trajectory from two-dimensional
stereo images to calculate three-dimensional signature. For a
motion €, assuming I'y(¢) is its space trajectory reconstructed
from viewpoint ¢, and I, () another trajectory counterpart re-
constructed from a different viewpoint ¢, we have the follow-
ing relations:

Ty =P (Q), T,() =P, (RQ+TQ), (22)
where P denotes the projective process, R a rotation action and
T a translation action. This equation indicates that the view-
point change is equivalent to a corresponding action (R(Q) +
T(Q)) applied to the space trajectory. As (R(Q) + T(Q)) is
of the Euclidean group, we can claim that the signatures of
I'y(t) and I',(¢) are identical according to the Euclidean in-
variant. Note that this three-dimensional viewpoint invariant is
insensitive to the projective transformation P. Therefore, it is
generic for projective models.

3.5. Speed Invariant

It is observed that velocity, speed and acceleration are con-
stitutive factors of the signature components as formulated in
Section 2.1. The factors I'(r) and I'(¢) are actually the veloc-
ity and acceleration features. This implies that these factors
may influence the signature in certain ways. Hence, the signa-
ture’s variability is analyzed in the following with respect to
the changes in speed and velocity, respectively.

3.5.1. Speed Invariant

First, assume that the motion is not in a straight line and the
whole trajectory shape is unchanged. In other words, no mat-
ter how the speed profile changes, the motion directions at all
trajectory points are fixed.

For a piece of motion trajectory y () with fixed arc-length,
at a point P;, assume that its original speed is y (¢), if its new
speed differs from the original by a scaling factor J, then the
new speed at P; will be in the form of § (f) = 6-y (¢). As speed
change will lead to corresponding change in motion time, say,

t=05-1,wehave 7 (f) = &y (J - 7). Thus, we can derive the
following equations:

P =856, 7-O=6-70-9.

Meanwhile, according to the arc-length formula s(t) =
jg Hf(t)” dt, the passing arc-length up to point P; is invari-
ant. Referring to equations (3)-(6), we obtain the following
relations regarding the signature quaternion at point P;:

[@-9@-1) x @ -§©-D)

(23)

O T e T

= x(0-1) =x(1), (24)
() = ©(6-1)=10), (25)
k() = Ks(0-1) =x,(), (26)
2D = 7,6-D =1,0). @7)

~ The above equations show that speed change from y (¢) to
7 (f) =6y (J - 1) only results in the temporal traversing mo-
ment of point P; changing from ¢ to z/J. The signature quater-
nion remains unchanged at point P;. This gives rise to the sig-
nature’s speed invariant: the signature quaternion at a trajec-
tory point has nothing to do with the traversing speed at that
point.

However, at the same time we should notice that speed
change causes simultaneous changes in trajectory sampling.
When the sampling rate of a tracking system is fixed, the num-
ber of sampled points depends on the motion speed. A higher
speed leads to sparser data sampled and a lower speed results
in denser data. Figure 8 illustrates the trajectory sampling for
different speeds with a fixed sampling rate. As a result, the
signatures of two trajectories with the same shape but different
speed profiles are not completely invariant (identical). They
are actually partially identical but differ in signature length
(see Section 4.2 for how they are matched for recognition).
Therefore, the speed invariant is not an absolute invariant for
the entire signature, but it is the basis to enable the same shape
of trajectories with different speed profiles to be recognized as
the same. This can deal with a typical case when the same mo-
tion is demonstrated in multiple demonstrations with various
speed profiles.

3.5.2. Signature Variability with Respect to Velocity Change

Following the speed invariant, in a more general sense, here
we explore the effect to the signature components caused by
arbitrary changes in motion velocity or acceleration in direc-
tion and magnitude. This exploration can help to clarify the
role of velocity or acceleration played in the signature. Similar
problems have been studied in Rao et al. (2002) for a specific
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Fig. 8. The effect of trajectory sampling caused by speed change: (a) speed v; (b) speed 2 - v.

one-dimensional trajectory, but we will show a more general
result.

Analyze this problem by evaluating the changing trend of
the signature quaternion between two consecutive points P;
and P,. Assume that%their velocity vectors are v; and v;, re-
spectively, and v # 0, then the acceleration at P, is ay = v, —
v1. According to equations (3) and (4), the curvature x(P;) and
torsion 7 (P;) at P, can be formulated in terms of v; and v, as
follows:

K (Py) lloa x 03!2|| _ o2 x (02 3—01)|I’ (28)
o2l o2l
/
(P (02 X a2) ;lz
[z x aal|
(02 X (V2 —01)) - (02 2— 1) (29)
oz x (02 —v1)l|
Let us see several special cases first. If ||oz|| = O, then

x(P,) and 7(P,) have no meaning because the denominators
of equations (28) and (29) are zero. As mentioned in Section
2.1, zero speed violates the regularity constraint of the trajec-
tory that is parameterized. In the case a; = 0, say, v, = vy,
x(P,) = 0 but 7(P,) has no meaning. This case can be further
generalized. Assume that v, # v; and v, can be represented
by a linear transformation of vy, that is, v, = J - v;, where 0
(0 # 1) is a real number. Then a, = v, — v = @-=1) -0y,
which leadsto vy xa; = d-01x (0—1)-v; =0.Sok(P,) =0
too and 7 (P>) has no meaning either. This reveals that as long
as the velocity’s direction remains unchanged from P; to P,
no matter how speed changes, we always have « (P,) = 0. This
actually is the special case that the trajectory between P; and
P is a straight line.

More generally, in the case when v, differs from v, in both
motion direction and magnitude, equations (28) and (29) im-
ply that the variability of curvature or torsion is not monotonic
with respect to the velocity. Similar conclusions can be drawn
for acceleration. This non-monotonic claim can be verified by
some exemplary data. Assume that a three-dimensional mo-
tion trajectory y that consists of nine points (i € [1,9]), as

shown in Figure 9(a). Applying equations v; = y; — 7,_1,
a; = v; —v;—; and a] = a; — a;_, we can obtain the ve-
locity v, acceleration a and the derivative of acceleration a’ as
{[vi, a;, a/lli €[3,8]}. Based on these vectors, the correspond-
ing curvatures and torsions are calculated according to equa-
tions (3) and (4). Figure 9(b) shows the finally obtained four
profiles of curvature, torsion, magnitudes of velocity and ac-
celeration. It is seen that no monotonic relation can be traced.

Usually, the salient features such as speed or the curvature
profile are used for motion segmentation and analysis. The
above non-monotonic conclusion indicates that between the
curvature (torsion) and velocity (acceleration) profiles, no one
is replaceable and no one is able to replace another to cover
the relevant three-dimensional motion features.

3.6. Occlusion Invariant

Occlusion is a common phenomenon in motion trajectory rep-
resentation. Occlusion cannot be dealt with by global descrip-
tors such as moments. In contrast, the proposed signature de-
scriptor is capable of handling occlusion naturally (Bruckstein
etal. 1993). Attributed to the computational locality, the partial
signature of the non-occluded portion of the full trajectory can
still be generated invariantly. This is defined as the occlusion
invariant and it enables a trajectory to be recognized under par-
tial occlusion. Note that this invariant imposes an extent con-
straint on occlusion. Heavy occlusion will result in recognition
ambiguity for similar trajectories.

The occlusion invariant is demonstrated in Figures 10-12
using trajectory II. Referring to the full signature of II in
Figure 4, we find that the signatures (Figures 11 and 12) of
the occluded trajectories can be completely localized in shape
within the full signature. In fact, occlusion will only make the
signature shorter than the original in length. Hence, the oc-
cluded trajectory can be recognized from the partially invariant
matching of the trajectory signatures.

Downloaded from http://ijr.sagepub.com at CITY UNIV OF HONG KONG on August 6, 2008
© 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://ijr.sagepub.com

904 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2008

140

——yalacity

=== gcceleration
100 | ==*== Curature
BT T tDrSiDn

==
e

a0 ------- e Rk el et R e

' T T - '

i - 1 - i

1 " l [ 1

. ! - e I H -

“___.::-_-...____ "_.'._ L - __.___"_‘_______..---'*__"-:.- .... ———— 4
QE-ToTrmrmrmecerstT . S e S LLELLRT IO

1 - l ;" l " 1

------ att ] ' - ==

A f ; e gt ;

| h \ |

&0 | | | |
4 5 G 7 g

Fig. 9. Signature variability with respect to velocity and acceleration changes. (a) Trajectory y consisting of nine points. (b) The
changing trend of curvature (torsion) with respect to velocity (acceleration) changes (note that the curvatures and torsions are
scaled by 3000 for a more explicit display).
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Fig. 10. Two occluded cases of trajectory II: (a) frames 33—120 visible; (b) frames 1-26 plus frames 124—183 visible.

£ 10°
1 5
0s ]
05 ]
K ' ' ' s ' 5 ' ' ' '
0 0005 001 0015 002 0025 003 B 5 4 2 0 2

-y

i

(a) (b)

Fig. 11. The signature of the trajectory shown in Figure 10(a).
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Fig. 12. The signature of the trajectory shown in Figure 10(b).

3.7. Invariants from the Approximate Signature

In addition to the accurate signature, the above invariants can
also be verified from the approximate signature. This consis-
tence is important because it is the approximate signature that
is used in practice.

As can be seen from equations (7), (8), (10) and (11), only
the quantities a, b, ¢, d, e, f, g, m,n, h,s, H and H ~are the
possible factors influencing the invariants. In fact, a, b, ¢, d, e,
f, g, m and n are Euclidean joint invariants, which are essen-
tially invariant with respect to Euclidean actions. As a result,
h, 5, H* and H™ are also invariant since they are completely
determined by a, b, ¢, d, e, f, g, m and n. Therefore, it can be
concluded that the approximate signature is Euclidean invari-
ant.

The scaling relations defined by equations (14)—(17) also
hold for the approximate signature. Assume that a trajectory is
scaled by factor J, which means that the Euclidean distances a,
b,c,d, e, f, g, mand n are also scaled by J. Hence, it can be
further derived that h and § are scaled by J, and H*and H ~are
scaled by 2. Substituting the relevant scaled quantities into
equations (7), (8), (10) and (11), the scaling relations are ob-
tained in the same manner as those defined in equations (14)—
(17). Hence, the approximate signature is proved to be rela-
tively invariant with respect to metric transformations.

Following the above claims of rigid and metric invariants
and referring to Sections 3.3 and 3.4, we can obtain the two-
dimensional projective invariant and viewpoint invariant for
the approximate signature.

For the speed invariant, the same argument also holds for
the approximate signature because no matter what the motion
speed is, the final lengths of a, b, ¢, d, e, f, g, m,n, h,s, H
and H~ are unchanged/fixed.

As mentioned before, as the approximate signature is also
based on local features, it also admits occlusion invariance.

4. Signature Recognition Metric

With the signature based descriptions, the trajectory’s recog-
nition is switched to the similarity measurement of the corre-

0ms 002 0025 003

|

sponding signatures. To do this, a suitable recognition metric
is required. As the signature is based on the features extracted
from all of the trajectory points, we have to consider several
factors related to the signature matching.

4.1. Factors Influencing Signature Matching

Signature matching has to take two important factors into ac-
count, that is, trajectory length and point distribution along
the trajectory. Motion speed, sampling rate, occlusion and the
user are possible factors that could cause the trajectories to
have diverse lengths and arbitrary distributions of the trajec-
tory points. As mentioned in Section 3.5.1, with a fixed sam-
pling rate, a lower speed results in denser points and vice versa.
The sampling rate may change proportionally or randomly in
trajectory tracking. Occlusions make a trajectory shorter in
length. The user is also a source of inconsistencies in the tra-
jectory length and point distribution among multiple instances
as a user cannot perform a motion in exactly the same way
each time.

Six trajectory instances of a motion class are shown in Fig-
ure 13. It is observed that straightforward pointwise signature
matching is infeasible. Hence, we need to design a suitable
metric to measure the similarity among signatures.

4.2. Dynamic Time Warping Based Signature Recognition

To take the diversity in trajectory length and point distribution
into account, we develop a non-linear inter-signature matching
method aiming at achieving the most reasonable alignment of
two signatures to obtain a similarity measurement.

The signature matching problem is actually analogous
to elastic time series/sequences comparison (Vlachos et al.
2005). In our view, the precondition of appropriate similar-
ity measurement lies in finding the best match of the element
pairs along two signatures. Following this principle, the dy-
namic time warping (DTW) method is employed to calculate
the inter-signature distance.

Downloaded from http://ijr.sagepub.com at CITY UNIV OF HONG KONG on August 6, 2008
© 2008 SAGE Publications. All rights reserved. Not for commercial use or unauthorized distribution.


http://ijr.sagepub.com

906 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 2008

Fig. 13. Illustration of the trajectory sampling under various conditions.

Dynamic programming is used in DTW algorithm to cal-
culate the DTW distance, i.e. the minimum cost of the best
alignment between two signatures. For two signatures S* and
§*/ with respective length P and Q, let

S*i = {[K*ia K:ia T*i, T:i]p | p € [l: P]}
and
S*] = {[K*ja szja T*js T:j]q | q € [15 Q]}

represent the two sequences of signature quaternions. The cost
function d(p, q) reflecting the similarity between S*” and
S*J4 is defined based on the Euclidean distance, and is for-
mulated as follows:

Axc*iPiqa . Ag*ipsjq

d(p,q) = AS*PI1 = 4 —, (30)
V(SHP)2 - \/(Si0)?
where (defining the operator {/x = |x| /x - 4/]x])
N D ' <K*ip’ ¥ /K:ip) _ (K*Aiq’ T/K:jq) .31
AT*iP;.f‘I — ' (T*ip’ +1 /T;‘il’> _ (T*jq, 1+/T;‘./"1> , (32)
(S*tp)Z — (K*zp)2 + <+ K:lp> + (T*tp)Z
— 2
+ <+\/r;""> , (33)
(§79) = (") + ( K?’q) + (9)?
—\ 2
+ <+ r;“”) : (34)

The accumulative minimum cost of aligning up to S*” and
§*J4 is represented by u(p, q), which is determined by the
minimum cost among its three neighbors’ plus the cost of it-
self, as expressed by

u(p,q) = min(u(p —1,q — 1), u(p,q — 1),u(p —1,q))

+d(p,q). 35)

Following the above and working from u(1, 1) to u(P, Q),
the best alignment of the two signatures is found giving rise to
the DTW distance at u(P, Q), which can serve as the similar-
ity measurement between S* and S*/. It should be noted that
equation (30) is a normalized measurement transparent to scal-
ing actions (see Section 3.2). Therefore, the DTW matching al-
gorithm can accommodate metric transformation in trajectory
recognition.

Applying the above-formulated DTW algorithm, we ob-
tain the non-linear paths warping among the six trajectory in-
stances given in Figure 13, with the result shown in Figure 14.
It is observed that the trajectory alignments are quite reason-
able. In addition, we can find that the warping paths offer an
intuitive interface to perceive the consistency and difference
between two trajectories. For example, the one-to-many point
correspondence reflects the difference in speed profiles be-
tween two trajectories.

In general, while the DTW distance can give a quantitative
measurement for the overall similarity of two signatures, mo-
tion features can be perceived qualitatively by visualizing the
inter-trajectory warping paths. In this sense, the DTW based
inter-signature matching method generally behaves better than
the matching method proposed by Gueziec and Ayache (1994)
which is applicable to still curve matching. At the same time,
note that as DTW always matches all of the points along tra-
jectories, the DTW based recognition may become ambiguous
when occlusion is severe. A matching method called Minimal
Variance Matching (MVM) proposed in Latecki et al. (2005)
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Fig. 14. DTW based non-linear paths warping (in dotted lines) among the six trajectory instances shown in Figure 13.

can offer better recognition specifically for occluded trajecto-
ries. However, the MVM method imposes a length constraint
to the query and the reference. Hence, its application scope is
narrower than the DTW method.

5. Experiments

Experiments are conducted to implement the trajectory signa-
ture, confirm the signature invariants and show the signature’s
recognition performance. Here we use sign language, which
is characterized by the extracted motion trajectories. Sign lan-
guage is a special human communication modality, and it can
be introduced as an effective method for human-robot interac-
tion.

5.1. Sign Motion Trajectory Acquisition

In our experiments, when an operator performs a sign word by
hand, the hand movement is tracked by visual sensors to ac-
quire the spatiotemporal motion trajectory to represent the sign
word. In the experiments, only the sign language performed by
a single human hand is used and each sign admits a regular tra-
jectory (for all 7, I'(r) # 0). A stereo vision system with two
TM-765 cameras is employed for the three-dimensional tra-
jectory tracking. It should be pointed out that to simplify the
trajectory tracking, we do not track the hand directly but track
a distinctive rigid object held by the hand. This makes trajec-
tory tracking easier and more stable. The issue of pursuing ro-
bust human hand tracking is out of the scope of this paper.
The object of interest is tracked using the CAMShift (Contin-
uously Adaptable Mean-Shift) algorithm (Bradski 1998) under
common scene background. The sampling rate is 15 fps with a
resolution of 480 x 480. Figure 15 shows the system setup and
several stereo snapshots in the trajectory tracking.

The two-dimensional trajectory is the concatenation of the
position vectors of the tracked object centroid, and the three-
dimensional trajectory is reconstructed using the stereo trian-
gular algorithm. Based on the two-dimensional object cen-
troids (x, y;) and (x,, y;) in the stereo views, the space co-
ordinates (X, Y, Z) are calculated by

X =T, (x; —x0)/(x1 — x2),
Y =T, (31 —y0)/(x1 — x2),
Z=T,-(I-f)/(x1 —x2).

In our experiments the baseline length 7}, is fixed. Hence,
following the signature’s metric invariant, 7, can be eliminated
from equation (36) without influencing the trajectory recogni-
tion. The image center (xo, yo) and focal parameter [ - f are
calibrated using the method of Zhang (2000).

(36)

5.2. Invariant Signature Recognition

The first experiment aims at verifying the invariants in the
sign signature description and recognition. We define 10 dif-
ferent sign classes characterized by their motion trajectories
whose shapes are close to the characters from “0” to “9”. These
classes are labeled from (00) to (09) sequentially. Note that we
are not performing character recognition but illustrating the
free forms of sign trajectory. Firstly, five series of samples of
the 10 classes are demonstrated by user 1 with normal view-
points, viewing distances and motion speed profiles. Among
the five samples of each class, we manually pick a representa-
tive and stable one as the canonical sample for this class. Fig-
ure 16 shows the selected canonical samples for the 10 classes.

Next, four series of test samples were acquired by repeat-
ing the 10 sign classes by varying the conditions in viewpoints
(Figure 17), viewing distances (Figure 18), speed profiles (Fig-
ure 19) and occlusions (Figure 20). The viewpoint is changed
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Fig. 16. The canonical samples of the 10 sign classes.

Fig. 18. The sign samples demonstrated with diverse viewing distances (indexed by series B).
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Fig. 19. The sign samples demonstrated with diverse motion speed profiles (indexed by series C).

RO/ B A

SYRSRTRY,

Fig. 20. The sign samples with diverse extents of occlusions (indexed by series D).

by changing the camera pose relative to the sign demonstra-
tion. Note that the viewpoint invariant can confirm the rigid
invariant at the same time. The viewing distance is changed by
varying the distance between the camera and the demonstrator.
The motion speed changes result from faster or slower move-
ments of the user’s hand in the course of sign demonstration.
Because humans cannot perform exactly the same motion each
time, the repeated signs are not exactly the same shape as the
canonical samples. However, user 1 was asked to try his best
to repeat the signs exactly. In particular, the samples in Figures
16 and 19 are displayed as dotted lines to enable the difference
in point distribution caused by speed changes to be observed.

Now look at the signature’s variability with respect to the
four series of test samples. According to the signature’s in-
variants proved in Section 3, the signatures of the test sam-
ples should be the same as those of the canonical samples. The
DTW based inter-signature matching is applied to measure the
similarity between the test samples and the canonical samples.

Figure 21 shows the comparison results of series A and
B in two tables. For each test sample (row), its similarity
to every canonical sample (column) is normalized to a rela-
tive distance range of [0, 1]. The inter-signature distances of
the series samples are then scaled with bounds [0, 0.2] to a
grayscale image to form a similarity table. Here, the darker the
cell is, the smaller the distance (denoted by «) between the
corresponding test and canonical sample (black a = 0; white
a > 0.2; gray a € (0,0.2)). The two tables reveal that the test
samples’ signatures are very close to those of the canonical
samples.

oo oo
01 ol
02 02
< 03 w03 [
@ 04 @ 04
T 0 " T 0o .
D g7 g7
08 08
09 08
0001020304 0506 07 0509 0001 0203 0405 0607 0809

Canonical Canonical

(@) (b)

Fig. 21. The signatures’ similarity of (a) series A (different
viewpoints) and (b) series B (different viewing distances) com-
pared with the canonical samples.

To demonstrate the viewpoint and metric invariant more
clearly, we manually synthesize a series of test samples (in-
dexed by A*) as shown in Figure 22, which are the counter-
parts of the canonical samples after applying arbitrary rigid
transformations. This kind of data synthesis can simulate si-
multaneous tracking of the same sign trajectory by two or more
sets of visual sensors at different viewpoints. In addition, some
synthetic databases also contain many such rigid transformed
trajectory variations. Hence, the data synthesis of series A* is
meaningful for practical applications and the experiment result
will be representative. The signatures of series A* are com-
pared in Figure 23 with scaling bounds [0, 0.0001]. We can
observe that the cells at the table diagonal are almost black,
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Fig. 22. The sign samples synthesized manually by applying arbitrary rigid actions (indexed by series A*).
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Fig. 23. The signatures’ similarity of series A* (arbitrary rigid
actions applied) compared with the canonical samples.

which indicates extremely small values because the upper scal-
ing bound is 0.0001 << 1. We believe that the signature de-
viations just come from digital computing errors. That is, if
the same sign word is tracked with different viewpoints (cam-
era poses), the signature will be identical (ignoring the digi-
tal computing errors). Hence, the viewpoint (rigid) invariant is
verified using both real and synthetic data. Likewise, the met-
ric invariant can also be explicitly testified by synthetic data.

Figure 24 shows the similarity of series C and D with the
canonical samples (scaling bounds [0, 0.2]). We observe that
the results in Figure 24 are a little different to those of Fig-
ure 21. Since the speed invariant and occlusion invariant are
just the invariants of partial signature data rather than the entire
signature, the values of the diagonal cells are a little uneven.
However, the inter-signature distances are distinctive enough
to make the test samples recognizable. The invariants with re-
spect to diverse motion speeds and acceptable occlusions can
also be seen.

Note that heavy occlusions may ruin the occlusion invari-
ant as can be seen from Table 1, which shows more about
the recognition with respect to various extents of occlusions.
The inputs here are the occluded variations of the canonical
samples by making adjustable degree of occlusion in sign’s
moving direction. The results reveal that as the occlusion in-
creases, the recognition becomes ambiguous. Therefore invari-
ant recognition necessitates some limit on the occlusion de-
gree.
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08 05
09 09

0001 020304 050607 0809
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(@)

0001 020304 0506 07 0809
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Fig. 24. The signatures’ similarity of (a) series C (different
speed profiles) and (b) series D (diverse occlusions) compared
with the canonical samples.

From the above experimental results, the signature’s invari-
ants can be verified. Taking advantage of the invariants, the
sign demonstrator can perform the signs freely without be-
ing limited by the conditions on the viewpoint (camera pose),
viewing distance, motion speed or occlusion within a reason-
able degree.

5.3. Small-scale Trajectory Recognition Test

Two kinds of query samples are customized to evaluate the
recognition with respect to diverse trajectory accuracy. The
first kind of query sample is the real signs demonstrated by
different users. The second is synthetic data simulating the tra-
jectories with increasing shape variance.

First, some real sign trajectory data are acquired. Three
naive users (user 2, 3 and 4) were asked to perform the 10 sign
classes individually in front of the camera. No training was
conducted for these three users and they just demonstrate the
signs in their own way. The users are allowed to select various
viewpoints, viewing distances and motion speeds. Figure 25
shows the trajectories of a set of sign samples produced by the
three users.

The second kind of query sample is synthesized based on
the canonical samples by attaching white noise with increas-
ing strengths. As emphasized in Section 2.3, noisy data will be
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Table 1. Recognition results with respect to various extents of occlusions.

Occlusion extent in normal (+) or reverse (-) direction

Samples +10% +50% +80% -10% -30% —50% -80%
“0” “O” “695 “293 “095 “0” “9” “379
“1” “1,9 “4” “7” “1” “4” “7” “7”
“27’ “279 “477 “99’ “277 “27’ “37’ “5”
‘s3” “37’ “3” “8” “39, “3” “8” “8”
“4” “4” “495 “593 4‘495 “4” “7” “779
“5” “5,9 “3” “69’ “5” “5” “2” “4”
“67’ “679 “977 “39’ “677 “07’ “97’ “0”
‘s7” “779 “1” “9” “79, “7” “2” “1”
“859 “8” “995 “1” “8” “959 “6” “2”
“9” “9,9 “7” “19’ “9” “9” “3” “O”

+30%
el
7/

NSNKUS
VENGNG

NERE
NEINERE

Fig. 25. Three series of query samples demonstrated by user 2 (rows 1 and 2), 3 (rows 3 and 4) and 4 (rows 5 and 6).

smoothed first. Hence, the two trajectory smoothers are used.
For the three series of noisy sign trajectories shown in Fig-
ures 26, in Figures 27 and 28 we show the smoothed sam-
ples using the moving average filter (span parameter 9, 17 and
31) and wavelet smoother (wavelet DB4 and the coefficients
at level 4-6), respectively. It is observed that the smoothing ef-

fects are good and the shape deviations are acceptable with
the smoothing. This shows that the noisy trajectory can be
handled nicely by the smoothers to improve the signature’s
robustness.

The second kind of samples can simulate a kind of real
situation where the sign demonstration has irregular and un-
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Fig. 26. The query series E (rows 1 and 2), F (rows 3 and 4) and G (rows 5 and 6) with increasing strength of white noise.

Lol
Lole Lol Lol2

QEUQELE
GLOLAL
NONQNE

Fig. 27. The smoothed samples of the query series E, F and G by using the moving average filter.
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Fig. 28. The smoothed samples of the query series E, F and G by using the wavelet smoother.

predictable shape variance. For example, the sign samples in
Figure 26 could be some unsteady demonstrations with much
vibration by certain users. The results in Figures 27 and 28
show that the underlying trajectory shapes can be outlined rea-
sonably from the noisy samples, which will lead to better per-
formance than raw data in trajectory recognition. However, in
some extreme cases, the smoothing may result in serious shape
deviations from the original trajectory. This is understandable
because it is essentially hard to perceive the original shape ex-
actly from some very noisy data set. In summary, when the
trajectories are not well acquired (with noise or disturbing vi-
brations), they would not be used in raw data form, but the
smoothing preprocess proves to be an effective way to improve
the quality of the trajectory.

A 1-NN classifier is designed to recognize the two kinds of
query trajectories based on the DTW inter-signature distances.
A query is recognized as the labeled canonical sample (Figure
16) with minimal signature distance. The trajectories in Fig-
ures 25 and 28 are recognized from the scaled distance tables
in Figures 29 and 30, respectively (scaling bounds [0, 0.5]).
According to the distinctive results in the table diagonals, we
can obtain an intuitive confirmation that all of the query sam-
ples are recognized correctly.

Although the scale of the dataset is small in this experiment,
the results reveal that the signature is effective in dealing with
most sign trajectories acquired in real circumstances.

5.4. Large-scale Trajectory Recognition Test

In the third experiment, we test the signature’s recognition us-
ing the large-scale UCI KDD ASL! dataset, and compare the
performance with FD. Referring to the review in Section 1, the
comparison result to FD is typical for that kind of descriptors
using partial features.

ASL trajectory archive consists of 6650 samples of 95 sign
classes, and 70 samples are collected for each class from five
signers. The sign’s length ranges from 40 to 200 points. Fig-
ure 31 shows three instances of the sign word “all” and “exit”.
To reduce noise and vibration, the wavelet smoother is applied
to the sign trajectories using wavelet DBS and extracting the
third level coefficients.

A one-dimensional trajectory vector x (¢) with length M can
be described by the Fourier coefficients based on the following
Fourier transform (Harding and Ellis 2004),

M
Xp=> x(@)e UM < p <M. (37)

t=1

As usual, setting f = [0,1,2,3,4], we can obtain a
Fourier feature vector F; = {X HYp Z f.} to represent a three-
dimensional trajectory defined by equation (1). Because F; has

1. Available at: http://kdd.ics.uci.edu/databases/auslan/auslan.html.
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Fig. 29. The inter-signature distances comparison of the query series demonstrated by (a) user 2, (b) user 3 and (c) user 4.
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Fig. 30. The inter-signature distances comparison of the query (a) series E, (b) series F and (c) series G.

Fig. 31. Sign instances of words (a) “all” and (b) “exit”.

fixed length, two Fourier representations F; and F/ are com-
pared directly using the mean Euclidean distance

1
1 o
_ i _ J
DF_I’;:IHFI F,

The recognition experiment was carried out in two steps.
First, half of the sign samples of a class are selected and re-
sampled to the same length (100 frames) to average out a ref-
erence representation. Then, the other half of the samples are

input to perform recognition using 1-NN classifier. Different
classes and samples are picked randomly from the dataset to
repeat the two-step trajectory recognition more than 50 times
on a PC (Pentium 4 CPU 3.00 GHz, 512 MB RAM). An av-
erage result of the recognition performance in terms of ac-
curacy and efficiency is compared in Tables 2 and 3, respec-
tively. Obviously, the signature descriptor outperforms FD in
recognition accuracy. However, this is achieved by sacrificing
efficiency to some extent as can be seen from the query time in
Table 3. As the signature is a full trajectory description and the
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Table 2. Recognition accuracy comparison.

Number of classes

2 4 8
Approximate signature 89.83% 83.79% 75.92%
Fourier descriptor 82.08% 63.710% 52.31%

Table 3. Recognition efficiency comparison (units of mil-
liseconds per query).

Number of classes
2 4 8 16 32
1618 2981 5423 8724

Approximate 996
signature

Fourier descriptor 306 333 358 421 497

DTW algorithm is time-consuming, the recognition efficiency
remains to be improved via signature optimization and a faster
recognition engine in the future.

6. Discussion and Conclusion

Invariance is an important quality in measuring the effective-
ness of a shape descriptor. In this paper, we have proposed a
trajectory signature descriptor and focused on the investigation
of its invariants to show how the substantial signature invari-
ants can benefit effective trajectory recognition.

Compared with the existing descriptors, our signature has
richer invariants. The signature’s computational locality is the
basis for deducing the six descriptive invariants. The rigid in-
variant and viewpoint invariant can make the trajectory de-
scription independent of observing viewpoints (camera poses),
and the metric invariant enables the signature to be insensitive
to the viewing distance. In particular, camera calibration and
reconstruction can be avoided by use of the projective invari-
ant. Although the speed invariant is not an absolute invariant,
the developed non-linear inter-signature matching can recog-
nize the same trajectories with diverse speed profiles. The oc-
clusion invariant is also a relative invariant subject to the de-
gree of occlusion.

It should be pointed out that the performance of a trajec-
tory recognition system relies on two key factors: the trajec-
tory description and the recognition engine. As verified in Sec-
tion 5.2, the signature’s invariants enable a trajectory to be rep-
resented and recognized invariantly. This can enhance the ef-
fectiveness in trajectory recognition. Meanwhile, noticing the
experiment results in Section 5.4, there is still room for im-
provement in the recognition efficiency for large-scale trajec-
tories.

The proposed trajectory signature is a generic descriptor for
free form motion trajectory. Hence, it serves as a foundation

for wide applications where motion trajectory is involved, for
instance, trajectory based robot motion recognition and inter-
action, object trajectory based motion retrieval from a video
database and the learning and recognition of trajectory based
human motions (actions, behaviors and activities). For com-
plex motions, multiple spatially parallel and temporally con-
tinuous trajectories can be extracted for joint description and
recognition.

The signature used in experiments in this paper was for sign
language recognition which could be used to enhance human—
robot interaction. It can be extended to robot learning, particu-
larly for robot programming by demonstration (PbD; Friedrich
et al. (1996)). Unlike short-term robot tasks such as grasping
(Bernadin et al. 2005), motion trajectory is an effective ele-
ment for describing many kinds of PbD human demonstra-
tions (Sato et al. 2002) especially for the long-term motions.
Further, PbD demands systematic representation to demonstra-
tions (Acosta Calderon and Hu 2005). The invariant signature
description actually admits generalized representation to the
task to be learned. Hence, the signature’s substantial invariants
can offer much flexibility and adaptability to the reproduction
of the learned task by the robot. For example, the Euclidean
invariant enables the signature to be independent of absolute
coordinates. Thus, given a learned signature, we can instanti-
ate arbitrary trajectory samples at any relative position. Simi-
larly, the metric invariant makes it possible to produce diverse
sizes of trajectories from an individual signature. In addition,
the developed DTW matching algorithm provides an appro-
priate learning metric to measure the quality of a reproduced
trajectory by robot by comparison with a reference signature.
In general, the signature’s invariants can not only make recog-
nition more effective, but can also boost robot learning.

The focus of this paper has been on building the signature
descriptor and highlighting its advantage in descriptive invari-
ants. From the experiment results and analysis of both syn-
thetic and real motion trajectories, it can be concluded that the
novel signature is rich in invariants and it can enhance the ef-
fectiveness in trajectory recognition.
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